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Overview

▶ So far we have focused on how agents playing together in a
game might arrive at an equilibrium.

▶ For different equilibrium concepts, in different settings, we
have seen different plausible ways in which this might happen.

▶ But suppose players do reach an equilibrium. What then?

▶ What can we say about the quality of the outcome that has
been reached?

▶ This is where the price of anarchy and price of stability come
in. They measure how bad things can and must get
respectively

▶ We’ll study this question for Nash equilibria, but more
generally its sensible to study for any of the equilibrium
concepts we have seen.
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The Designer’s Goal

1. In order to talk about the quality of a game state, we must
define what our objective function is.

2. We will think about games in which players have individual
cost functions ci : A → R.

3. Let Objective : A → R measure the cost of game states a.

4. We will generally be interested in the social cost objective:
the sum cost of all of the players:

Objective(a) =
n∑

i=1

ci (a)

5. More generally we could be interested in other things. Note in
this case, smaller values are better.
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The Designer’s Goal
1. Define OPT to be the optimal value the objective function

takes on any action profile. This is the quality of the solution
we could obtain if we had dictatorial control:

OPT = min
a∈A

Objective(a)

2. On the other hand, in a game, players make decisions
independently. We are interested in how much worse things
can be in rational solutions. The price of anarchy measures
how bad the objective can be in the worst case, if we assume
nothing other than that players play according to some Nash
equilibrium.

Definition
The price of anarchy of a game G is:

PoA = max
a:a is a Nash equilibrium of G

Objective(a)

OPT
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An Optimistic Perspective
1. The price of anarchy pessimistically measures how much

things can go wrong if we might end up in an arbitrary Nash
equilibrium.

2. What if we get to choose the (equilibrium) outcome — how
bad must things get?

Definition
The price of stability of a game G is:

PoS = min
a:a is a Nash equilibrium of G

Objective(a)

OPT

3. The names are appropriate/evocative.
4. We have defined Price of Anarchy (POA) and Price of

Stability (PoS) for Nash equilibria, but we could have defined
them for any of our equilibrium concepts. Observe:

PoA(PSNE ) ≤ PoA(MSNE ) ≤ PoA(CE ) ≤ PoA(CCE )

(why?)
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Fair Cost Sharing Games

1. This lecture: We’ll restrict attention to pure strategy Nash
equilibria.

2. Recall the fair cost sharing game (a congestion game): An n
player m facility congestion game in which each facility j has
some weight wj and we have:

ℓj(k) =
wj

k
ci (a) =

∑
j∈ai

ℓj(nj(a))

3. i.e. all agents playing on a resource j uniformly split the cost
wj of building the resource, and the total cost of an agent is
the sum over all of his resource costs.

4. The social cost in this case is the total cost of resources built:

Objective(a) =
n∑

i=1

ci (a) =
∑

j∈a1∪...∪an

wj
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Fair Cost Sharing Games

Theorem
For fair cost sharing games:

PoS(PSNE ) ≥ Hn = Ω(log n)

where Hn =
∑n

i=1 1/i is the n’th harmonic number.

To prove a lower bound, we only need to give an example...
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because we need to show something for all such games.
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Proof
1. Recall that congestion games have an exact potential function:

ϕ(a) =
∑

j :nj (a)≥1

nj (a)∑
k=1

ℓj(k)

and that it decreases with best response moves.

2. We can compute:

ϕ(a) =
∑

j :nj (a)≥1

nj (a)∑
k=1

wj

k

=
∑

j∈a1∪...∪an

wj ·
nj (a)∑
k=1

1

k

≤
∑

j∈a1∪...∪an

wj · Hn

= Hn ·Objective(a)
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Proof

1. Also observe:
Objective(a) ≤ ϕ(a)

2. Thus:

Objective(a) ≤ ϕ(a) ≤ Hn ·Objective(a)

3. So lets conduct a thought experiment...

4. Let a∗ be a state such that Objective(a∗) = OPT.
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A Thought Experiment

Objective(a) ≤ ϕ(a) ≤ Hn ·Objective(a)

1. Imagine starting at state a∗ and then running best response
dynamics until it converges to a PSNE a′.

2. We know:

Objective(a′) ≤ ϕ(a′)

≤ ϕ(a∗)

≤ HnObjective(a∗)

= Hn ·OPT

3. Tada!



A Thought Experiment

Objective(a) ≤ ϕ(a) ≤ Hn ·Objective(a)

1. Imagine starting at state a∗ and then running best response
dynamics until it converges to a PSNE a′.

2. We know:

Objective(a′) ≤ ϕ(a′)

≤ ϕ(a∗)

≤ HnObjective(a∗)

= Hn ·OPT

3. Tada!



A Thought Experiment

Objective(a) ≤ ϕ(a) ≤ Hn ·Objective(a)

1. Imagine starting at state a∗ and then running best response
dynamics until it converges to a PSNE a′.

2. We know:

Objective(a′) ≤ ϕ(a′)

≤ ϕ(a∗)

≤ HnObjective(a∗)

= Hn ·OPT

3. Tada!



A Thought Experiment

Objective(a) ≤ ϕ(a) ≤ Hn ·Objective(a)

1. Imagine starting at state a∗ and then running best response
dynamics until it converges to a PSNE a′.

2. We know:

Objective(a′) ≤ ϕ(a′)

≤ ϕ(a∗)

≤ HnObjective(a∗)

= Hn ·OPT

3. Tada!



A Thought Experiment

Objective(a) ≤ ϕ(a) ≤ Hn ·Objective(a)

1. Imagine starting at state a∗ and then running best response
dynamics until it converges to a PSNE a′.

2. We know:

Objective(a′) ≤ ϕ(a′)

≤ ϕ(a∗)

≤ HnObjective(a∗)

= Hn ·OPT

3. Tada!



A Thought Experiment

Objective(a) ≤ ϕ(a) ≤ Hn ·Objective(a)

1. Imagine starting at state a∗ and then running best response
dynamics until it converges to a PSNE a′.

2. We know:

Objective(a′) ≤ ϕ(a′)

≤ ϕ(a∗)

≤ HnObjective(a∗)

= Hn ·OPT

3. Tada!



The Price of Anarchy

The price of anarchy can only be worse, and it is...

Theorem
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Once again, to prove a lower bound we just need an example...
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PoA(PSNE ) ≤ n

Let a∗ be an action profile such that Objective(a∗) = OPT. We
claim that for every pure strategy Nash equilibrium a:

ci (a) ≤ n · ci (a∗)

Why?
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Proof

By the Nash equilibrium condition, for every player i :

ci (a) ≤ ci (a
∗
i , a−i )

≤
∑
j∈a∗i

ℓj(max(nj(a), 1))

=
∑
j∈a∗i

wj

max(nj(a), 1)

≤
∑
j∈a∗i

wj

= n ·
∑
j∈a∗i

wj

n

≤ n · ci (a∗)

Since this holds term by term:
∑n

i=1 ci (a) ≤ n
∑n

i=1 ci (a
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Thanks!

See you next class — stay healthy!


