
Algorithmic Game Theory: Problem Set 2
Due online via GradeScope before the start of class on Tuesday, February 18

Aaron Roth

Remember you can work together on problem sets, but list everyone you worked with, and everyone turn

in their own assignment. Ask questions on Slack.

Problem 1) Strategic Monty Hall (15 points)

Alice is a contestant on a game show hosted by Monty, who gives Alice a choice between three doors. One

door has a car behind it, and the other two doors have nothing behind them. Alice does not know which

door the car is behind, but Monty knows. Consider the following sequence:

1. Alice chooses one of the three doors, uniformly at random.

2. Out of the two doors that Alice didn’t choose, Monty opens one of the doors that Alice didn’t choose,

and opens it, always revealing it to not have the car behind it. There are two remaining closed doors;

Monty asks Alice if she’d like to switch doors.

3. Alice chooses either to remain at her initial door or switch to the other closed door.

4. After Alice makes her decision, her selected door is opened.

Alice receives a payoff of 1 if her final door has a car behind it, and 0 otherwise.

Part 1 (5 pts) What is Alice’s expected payoff for remaining at her initial door? What is her expected

payoff for switching? Which one maximizes her expected payoff?

We now modify the setting above so that in step 2, Monty can choose whether to open a door and reveal

that there is nothing behind it; before, Monty was required to reveal an empty door. If Monty chooses to

reveal an empty door, Alice has the opportunity to switch just as before; if he does not, then Alice just gets

whatever is behind her initial choice. Alice wants to win the car — and Monty doesn’t want her to. This

new interaction can be modeled as a zero sum game, where Monty knows the location of the car, and Alice

doesn’t:

• Monty’s payoff is −1 if Alice’s door has a car behind it, and 0 otherwise.

• Monty can either Reveal (R) or Don’t Reveal (D) an empty door, and can take different actions

depending on whether Alice’s initial door has the car (C) or has nothing (N). As such, Monty’s set of

actions is AM = {RCRN,DCRN,RCDN,DCDN}. For example, DCRN means that Monty doesn’t reveal

if Alice’s initial door has a car, but reveals if Alice’s initial door has nothing.
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Problem 1) Strategic Monty Hall (15 points) (continued)

• Alice’s set of actions is AA = {Remain,Switch}. We assume that when Alice plays ”Switch”, she only

actually switches if Monty reveals a door. I.e., if Monty doesn’t reveal, ”Switch” behaves the same

way that ”Remain” does.

Note that the game above takes place after Alice selects one of the three doors randomly.

Part 2 (5 pts) Write the expected payoffs of this zero sum game.

RCRN DCRN RCDN DCDN

Remain

Switch

Table 1: Game matrix

Part 3 (5 pts) Using the game matrix from part 2, find all the pure strategy Nash equilibria of the game

and provide a brief explanation. What is Alice’s expected payoff in equilibrium?

Problem 2) Maximum-Weight Best Response Dynamics (20 points)

Consider the load balancing game on identical machines that we studied in Lecture 4. We proved that best

response dynamics converges for this game. In this problem, we prove that a modification of best response

dynamics converges quickly.

Maximum-Weight Best Response Dynamics

Let a = (a1, . . . , an) be an arbitrary action profile.
while a is not a pure strategy Nash equilibrium do
Among all players i who are not playing best responses in a, let i be the index of the player with largest
weight wi, and let a′i be a best response to a−i.
Update the action profile to (a′i, a−i).

end while
Output a.

1. Prove that minj ℓj(a), the minimum load among all the machines, is non-decreasing as Maximum-

Weight Best Response Dynamics is run (5 pts)

2. Call a player i “active” if she is currently not playing a best response, and inactive otherwise. Show

that a player never goes from being “inactive” to being “active” unless another player moves onto her

machine. (5 pts)

3. Let i denote the active player of maximum weight at some intermediate step of Maximum-Weight Best

Response Dynamics. Show that in the round after i makes a best response move, any other players

i′ who become active must have have w′
i < wi. Conclude that no player ever makes a best response

move more than once, and hence that Maximum-Weight Best Response Dynamics converges after at

most n steps, where n is the number of players. (10 pts)
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Problem 2) Maximum-Weight Best Response Dynamics (20 points)

Problem 3) Bandwidth Sharing Game (20 points)

As you saw on the last homework, even games with infinite action sets can have pure strategy Nash equilibria;

here you will show another example of such a game using the potential function method.

In this game, each player wants to send flow along a shared channel of maximum capacity 1. On the one

hand, each player wants to send as much flow as possible along the channel. On the other hand, the channel

becomes less useful the closer it gets to its maximum capacity. Each player can choose to send an amount

of flow xi ∈ [0, 1] along the channel. (That is, the action set for each player i is Ai = [0, 1], and hence is not

finite). For a profile of actions x ∈ A, player i has utility ui(xi, x−i) = xi(1−
∑n

j=1 xj).

1. (10 points) Show that this game is an exact potential game, and conclude that it has a pure strategy

Nash equilibrium. Hint: Check out this function — ϕ(x1, . . . , xn) =
∑n

k=1(xk − x2
k) −

∑
k ̸=j xkxj.

Note also that our argument from class that a potential function implies convergence of best response

dynamics relies on the game being finite, which this game is not, so the last part of this question requires

some thought.

2. (5 points) Find a Nash equilibrium of this game. What is the social welfare at this equilibrium? (i.e.

the sum of utilities of all the players.)

3. (5 points) What is the optimal social welfare? (i.e. what is the social welfare at the profile of actions

that maximizes it, regardless of whether or not this profile is an equilibrium.)

Problem 4) Characterizing Exact Potential Functions (10 points)

Given that best-response dynamics converge if and only if used in a potential game, we would like to

characterize in which games do exact potential functions, in particular, exist. Consider an n-player game

G. We say that a game is utility separable if there exist functions U : A → R≥0 and Vi : A−i → R≥0 for all

i ∈ [n] such that the following holds for all players i ∈ [n]:

ui(ai, a−i) = U(a) + Vi(a−i)

In other words, each player’s utility function can be decomposed into the sum of two functions; a common

value function U that all players’ actions affect, and a personal value function Vi that only depends on the

actions of the player’s opponents.

1. (5 pts) Prove that if G is utility separable, then U is an exact potential function for G..

2. (5 pts) Prove that if G has an exact potential function U , then G is utility separable.
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