Stable Matchings

Aaron Roth

University of Pennsylvania

February 27 2025

In this class we'll consider a *two sided matching* model.

- In this class we'll consider a *two sided matching* model.
- ► There are two sides of the market: students and schools, who each have preferences over the other.

- In this class we'll consider a *two sided matching* model.
- ► There are two sides of the market: students and schools, who each have preferences over the other.
- ► For simplicity we'll assume each student can be matched to exactly one school and vice versa but easy to generalize to schools that enroll multiple students.

- In this class we'll consider a *two sided matching* model.
- ► There are two sides of the market: students and schools, who each have preferences over the other.
- ► For simplicity we'll assume each student can be matched to exactly one school and vice versa but easy to generalize to schools that enroll multiple students.
- ▶ We will again prohibit the use of money...

- In this class we'll consider a *two sided matching* model.
- ► There are two sides of the market: students and schools, who each have preferences over the other.
- For simplicity we'll assume each student can be matched to exactly one school and vice versa — but easy to generalize to schools that enroll multiple students.
- ▶ We will again prohibit the use of money...
- Used in practice to match medical students to residencies, pledges to sororities, students to public schools in various districts.

A Model

1. Let M and W denote sets of *students* and *schools* respectively. Assume |M| = |W| = n.

A Model

- 1. Let M and W denote sets of *students* and *schools* respectively. Assume |M| = |W| = n.
- 2. A Matching:

Definition

A matching $\mu: M \cup W \to M \cup W$ is an assignment of students to schools so that each student is assigned to exactly one school and vice versa. For each $m \in M$ and $w \in W$, $\mu(m) = w$ if and only if $\mu(w) = m$.

A Model

- 1. Let M and W denote sets of *students* and *schools* respectively. Assume |M| = |W| = n.
- 2. A Matching:

Definition

A matching $\mu: M \cup W \to M \cup W$ is an assignment of students to schools so that each student is assigned to exactly one school and vice versa. For each $m \in M$ and $w \in W$, $\mu(m) = w$ if and only if $\mu(w) = m$.

3. Each $m \in M$ has a strict preference ordering \succ_m over the set W, and each $w \in W$ has a strict preference ordering \succ_w over the set M.

▶ Just as in last lecture, we have two desiderate:

- ▶ Just as in last lecture, we have two desiderate:
 - 1. We would like the matching that we compute to be *good* in some sense, and

- Just as in last lecture, we have two desiderate:
 - 1. We would like the matching that we compute to be *good* in some sense, and
 - 2. We would like to incentivize participants to reveal their true preferences to the mechanism.

- Just as in last lecture, we have two desiderate:
 - 1. We would like the matching that we compute to be *good* in some sense, and
 - 2. We would like to incentivize participants to reveal their true preferences to the mechanism.
- ▶ We'll be able to find "good" matchings and will have limited success managing preferences.

What makes a Matching Reasonable

1. Minimal requirement: Stability. We can suggest the matching, but can't force people into matchings.

What makes a Matching Reasonable

- 1. Minimal requirement: Stability. We can suggest the matching, but can't force people into matchings.
- 2. An equilibrium like condition:

Definition

A matching μ is *unstable* if there exists an $m \in M$ and $w \in W$ such that $\mu(m) \neq w$, but:

$$w \succ_m \mu(m)$$
 and $m \succ_w \mu(w)$

We call such an (m, w) pair a blocking pair for μ . (A blocking pair witnesses instability because m and w could mutually benefit by leaving their proposed partners and pairing with one another). A matching μ is stable if it has no blocking pairs.

What makes a Matching Reasonable

- 1. Minimal requirement: Stability. We can suggest the matching, but can't force people into matchings.
- 2. An equilibrium like condition:

Definition

A matching μ is *unstable* if there exists an $m \in M$ and $w \in W$ such that $\mu(m) \neq w$, but:

$$w \succ_m \mu(m)$$
 and $m \succ_w \mu(w)$

We call such an (m, w) pair a blocking pair for μ . (A blocking pair witnesses instability because m and w could mutually benefit by leaving their proposed partners and pairing with one another). A matching μ is stable if it has no blocking pairs.

3. We might more ambitiously want to compute the "best" stable matching – but do they even exist?

They Do Exist!

Theorem (Gale and Shapley)

For any set of preferences $(\succ_{m_1}, \ldots, \succ_{m_n}, \succ_{w_1}, \ldots, \succ_{w_n})$, a stable matching μ exists.

They Do Exist!

Theorem (Gale and Shapley)

For any set of preferences $(\succ_{m_1}, \ldots, \succ_{m_n}, \succ_{w_1}, \ldots, \succ_{w_n})$, a stable matching μ exists.

1. An algorithmic proof: we'll prove existence by showing how to find one.

They Do Exist!

Theorem (Gale and Shapley)

For any set of preferences $(\succ_{m_1}, \ldots, \succ_{m_n}, \succ_{w_1}, \ldots, \succ_{w_n})$, a stable matching μ exists.

- 1. An algorithmic proof: we'll prove existence by showing how to find one.
- 2. The student applying deferred acceptance algorithm.

Algorithm 1 The Deferred Acceptance Algorithm (Student Applying Version)

DeferredAcceptance(\succ):

Initially, $\mu(m) = \emptyset$ for all $m \in M$. (i.e. nobody is yet matched). **Each** student $m \in M$ applies to his most preferred $w \in W$. For each school $w \in W$, let m' be its most preferred student among the set that applied to it, and set $\mu(m') \leftarrow w$. All other students are *rejected* (and hence unmatched).

while There exists any unmatched student $m \in M$: do m applies to his most preferred $w \in W$ that he has not yet applied to.

If $m \succ_w \mu(w)$, then $\mu(\mu(w)) \leftarrow \emptyset$ and $\mu(w) \leftarrow m$ (i.e. w rejects its current match and instead matches to m). Else, m is rejected.

end while Return μ

 The algorithm halts: every school receives at least one application over the course of the algorithm. (If there is a school without an application, there is an unmatched student, and the algorithm has not halted unless he has applied to all schools). Once a school has received an application, it becomes matched, and stays matched for the rest of the algorithm.

- The algorithm halts: every school receives at least one application over the course of the algorithm. (If there is a school without an application, there is an unmatched student, and the algorithm has not halted unless he has applied to all schools). Once a school has received an application, it becomes matched, and stays matched for the rest of the algorithm.
- 2. Since |W| = |M|, once all schools are matched, all students are matched.

- The algorithm halts: every school receives at least one application over the course of the algorithm. (If there is a school without an application, there is an unmatched student, and the algorithm has not halted unless he has applied to all schools). Once a school has received an application, it becomes matched, and stays matched for the rest of the algorithm.
- 2. Since |W| = |M|, once all schools are matched, all students are matched.
- 3. So the algorithm halts after at most n^2 applications, since no student applies to the same school twice.

1. The final matching μ cannot have any blocking pairs.

- 1. The final matching μ cannot have any blocking pairs.
- 2. Suppose otherwise: there is a blocking pair (m_1, w_1) with $\mu(m_1) \neq w_1$, but $w_1 \succ_{m_1} \mu(m_1)$ and $m_1 \succ_{w_1} \mu(w_1)$.

- 1. The final matching μ cannot have any blocking pairs.
- 2. Suppose otherwise: there is a blocking pair (m_1, w_1) with $\mu(m_1) \neq w_1$, but $w_1 \succ_{m_1} \mu(m_1)$ and $m_1 \succ_{w_1} \mu(w_1)$.
- 3. Since $w_1 \succ_{m_1} \mu(m_1)$, m_1 must have applied to w_1 before he applied to $\mu(m_1)$.

- 1. The final matching μ cannot have any blocking pairs.
- 2. Suppose otherwise: there is a blocking pair (m_1, w_1) with $\mu(m_1) \neq w_1$, but $w_1 \succ_{m_1} \mu(m_1)$ and $m_1 \succ_{w_1} \mu(w_1)$.
- 3. Since $w_1 \succ_{m_1} \mu(m_1)$, m_1 must have applied to w_1 before he applied to $\mu(m_1)$.
- 4. Since $\mu(m_1) \neq w_1$, m_1 must have been rejected by w_1 in favor of some other student m'.

- 1. The final matching μ cannot have any blocking pairs.
- 2. Suppose otherwise: there is a blocking pair (m_1, w_1) with $\mu(m_1) \neq w_1$, but $w_1 \succ_{m_1} \mu(m_1)$ and $m_1 \succ_{w_1} \mu(w_1)$.
- 3. Since $w_1 \succ_{m_1} \mu(m_1)$, m_1 must have applied to w_1 before he applied to $\mu(m_1)$.
- 4. Since $\mu(m_1) \neq w_1$, m_1 must have been rejected by w_1 in favor of some other student m'.
- 5. Since schools only ever change who they are matched to in favor of more preferred students, we must have:

$$\mu(w_1) \succeq_{w_1} m' \succ_{w_1} m_1$$

which contradicts $m_1 \succ_{w_1} \mu(w_1)$.

- 1. The final matching μ cannot have any blocking pairs.
- 2. Suppose otherwise: there is a blocking pair (m_1, w_1) with $\mu(m_1) \neq w_1$, but $w_1 \succ_{m_1} \mu(m_1)$ and $m_1 \succ_{w_1} \mu(w_1)$.
- 3. Since $w_1 \succ_{m_1} \mu(m_1)$, m_1 must have applied to w_1 before he applied to $\mu(m_1)$.
- 4. Since $\mu(m_1) \neq w_1$, m_1 must have been rejected by w_1 in favor of some other student m'.
- 5. Since schools only ever change who they are matched to in favor of more preferred students, we must have:

$$\mu(w_1) \succeq_{w_1} m' \succ_{w_1} m_1$$

which contradicts $m_1 \succ_{w_1} \mu(w_1)$.

6. Tada!

Good matchings?

1. What is a good matching? Not everyone can receive their favorite match.

Good matchings?

- 1. What is a good matching? Not everyone can receive their favorite match.
- 2. Define:

Definition

For $m \in M$ and $w \in W$, we say that w is achievable for m (and vice versa) if there exists a stable matching μ such that $\mu(m) = w$.

Good matchings?

- 1. What is a good matching? Not everyone can receive their favorite match.
- 2. Define:

Definition

For $m \in M$ and $w \in W$, we say that w is achievable for m (and vice versa) if there exists a stable matching μ such that $\mu(m) = w$.

3. Optimality: The best among all achievable matchings:

Definition

A matching μ is student optimal if for every achievable pair (m, w), $\mu(m) \succeq_m w$ Similarly, we can define school optimal matchings, and student and school pessimal matchings. (A matching μ is school pessimal if for every achievable pair (m, w), $m \succeq_w \mu(w)$)

Its Good to be on the Applying Side

Theorem

The stable matching μ output by the student-applying deferred acceptance algorithm is student optimal.

1. Suppose otherwise. There must be some first round k at which a student m is rejected by his most preferred achievable school w, in favor of m'. $m' \succ_w m$.

- 1. Suppose otherwise. There must be some first round k at which a student m is rejected by his most preferred achievable school w, in favor of m'. $m' \succ_w m$.
- 2. Since w is achievable for m, there must be some stable matching μ such that $\mu(m) = w$ and $\mu(m') = w'$ (and hence w' is achievable for m').

- 1. Suppose otherwise. There must be some first round k at which a student m is rejected by his most preferred achievable school w, in favor of m'. $m' \succ_w m$.
- 2. Since w is achievable for m, there must be some stable matching μ such that $\mu(m) = w$ and $\mu(m') = w'$ (and hence w' is achievable for m').
- 3. We must have $w \succ_{m'} w'$ (since m' applied to w, and can't have been rejected by any achievable school since by assumption, k was the first round at which a student was rejected by an achievable school.)

- 1. Suppose otherwise. There must be some first round k at which a student m is rejected by his most preferred achievable school w, in favor of m'. $m' \succ_w m$.
- 2. Since w is achievable for m, there must be some stable matching μ such that $\mu(m) = w$ and $\mu(m') = w'$ (and hence w' is achievable for m').
- 3. We must have $w \succ_{m'} w'$ (since m' applied to w, and can't have been rejected by any achievable school since by assumption, k was the first round at which a student was rejected by an achievable school.)
- 4. Combining:

$$m' \succ_w m \quad w \succ_{m'} w'$$

- 1. Suppose otherwise. There must be some first round k at which a student m is rejected by his most preferred achievable school w, in favor of m'. $m' \succ_w m$.
- 2. Since w is achievable for m, there must be some stable matching μ such that $\mu(m) = w$ and $\mu(m') = w'$ (and hence w' is achievable for m').
- 3. We must have $w \succ_{m'} w'$ (since m' applied to w, and can't have been rejected by any achievable school since by assumption, k was the first round at which a student was rejected by an achievable school.)
- 4. Combining:

$$m' \succ_w m \quad w \succ_{m'} w'$$

5. (m', w) form a blocking pair for μ , contradicting stability.

- 1. Suppose otherwise. There must be some first round k at which a student m is rejected by his most preferred achievable school w, in favor of m'. $m' \succ_w m$.
- 2. Since w is achievable for m, there must be some stable matching μ such that $\mu(m) = w$ and $\mu(m') = w'$ (and hence w' is achievable for m').
- 3. We must have $w \succ_{m'} w'$ (since m' applied to w, and can't have been rejected by any achievable school since by assumption, k was the first round at which a student was rejected by an achievable school.)
- 4. Combining:

$$m' \succ_w m \quad w \succ_{m'} w'$$

- 5. (m', w) form a blocking pair for μ , contradicting stability.
- 6. Tada!

Its Bad to be on the Receiving Side

Theorem

The stable matching produced by the student-applying deferred acceptance algorithm is school pessimal.

1. In fact: every student-optimal stable matching μ is school pessimal. Suppose otherwise.

- 1. In fact: every student-optimal stable matching μ is school pessimal. Suppose otherwise.
- 2. There exists some w with $\mu(w) = m$, and $m \succ_w m'$ for some other achievable student m'.

- 1. In fact: every student-optimal stable matching μ is school pessimal. Suppose otherwise.
- 2. There exists some w with $\mu(w) = m$, and $m \succ_w m'$ for some other achievable student m'.
- 3. So there must exist a different stable matching μ' with $\mu'(m')=w$, and $\mu'(m)=w'$

- 1. In fact: every student-optimal stable matching μ is school pessimal. Suppose otherwise.
- 2. There exists some w with $\mu(w) = m$, and $m \succ_w m'$ for some other achievable student m'.
- 3. So there must exist a different stable matching μ' with $\mu'(m') = w$, and $\mu'(m) = w'$
- 4. But we must have $w \succ_m w' = \mu'(m)$ because μ is student-optimal and w' is achievable for m.

- 1. In fact: every student-optimal stable matching μ is school pessimal. Suppose otherwise.
- 2. There exists some w with $\mu(w) = m$, and $m \succ_w m'$ for some other achievable student m'.
- 3. So there must exist a different stable matching μ' with $\mu'(m')=w$, and $\mu'(m)=w'$
- 4. But we must have $w \succ_m w' = \mu'(m)$ because μ is student-optimal and w' is achievable for m.
- 5. So (m, w) are a blocking pair for μ' , which contradicts its stability.

- 1. In fact: every student-optimal stable matching μ is school pessimal. Suppose otherwise.
- 2. There exists some w with $\mu(w) = m$, and $m \succ_w m'$ for some other achievable student m'.
- 3. So there must exist a different stable matching μ' with $\mu'(m')=w$, and $\mu'(m)=w'$
- 4. But we must have $w \succ_m w' = \mu'(m)$ because μ is student-optimal and w' is achievable for m.
- 5. So (m, w) are a blocking pair for μ' , which contradicts its stability.
- 6. Tada!

What about Incentives?

Theorem

The student applying deferred acceptance algorithm is dominant strategy incentive compatible for the students. (i.e. reporting their true preferences \succ_m is a dominant strategy for each $m \in M$).

1. Suppose otherwise: there is a set of preferences $\succ = (\succ_{m_1}, \ldots, \succ_{m_n}, \succ_{w_1}, \ldots, \succ_{w_n})$ and a deviation \succ'_{m_1} such that if $\mu = DE(\succ)$ and $\mu' = DE(\succ')$ (where $\succ' = (\succ'_{m_1}, \succ_{-m_1})$), then:

$$\mu'(m_1) \succ_{m_1} \mu(m_1).$$

1. Suppose otherwise: there is a set of preferences $\succ = (\succ_{m_1}, \ldots, \succ_{m_n}, \succ_{w_1}, \ldots, \succ_{w_n})$ and a deviation \succ'_{m_1} such that if $\mu = DE(\succ)$ and $\mu' = DE(\succ')$ (where $\succ' = (\succ'_{m_1}, \succ_{-m_1})$), then:

$$\mu'(m_1) \succ_{m_1} \mu(m_1).$$

2. We know that μ is stable and student optimal with respect to preferences \succ , and μ' is stable and student optimal with respect to preferences \succ'

1. Suppose otherwise: there is a set of preferences $\succ = (\succ_{m_1}, \ldots, \succ_{m_n}, \succ_{w_1}, \ldots, \succ_{w_n})$ and a deviation \succ'_{m_1} such that if $\mu = DE(\succ)$ and $\mu' = DE(\succ')$ (where $\succ' = (\succ'_{m_1}, \succ_{-m_1})$), then:

$$\mu'(m_1) \succ_{m_1} \mu(m_1).$$

- 2. We know that μ is stable and student optimal with respect to preferences \succ , and μ' is stable and student optimal with respect to preferences \succ'
- 3. Define two sets:

1. Suppose otherwise: there is a set of preferences $\succ = (\succ_{m_1}, \ldots, \succ_{m_n}, \succ_{w_1}, \ldots, \succ_{w_n})$ and a deviation \succ'_{m_1} such that if $\mu = DE(\succ)$ and $\mu' = DE(\succ')$ (where $\succ' = (\succ'_{m_1}, \succ_{-m_1})$), then:

$$\mu'(m_1) \succ_{m_1} \mu(m_1).$$

- 2. We know that μ is stable and student optimal with respect to preferences \succ , and μ' is stable and student optimal with respect to preferences \succ'
- Define two sets:
 - 3.1 The set of students who prefer μ' to μ :

$$R = \{m : \mu'(m) \succ_m \mu(m)\}$$

1. Suppose otherwise: there is a set of preferences $\succ = (\succ_{m_1}, \ldots, \succ_{m_n}, \succ_{w_1}, \ldots, \succ_{w_n})$ and a deviation \succ'_{m_1} such that if $\mu = DE(\succ)$ and $\mu' = DE(\succ')$ (where $\succ' = (\succ'_{m_1}, \succ_{-m_1})$), then:

$$\mu'(m_1) \succ_{m_1} \mu(m_1).$$

- 2. We know that μ is stable and student optimal with respect to preferences \succ , and μ' is stable and student optimal with respect to preferences \succ'
- 3. Define two sets:
 - 3.1 The set of students who prefer μ' to μ :

$$R = \{m : \mu'(m) \succ_m \mu(m)\}$$

3.2 The set of schools whose matches in μ' are in R (and so prefer them to their match in μ):

$$T = \{ w : \mu'(w) \in R \}$$

1. We will show:

- 1. We will show:
 - 1.1 $w \in T \Leftrightarrow \mu(w) \in R$. (i.e. if a school's partner in μ' prefers μ' to μ , so does its partner in μ), and from this derive that:

1. We will show:

- 1.1 $w \in T \Leftrightarrow \mu(w) \in R$. (i.e. if a school's partner in μ' prefers μ' to μ , so does its partner in μ), and from this derive that:
- 1.2 There exists a $w_{\ell} \in \mathcal{T}$ and a $m_r \in \mathcal{R}$ such that (w_{ℓ}, m_r) form a blocking pair in μ' with respect to \succ' , a contradiction.

- 1. We will show:
 - 1.1 $w \in T \Leftrightarrow \mu(w) \in R$. (i.e. if a school's partner in μ' prefers μ' to μ , so does its partner in μ), and from this derive that:
 - 1.2 There exists a $w_{\ell} \in T$ and a $m_r \in R$ such that (w_{ℓ}, m_r) form a blocking pair in μ' with respect to \succ' , a contradiction.
- 2. We'll start with the first claim...

$$w\in T\Leftrightarrow \mu(w)\in R$$

Claim

$$w \in T \Leftrightarrow \mu(w) \in R$$

1. For any $m \in R$, let $w = \mu'(m) \in T$. Let $m' = \mu(w)$ be w's partner in μ .

$$w \in T \Leftrightarrow \mu(w) \in R$$

- 1. For any $m \in R$, let $w = \mu'(m) \in T$. Let $m' = \mu(w)$ be w's partner in μ .
- 2. If $m'=m_1$, we are done. Otherwise we can assume $m'\neq m_1$, and therefore that $\succ_{m'}=\succ'_{m'}$.

$$w \in T \Leftrightarrow \mu(w) \in R$$

- 1. For any $m \in R$, let $w = \mu'(m) \in T$. Let $m' = \mu(w)$ be w's partner in μ .
- 2. If $m'=m_1$, we are done. Otherwise we can assume $m'\neq m_1$, and therefore that $\succ_{m'}=\succ'_{m'}$.
- 3. Since $m \in R$, we know that: $w = \mu'(m) \succ_m \mu(m)$.

$$w \in T \Leftrightarrow \mu(w) \in R$$

- 1. For any $m \in R$, let $w = \mu'(m) \in T$. Let $m' = \mu(w)$ be w's partner in μ .
- 2. If $m'=m_1$, we are done. Otherwise we can assume $m'\neq m_1$, and therefore that $\succ_{m'}=\succ'_{m'}$.
- 3. Since $m \in R$, we know that: $w = \mu'(m) \succ_m \mu(m)$.
- 4. Since μ is stable w.r.t \succ , it must be that $\mu(w) = m' \succ_w m$.

$$w \in T \Leftrightarrow \mu(w) \in R$$

- 1. For any $m \in R$, let $w = \mu'(m) \in T$. Let $m' = \mu(w)$ be w's partner in μ .
- 2. If $m'=m_1$, we are done. Otherwise we can assume $m'\neq m_1$, and therefore that $\succ_{m'}=\succ'_{m'}$.
- 3. Since $m \in R$, we know that: $w = \mu'(m) \succ_m \mu(m)$.
- 4. Since μ is stable w.r.t \succ , it must be that $\mu(w) = m' \succ_w m$.
- 5. Because μ' is stable w.r.t. \succ' , it must be that $\mu'(m') \succ_{m'} \mu(m') = w$.

$$w \in T \Leftrightarrow \mu(w) \in R$$

- 1. For any $m \in R$, let $w = \mu'(m) \in T$. Let $m' = \mu(w)$ be w's partner in μ .
- 2. If $m'=m_1$, we are done. Otherwise we can assume $m'\neq m_1$, and therefore that $\succ_{m'}=\succ'_{m'}$.
- 3. Since $m \in R$, we know that: $w = \mu'(m) \succ_m \mu(m)$.
- 4. Since μ is stable w.r.t \succ , it must be that $\mu(w) = m' \succ_w m$.
- 5. Because μ' is stable w.r.t. \succ' , it must be that $\mu'(m') \succ_{m'} \mu(m') = w$.
- 6. Hence $m' \in R$ as we wanted

Claim

Claim

There exists a $w_{\ell} \in T$ and a $m_r \in R$ such that (w_{ℓ}, m_r) form a blocking pair in μ' with respect to \succ'

1. Since for every $m \in R$, $\mu'(m) \succ_m \mu(m)$, by stability, it must be that for all $w \in T$: $\mu(w) \succ_w \mu'(w)$.

Claim

- 1. Since for every $m \in R$, $\mu'(m) \succ_m \mu(m)$, by stability, it must be that for all $w \in T$: $\mu(w) \succ_w \mu'(w)$.
- 2. So when running DE(\succ), it must be that every $m \in R$ applies to $\mu'(m)$, and is rejected by $\mu'(m)$ at some round.

Claim

- 1. Since for every $m \in R$, $\mu'(m) \succ_m \mu(m)$, by stability, it must be that for all $w \in T$: $\mu(w) \succ_w \mu'(w)$.
- 2. So when running DE(\succ), it must be that every $m \in R$ applies to $\mu'(m)$, and is rejected by $\mu'(m)$ at some round.
- 3. Let m_{ℓ} be the *last* $m \in R$ who applies during the DE algorithm. This application must be to $\mu(m_{\ell}) \equiv w_{\ell}$.

Claim

- 1. Since for every $m \in R$, $\mu'(m) \succ_m \mu(m)$, by stability, it must be that for all $w \in T$: $\mu(w) \succ_w \mu'(w)$.
- 2. So when running DE(\succ), it must be that every $m \in R$ applies to $\mu'(m)$, and is rejected by $\mu'(m)$ at some round.
- 3. Let m_{ℓ} be the *last* $m \in R$ who applies during the DE algorithm. This application must be to $\mu(m_{\ell}) \equiv w_{\ell}$.
- 4. By the first claim, since $m_{\ell} \in R$, $w_{\ell} \in T$.

Claim

- 1. Since for every $m \in R$, $\mu'(m) \succ_m \mu(m)$, by stability, it must be that for all $w \in T$: $\mu(w) \succ_w \mu'(w)$.
- 2. So when running DE(\succ), it must be that every $m \in R$ applies to $\mu'(m)$, and is rejected by $\mu'(m)$ at some round.
- 3. Let m_{ℓ} be the *last* $m \in R$ who applies during the DE algorithm. This application must be to $\mu(m_{\ell}) \equiv w_{\ell}$.
- 4. By the first claim, since $m_{\ell} \in R$, $w_{\ell} \in T$.
- 5. It must be that w_ℓ rejected $\mu'(w_\ell)$ at a strictly earlier round (since m_ℓ is the last $m \in R$ to apply), and hence when m_ℓ applies to w_ℓ , w_ℓ rejects some $m_r \notin R$ such that: $m_r \succ_{w_\ell} \mu'(w_\ell)$

$$m_r \succ_{w_\ell} \mu'(w_\ell)$$

$$m_r \succ_{w_\ell} \mu'(w_\ell)$$

1. Since m_r had applied to w_ℓ before $\mu(m_r)$, it must be that:

$$w_{\ell} \succ_{m_r} \mu(m_r)$$

$$m_r \succ_{w_\ell} \mu'(w_\ell)$$

1. Since m_r had applied to w_ℓ before $\mu(m_r)$, it must be that:

$$w_{\ell} \succ_{m_r} \mu(m_r)$$

2. Hence:

$$w_{\ell} \succ_{m_r} \mu'(m_r)$$

$$m_r \succ_{w_\ell} \mu'(w_\ell)$$

1. Since m_r had applied to w_ℓ before $\mu(m_r)$, it must be that:

$$w_{\ell} \succ_{m_r} \mu(m_r)$$

2. Hence:

$$w_{\ell} \succ_{m_r} \mu'(m_r)$$

3. Together with the above, this means (m_r, w_ℓ) form a blocking pair for μ' , a contradiction.

$$m_r \succ_{w_\ell} \mu'(w_\ell)$$

1. Since m_r had applied to w_ℓ before $\mu(m_r)$, it must be that:

$$w_{\ell} \succ_{m_r} \mu(m_r)$$

2. Hence:

$$w_{\ell} \succ_{m_r} \mu'(m_r)$$

- 3. Together with the above, this means (m_r, w_ℓ) form a blocking pair for μ' , a contradiction.
- 4. Tada!

Thanks!

See you next class!