
Minimizing Swap Regret

Aaron Roth

University of Pennsylvania

February 18 2025

Overview

▶ Recall last lecture we defined correlated equilibria and coarse
correlated equilibria.

▶ We observed that if players use the polynomial weights
algorithm (or other similar methods) the empirical history of
play will converge quickly to a CCE.

▶ And we showed that if a player could minimize regret to
arbitrary strategy modification rules, play would converge to
CE.

▶ In this lecture, we give a learning algorithm to acheive this.

Overview

▶ Recall last lecture we defined correlated equilibria and coarse
correlated equilibria.

▶ We observed that if players use the polynomial weights
algorithm (or other similar methods) the empirical history of
play will converge quickly to a CCE.

▶ And we showed that if a player could minimize regret to
arbitrary strategy modification rules, play would converge to
CE.

▶ In this lecture, we give a learning algorithm to acheive this.

Overview

▶ Recall last lecture we defined correlated equilibria and coarse
correlated equilibria.

▶ We observed that if players use the polynomial weights
algorithm (or other similar methods) the empirical history of
play will converge quickly to a CCE.

▶ And we showed that if a player could minimize regret to
arbitrary strategy modification rules, play would converge to
CE.

▶ In this lecture, we give a learning algorithm to acheive this.

Overview

▶ Recall last lecture we defined correlated equilibria and coarse
correlated equilibria.

▶ We observed that if players use the polynomial weights
algorithm (or other similar methods) the empirical history of
play will converge quickly to a CCE.

▶ And we showed that if a player could minimize regret to
arbitrary strategy modification rules, play would converge to
CE.

▶ In this lecture, we give a learning algorithm to acheive this.

Recall

Definition
A distribution D over action profiles is an ϵ-approximate correlated
equilibrium if for every player i , and for every strategy modification
rule Fi : Ai → Ai :

Ea∼D[Regreti (a,Fi)] ≤ ϵ.

Recall that Regreti (a,Fi) = ui (Fi (ai), a−i)− ui (a).

We’ll define a new notion of regret for sequences of action profiles.
To disambiguate, we’ll start calling our old notion of regret
“external regret”.

Recall

Definition
A distribution D over action profiles is an ϵ-approximate correlated
equilibrium if for every player i , and for every strategy modification
rule Fi : Ai → Ai :

Ea∼D[Regreti (a,Fi)] ≤ ϵ.

Recall that Regreti (a,Fi) = ui (Fi (ai), a−i)− ui (a).

We’ll define a new notion of regret for sequences of action profiles.
To disambiguate, we’ll start calling our old notion of regret
“external regret”.

A New Notion

Definition
A sequence of action profiles a1, . . . , aT has swap-regret ∆(T) if
for every player i , and every strategy modification rule Fi : Ai → Ai

we have:

1

T

T∑
t=1

ui (a
t) ≥ 1

T

T∑
t=1

ui (Fi (ai), a−i)−∆(T)

If ∆(T) = oT (1), we say that the sequence of action profiles has
no swap regret.

1. External regret measured regret to the best fixed action in
hindsight.

2. Swap regret measures regret to the counterfactual in which
you can swap every action of a particular type with a different
action in hindsight, separately for each action.

A New Notion

Definition
A sequence of action profiles a1, . . . , aT has swap-regret ∆(T) if
for every player i , and every strategy modification rule Fi : Ai → Ai

we have:

1

T

T∑
t=1

ui (a
t) ≥ 1

T

T∑
t=1

ui (Fi (ai), a−i)−∆(T)

If ∆(T) = oT (1), we say that the sequence of action profiles has
no swap regret.

1. External regret measured regret to the best fixed action in
hindsight.

2. Swap regret measures regret to the counterfactual in which
you can swap every action of a particular type with a different
action in hindsight, separately for each action.

A New Notion

Definition
A sequence of action profiles a1, . . . , aT has swap-regret ∆(T) if
for every player i , and every strategy modification rule Fi : Ai → Ai

we have:

1

T

T∑
t=1

ui (a
t) ≥ 1

T

T∑
t=1

ui (Fi (ai), a−i)−∆(T)

If ∆(T) = oT (1), we say that the sequence of action profiles has
no swap regret.

1. External regret measured regret to the best fixed action in
hindsight.

2. Swap regret measures regret to the counterfactual in which
you can swap every action of a particular type with a different
action in hindsight, separately for each action.

Why Sequences?

Theorem
If a sequence of action profiles a1, . . . , aT has ∆(T) swap- regret,
then the distribution D = 1

T

∑T
t=1 a

t (i.e. the distribution that
picks among the action profiles a1, . . . , aT uniformly at random) is
a ∆(T)-approximate correlated equilibrium.

Proof.
This follows immediately from the definitions.

For any player i :

Eat∼D[Regreti (a
t ,Fi)] =

1

T

T∑
t=1

(
ui (Fi (a

t
i), a

t
−i)− ui (a

t)
)

≤ ∆(T)

Why Sequences?

Theorem
If a sequence of action profiles a1, . . . , aT has ∆(T) swap- regret,
then the distribution D = 1

T

∑T
t=1 a

t (i.e. the distribution that
picks among the action profiles a1, . . . , aT uniformly at random) is
a ∆(T)-approximate correlated equilibrium.

Proof.
This follows immediately from the definitions.

For any player i :

Eat∼D[Regreti (a
t ,Fi)] =

1

T

T∑
t=1

(
ui (Fi (a

t
i), a

t
−i)− ui (a

t)
)

≤ ∆(T)

Why Sequences?

Theorem
If a sequence of action profiles a1, . . . , aT has ∆(T) swap- regret,
then the distribution D = 1

T

∑T
t=1 a

t (i.e. the distribution that
picks among the action profiles a1, . . . , aT uniformly at random) is
a ∆(T)-approximate correlated equilibrium.

Proof.
This follows immediately from the definitions.

For any player i :

Eat∼D[Regreti (a
t ,Fi)] =

1

T

T∑
t=1

(
ui (Fi (a

t
i), a

t
−i)− ui (a

t)
)

≤ ∆(T)

Back to Experts: The Setting

In rounds t = 1, . . . ,T :

1. The algorithm picks an expert at ∈ {1, . . . , k} from among
the set of k experts.

2. Each expert i experiences loss ℓti , and the algorithm
experiences loss ℓtat .

Write LTAlg =
∑T

t=1 ℓ
t
at for the cumulative loss of the algorithm

after T rounds.

We want to find an algorithm that can guarantee, for arbitrary
sequences of losses:

1

T
LTAlg ≤ 1

T

T∑
t=1

ℓtFi (at)
+∆(T)

for all Fi : [k] → [k] and for ∆(T) = o(1).

Back to Experts: The Setting

In rounds t = 1, . . . ,T :

1. The algorithm picks an expert at ∈ {1, . . . , k} from among
the set of k experts.

2. Each expert i experiences loss ℓti , and the algorithm
experiences loss ℓtat .

Write LTAlg =
∑T

t=1 ℓ
t
at for the cumulative loss of the algorithm

after T rounds.

We want to find an algorithm that can guarantee, for arbitrary
sequences of losses:

1

T
LTAlg ≤ 1

T

T∑
t=1

ℓtFi (at)
+∆(T)

for all Fi : [k] → [k] and for ∆(T) = o(1).

Back to Experts: The Setting

In rounds t = 1, . . . ,T :

1. The algorithm picks an expert at ∈ {1, . . . , k} from among
the set of k experts.

2. Each expert i experiences loss ℓti , and the algorithm
experiences loss ℓtat .

Write LTAlg =
∑T

t=1 ℓ
t
at for the cumulative loss of the algorithm

after T rounds.

We want to find an algorithm that can guarantee, for arbitrary
sequences of losses:

1

T
LTAlg ≤ 1

T

T∑
t=1

ℓtFi (at)
+∆(T)

for all Fi : [k] → [k] and for ∆(T) = o(1).

What Should We Do?

1. For a fixed sequence of decisions by our algorithm, define:

Sj = {t : at = j}

to be the set of time steps that the algorithm chose expert j .

2. One guiding observation: To achieve the desired bound, it
would be sufficient that for every j :

1

|Sj |
∑
t∈Sj

ℓtat ≤
1

|Sj |
min
i

∑
t∈Sj

ℓti +∆(T)

3. i.e. we can achieve no swap regret if we can achieve no
external regret separately on each sequence of actions Sj .

4. The best strategy modification rule in hindsight simply swaps
each action j for the best fixed action in hindsight over Sj ...

5. Idea: Run k copies of PW, one responsible for each Sj ...

What Should We Do?

1. For a fixed sequence of decisions by our algorithm, define:

Sj = {t : at = j}

to be the set of time steps that the algorithm chose expert j .

2. One guiding observation: To achieve the desired bound, it
would be sufficient that for every j :

1

|Sj |
∑
t∈Sj

ℓtat ≤
1

|Sj |
min
i

∑
t∈Sj

ℓti +∆(T)

3. i.e. we can achieve no swap regret if we can achieve no
external regret separately on each sequence of actions Sj .

4. The best strategy modification rule in hindsight simply swaps
each action j for the best fixed action in hindsight over Sj ...

5. Idea: Run k copies of PW, one responsible for each Sj ...

What Should We Do?

1. For a fixed sequence of decisions by our algorithm, define:

Sj = {t : at = j}

to be the set of time steps that the algorithm chose expert j .

2. One guiding observation: To achieve the desired bound, it
would be sufficient that for every j :

1

|Sj |
∑
t∈Sj

ℓtat ≤
1

|Sj |
min
i

∑
t∈Sj

ℓti +∆(T)

3. i.e. we can achieve no swap regret if we can achieve no
external regret separately on each sequence of actions Sj .

4. The best strategy modification rule in hindsight simply swaps
each action j for the best fixed action in hindsight over Sj ...

5. Idea: Run k copies of PW, one responsible for each Sj ...

What Should We Do?

1. For a fixed sequence of decisions by our algorithm, define:

Sj = {t : at = j}

to be the set of time steps that the algorithm chose expert j .

2. One guiding observation: To achieve the desired bound, it
would be sufficient that for every j :

1

|Sj |
∑
t∈Sj

ℓtat ≤
1

|Sj |
min
i

∑
t∈Sj

ℓti +∆(T)

3. i.e. we can achieve no swap regret if we can achieve no
external regret separately on each sequence of actions Sj .

4. The best strategy modification rule in hindsight simply swaps
each action j for the best fixed action in hindsight over Sj ...

5. Idea: Run k copies of PW, one responsible for each Sj ...

What Should We Do?

1. For a fixed sequence of decisions by our algorithm, define:

Sj = {t : at = j}

to be the set of time steps that the algorithm chose expert j .

2. One guiding observation: To achieve the desired bound, it
would be sufficient that for every j :

1

|Sj |
∑
t∈Sj

ℓtat ≤
1

|Sj |
min
i

∑
t∈Sj

ℓti +∆(T)

3. i.e. we can achieve no swap regret if we can achieve no
external regret separately on each sequence of actions Sj .

4. The best strategy modification rule in hindsight simply swaps
each action j for the best fixed action in hindsight over Sj ...

5. Idea: Run k copies of PW, one responsible for each Sj ...

Algorithm Sketch

The algorithm will work as follows:

1. Initialize k copies of the PW algorithm one for each action
j ∈ [k].

2. At each time t, denote by q(1)t , . . . , q(k)t the distribution
maintained by each copy of the PW algorithm over the
experts. We will combine these into a single distribution over
experts pt ≡ (pt1, . . . , p

t
k)

3. The losses ℓt1, . . . , ℓ
t
k for the experts arrive. To each copy i of

the PW algorithm, we report losses pti ℓ
t
1, . . . , p

t
i ℓ

t
k for each of

the k experts. (i.e. to copy i , we report the true losses scaled
by pti).

It remains to specify: how we combine the distributions q(i) into a
single distribution p?

Algorithm Sketch

The algorithm will work as follows:

1. Initialize k copies of the PW algorithm one for each action
j ∈ [k].

2. At each time t, denote by q(1)t , . . . , q(k)t the distribution
maintained by each copy of the PW algorithm over the
experts. We will combine these into a single distribution over
experts pt ≡ (pt1, . . . , p

t
k)

3. The losses ℓt1, . . . , ℓ
t
k for the experts arrive. To each copy i of

the PW algorithm, we report losses pti ℓ
t
1, . . . , p

t
i ℓ

t
k for each of

the k experts. (i.e. to copy i , we report the true losses scaled
by pti).

It remains to specify: how we combine the distributions q(i) into a
single distribution p?

Combining Distributions

1. For each expert j , define:

ptj =
k∑

i=1

pti · q(i)tj

2. The above equations always have a solution as a probability
distribution. (Not obvious — but comes from the fact that
stochastic matrices always have an eigenvector with
eigenvalue 1)

3. Crucial property: two ways of viewing the distribution over
experts:

3.1 Each expert i is chosen with probability pti or
3.2 With probability pti we select the i ’th copy of the polynomial

weights algorithm, and then select expert j according to the
probability distribution q(i)t .

Combining Distributions

1. For each expert j , define:

ptj =
k∑

i=1

pti · q(i)tj

2. The above equations always have a solution as a probability
distribution. (Not obvious — but comes from the fact that
stochastic matrices always have an eigenvector with
eigenvalue 1)

3. Crucial property: two ways of viewing the distribution over
experts:

3.1 Each expert i is chosen with probability pti or
3.2 With probability pti we select the i ’th copy of the polynomial

weights algorithm, and then select expert j according to the
probability distribution q(i)t .

Combining Distributions

1. For each expert j , define:

ptj =
k∑

i=1

pti · q(i)tj

2. The above equations always have a solution as a probability
distribution. (Not obvious — but comes from the fact that
stochastic matrices always have an eigenvector with
eigenvalue 1)

3. Crucial property: two ways of viewing the distribution over
experts:

3.1 Each expert i is chosen with probability pti or
3.2 With probability pti we select the i ’th copy of the polynomial

weights algorithm, and then select expert j according to the
probability distribution q(i)t .

Combining Distributions

1. For each expert j , define:

ptj =
k∑

i=1

pti · q(i)tj

2. The above equations always have a solution as a probability
distribution. (Not obvious — but comes from the fact that
stochastic matrices always have an eigenvector with
eigenvalue 1)

3. Crucial property: two ways of viewing the distribution over
experts:

3.1 Each expert i is chosen with probability pti or

3.2 With probability pti we select the i ’th copy of the polynomial
weights algorithm, and then select expert j according to the
probability distribution q(i)t .

Combining Distributions

1. For each expert j , define:

ptj =
k∑

i=1

pti · q(i)tj

2. The above equations always have a solution as a probability
distribution. (Not obvious — but comes from the fact that
stochastic matrices always have an eigenvector with
eigenvalue 1)

3. Crucial property: two ways of viewing the distribution over
experts:

3.1 Each expert i is chosen with probability pti or
3.2 With probability pti we select the i ’th copy of the polynomial

weights algorithm, and then select expert j according to the
probability distribution q(i)t .

Analysis
1. From the perspective of the i ’th copy of polynomial weights,

its expected loss at round t is:

k∑
j=1

q(i)tj · (pti ℓtj) = pti

k∑
j=1

q(i)tj ℓ
t
j

2. So the PW guarantee tells us that for all experts j∗:

1

T

T∑
t=1

pti

k∑
j=1

q(i)tj ℓ
t
j︸ ︷︷ ︸

LHS

≤ 1

T

T∑
t=1

pti ℓ
t
j∗ + 2

√
log k

T︸ ︷︷ ︸
RHS

3. Summing the LHS:

LHS =
1

T

T∑
t=1

k∑
i=1

pti

k∑
j=1

q(i)tj ℓ
t
j =

1

T

T∑
t=1

k∑
j=1

ptj ℓ
t
j =

1

T
LALG

Analysis
1. From the perspective of the i ’th copy of polynomial weights,

its expected loss at round t is:

k∑
j=1

q(i)tj · (pti ℓtj) = pti

k∑
j=1

q(i)tj ℓ
t
j

2. So the PW guarantee tells us that for all experts j∗:

1

T

T∑
t=1

pti

k∑
j=1

q(i)tj ℓ
t
j︸ ︷︷ ︸

LHS

≤ 1

T

T∑
t=1

pti ℓ
t
j∗ + 2

√
log k

T︸ ︷︷ ︸
RHS

3. Summing the LHS:

LHS =
1

T

T∑
t=1

k∑
i=1

pti

k∑
j=1

q(i)tj ℓ
t
j =

1

T

T∑
t=1

k∑
j=1

ptj ℓ
t
j =

1

T
LALG

Analysis
1. From the perspective of the i ’th copy of polynomial weights,

its expected loss at round t is:

k∑
j=1

q(i)tj · (pti ℓtj) = pti

k∑
j=1

q(i)tj ℓ
t
j

2. So the PW guarantee tells us that for all experts j∗:

1

T

T∑
t=1

pti

k∑
j=1

q(i)tj ℓ
t
j︸ ︷︷ ︸

LHS

≤ 1

T

T∑
t=1

pti ℓ
t
j∗ + 2

√
log k

T︸ ︷︷ ︸
RHS

3. Summing the LHS:

LHS =
1

T

T∑
t=1

k∑
i=1

pti

k∑
j=1

q(i)tj ℓ
t
j =

1

T

T∑
t=1

k∑
j=1

ptj ℓ
t
j =

1

T
LALG

Analysis

1

T

T∑
t=1

pti

k∑
j=1

q(i)tj ℓ
t
j︸ ︷︷ ︸

LHS

≤ 1

T

T∑
t=1

pti ℓ
t
j∗ + 2

√
log k

T︸ ︷︷ ︸
RHS

1. Now the RHS: We can instantiate each term with any j∗.

2. Fixing an arbitrary strategy modification rule F : [k] → [k], for
each i choose j∗ = F (i).

3. Summing:

RHS =
1

T

T∑
t=1

k∑
i=1

pti ℓ
t
F (i) + 2k

√
log k

T

4. Combining, we get:

1

T
LALG ≤ 1

T

T∑
t=1

k∑
i=1

pti ℓ
t
F (i) + 2k

√
log k

T

Analysis

1

T

T∑
t=1

pti

k∑
j=1

q(i)tj ℓ
t
j︸ ︷︷ ︸

LHS

≤ 1

T

T∑
t=1

pti ℓ
t
j∗ + 2

√
log k

T︸ ︷︷ ︸
RHS

1. Now the RHS: We can instantiate each term with any j∗.

2. Fixing an arbitrary strategy modification rule F : [k] → [k], for
each i choose j∗ = F (i).

3. Summing:

RHS =
1

T

T∑
t=1

k∑
i=1

pti ℓ
t
F (i) + 2k

√
log k

T

4. Combining, we get:

1

T
LALG ≤ 1

T

T∑
t=1

k∑
i=1

pti ℓ
t
F (i) + 2k

√
log k

T

Analysis

1

T

T∑
t=1

pti

k∑
j=1

q(i)tj ℓ
t
j︸ ︷︷ ︸

LHS

≤ 1

T

T∑
t=1

pti ℓ
t
j∗ + 2

√
log k

T︸ ︷︷ ︸
RHS

1. Now the RHS: We can instantiate each term with any j∗.

2. Fixing an arbitrary strategy modification rule F : [k] → [k], for
each i choose j∗ = F (i).

3. Summing:

RHS =
1

T

T∑
t=1

k∑
i=1

pti ℓ
t
F (i) + 2k

√
log k

T

4. Combining, we get:

1

T
LALG ≤ 1

T

T∑
t=1

k∑
i=1

pti ℓ
t
F (i) + 2k

√
log k

T

Analysis

1

T

T∑
t=1

pti

k∑
j=1

q(i)tj ℓ
t
j︸ ︷︷ ︸

LHS

≤ 1

T

T∑
t=1

pti ℓ
t
j∗ + 2

√
log k

T︸ ︷︷ ︸
RHS

1. Now the RHS: We can instantiate each term with any j∗.

2. Fixing an arbitrary strategy modification rule F : [k] → [k], for
each i choose j∗ = F (i).

3. Summing:

RHS =
1

T

T∑
t=1

k∑
i=1

pti ℓ
t
F (i) + 2k

√
log k

T

4. Combining, we get:

1

T
LALG ≤ 1

T

T∑
t=1

k∑
i=1

pti ℓ
t
F (i) + 2k

√
log k

T

The Theorem

So, we have proven:

Theorem
There is an experts algorithm that, against an arbitrary sequence
of losses, after T rounds achieves ∆(T)-swap regret for:

∆(T) = 2k

√
log k

T

Things of Note

1. ∆(T) = o(1), and so this is a no-swap-regret algorithm. and
If every player plays according to it in an arbitrary game, play
converges to CE.

2. Players need not know anything about the game to play it -
they only need to be able to compute their utilities for the
action profiles actually played.

3. Convergence is fast. Setting ∆(T) ≤ ϵ, we see that we reach
ϵ-swap regret after T steps for:

T =
4k2 ln(k)

ϵ2

4. So not only do CE exist in all games, they are easy to find.

Things of Note

1. ∆(T) = o(1), and so this is a no-swap-regret algorithm. and
If every player plays according to it in an arbitrary game, play
converges to CE.

2. Players need not know anything about the game to play it -
they only need to be able to compute their utilities for the
action profiles actually played.

3. Convergence is fast. Setting ∆(T) ≤ ϵ, we see that we reach
ϵ-swap regret after T steps for:

T =
4k2 ln(k)

ϵ2

4. So not only do CE exist in all games, they are easy to find.

Things of Note

1. ∆(T) = o(1), and so this is a no-swap-regret algorithm. and
If every player plays according to it in an arbitrary game, play
converges to CE.

2. Players need not know anything about the game to play it -
they only need to be able to compute their utilities for the
action profiles actually played.

3. Convergence is fast. Setting ∆(T) ≤ ϵ, we see that we reach
ϵ-swap regret after T steps for:

T =
4k2 ln(k)

ϵ2

4. So not only do CE exist in all games, they are easy to find.

Things of Note

1. ∆(T) = o(1), and so this is a no-swap-regret algorithm. and
If every player plays according to it in an arbitrary game, play
converges to CE.

2. Players need not know anything about the game to play it -
they only need to be able to compute their utilities for the
action profiles actually played.

3. Convergence is fast. Setting ∆(T) ≤ ϵ, we see that we reach
ϵ-swap regret after T steps for:

T =
4k2 ln(k)

ϵ2

4. So not only do CE exist in all games, they are easy to find.

Thanks!

See you next class!

