
Algorithmic Game Theory: Problem Set 6
Due on Tuesday, April 22

Remember you can work together on problem sets, but list everyone you worked with, and everyone turn

in their own assignment.

Posted Pricings for Multi-Unit Prophets (15 points)

A natural extension of our posted pricings model in lecture is to allow the seller to sell k ≥ 1 units of the

same good to buyers (who each can buy up to 1 good). We’ll explore a way to asymptotically approach

optimal welfare for large k. ∀i ∈ [1 . . . n], let vi ∼ Di be the random variable denoting the buyer’s valuation

of the good in round i. Let OPT be the sum of the k largest vis, and let 1t
i(vi) be the indicator random

variable for whether the ith buyer with valuation vi will purchase the good at threshold price t:

1t
i(vi) =

{
1 vi ≥ t

0 vi < t

Let S(t) =
∑n

i=1[1
t
i(vi) denote the realized number of items sold at price t. We’d like to set a threshold t

so the seller is likely to sell most of the k items without overselling. With this in mind, for a fixed set of

realized vis, let t satisfy the following:

E[S(t)] :=
n∑

i=1

E[1t
i(vi)] = k − δ

We’ll define δ later. In essence, δ ensures that with high probability, no more than k items are demanded.

To prove this, we’ll need the following:

Theorem: Multiplicative Chernoff Bound

∀i ∈ [1 . . . n], let Xi ∼ Di be independent draws, where Xi ∈ [0, 1]. Let X =
∑n

i=1 Xi. Then, we have

the following inequality for α ∈ [0, 1]:

Pr
[
|X − E[X]| ≥ α · E[X]

]
≤ 2 exp

(
− α2 · E[X]/3

)
We would like to ensure that with high probability, |S(t) − E[S(t)]| ≤ δ =⇒ S ∈ [k − 2δ, k]. I.e., it is

unlikely that with threshold t, there are < k − 2δ or > k buyers that can purchase the good.

1. (5 pts) Suppose that S(t) ∈ [k − 2δ, k]. Prove that E[Welfare] ≥ (1− 2δ
k )OPT.

2. (5 pts) Prove that when δ =
√
c · k log k for some constant c, S(t) ∈ [k−2δ, k] with probability 1−O( 1k ).
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3. (5 pts) Prove that E[Welfare] =
(
1 − O

(√
log k
k

))
OPT, which shows that this approach yields a(

1 +O
(√

log k
k

))
-approximation to optimal welfare.

Knapsack Auctions (15 pts)

1. In class, we showed a 2-approximation algorithm for the knapsack auction, and proved that it was a

monotone allocation rule. Give an explicit description of the payment rule which makes it a dominant

strategy to report valuations truthfully. (5 pts)

2. Now consider a variant of the knapsack auction in which each bidder i has to report both his value vi
and his size wi. This is no longer a single parameter domain. An allocation rule x(v′, w′) now specifies

the amount of capacity allocated to each bidder as a function of their reported bids and sizes. The

utility of buyer i is defined to be vi−pi(v
′, w′) if she gets her full capacity – i.e. if xi(v

′, w′) ≥ wi, and to

be −pi(v, w) otherwise (i.e. she gets no value for getting capacity less than her full size). Consider the

2-approximation we considered in class that simply takes the reported sizes w′ at face value (and define

xi(v
′, w′) = w′

i if the algorithm allocates buyer i with these reports, and xi(v
′, w′) = 0 otherwise), and

uses the same payment rule computed above. Does this mechanism make reporting true values and

sizes a dominant strategy? Prove it if so, or give an explicit counter-example. (10 pts)

Uniqueness of the Groves Mechanism (20 pts)

From lecture, we know that the Groves mechanism is efficient and DSIC. We’ve also seen that the VCG

mechanism, which instantiates the Groves mechanism, achieves multiple desiderata but has certain flaws

(e.g., may be computationally inefficient). Could there be efficient, DSIC mechanisms besides the Groves

mechanism that rectify these flaws? Unfortunately, this is not the case.

1. (5 pts) Consider a mechanism (X,P ) which is social welfare maximizing (i.e.,X(v) = argmaxa∈A

∑
i vi(a)).

Prove (X,P ) is an instantiation of the Groves mechanism if and only if ∀vi ∈ V with v′i ̸= vi,

∀v−i ∈ V n−1:

P (vi, v−i)i − P (v′i, v−i)i =
∑
j ̸=i

vj
(
X(v′i, v−i)

)
−

∑
j ̸=i

vj
(
X(vi, v−i)

)
2. (5 pts) Now, suppose that (X,P ) is also DSIC. Prove that if agent i’s report does not change the

output of X, agent i’s payment does not change. I.e., ∀i ∈ [1 . . . n], ∀vi, v′i ∈ V , ∀v−i ∈ V n−1:

X(vi, v−i) = X(v′i, v−i) =⇒ P (vi, v−i)i = P (v′i, v−i)i

3. (10 pts) Use parts a). and b). to prove that any mechanism (X,P ) that is efficient and DSIC is an

instantiation of the Groves mechanism. For ease, assume that the set of alternatives A is finite.
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