
Learning Algorithms From Game Theory II:
Boosting

Aaron Roth

University of Pennsylvania

April 30 2024



Overview

▶ In this lecture, we’ll continue our exploration into how one can
derive powerful machine learning algorithms from game
theoretic principles.

▶ We’ll focus on the general and empirically successful paradigm
of boosting.

▶ Boosting addresses the question of how one can combine
classifiers that individually do (just) a little bit better than
random guessing, into powerful predictive models.



Overview

▶ In this lecture, we’ll continue our exploration into how one can
derive powerful machine learning algorithms from game
theoretic principles.

▶ We’ll focus on the general and empirically successful paradigm
of boosting.

▶ Boosting addresses the question of how one can combine
classifiers that individually do (just) a little bit better than
random guessing, into powerful predictive models.



Overview

▶ In this lecture, we’ll continue our exploration into how one can
derive powerful machine learning algorithms from game
theoretic principles.

▶ We’ll focus on the general and empirically successful paradigm
of boosting.

▶ Boosting addresses the question of how one can combine
classifiers that individually do (just) a little bit better than
random guessing, into powerful predictive models.



Setting

Definition
A labeled datapoint is a pair (x , y) ∈ X × Y , where X is some
space of features and Y is some space of labels: for example, a
common case is X = Rd , and Y = {0, 1}.
A dataset D ∈ (X × Y )n is a collection of n labeled datapoints.

Our goal: find some function f : X → Y for predicting labels from
their features that has high accuracy.



Setting

Definition
A labeled datapoint is a pair (x , y) ∈ X × Y , where X is some
space of features and Y is some space of labels: for example, a
common case is X = Rd , and Y = {0, 1}.
A dataset D ∈ (X × Y )n is a collection of n labeled datapoints.

Our goal: find some function f : X → Y for predicting labels from
their features that has high accuracy.



Setting

Definition
Given a predictor f : X → Y , its prediction accuracy on a dataset
D is:

acc(f ,D) =
1

n

n∑
i=1

1[f (xi ) = yi ]

The prediction accuracy as defined uniformly weights all of the
points in the dataset. But we can also define weighted prediction
accuracy relative to any other weighting w ∈ ∆[n] of the n points:

acc(f ,D,w) =
n∑

i=1

wi1[f (xi ) = yi ]

Note that acc(f ,D) is simply the special case of acc(f ,D,w) in
which wi = 1/n for all i .



An Aside

1. We’re ignoring an important statistical aspect of machine
learning!

2. The goal is not to predict the labels of points in our dataset
D (we already know them!) but to predict well on new points
drawn from the same distribution.

3. Informally, to do this it suffices to predict the labels in D
accurately with “simple” hypotheses.

4. The boosting approach in this lecture does this, but we’ll just
focus on the algorithmic aspects.



An Aside

1. We’re ignoring an important statistical aspect of machine
learning!

2. The goal is not to predict the labels of points in our dataset
D (we already know them!) but to predict well on new points
drawn from the same distribution.

3. Informally, to do this it suffices to predict the labels in D
accurately with “simple” hypotheses.

4. The boosting approach in this lecture does this, but we’ll just
focus on the algorithmic aspects.



An Aside

1. We’re ignoring an important statistical aspect of machine
learning!

2. The goal is not to predict the labels of points in our dataset
D (we already know them!) but to predict well on new points
drawn from the same distribution.

3. Informally, to do this it suffices to predict the labels in D
accurately with “simple” hypotheses.

4. The boosting approach in this lecture does this, but we’ll just
focus on the algorithmic aspects.



An Aside

1. We’re ignoring an important statistical aspect of machine
learning!

2. The goal is not to predict the labels of points in our dataset
D (we already know them!) but to predict well on new points
drawn from the same distribution.

3. Informally, to do this it suffices to predict the labels in D
accurately with “simple” hypotheses.

4. The boosting approach in this lecture does this, but we’ll just
focus on the algorithmic aspects.



Setting

Definition
A hypothesis class H is a collection of predictors or hypotheses
h : X → Y . A weighted learning algorithm A with range H is a
mapping from datasets and weight vectors to hypotheses in H.
A : (X × Y )n × [0, 1]n → H.

1. If Y = {0, 1} then it is uninteresting to find a hypothesis h
with acc(h,D) ≤ 1/2

2. Could have done this by random guessing!

3. Want accuracy more like 0.99...

4. But what if you can reliably get accuracy 0.51?

5. An algorithm that can guarantee this is a weak learner



Setting

Definition
A hypothesis class H is a collection of predictors or hypotheses
h : X → Y . A weighted learning algorithm A with range H is a
mapping from datasets and weight vectors to hypotheses in H.
A : (X × Y )n × [0, 1]n → H.

1. If Y = {0, 1} then it is uninteresting to find a hypothesis h
with acc(h,D) ≤ 1/2

2. Could have done this by random guessing!

3. Want accuracy more like 0.99...

4. But what if you can reliably get accuracy 0.51?

5. An algorithm that can guarantee this is a weak learner



Setting

Definition
A hypothesis class H is a collection of predictors or hypotheses
h : X → Y . A weighted learning algorithm A with range H is a
mapping from datasets and weight vectors to hypotheses in H.
A : (X × Y )n × [0, 1]n → H.

1. If Y = {0, 1} then it is uninteresting to find a hypothesis h
with acc(h,D) ≤ 1/2

2. Could have done this by random guessing!

3. Want accuracy more like 0.99...

4. But what if you can reliably get accuracy 0.51?

5. An algorithm that can guarantee this is a weak learner



Setting

Definition
A hypothesis class H is a collection of predictors or hypotheses
h : X → Y . A weighted learning algorithm A with range H is a
mapping from datasets and weight vectors to hypotheses in H.
A : (X × Y )n × [0, 1]n → H.

1. If Y = {0, 1} then it is uninteresting to find a hypothesis h
with acc(h,D) ≤ 1/2

2. Could have done this by random guessing!

3. Want accuracy more like 0.99...

4. But what if you can reliably get accuracy 0.51?

5. An algorithm that can guarantee this is a weak learner



Setting

Definition
A hypothesis class H is a collection of predictors or hypotheses
h : X → Y . A weighted learning algorithm A with range H is a
mapping from datasets and weight vectors to hypotheses in H.
A : (X × Y )n × [0, 1]n → H.

1. If Y = {0, 1} then it is uninteresting to find a hypothesis h
with acc(h,D) ≤ 1/2

2. Could have done this by random guessing!

3. Want accuracy more like 0.99...

4. But what if you can reliably get accuracy 0.51?

5. An algorithm that can guarantee this is a weak learner



Setting

Definition
A hypothesis class H is a collection of predictors or hypotheses
h : X → Y . A weighted learning algorithm A with range H is a
mapping from datasets and weight vectors to hypotheses in H.
A : (X × Y )n × [0, 1]n → H.

1. If Y = {0, 1} then it is uninteresting to find a hypothesis h
with acc(h,D) ≤ 1/2

2. Could have done this by random guessing!

3. Want accuracy more like 0.99...

4. But what if you can reliably get accuracy 0.51?

5. An algorithm that can guarantee this is a weak learner



Weak Learning

Definition
A weighted learning algorithm A is a weak learning algorithm for D
if for every distribution w ∈ ∆[n], A(D,w) = h such that:

acc(h,D,w) ≥ 0.51

1. Weighted learning algorithm?

2. Most learning algorithms can handle weights — just weight
points in the objective function.

3. If yours can’t, construct a new dataset D ′ by sampling from D
under the probability distribution specified by w , and then run
your algorithm on D ′.

4. So weights are without loss of generality.



Weak Learning

Definition
A weighted learning algorithm A is a weak learning algorithm for D
if for every distribution w ∈ ∆[n], A(D,w) = h such that:

acc(h,D,w) ≥ 0.51

1. Weighted learning algorithm?

2. Most learning algorithms can handle weights — just weight
points in the objective function.

3. If yours can’t, construct a new dataset D ′ by sampling from D
under the probability distribution specified by w , and then run
your algorithm on D ′.

4. So weights are without loss of generality.



Weak Learning

Definition
A weighted learning algorithm A is a weak learning algorithm for D
if for every distribution w ∈ ∆[n], A(D,w) = h such that:

acc(h,D,w) ≥ 0.51

1. Weighted learning algorithm?

2. Most learning algorithms can handle weights — just weight
points in the objective function.

3. If yours can’t, construct a new dataset D ′ by sampling from D
under the probability distribution specified by w , and then run
your algorithm on D ′.

4. So weights are without loss of generality.



Weak Learning

Definition
A weighted learning algorithm A is a weak learning algorithm for D
if for every distribution w ∈ ∆[n], A(D,w) = h such that:

acc(h,D,w) ≥ 0.51

1. Weighted learning algorithm?

2. Most learning algorithms can handle weights — just weight
points in the objective function.

3. If yours can’t, construct a new dataset D ′ by sampling from D
under the probability distribution specified by w , and then run
your algorithm on D ′.

4. So weights are without loss of generality.



Weak Learning

Definition
A weighted learning algorithm A is a weak learning algorithm for D
if for every distribution w ∈ ∆[n], A(D,w) = h such that:

acc(h,D,w) ≥ 0.51

1. Weighted learning algorithm?

2. Most learning algorithms can handle weights — just weight
points in the objective function.

3. If yours can’t, construct a new dataset D ′ by sampling from D
under the probability distribution specified by w , and then run
your algorithm on D ′.

4. So weights are without loss of generality.



Weak Learning

1. Weak learning algorithms seem weak!

2. We want more like 99% accuracy! Strong learning algorithms!

3. Can we get strong learning from weak learning?

Definition
A is a strong learning algorithm for D if A(D) = h such that
acc(h,D) = 1.



Weak Learning

1. Weak learning algorithms seem weak!

2. We want more like 99% accuracy! Strong learning algorithms!

3. Can we get strong learning from weak learning?

Definition
A is a strong learning algorithm for D if A(D) = h such that
acc(h,D) = 1.



Weak Learning

1. Weak learning algorithms seem weak!

2. We want more like 99% accuracy! Strong learning algorithms!

3. Can we get strong learning from weak learning?

Definition
A is a strong learning algorithm for D if A(D) = h such that
acc(h,D) = 1.



Weak Learning

1. Weak learning algorithms seem weak!

2. We want more like 99% accuracy! Strong learning algorithms!

3. Can we get strong learning from weak learning?

Definition
A is a strong learning algorithm for D if A(D) = h such that
acc(h,D) = 1.



Weak Learning and Strong Learning are Equivalent

Theorem
For any dataset D, if there exists an efficient (polynomial time)
weak learning algorithm A for D, then there exists an efficient
strong learning algorithm A′ for D.

Proof Idea: Study the appropriately defined zero sum game. Then
compute the equilibrium strategy in that game.



Weak Learning and Strong Learning are Equivalent

Theorem
For any dataset D, if there exists an efficient (polynomial time)
weak learning algorithm A for D, then there exists an efficient
strong learning algorithm A′ for D.

Proof Idea: Study the appropriately defined zero sum game. Then
compute the equilibrium strategy in that game.



Proof

1. Let H be the hypothesis class used by the weak learning
algorithm A.

2. Define the following 2-player zero-sum game:

2.1 The action space for the minimization player (the “Data
Player”) is the set of datapoints in the dataset: A1 = D.

2.2 The action space for the maximization player (the “Learner”)
is A2 = H.

2.3 The cost function is C is defined as
C ((xi , yi ), h) = 1[h(xi ) = yi ].

3. What is the value of this game?



Proof

1. Let H be the hypothesis class used by the weak learning
algorithm A.

2. Define the following 2-player zero-sum game:

2.1 The action space for the minimization player (the “Data
Player”) is the set of datapoints in the dataset: A1 = D.

2.2 The action space for the maximization player (the “Learner”)
is A2 = H.

2.3 The cost function is C is defined as
C ((xi , yi ), h) = 1[h(xi ) = yi ].

3. What is the value of this game?



Proof

1. Let H be the hypothesis class used by the weak learning
algorithm A.

2. Define the following 2-player zero-sum game:

2.1 The action space for the minimization player (the “Data
Player”) is the set of datapoints in the dataset: A1 = D.

2.2 The action space for the maximization player (the “Learner”)
is A2 = H.

2.3 The cost function is C is defined as
C ((xi , yi ), h) = 1[h(xi ) = yi ].

3. What is the value of this game?



Proof

1. Let H be the hypothesis class used by the weak learning
algorithm A.

2. Define the following 2-player zero-sum game:

2.1 The action space for the minimization player (the “Data
Player”) is the set of datapoints in the dataset: A1 = D.

2.2 The action space for the maximization player (the “Learner”)
is A2 = H.

2.3 The cost function is C is defined as
C ((xi , yi ), h) = 1[h(xi ) = yi ].

3. What is the value of this game?



Proof

1. Let H be the hypothesis class used by the weak learning
algorithm A.

2. Define the following 2-player zero-sum game:

2.1 The action space for the minimization player (the “Data
Player”) is the set of datapoints in the dataset: A1 = D.

2.2 The action space for the maximization player (the “Learner”)
is A2 = H.

2.3 The cost function is C is defined as
C ((xi , yi ), h) = 1[h(xi ) = yi ].

3. What is the value of this game?



Proof

1. Let H be the hypothesis class used by the weak learning
algorithm A.

2. Define the following 2-player zero-sum game:

2.1 The action space for the minimization player (the “Data
Player”) is the set of datapoints in the dataset: A1 = D.

2.2 The action space for the maximization player (the “Learner”)
is A2 = H.

2.3 The cost function is C is defined as
C ((xi , yi ), h) = 1[h(xi ) = yi ].

3. What is the value of this game?



Proof

1. The existence of a weak learning algorithm implies the value
of the game is at least 0.51!

minmax(C ) = min
w∈∆[n]

max
h∈H

n∑
i=1

wiC ((xi , yi ), h)

= min
w∈∆[n]

max
h∈H

wi1[h(xi ) = yi ]

= min
w∈∆[n]

max
h∈H

acc(h,D,w)

≥ 0.51



Proof

1. The existence of a weak learning algorithm implies the value
of the game is at least 0.51!

minmax(C ) = min
w∈∆[n]

max
h∈H

n∑
i=1

wiC ((xi , yi ), h)

= min
w∈∆[n]

max
h∈H

wi1[h(xi ) = yi ]

= min
w∈∆[n]

max
h∈H

acc(h,D,w)

≥ 0.51



Proof

1. The existence of a weak learning algorithm implies the value
of the game is at least 0.51!

minmax(C ) = min
w∈∆[n]

max
h∈H

n∑
i=1

wiC ((xi , yi ), h)

= min
w∈∆[n]

max
h∈H

wi1[h(xi ) = yi ]

= min
w∈∆[n]

max
h∈H

acc(h,D,w)

≥ 0.51



Proof

1. The existence of a weak learning algorithm implies the value
of the game is at least 0.51!

minmax(C ) = min
w∈∆[n]

max
h∈H

n∑
i=1

wiC ((xi , yi ), h)

= min
w∈∆[n]

max
h∈H

wi1[h(xi ) = yi ]

= min
w∈∆[n]

max
h∈H

acc(h,D,w)

≥ 0.51



Proof

1. The existence of a weak learning algorithm implies the value
of the game is at least 0.51!

minmax(C ) = min
w∈∆[n]

max
h∈H

n∑
i=1

wiC ((xi , yi ), h)

= min
w∈∆[n]

max
h∈H

wi1[h(xi ) = yi ]

= min
w∈∆[n]

max
h∈H

acc(h,D,w)

≥ 0.51



Proof

1. The minimax theorem implies the Learner can do just as well,
even if she is forced to commit to her strategy first:

minmax(C ) = maxmin(C ) = max
p∈∆H

min
i∈[n]

∑
h∈H

ph1[h(xi ) = yi ] ≥ 0.51

2. i.e. there is a fixed distribution p∗ over hypotheses h ∈ H
such that for every data point (xi , yi ) ∈ D, at least 51% of
the probability mass under p is on hypotheses that correctly
label (xi , yi ).

3. So consider the following “majority vote” classification rule
fp∗ :

fp∗(x) = 1

 ∑
h:h(x)=1

p∗h ≥ 0.5


4. fp∗ must have perfect accuracy...



Proof

1. The minimax theorem implies the Learner can do just as well,
even if she is forced to commit to her strategy first:

minmax(C ) = maxmin(C ) = max
p∈∆H

min
i∈[n]

∑
h∈H

ph1[h(xi ) = yi ] ≥ 0.51

2. i.e. there is a fixed distribution p∗ over hypotheses h ∈ H
such that for every data point (xi , yi ) ∈ D, at least 51% of
the probability mass under p is on hypotheses that correctly
label (xi , yi ).

3. So consider the following “majority vote” classification rule
fp∗ :

fp∗(x) = 1

 ∑
h:h(x)=1

p∗h ≥ 0.5


4. fp∗ must have perfect accuracy...



Proof

1. The minimax theorem implies the Learner can do just as well,
even if she is forced to commit to her strategy first:

minmax(C ) = maxmin(C ) = max
p∈∆H

min
i∈[n]

∑
h∈H

ph1[h(xi ) = yi ] ≥ 0.51

2. i.e. there is a fixed distribution p∗ over hypotheses h ∈ H
such that for every data point (xi , yi ) ∈ D, at least 51% of
the probability mass under p is on hypotheses that correctly
label (xi , yi ).

3. So consider the following “majority vote” classification rule
fp∗ :

fp∗(x) = 1

 ∑
h:h(x)=1

p∗h ≥ 0.5



4. fp∗ must have perfect accuracy...



Proof

1. The minimax theorem implies the Learner can do just as well,
even if she is forced to commit to her strategy first:

minmax(C ) = maxmin(C ) = max
p∈∆H

min
i∈[n]

∑
h∈H

ph1[h(xi ) = yi ] ≥ 0.51

2. i.e. there is a fixed distribution p∗ over hypotheses h ∈ H
such that for every data point (xi , yi ) ∈ D, at least 51% of
the probability mass under p is on hypotheses that correctly
label (xi , yi ).

3. So consider the following “majority vote” classification rule
fp∗ :

fp∗(x) = 1

 ∑
h:h(x)=1

p∗h ≥ 0.5


4. fp∗ must have perfect accuracy...



Proof

Lemma
For the distribution p∗ = maxp∈∆H mini∈[n]

∑
h∈H ph1[h(xi ) = yi ],

the hypothesis fp∗ satisfies acc(fp∗ ,D) = 1

Proof:

1. Fix any (xi , yi ) ∈ D. We must show fp∗(xi ) = yi .

2. From our minimax calculation, we know that for every i ,∑
h∈H p∗h1[h(xi ) = yi ] ≥ 0.51.

3. If yi = 1, we have that∑
h∈H

p∗h1[h(xi ) = 1] =
∑

h:h(x)=1

p∗h ≥ 0.51

and hence by definition fp∗(xi ) = 1.

4. Similarly, if yi = 0, we know that
∑

h:h(x)=1 p
∗
h < 0.49 and

hence by definition fp∗(xi ) = 0.

5. Tada!



Proof

Lemma
For the distribution p∗ = maxp∈∆H mini∈[n]

∑
h∈H ph1[h(xi ) = yi ],

the hypothesis fp∗ satisfies acc(fp∗ ,D) = 1

Proof:

1. Fix any (xi , yi ) ∈ D. We must show fp∗(xi ) = yi .

2. From our minimax calculation, we know that for every i ,∑
h∈H p∗h1[h(xi ) = yi ] ≥ 0.51.

3. If yi = 1, we have that∑
h∈H

p∗h1[h(xi ) = 1] =
∑

h:h(x)=1

p∗h ≥ 0.51

and hence by definition fp∗(xi ) = 1.

4. Similarly, if yi = 0, we know that
∑

h:h(x)=1 p
∗
h < 0.49 and

hence by definition fp∗(xi ) = 0.

5. Tada!



Proof

Lemma
For the distribution p∗ = maxp∈∆H mini∈[n]

∑
h∈H ph1[h(xi ) = yi ],

the hypothesis fp∗ satisfies acc(fp∗ ,D) = 1

Proof:

1. Fix any (xi , yi ) ∈ D. We must show fp∗(xi ) = yi .

2. From our minimax calculation, we know that for every i ,∑
h∈H p∗h1[h(xi ) = yi ] ≥ 0.51.

3. If yi = 1, we have that∑
h∈H

p∗h1[h(xi ) = 1] =
∑

h:h(x)=1

p∗h ≥ 0.51

and hence by definition fp∗(xi ) = 1.

4. Similarly, if yi = 0, we know that
∑

h:h(x)=1 p
∗
h < 0.49 and

hence by definition fp∗(xi ) = 0.

5. Tada!



Proof

Lemma
For the distribution p∗ = maxp∈∆H mini∈[n]

∑
h∈H ph1[h(xi ) = yi ],

the hypothesis fp∗ satisfies acc(fp∗ ,D) = 1

Proof:

1. Fix any (xi , yi ) ∈ D. We must show fp∗(xi ) = yi .

2. From our minimax calculation, we know that for every i ,∑
h∈H p∗h1[h(xi ) = yi ] ≥ 0.51.

3. If yi = 1, we have that∑
h∈H

p∗h1[h(xi ) = 1] =
∑

h:h(x)=1

p∗h ≥ 0.51

and hence by definition fp∗(xi ) = 1.

4. Similarly, if yi = 0, we know that
∑

h:h(x)=1 p
∗
h < 0.49 and

hence by definition fp∗(xi ) = 0.

5. Tada!



Proof

Lemma
For the distribution p∗ = maxp∈∆H mini∈[n]

∑
h∈H ph1[h(xi ) = yi ],

the hypothesis fp∗ satisfies acc(fp∗ ,D) = 1

Proof:

1. Fix any (xi , yi ) ∈ D. We must show fp∗(xi ) = yi .

2. From our minimax calculation, we know that for every i ,∑
h∈H p∗h1[h(xi ) = yi ] ≥ 0.51.

3. If yi = 1, we have that∑
h∈H

p∗h1[h(xi ) = 1] =
∑

h:h(x)=1

p∗h ≥ 0.51

and hence by definition fp∗(xi ) = 1.

4. Similarly, if yi = 0, we know that
∑

h:h(x)=1 p
∗
h < 0.49 and

hence by definition fp∗(xi ) = 0.

5. Tada!



Proof

Lemma
For the distribution p∗ = maxp∈∆H mini∈[n]

∑
h∈H ph1[h(xi ) = yi ],

the hypothesis fp∗ satisfies acc(fp∗ ,D) = 1

Proof:

1. Fix any (xi , yi ) ∈ D. We must show fp∗(xi ) = yi .

2. From our minimax calculation, we know that for every i ,∑
h∈H p∗h1[h(xi ) = yi ] ≥ 0.51.

3. If yi = 1, we have that∑
h∈H

p∗h1[h(xi ) = 1] =
∑

h:h(x)=1

p∗h ≥ 0.51

and hence by definition fp∗(xi ) = 1.

4. Similarly, if yi = 0, we know that
∑

h:h(x)=1 p
∗
h < 0.49 and

hence by definition fp∗(xi ) = 0.

5. Tada!



Proof

1. But what is the efficient algorithm?

2. Note that fp∗(xi ) is easy to compute if we know p∗.

3. So the algorithmic problem is to compute an equilibrium
strategy p∗ for our learning game, that makes only a
polynomial number of calls to our weak learning algorithm.

4. In fact, we only need an ϵ-approximate equilibrium for
ϵ < 0.01...

5. We know how to do that by having the data player play
polynomial weights over the data points, and the learner best
respond.

6. And we can implement best responses using the weak learning
algorithm...



Proof

1. But what is the efficient algorithm?

2. Note that fp∗(xi ) is easy to compute if we know p∗.

3. So the algorithmic problem is to compute an equilibrium
strategy p∗ for our learning game, that makes only a
polynomial number of calls to our weak learning algorithm.

4. In fact, we only need an ϵ-approximate equilibrium for
ϵ < 0.01...

5. We know how to do that by having the data player play
polynomial weights over the data points, and the learner best
respond.

6. And we can implement best responses using the weak learning
algorithm...



Proof

1. But what is the efficient algorithm?

2. Note that fp∗(xi ) is easy to compute if we know p∗.

3. So the algorithmic problem is to compute an equilibrium
strategy p∗ for our learning game, that makes only a
polynomial number of calls to our weak learning algorithm.

4. In fact, we only need an ϵ-approximate equilibrium for
ϵ < 0.01...

5. We know how to do that by having the data player play
polynomial weights over the data points, and the learner best
respond.

6. And we can implement best responses using the weak learning
algorithm...



Proof

1. But what is the efficient algorithm?

2. Note that fp∗(xi ) is easy to compute if we know p∗.

3. So the algorithmic problem is to compute an equilibrium
strategy p∗ for our learning game, that makes only a
polynomial number of calls to our weak learning algorithm.

4. In fact, we only need an ϵ-approximate equilibrium for
ϵ < 0.01...

5. We know how to do that by having the data player play
polynomial weights over the data points, and the learner best
respond.

6. And we can implement best responses using the weak learning
algorithm...



Proof

1. But what is the efficient algorithm?

2. Note that fp∗(xi ) is easy to compute if we know p∗.

3. So the algorithmic problem is to compute an equilibrium
strategy p∗ for our learning game, that makes only a
polynomial number of calls to our weak learning algorithm.

4. In fact, we only need an ϵ-approximate equilibrium for
ϵ < 0.01...

5. We know how to do that by having the data player play
polynomial weights over the data points, and the learner best
respond.

6. And we can implement best responses using the weak learning
algorithm...



Proof

1. But what is the efficient algorithm?

2. Note that fp∗(xi ) is easy to compute if we know p∗.

3. So the algorithmic problem is to compute an equilibrium
strategy p∗ for our learning game, that makes only a
polynomial number of calls to our weak learning algorithm.

4. In fact, we only need an ϵ-approximate equilibrium for
ϵ < 0.01...

5. We know how to do that by having the data player play
polynomial weights over the data points, and the learner best
respond.

6. And we can implement best responses using the weak learning
algorithm...



Proof

Algorithm 1 Boost(D,A)

Let T ← 4 log n
ϵ2

for ϵ < 0.01.
Initialize a copy of polynomial weights to run over w t ∈ ∆n.
for t = 1 to T do
Let ht = A(D,w t)
Let ℓt ∈ [0, 1]m be such that ℓti = 1[ht(xi ) = yi ].
Pass ℓt to the PW algorithm.

end for
Let p̂ = 1

T

∑T
t=1 eht . (Note that this is concisely representable

even though H is large, because p̂ has support over only the T
models ht .)
Return fp̂(x).



Proof

1. Since ϵ is a constant, on a dataset of size n, the algorithm
runs for only O(log n) many iterations.

2. At each iteration it makes a single call to our weak learning
algorithm A.

3. It then has to update the polynomial weights distribution over
the n datapoints, which takes time O(n).

4. Total running time is O(log n(n + R(A))), where R(A) is the
running time of our weak learning algorithm.



Proof

1. Since ϵ is a constant, on a dataset of size n, the algorithm
runs for only O(log n) many iterations.

2. At each iteration it makes a single call to our weak learning
algorithm A.

3. It then has to update the polynomial weights distribution over
the n datapoints, which takes time O(n).

4. Total running time is O(log n(n + R(A))), where R(A) is the
running time of our weak learning algorithm.



Proof

1. Since ϵ is a constant, on a dataset of size n, the algorithm
runs for only O(log n) many iterations.

2. At each iteration it makes a single call to our weak learning
algorithm A.

3. It then has to update the polynomial weights distribution over
the n datapoints, which takes time O(n).

4. Total running time is O(log n(n + R(A))), where R(A) is the
running time of our weak learning algorithm.



Proof

1. Since ϵ is a constant, on a dataset of size n, the algorithm
runs for only O(log n) many iterations.

2. At each iteration it makes a single call to our weak learning
algorithm A.

3. It then has to update the polynomial weights distribution over
the n datapoints, which takes time O(n).

4. Total running time is O(log n(n + R(A))), where R(A) is the
running time of our weak learning algorithm.



Briefly: Statistical Aspects

1. Our final hypothesis is a majority vote over O(log n)
hypotheses from H.

2. So the complexity is not much larger than the complexity of
individual weak hypotheses in H.

3. Hence (informally), the amount of data needed for the strong
learner to generalize “out of sample” is not much larger than
was needed for the weak learner.

4. This can be formalized in various ways, including with a
measure called “VC-Dimension”.



Briefly: Statistical Aspects

1. Our final hypothesis is a majority vote over O(log n)
hypotheses from H.

2. So the complexity is not much larger than the complexity of
individual weak hypotheses in H.

3. Hence (informally), the amount of data needed for the strong
learner to generalize “out of sample” is not much larger than
was needed for the weak learner.

4. This can be formalized in various ways, including with a
measure called “VC-Dimension”.



Briefly: Statistical Aspects

1. Our final hypothesis is a majority vote over O(log n)
hypotheses from H.

2. So the complexity is not much larger than the complexity of
individual weak hypotheses in H.

3. Hence (informally), the amount of data needed for the strong
learner to generalize “out of sample” is not much larger than
was needed for the weak learner.

4. This can be formalized in various ways, including with a
measure called “VC-Dimension”.



Briefly: Statistical Aspects

1. Our final hypothesis is a majority vote over O(log n)
hypotheses from H.

2. So the complexity is not much larger than the complexity of
individual weak hypotheses in H.

3. Hence (informally), the amount of data needed for the strong
learner to generalize “out of sample” is not much larger than
was needed for the weak learner.

4. This can be formalized in various ways, including with a
measure called “VC-Dimension”.



Thanks!

See you next class — stay healthy!



Thanks!

See you next class — stay healthy!



Thanks!

Have a great summer!


