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Abstract

In this paper we demonstrate that, ignoring computational constraints, it is possible to privately
release synthetic databases that are useful for large classes of queries – much larger in size than the
database itself. Specifically, we give a mechanism that privately releases synthetic data for a class of
queries over a discrete domain with error that grows as a function of the size of the smallest net ap-
proximately representing the answers to that class of queries. We show that this in particular implies a
mechanism for counting queries that gives error guarantees that grow only with the VC-dimension of the
class of queries, which itself grows only logarithmically with the size of the query class.

We also show that it is not possible to privately release even simple classes of queries (such as in-
tervals and their generalizations) over continuous domains. Despite this, we give a privacy-preserving
polynomial time algorithm that releases information useful for all halfspace queries, given a slight re-
laxation of the utility guarantee. This algorithm does not release synthetic data, but instead another data
structure capable of representing an answer for each query. We also give an efficient algorithm for re-
leasing synthetic data for the class of interval queries and axis-aligned rectangles of constant dimension.

Finally, inspired by learning theory, we introduce a new notion of data privacy, which we call dis-
tributional privacy, and show that it is strictly stronger than the prevailing privacy notion, differential
privacy.

1 Introduction

As large-scale collection of personal information becomes easier, the problem of database privacy is increas-
ingly important. In many cases, we might hope to learn useful information from sensitive data (for example,
we might learn a correlation between smoking and lung cancer from a collection of medical records). How-
ever, for legal, financial, or moral reasons, administrators of sensitive datasets might not want to release their
data. If those with the expertise to learn from large datasets are not the same as those who administer the
datasets, what is to be done? In order to study this problem theoretically, it is important to quantify what
exactly we mean by “privacy.”

A series of recent papers [DN04, BDMN05, DMNS06] formalizes the notion of differential privacy. A
database privatization mechanism (which may be either interactive or non-interactive) satisfies differential
privacy if the addition or removal of a single database element does not change the probability of any
outcome of the privatization mechanism by more than some small amount. The definition is intended to
capture the notion that “distributional information is not private”—we may reveal that smoking correlates to
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lung cancer, but not that any individual has lung cancer. Individuals may submit their personal information
to the database secure in the knowledge that (almost) nothing can be discovered from the database with their
information that could not have been discovered without their information.

In this paper, motivated by learning theory, we propose the study of privacy-preserving mechanisms that
are useful for all queries in a particular class (such as all conjunction queries or all halfspace queries). In
particular, we focus on counting queries of the form, “what fraction of the database entries satisfy predicate
ϕ?” and say that a sanitized output is useful for a class C if the answers to all queries in C have changed by
at most some ±α.

Building on the techniques of Kasiviswanathan et al. [KLN+08], we show that for discretized domains,
for any concept class that admits an α-net Nα, it is possible to privately release synthetic data that is useful
for the class, with error that grows proportionally to the logarithm of the size of Nα. As a consequence, we
show that it is possible to release data useful for a set of counting queries with error that grows proportionally
to the VC-dimension of the class of queries. The algorithm is not in general computationally efficient. We
are able to give a different algorithm that efficiently releases synthetic data for the class of interval queries
(and more generally, axis-aligned rectangles in fixed dimension) that achieves guarantees in a similar range
of parameters.

Unfortunately, we show that for non-discretized domains, under the above definition of usefulness, it
is impossible to publish a differentially private database that is useful for even quite simple classes such as
interval queries. We next show how, under a natural relaxation of the usefulness criterion, one can release
information that can be used to usefully answer (arbitrarily many) halfspace queries while satisfying pri-
vacy. In particular, instead of requiring that useful mechanisms answer each query approximately correctly,
we allow our algorithm to produce an answer that is approximately correct for some nearby query. This
relaxation is motivated by the notion of large-margin separators in learning theory [AB99, Vap98, SS02]; in
particular, queries with no data points close to the separating hyperplane must be answered accurately, and
the allowable error more generally is a function of the fraction of points close to the hyperplane.

We also introduce a new concept, distributional privacy, which makes explicit the notion that when run
on a database drawn from a distribution, privacy-preserving mechanisms should reveal only information
about the underlying distribution, and nothing else. Given a distribution D over database points, a database
privatization mechanism satisfies distributional privacy if with high probability, drawing an entirely new
database from D does not change the probability of any outcome of the privatization mechanism by more
than some small amount. We show that distributional privacy is a strictly stronger guarantee than differential
privacy by showing that any mechanism that satisfies distributional privacy also satisfies differential privacy,
but that there are some functions that can be answered accurately while satisfying differential privacy, and
yet reveal information about the particular database (although not about any particular database element)
that is not “distributional.”

1.1 Prior and Subsequent Work

1.1.1 Prior Work

Recent work on theoretical guarantees for data privacy was initiated by [DN03]. The notion of differential
privacy, finally formalized by [DMNS06], separates issues of privacy from issues of outside information
by defining privacy as indistinguishability of neighboring databases. This captures the notion that (nearly)
anything that can be learned if your data is included in the database can also be learned without your data.
This notion of privacy ensures that users have very little incentive to withhold their information from the
database. The connection between data privacy and incentive-compatibility was formalized by McSherry
and Talwar [MT07].
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Much of the initial work focused on lower bounds. Dinur and Nissim [DN03] showed that any mecha-
nism that answers substantially more than a linear number of subset-sum queries with error o(1/

√
n) yields

what they called blatant non-privacy – i.e. it allows an adversary to reconstruct all but a o(1) fraction of
the original database. Dwork et al. [DMT07] extend this result to the case in which the private mecha-
nism can answer a constant fraction of queries with arbitrary error, and show that still if the error on the
remaining queries is o(1/

√
n), the result is blatant non-privacy. Dwork and Yekhanin [DY08] give further

improvements. These results easily extend to the case of counting queries which we consider here.
Dwork et al. [DMNS06], in the paper that defined differential privacy, show that releasing the answers

to k low sensitivity queries with noise drawn independently from the Laplace distribution with scale k/ε
preserves ε-differential privacy. Unfortunately, the noise scales linearly in the number of queries answered,
and so this mechanism can only answer a sub-linear number of queries with non-trivial accuracy. Blum et
al. [BDMN05] consider a model of learning and show that concept classes that are learnable in the statisti-
cal query (SQ) model are also learnable from a polynomially sized dataset accessed through an interactive
differential-privacy-preserving mechanism. We note that such mechanisms still access the database by ask-
ing counting-queries perturbed with independent noise from the Laplace distribution, and so can still only
make a sublinear number of queries. In this paper, we give a mechanism for privately answering counting
queries with noise that grows only logarithmically with the number of queries asked (or more generally with
the VC-dimension of the query class). This improvement allows an analyst to answer an exponentially large
number of queries with non-trivial error, rather than only linearly many.

Most similar to this paper is the work of Kasiviswanathan et al. [KLN+08]. Kasiviswanathan et al. study
what can be learned privately when what is desired is that the hypothesis output by the learning algorithm
satisfies differential privacy. They show that in a PAC learning model in which the learner has access to the
private database, ignoring computational constraints, anything that is PAC learnable is also privately PAC
learnable. We build upon the technique in their paper to show that in fact, it is possible to privately release
a dataset that is simultaneously useful for any function in a concept class of polynomial VC-dimension.
Kasiviswanathan et al. also study several restrictions on learning algorithms, show separation between these
learning models, and give efficient algorithms for learning particular concept classes.

1.1.2 Subsequent Work

Since the original publication of this paper in STOC 2008 [BLR08] there has been a substantial amount of
follow up work. A sequence of papers by Dwork et al. [DNR+09, DRV10] give a non-interactive mechanism
for releasing counting queries with accuracy that depends in a similar way to the mechanism presented in
this paper on the total number of queries asked, but has a better dependence on the database size. This
comes at the expense of relaxing the notion of ε-differential privacy to an approximate version called (ε, δ)-
differential privacy. The mechanism of [DRV10] also extends to arbitrary low-sensitivity queries rather
than only counting queries. This extension makes crucial use of the relaxation to (ε, δ)-privacy, as results
such as those given in this paper cannot be extended to arbitrary low-sensitivity queries while satisfying
ε-differential privacy as shown recently by De [De11].

Roth and Roughgarden [RR10] showed that bounds similar to those achieved in this paper can also
be achieved in the interactive setting, in which queries are allowed to arrive online and must be answered
before the next query is known. In many applications, this gives a large improvement in the accuracy of
answers, because it allows the analyst to pay for those queries which were actually asked in the course of
a computation (which may be only polynomially many), as opposed to all queries which might potentially
be asked, as is necessary for a non-interactive mechanism. Hardt and Rothblum [HR10] gave an improved
mechanism for the interactive setting based on the multiplicative weights framework which achieves bounds
comparable to the improved bounds of [DRV10], also in the interactive setting. An offline version of this
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mechanism (constructed by pairing the online mechanism with an agnostic learner for the class of queries
of interest) was given by Gupta et al. [GHRU11], and an experimental evaluation on real data was done
by Hardt, Ligett, and McSherry [HLM11]. Gupta, Roth, and Ullman unified the online mechanisms of
[RR10, HR10] into a generic framework (and improved their error bounds) by giving a generic reduction
from online learning algorithms in the mistake bound model to private query release algorithms in the
interactive setting [GRU11]. [GRU11] also gives a new mechanism based on this reduction that achieves
improved error guarantees for the setting in which the database size is comparable to the size of the data
universe.

Following this work, there has been significant attention paid to the problem of releasing the class
of conjunctions (a special case of counting queries) with low error using algorithms with more efficient
run-time than the one given in this paper. Gupta et al [GHRU11] give an algorithm which runs in time
polynomial in the size of the database, and releases the class of conjunctions to O(1) average error while
preserving differential privacy. Hardt, Rothblum, and Servedio [HRS11] give an algorithm which runs
in time proportional dk (for databases over a data universe X = {0, 1}d) and releases conjunctions of
most k variables with worst-case error guarantees. Their algorithm improves over the Laplace mechanism
(which also requires run-time dk) because it only requires that the database size be proportional to d

√
k (The

Laplace mechanism would require a database of size dk). As a building block for this result, they also give a
mechanism with run-time proportional to d

√
k which gives average-case error guarantees. Kasiviswanathan

et al. [KRSU10] extend the lower bounds [DN03] from arbitrary subset-sum queries to hold also for an
algorithm that only releases conjunctions.

Xiao et al. [XWG10] gave an algorithm for releasing range queries, which extends the class of constant-
dimensional interval queries which we consider in this paper.

There has also been progress in proving lower bounds. Dwork et al. [DNR+09] show that in general, the
problem of releasing synthetic data giving non-trivial error for arbitrary classes of counting queries requires
run-time that is linear in the size of the data universe and the size of the query class (modulo cryptographic
assumptions). This in particular precludes improving the run-time of the general mechanism presented
in this paper to be only polynomial in the size of the database. Ullman and Vadhan [UV11] extend this
result to show that releasing synthetic data is hard even for the simple class of conjunctions of at most 2
variables. This striking result emphasizes that output representation is extremely important, because it is
possible to release the answers to all of the (at most d2) conjunctions of size 2 privately and efficiently
using output representations other than synthetic data. Hardt and Talwar showed how to prove lower bounds
for differentially query release using packing arguments, and gave an optimal lower bound for a certain
range of parameters [HT10]. De recently refined this style of argument and extended it to wider settings
[De11]. Gupta et al. [GHRU11] showed that the class of queries that can be released by mechanisms that
access the database using only statistical queries (which includes almost all mechanisms known to date,
with the exception of the parity learning algorithm of [KLN+08]) is equal to the class of queries that can be
agnostically learned using statistical queries. This rules out a mechanism even for releasing conjunctions to
subconstant error which accesses the data using only a polynomial number of statistical queries.

1.2 Motivation from Learning Theory

From a machine learning perspective, one of the main reasons one would want to perform statistical analysis
of a database in the first place is to gain information about the population from which that database was
drawn. In particular, a fundamental result in learning theory is that if one views a database as a collection of
random draws from some distribution D, and one is interested in a particular class C of boolean predicates
over examples, then a database D of size Õ(VCDIM(C)/α2) is sufficient so that with high probability, for
every query q ∈ C, the proportion of examples in D satisfying q is within ±α of the true probability mass
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under D [AB99, Vap98].1 Our main result can be viewed as asking how much larger does a database D
have to be in order to do this in a privacy-preserving manner: that is, to allow one to (probabilistically)
construct an output D̂ that accurately approximates D with respect to all queries in C, and yet that reveals
no extra information about databaseD.2 In fact, our notion of distributional privacy (Section 7) is motivated
by this view. Note that since interactive privacy mechanisms can handle arbitrary queries of this form so
long as only o(n) are requested, our objective is interesting only for classes C that contain Ω(n), or even
exponentially in n many queries. We will indeed achieve this (Theorem 3.10), since |C| ≥ 2VCDIM(C).

1.3 Organization

We present essential definitions in Section 2. In Section 3, we show that, ignoring computational constraints,
one can release sanitized databases over discretized domains that are useful for any concept class with
polynomial VC-dimension. We then, in Section 4, give an efficient algorithm for privately releasing a
database useful for the class of interval queries. We next turn to the study of halfspace queries over Rd
and show in Section 5 that, without relaxing the definition of usefulness, one cannot release a database that
is privacy-preserving and useful for halfspace queries over a continuous domain. Relaxing our definition
of usefulness, in Section 6, we give an algorithm that in polynomial time, creates a sanitized database that
usefully and privately answers all halfspace queries. We present an alternative definition of privacy and
discuss its relationship to differential privacy in Section 7.

2 Definitions

We consider databases which are n-tuples from some abstract domain X: i.e. D ∈ Xn. We will write
n = |D| for the size of the database. We think of X as the set of all possible data-records. For example, if
data elements are represented as bit-strings of length d, thenX = {0, 1}d would be the boolean hypercube in
d dimensions. These tuples are not endowed with an ordering: they are simply multi-sets (they can contain
multiple copies of the same element x ∈ X).

A database access mechanism is a randomized mapping A : X∗ → R, where R is some arbitrary range.
We say that A outputs synthetic data if its output is itself a database: i.e. if R = X∗.

Our privacy solution concept will be the by now standard notion of differential privacy. Crucial to
this definition will be the notion of neighboring databases. We say that two databases D,D′ ∈ Xn are
neighboring if they differ in only a single data element: i.e. they are neighbors if their symmetric difference
|D∆D′| ≤ 1.

Definition 2.1 (Differential Privacy [DMNS06]). A database access mechanism A : Xn → R is ε-
differentially private if for all neighboring pairs of databases D,D′ ∈ Xn and for all outcome events
S ⊆ R, the following holds:

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D′) ∈ S]

In Section 7, we propose an alternate definition of privacy, distributional privacy, and show that it is
strictly stronger than differential privacy. For simplicity, however, in the main body of the paper, we use

1Usually, this kind of uniform convergence is stated as empirical error approximating true error. In our setting, we have no
notion of an “intrinsic label” of database elements. Rather, we imagine that different users may be interested in learning different
things. For example, one user might want to learn a rule to predict feature xd from features x1, . . . , xd−1; another might want to
use the first half of the features to predict a certain boolean function over the second half.

2Formally, we only care about D̂ approximatingD with respect to C, and want this to be true no matter howD was constructed.
However, if D was a random sample from a distribution D, then D will approximate D and therefore D̂ will as well.
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the standard definition, differential privacy. All of these proofs can be adapted to the distributional privacy
notion.

Definition 2.2. The global sensitivity of a query f is its maximum difference when evaluated on two neigh-
boring databases:

GSf = max
D,D′∈Xn:|D∆D′|=1

|f(D)− f(D′)|.

In this paper, we consider the private release of information useful for classes of counting queries.

Definition 2.3. A counting query Qϕ, defined in terms of a predicate ϕ : X → {0, 1} is defined to be

Qϕ(D) =

∑
x∈D ϕ(x)

|D|
.

It evaluates to the fraction of elements in the database that satisfy the predicate ϕ.

Observation 2.4. For any predicate ϕ : X → {0, 1}, the corresponding counting query Qϕ : Xn → [0, 1]
has global sensitivity GSQϕ ≤ 1/n

Proof. Let D,D′ ∈ Xn be neighboring databases. Then:

Qϕ(D) =
|{x ∈ D : ϕ(x) = 1}|

|D|
≤ |{x ∈ D

′ : ϕ(x) = 1}|+ 1

|D|
= Qϕ(D′) + 1/n

Where the inequality follows by the definition of neighboring databases. Similarly, Qϕ(D) ≥ Qϕ(D′) −
1/n. The observation then follows.

We remark that everything in this paper easily extends to the case of more general linear queries, which
can are defined analogously to counting queries, but involve real valued predicates ϕ : X → [0, 1]. For
simplicity we restrict ourselves to counting queries in this paper, but see [Rot10] for the natural extension to
linear queries.

A key measure of complexity that we will use for counting queries is VC-dimension. VC-dimension is
strictly speaking a measure of complexity of classes of predicates, but we will associate the VC-dimension
of classes of predicates with their corresponding class of counting queries.

Definition 2.5 (Shattering). A class of predicates P shatters a collection of points S ⊆ X if for every
T ⊆ S, there exists an ϕ ∈ P such that {x ∈ S : ϕ(x) = 1} = T . That is, P shatters S if for every one of
the 2|S| subsets T of S, there is some predicate in P that labels exactly those elements as positive, and does
not label any of the elements in S \ T as positive.

We can now define our complexity measure for counting queries.

Definition 2.6 (VC-Dimension). A collection of predicates P has VC-dimension d if there exists some set
S ⊆ X of cardinality |S| = d such that P shatters S, and P does not shatter any set of cardinality d + 1.
We can denote this quantity by VC-DIM(P ). We abuse notation and also write VC-DIM(C) where C is a
class of counting queries, to denote the VC-dimension of the corresponding collection of predicates.

Dwork et al. [DMNS06] give a mechanism which can answer any single low-sensitivity query while
preserving differential privacy:
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Definition 2.7 (Laplace mechanism). The Laplace mechanism responds to a queryQ by returningQ(D)+Z
where Z is a random variable drawn from the Laplace distribution: Z ∼ Lap(GSQ/ε).

The Laplace distribution with scale b, which we denote by Lap(b), has probability density function

f(x|b) =
1

2b
exp

(
−|x|
b

)
Theorem 2.8 (Dwork et al. [DMNS06]). The Laplace mechanism preserves ε-differential privacy.

This mechanism answers queries interactively, but for a fixed privacy level, its accuracy guarantees
degrade linearly in the number of queries that it answers. The following composition theorem is useful: it
tells us that a mechanism which runs k ε-differentially private subroutines is kε-differentially private.

Theorem 2.9 (Dwork et al. [DMNS06]). If mechanisms M1, . . . ,Mk are each ε-differentially private, then
the mechanismM defined by the (string) composition of the k mechanisms: M(D) = (M1(D), . . . ,Mk(D))
is kε-differentially private.

We propose to construct database access mechanisms which produce one-shot (non-interactive) outputs
that can be released to the public, and so can necessarily be used to answer an arbitrarily large number of
queries. We seek to do this while simultaneously preserving privacy. However, as implied by the lower
bounds of Dinur and Nissim [DN03], we cannot hope to be able to usefully answer arbitrary queries. We
instead seek to release synthetic databases which are “useful” (defined below) for restricted classes of queries
C.

Definition 2.10 (Usefulness). A database access mechanism A is (α, δ)-useful with respect to queries in
classC if for every databaseD ∈ Xn, with probability at least 1−δ, the output of the mechanism D̂ = A(D)
satisfies:

max
Q∈C
|Q(D̂)−Q(D)| ≤ α

In this paper, we will derive (α, δ)-useful mechanisms from small α-nets:

Definition 2.11 (α-net). An α-net of databases with respect to a class of queries C is a set N ⊂ X∗ such
that for all D ∈ X∗, there exists an element of the α-net D′ ∈ N such that:

max
Q∈C
|Q(D)−Q(D′)| ≤ α

We write Nα(C) to denote an α-net of minimum cardinality among the set of all α-nets for C.

3 General release mechanism

In this section we present our general release mechanism. It is an instantiation of the exponential mechanism
of McSherry and Talwar [MT07].

Given some arbitrary range R, the exponential mechanism is defined with respect so some quality
function q : X∗ × R → R, which maps database/output pairs to quality scores. We should interpret
this intuitively as a measure stating that fixing a database D, the user would prefer the mechanism to output
some element ofR with as high a quality score as possible.

Definition 3.1 (The Exponential Mechanism [MT07]). The exponential mechanism ME(D, q,R) selects
and outputs an element r ∈ R with probability proportional to exp( εq(D,r)2GSq

).
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McSherry and Talwar showed that the exponential mechanism preserves differential privacy. It is im-
portant to note that the exponential mechanism can define a complex distribution over a large arbitrary
domain, and so it may not be possible to implement the exponential mechanism efficiently when the range
of q is super-polynomially large in the natural parameters of the problem. This will be the case with our
instantiation of it.

Theorem 3.2 ([MT07]). The exponential mechanism preserves ε-differential privacy.

Algorithm 1 The Net Mechanism
NetMechanism(D,C, ε, α)

LetR ← Nα(C)
Let q : X∗ ×R → R be defined to be:

q(D,D′) = −max
Q∈C

∣∣Q(D)−Q(D′)
∣∣

Sample And Output D′ ∈ R with the exponential mechanism ME(D, q,R)

We first observe that the Net mechanism preserves ε-differential privacy.

Property 3.3. The Net mechanism is ε-differentially private.

Proof. The Net mechanism is simply an instantiation of the exponential mechanism. Therefore, privacy
follows from Theorem 3.2.

We may now analyze the usefulness of the net mechanism.

Property 3.4. For any class of queries C (not necessarily counting queries) the Net Mechanism is (2α, δ)-
useful for any α such that:

α ≥ 2∆

ε
log

Nα(C)

δ
Where ∆ = maxQ∈C GSQ.

Proof. First observe that the sensitivity of the quality score GSq ≤ maxQ∈C GSQ = ∆.
By the definition of an α-net, we know that there exists some D∗ ∈ R such that q(D,D∗) ≥ −α.

By the definition of the exponential mechanism, this D∗ is output with probability proportional to at least
exp( −εα2GSq

). Similarly, there are at most |Nα(C)| databases D′ ∈ R such that q(D,D′) ≤ −2α (simply
because R = Nα(C)). Hence, by a union bound, the probability that the exponential mechanism outputs
some D′ with q(D,D′) ≤ −2α is at most |Nα(C)| exp(−2εα

2GSq
). Therefore, if we denote by A the event

that the net mechanism outputs some D∗ with q(D,D∗) ≥ −α, and denote by B the event that the net
mechanism outputs some D′ with q(D,D′) ≤ −2α, we have:

Pr[A]

Pr[B]
≥

exp(−εα2∆ )

|Nα(C)| exp(−2εα
2∆ )

=
exp( εα2∆)

|Nα(C)|
Note that if this ratio is at least 1/δ, then we will have proven that the net mechanism is (2α, δ) useful with
respect to C. Solving for α, we find that this is condition is satisfied so long as

α ≥ 2∆

ε
log

Nα(C)

δ
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We have therefore reduced the problem of giving upper bounds on the usefulness of differentially private
database access mechanisms to the problem of upper bounding the sensitivity of the queries in question, and
the size of the smallest α-net for the set of queries in question. Recall that for counting queries Q on
databases of size n, we always have GSQ ≤ 1/n. Therefore we have the immediate corollary:

Corollary 3.5. For any class of counting queries C the Net Mechanism is (2α, δ)-useful for any α such
that:

α ≥ 2

εn
log

Nα(C)

δ

To complete the proof of utility for the net mechanism for counting queries, it remains to prove upper
bounds on the size of minimal α-nets for counting queries. We begin with a bound for finite classes of
queries.

Theorem 3.6. For any finite class of counting queries C:

|Nα(C)| ≤ |X|
log |C|
α2

In order to prove this theorem, we will show that for any collection of counting queries C and for any
database D, there is a “small” database D′ of size |D′| = log |C|

α2 that approximately encodes the answers to
every query in C, up to error α. Crucially, this bound will be independent of |D|.

Lemma 3.7. For any D ∈ X∗ and for any finite collection of counting queries C, there exists a database
D′ of size

|D′| = log |C|
α2

such that:
max
Q∈C

∣∣Q(D)−Q(D′)
∣∣ ≤ α

Proof. Let m = log |C|
α2 We will construct a database D′ by taking m uniformly random samples from the

elements ofD. Specifically, for i ∈ {1, . . . ,m} letXi be a random variable taking value xj with probability
|{x ∈ D : x = xj}|/|D|, and letD′ be the database containing elementsX1, . . . , Xm. Now fix anyQϕ ∈ C
and consider the quantity Qϕ(D′). We have: Qϕ(D′) = 1

m

∑m
i=1 ϕ(Xi). We note that each term of the sum

ϕ(Xi) is a bounded random variable taking values 0 ≤ ϕ(Xi) ≤ 1, and that the expectation of Qϕ(D′) is:

E[Q(D′)] =
1

m

m∑
i=1

E[ϕ(Xi)] = Qϕ(D)

Therefore, we can apply a standard Chernoff bound which gives:

Pr
[∣∣Qϕ(D′)−Qϕ(D)

∣∣ > α
]
≤ 2e−2mα2

Taking a union bound over all of the counting queries Qϕ ∈ C, we get:

Pr

[
max
Qϕ∈C

∣∣Qϕ(D′)−Qϕ(D)
∣∣ > α

]
≤ 2|C|e−2mα2

Plugging in m makes the right hand side smaller than 1 (so long as |C| > 2), proving that there exists a
database of size m satisfying the stated bound, which completes the proof of the lemma.

Now we can complete the proof of Theorem 3.6.
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Proof of Theorem 3.6. By Lemma 3.7, we have that for any D ∈ X∗ there exists a database D′ ∈ X∗ with
|D′| = log |C|

α2 such that maxQϕ∈C |Qϕ(D)−Qϕ(D′)| ≤ α. Therefore, if we take N = {D′ ∈ X∗ : |D′| =
log |C|
α2 } to be the set of every database of size log |C|

α2 , we have an α-net for C. Since

|N | = |X|
log |C|
α2

and by definition |Nα(C)| ≤ |N |, we have proven the theorem.

For infinite concept classes C, we can replace lemma 3.7 with the following lemma:

Lemma 3.8 ([AB99, Vap98]). For any D ∈ X∗ and for any collection of counting queries C, there exists a
database D′ of size

|D′| = O(VCDIM(C)log(1/α)/α2)

such that:
max
Q∈C

∣∣Q(D)−Q(D′)
∣∣ ≤ α

This lemma straightforwardly gives an analogue of Theorem 3.6:

Theorem 3.9. For any class of counting queries C:

|Nα(C)| ≤ |X|O(VCDIM(C)log(1/α)/α2)

Note that we always have VCDIM(C) ≤ log |C| for finite classes of counting queries, and so Theorem
3.9 is strictly stronger than Theorem 3.6.

Finally, we can instantiate Corollary 3.5 to give our main utility theorem for the Net Mechanism.

Theorem 3.10. For any class of counting queries C the Net Mechanism is (α, δ)-useful for any α such that:

α ≥ O
(

1

εα2n
(VCDIM(C) log |X| log(1/α) + log 1/δ)

)
Solving for α, the Net Mechanism is (α, δ)-useful for:

α = Õ

((
VCDIM(C) logX + log 1/δ

εn

)1/3
)

Theorem 3.10 shows that a database of size Õ( logXVCDIM(C)
α3ε

) is sufficient in order to output a set of
points that is α-useful for a concept class C, while simultaneously preserving ε-differential privacy. If we
were to view our database as having been drawn from some distribution D, this is only an extra Õ( logX

αε )
factor larger than what would be required to achieve α-usefulness with respect to D, even without any
privacy guarantee!

The results in this section only apply for discretized database domains, and may not be computationally
efficient. We explore these two issues further in the remaining sections of the paper.
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3.1 The Necessity of a Dependence on VC-Dimension

We just gave an ε-differentially private mechanism that is (α, δ)-useful with respect to any set of count-
ing queries C, when given a database of size n ≥ Õ( logXVCDIM(C)

α3ε
). In this section, we show that the

dependence on the VC-dimension of the class C is tight. Namely:

Theorem 3.11. For any class of counting queries C, for any 0 < δ < 1 bounded away from 1 by a constant,
for any ε ≤ 1, if M is an ε-differentially private mechanism that is (α, δ) useful for C given databases of
size n ≤ VCDIM(C)

2 , then α ≥ Ω
(

1
4+16ε

)
.

Proof. Fix a class of counting queries C corresponding to a class of predicates P of VC-dimension d. Let
S ⊂ X denote a set of universe elements of size |S| = d that are shattered by P , as guaranteed by the
definition of VC-dimension. We will consider all subsets T ⊂ S of size |T | = d/2. Denote this set by
DS = {T ⊂ S : |T | = d/2} For each such T ∈ DS , let ϕT be the predicate such that:

ϕT (x) =

{
1, x ∈ T ;
0, x 6∈ T .

as guaranteed by the definition of shattering, and let QT = QϕT be the corresponding counting query.
First we prove a simple lemma:

Lemma 3.12. For every pair T, T ′ ∈ DS:

QT (T )−QT (T ′) =
|T∆T ′|
d

Proof.

QT (T )−QT (T ′) =
1

|T |

(∑
x∈T

ϕT (x)−
∑
x∈T ′

ϕT (x)

)

=
2

d

 ∑
x∈T∩T ′

(ϕT (x)− ϕT (x)) +
∑

x∈T\T ′
ϕT (x)−

∑
x∈T ′\T

ϕT (x)


=

2

d
|T \ T ′|

=
|T∆T ′|
d

where the last equality follows from the fact that |T | = |T ′|.

This lemma will allow a sufficiently useful mechanism for the class of queriesC to be used to reconstruct
a database selected from DS with high accuracy.

Lemma 3.13. For any 0 < δ < 1 bounded away from 1 by a constant, let M be an (α, δ)-useful mechanism
for C. Given as input M(T ) where T is any database T ∈ DS , there is a procedure which with constant
probability 1− δ reconstructs a database T ′ with |T ′∆T | ≤ 2dα.

Proof. Write D′ = M(T ). With probability at least 1− δ, we have maxQ∈C |Q(T )−Q(D′)| ≤ α. For the
rest of the argument, assume this event occurs. For each T ′ ∈ DS , define:

vT ′ = QT ′(T
′)−QT ′(D′)

11



Let T ′ = argminT ′∈DS vT ′ . We have:

vT ′ ≤ vT = QT (T )−QT (D′) ≤ α

by the accuracy of the mechanism. By combining the accuracy of the mechanism with Lemma 3.12, We
also have:

vT ′ ≥
|T∆T ′|
d

− α

Combining these two inequalities yields a database T ′ such that: |T∆T ′| ≤ 2dα as claimed.

We can now complete the proof. Let T ∈ DS be a set selected uniformly at random, let x ∈ T be an
element of T selected uniformly at random, and let y ∈ S \ T be an element of S \ T selected uniformly at
random. Note that the marginal distributions on x and y are identical: both are uniformly random elements
from S. Let T̂ = (T \ {x}) ∪ {y} be the set obtained by swapping elements x and y. Note that T̂ is
also distributed uniformly at random from DS . Let T ′ be the set reconstructed from D′ = M(T ) as in
lemma 3.13, and let T̂ ′ be the set reconstructed from D′ = M(T̂ ). Assume that |T∆T ′| ≤ 2dα and that
|T̂∆T̂ ′| ≤ 2dα, which occurs except with probability at most 2δ. We now have:

Pr[x ∈ T ′] =
|T | − (1/2)|T∆T ′|

|T |
≥

d
2 − dα

d
2

= 1− 2α

By symmetry:

Pr[x ∈ T̂ ′] =
(1/2)|T̂∆T̂ ′|

|T̂ |
≤ dα

d
2

= 2α

Now recall that |T∆T̂ | ≤ 2 and so by the fact that M is ε-differentially private, we also know:

exp(2ε) ≥ Pr[x ∈ T ′]
Pr[x ∈ T̂ ′]

≥ 1− 2α

2α
=

1

2α
− 1

Because we also have exp(2ε) ≤ 1 + 8ε, we can solve to find α ≥ 1
4+16ε .

4 Interval queries

In this section we give an efficient algorithm for privately releasing a database useful for the class of interval
queries over a discretized domain, given a database of size only polynomial in our privacy and usefulness
parameters. We note that our algorithm is easily extended to the class of axis-aligned rectangles in d dimen-
sional space for d a constant; we present the case of d = 1 for clarity.

Consider a database D of n points in a discrete interval {1, . . . , 2d} (in Corollary 5.2 we show some
discretization is necessary). Given a1 ≤ a2, both in {1, 2, . . . , 2d}, let Ia1,a2 be the indicator function
corresponding to the interval [a1, a2]. That is:

Ia1,a2(x) =

{
1, a1 ≤ x ≤ a2;
0, otherwise.

Definition 4.1. An interval query Q[a1,a2] is defined to be

Q[a1,a2](D) =
∑
x∈D

Ia1,a2(x)

|D|
.
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Algorithm 2 An algorithm for releasing synthetic data for interval queries.
ReleaseIntervals(D,α, ε)

Let α′ ← α/6, MaxIntervals← d4/3α′e, ε′ ← ε/(d ·MaxIntervals).
Let Bounds be an array of length MaxIntervals
Let i← 1, Bounds[0]← 1
while Bounds[i− 1] < 2d do
a← Bounds[i− 1], b← (2d − a+ 1)/2, increment← (2d − a+ 1)/4
while increment ≥ 1 do

Let v̂ ← Q[a,b](D) + Lap(1/(ε′n))
if v̂ > α′ then

Let b← b− increment
else

Let b← b+ increment
end if
Let increment← increment/2

end while
Let Bounds[i]← b, i← i+ 1

end while
Output D′, a database that has α′m points in each interval [Bounds[j − 1], Bounds[j]] for each j ∈ [i],
for any m > 1

α′ .

Note that GSQ[a1,a2]
= 1/n, and we may answer interval queries while preserving ε-differential privacy

by adding noise proportional to Lap(1/(εn)).
We now give the algorithm. We will assume for simplicity that all points x, x′ ∈ D are distinct, but this

condition can be easily discarded. The algorithm 4 is very simple. It repeatedly performs a binary search
to partition the unit interval into regions that have approximately an α′ fraction of the point mass in them.
It then releases a database that has exactly an α′-fraction of the point mass in each of the intervals that it
has discovered. There are at most ≈ 1/α′ such intervals, and each binary search terminates after at most d
rounds (because the interval consists of at most 2d points). Therefore, the algorithm requires only ≈ d/α′

accesses to the database, and each one is performed in a privacy preserving manner using noise from the
Laplace mechanism. The privacy of the mechanism then follows immediately:

Theorem 4.2. ReleaseIntervals is ε-differentially private.

Proof. The algorithm runs a binary search at most d4/3α′e times. Each time, the search halts after d queries
to the database using the Laplace mechanism. Each query is 1/ε′-differentially private (the sensitivity of an
interval query is 1/n since it is a counting query). Privacy then follows from the definition of ε and the fact
that the composition of k differentially private mechanisms is kε differentially private.

Theorem 4.3. ReleaseIntervals is (α, δ)-useful for databases of size:

n ≥ 8d

εα
· log

(
8d

δα

)
Proof. By a union bound and the definition of the Laplace distribution, if the database size n satisfies the
hypothesis of the theorem, then except with probability at most δ, none of the (4/3)d/α′ draws from the
Laplace distribution have magnitude greater than α′2. That is, at every step, we have |v̂ −Q[a,b](D)| ≤ α′2

except with probability β. Conditioned on this event occurring, for each interval [Bounds[j − 1],Bounds[j]]
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for j ∈ [i], fBounds[j−1],Bounds[j](D) ∈ [α′ − α′2, α′ + α′2]. In the synthetic database D′ released, each
such interval contains exactly an α′ fraction of the database elements. We can now analyze the error in-
curred on any query when evaluated on the synthetic database instead of on the real database. Any in-
terval [Bounds[j − 1],Bounds[j]] ⊂ [a, b] will contribute error at most α′ to the total, and any interval
[Bounds[j − 1],Bounds[j]] 6⊂ [a, b] that also intersects with [a, b] contributes error at most (α′ + α′2) to the
total. Note that there are at most 2 intervals of this second type. Therefore, on any query Q[a,b] we have:

|Q[a,b](D
′)−Q[a,b](D)| ≤

∑
j:[Bounds[j−1],Bounds[j]]∩[a,b]6=∅

|Q[Bounds[j−1],Bounds[j]](D)−Q[Bounds[j−1],Bounds[j]](D
′)|

≤ 4

3α′
α′2 + 2(α′ + α′2)

≤ 6α′

= α

We note that although the class of intervals (and more generally, low dimensional axis-aligned rectan-
gles) is a simple class of functions, it nevertheless contains exponentially many queries, and so it is not
feasible to simply ask all possible interval queries using an interactive mechanism.

5 Lower bounds

Could we possibly modify the results of Sections 4 and 3 to hold for non-discretized databases? Suppose we
could usefully answer an arbitrary number of queries in some simple concept class C representing interval
queries on the real line (for example, “How many points are contained within the following interval?”) while
still preserving privacy. Then, for any database containing single-dimensional real valued points, we would
be able to answer median queries with values that fall between the 50 − δ, 50 + δ percentile of database
points by performing a binary search on D using A (where δ = δ(α) is some small constant depending on
the usefulness parameter α). However, answering such queries is impossible while guaranteeing differential
privacy. Unfortunately, this would seem to rule out usefully answering queries in simple concept classes
such as halfspaces and axis-aligned rectangles, that are generalizations of intervals.

We say that a mechanism answers a median query M usefully if it outputs a real value r such that r falls
within the 50− δ, 50 + δ percentile of points in database D for some δ < 50.

Theorem 5.1. No mechanismA can answer median queriesM with outputs that fall between the 50−δ, 50+
δ percentile with positive probability on any real valued database D, while still preserving ε-differential
privacy, for δ < 50 and any ε.

Proof. Consider real valued databases containing elements in the interval [0, 1]. Let D0 = (0, . . . , 0) be the
database containing n points with value 0. Suppose A can answer median queries usefully. Then we must
have Pr[A(D0,M) = 0] > 0 since every point in D0 is 0. Since [0, 1] is a continuous interval, there must
be some value v ∈ [0, 1] such that Pr[A(D0,M) = v] = 0. Let Dn = (v, . . . , v) be the database containing
n points with value v. We must have Pr[A(Dn,M) = v] > 0. For 1 < i < n, let Di = (0, . . . , 0︸ ︷︷ ︸

n−i

, v, . . . , v︸ ︷︷ ︸
i

).

Then we must have for some i, Pr[A(Di,M) = v] = 0 but Pr[A(Di+1,M) = v] > 0. But since Di and
Di+1 differ only in a single element, this violates differential privacy.
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Corollary 5.2. No mechanism can be (α, δ)-useful for the class of interval queries, nor for any class C
that generalizes interval queries to higher dimensions (for example, halfspaces, axis-aligned rectangles, or
spheres), while preserving ε-differential privacy, for any α, δ < 1/2 and any ε ≥ 0.

Proof. Consider any real valued database containing elements in the interval [0, 1]. If A is (α, δ)-useful for
interval queries and preserves differential privacy, then we can construct a mechanism A′ that can answer
median queries usefully while preserving differential privacy. By Theorem 5.1, this is impossible. A′ simply
computes D̂ = A(D), and performs binary search on D̂ to find some interval [0, a] that contains n/2± αn
points. Privacy is preserved since we only accessD throughA, which by assumption preserves ε-differential
privacy. With positive probability, all interval queries on D̂ are correct to within±α, and so the binary search
can proceed. Since α < 1/2, the result follows.

We may get around the impossibility result of Corollary 5.2 by relaxing our definitions. One approach is
to discretize the database domain, as we do in Sections 3 and 4. Another approach, which we take in Section
6, is to relax our definition of usefulness.

6 Answering Halfspace Queries

In this section, we give a non-interactive mechanism for releasing the answers to “large-margin halfspace”
queries, defined over databases consisting of n unit-length points in Rd. The mechanism we give here will
be different from the other mechanisms we have given in two respects. First, although it is a non-interactive
mechanism, it will not output synthetic data, but instead another data structure representing the answers to
its queries. Second, it will not offer a utility guarantee for all halfspace queries, but only those that have
“large margin” with respect to the private database. Large margin, which we define below, is a property that
a halfspace has with respect to a particular database. Note that by our impossibility result in the previous
section, we know that without a relaxation of our utility goal, no private useful mechanism is possible.

Definition 6.1 (Halfspace Queries). For a unit vector y ∈ Rd, the halfspace query fy : Rd → {0, 1} is
defined to be:

fy(x) =

{
1, If 〈x, y〉 > 0;
0, Otherwise.

Let CH = {fy : y ∈ Rd, ||y||2 = 1} denote the set of all halfspace queries.

With respect to a database, a halfspace can have a certain margin γ:

Definition 6.2 (Margin). A halfspace query fy has margin γ with respect to a database D ∈ (Rd)n if for all
x ∈ D: |〈x, y〉| ≥ γ.

Before we present the algorithm, we will introduce a useful fact about random projections, called the
Johnson-Lindenstrauss lemma. It states, roughly, that the norm of a vector is accurately preserved with high
probability when the vector is projected into a lower dimensional space with a random linear projection.

Theorem 6.3 (The Johnson-Lindenstrauss Lemma [DG99, BBV06]). For d > 0 an integer and any 0 <
ς, τ < 1/2, let A be a T × d random matrix with ±1/

√
T random entries, for T ≥ 20ς−2 log(1/τ). Then

for any x ∈ Rd:
Pr
A

[|||Ax||22 − ||x||22| ≥ ς||x||22] ≤ τ

For our purposes, the relevant fact will be that norm preserving projections also preserve pairwise inner
products with high probability. The following corollary is well known.
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Corollary 6.4 (The Johnson-Lindenstrauss Lemma for Inner Products). For d > 0 an integer and any
0 < ς, τ < 1/2, let A be a T × d random matrix with ±1/

√
T random entries, for T ≥ 20ς−2 log(1/τ).

Then for any x ∈ Rd:

Pr
A

[|〈(Ax), (Ay)〉 − 〈x, y〉| ≥ ς

2
(||x||22 + ||y||22)] ≤ 2τ

Proof. Consider the two vectors u = x+ y and v = x− y. We apply Theorem 6.3 to u and v. By a union
bound, except with probability 2τ we have: |||A(x+ y)||22 − ||x+ y||22| ≤ ς||x+ y||22 and |||A(x− y)||22 −
||x− y||22| ≤ ς||x− y||22. Therefore:

〈(Ax), (Ay)〉 =
1

4
(〈A(x+ y), A(x+ y)〉 − 〈A(x− y), A(x− y)〉)

=
1

4

(
||A(x+ y)||22 + ||A(x− y)||22

)
≤ 1

4

(
(1 + ς)||x+ y||22 − (1− ς)||x− y||22

)
= 〈x, y〉+

ς

2

(
||x||22 + ||y||22

)
An identical calculation shows that 〈(Ax), (Ay)〉 ≥ 〈x, y〉 − ς

2

(
||x||22 + ||y||22

)
, which completes the proof.

Instead of outputting synthetic data, our algorithm will output a datastructure based on a collection of
random projections.

Definition 6.5 (Projected Halfspace Data Structure). A T dimensional projected halfspace data structure of
size m, DH = {{Ai}, U, {vi,j}} consists of three parts:

1. m independently selected random projection matricesA1, . . . , Am ∈ RT×d mapping vectors from Rd
to vectors in RT .

2. A collection of T -dimensional unit vectors U ⊂ RT

3. For each i ∈ [m] and j ∈ U , a real number vi,j ∈ R.

A projected halfspace data structure DH can be used to evaluate a halfspace query fy as follows. We write
fy(DH) to denote this evaluation:

1. For i ∈ [m], compute the projection ŷi ∈ RT as: ŷi = Ai · y.

2. For each i ∈ [m] compute ui,j(i) = argminuj∈U ||ŷi − uj ||2

3. Output fy(DH) = 1
m

∑m
i=1 vi,j(i)

What the projected halfspace data structure does is maintainm projections into a low dimensional space,
as well as a collection of ‘canonical’ halfspaces U in T dimensions. The canonical halfspaces will be
selected to form a net such that for every ŷ ∈ RT with ||y||2 = 1, there is some u ∈ Ui such that ||ŷ−u||2 ≤
γ/4. The size of U will be exponential in T , but we will choose T to be only a constant so that maintaining
such a set is feasible. Each vi,j will represent the approximate answer to the query fuj on a projection of the
private database by Ai. The Johnson-Lindenstrauss lemma will guarantee that not many points with margin
γ/2 are shifted across the target halfspace by any particular projection, and the average of the approximate
answers across all m projections will with high probability be accurate for every halfspace.

First we bound the size of the needed net U for halfspaces.
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Definition 6.6. A γ-net for unit vectors in RT is a set of points U ⊂ RT such that for all x ∈ RT with
||x||2 = 1:

min
y∈RT

||x− y||2 ≤ γ

Claim 6.7. There is a γ-net for unit vectors in RT of size |U | ≤
(√

T
γ

)T
.

Proof. Consider the set of T dimensional vectors discretized to the nearest multiple of γ/
√
T in each co-

ordinate. There are
(√

T
γ

)T
such vectors. For any unit x ∈ RT , let y = argminy∈RT ||x − y||2. We have:

||x− y||2 ≤
√∑T

i=1(γ/
√
T )2 = γ.

We can now present our algorithm.

ReleaseHalfspaces(D, d, γ, α, ε)
Let:

ς ← γ

4
τ ← α

8
T ← d20ς−2 log(1/τ)e m← 16

α2
d
(

log(4
√
d/γ) + log(1/β)

)
Let Ai ∈ {−1/

√
T , 1/

√
T}T×d be a uniformly random matrix for each i ∈ [m].

Let U be a γ/4-net for unit vectors in RT .
for i = 1 to m do

Let D̂i ⊂ RT be D̂i = {Aix : x ∈ D}.
for xj ∈ U do

Let pi,j ← Lap
(
m|U |
εn

)
, vi,j ← fxj (D̂i) + pi,j

end for
end for
Release DH = ({Ai}, U, {vi,j}).

Theorem 6.8. ReleaseHalfspaces preserves ε-differential privacy.

Proof. Privacy follows from the fact that the composition of k ε-differentially private mechanisms is kε-
differentially private The algorithm makes m|U | calls to the Laplace mechanism, and each call preserves
ε/(m|U |)-differential privacy (since each query has sensitivity 1/n).

Theorem 6.9. For any database D with:

n ≥ m(8
√
T/γ)T

ε
log

(
2m(
√
T/γ)T

β

)

Then except with probability at most β, DH = ReleaseHalfSpaces(D, d, γ, α, ε) is such that for each unit
vector y ∈ Rd with margin γ with respect to D: |fy(D)− fy(DH)| ≤ α. The running time of the algorithm
and the bound on the size of D are both polynomial for γ, α ∈ Ω(1).

Proof. The analysis follows from the Johnson-Lindenstrauss lemma and a Chernoff bound. Let Ud be a
γ/4-net for unit vectors in Rd. Fix any y ∈ Rd such that fy has margin γ with respect to D, and let y′ =
argminy′∈Ud ||y − y′||2. Note that fy′ has margin at least 3

4γ with respect to D and that fy(D) = fy′(D).
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Consider the quantity |fy′(D) − fy′(DH)|, where DH is the projected halfspace data-structure output by
ReleaseHalfspaces. By Corollary 6.4, for each i ∈ [m] and each x ∈ D:

Pr
A

[|〈(Aix), (Aiy
′)〉 − 〈x, y′〉| ≥ γ/4] ≤ α/4

By linearity of expectation, the expected number of points in D moved by more than γ/4 with respect to y′

in any projection is at most αn/4:

E

[
|{x ∈ D : fy′(x) = fAiy′(Aix) ∧ |〈Aix,Aiy′〉| ≥

1

2
γ}|
]
≥ n

(
1− α

4

)
Let ui,y′ = argminu∈U ||u−Aiy′||2. Because ||ui,y′ −Aiy′||2 ≤ γ/4, we have for any x ∈ D̂i:

|〈Aiy′, x〉| = |〈ui, x〉+ 〈Aiy′ − ui,y′ , x〉| ≤ |〈ui,y′ , x〉|+ ||Aiy′ − ui,y′ ||2||x||2 ≤ 〈ui, x〉+ γ/4

Thus:

E

[
|{x ∈ D : fy′(x) = fui,y′ (Aix) ∧ |〈Aix, ui,y′〉| ≥

1

4
γ}|
]
≥ n

(
1− α

4

)
In other words, fy′(D) − α/4 ≤ E[fui,y′ (D̂i)] ≤ fy′(D) + α/4. Moreover, for each i, fui,y′ (D̂i) is an
independent random variable taking values in the bounded range [0, 1], and so we will be able to apply a
Chernoff bound. For each y′:

Pr[| 1
m

m∑
i=1

fui,y′ (D̂i)− E[fuy′ (D̂)]| ≥ α

2
] ≤ 2 exp

(
−mα

2

2

)
Taking a union bound over all (4

√
d/γ)d vectors y′ ∈ Ud and plugging in our chosen value of m, and

recalling our bound on E[fuy′ (D̂)] we find that:

Pr[ max
y′∈Ud

| 1
m

m∑
i=1

fui,y′ (D̂i)− fy′(D)| ≥ 3α

4
] ≤ β

3

Also note that the algorithm makes m|U | draws from the distribution Lap
(
m|U |
εn

)
during its run, assigning

these draws to values pi,j . Except with probability at most β/3, we have for all i, j:

|pi,j | ≤
m|U |
εn

log

(
2m|U |
β

)
≤ 1

Therefore, conditioning on |pi,j | ≤ 1 for all i, j and applying another Chernoff bound, we find that for any
sequence of indices j(i):

Pr[| 1
m

m∑
i=1

pi,j(i)| ≥ α/4] ≤ 2 exp

(
−mα

2

8

)
Again taking a union bound and plugging in our value of m, we find that:

Pr[ max
j(1),...,j(m)

| 1
m

m∑
i=1

pi,j(i)| ≥ α/4] ≤ β

3

Finally, conditioning on these three events (which together occur except with probability β), we have for
any y′:

fy′(DH) =
1

m

m∑
i=1

vi,j(i) =
1

m

(
m∑
i=1

fui,y′ (D̂i) +
m∑
i=1

pi,j(i)

)
≤ fy′(D) + α

which completes the proof.
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7 Distributional Privacy

In this section we give an alternative privacy definition, motivated by learning theory, and show that it is a
strengthening of differential privacy.

Definition 7.1 (S-neighbors). For any subset of the universe S ⊆ X of size |S| ≥ n, we say that two
databases are S-neighbors if they were both drawn at random without replacement from S.

Definition 7.2 (Distributional Privacy). We say that a mechanismA : Xn → R satisfies (ε, β)-distributional
privacy if for any S ⊆ X , and for any pair of databases D1, D2 ⊆ X of size n which are S-neighbors, with
probability 1− β over the draw of the databases we have for all events E ⊆ R:

Pr[A(D1) ∈ E] ≤ eε Pr[A(D2) ∈ E].

For example, suppose that a collection of hospitals in a region each treats a random sample of patients
with disease X . A hospital can release information with a guarantee of distributional privacy, which is
informative about patients in the region, without revealing which hospital the data came from. Actually, our
main motivation is that this definition is particularly natural from the perspective of learning theory: given
a sample of points drawn from some distribution D, one would like to reveal no more information about the
sample than is inherent in D itself.

We will typically think of β as being exponentially small, whereas ε must be Ω(1/n) for A to be useful.

7.1 Relationship Between Definitions

It is not a priori clear whether either differential privacy or distributional privacy is a stronger notion than
the other, or if the two are equivalent, or distinct. On the one hand, differential privacy only provides
a guarantee when D1 and D2 differ in a single element,3 whereas distributional privacy can provide a
guarantee for two databases D1 and D2 that differ in all of their elements. On the other hand, distributional
privacy makes the strong assumption that the elements in D1 and D2 are drawn from some distribution
D, and allows for privacy violations with some exponentially small probability β (necessarily: with some
small probability, two databases drawn from the same distribution might nevertheless possess very different
statistical properties). However, as we show, distributional privacy is a strictly stronger guarantee than
differential privacy.

Theorem 7.3. IfA satisfies (ε, β)-distributional privacy for any β = o(1/n2), thenA satisfies ε-differential
privacy.

Proof. Consider any databaseD1 drawn from domainX , and any neighboring databaseD2 that differs from
D1 in only a single element x ∈ X . Let S = D1 ∪ {x} be a set of size |S| = n + 1. Consider two S-
neighbors D′1 and D2’, then with probability 2/n2 we have {D′1, D′2} = {D1, D2}, and so if β = o(1/n2),
we have with certainty that for all events E:

Pr[A(D′1) ∈ E] ≤ eε Pr[A(D′2) ∈ E].

Since this holds for all pairs of neighboring databases, A satisfies ε-differential privacy.

Definition 7.4. Define the mirrored mod m function as follows:

Fm(x) =

{
x mod m, if x mod 2m < m;
−x− 1 mod m, otherwise.

3We get tε-differential privacy for D1 and D2 that differ in t elements.
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For a database D ⊂ {0, 1}n, define the query

Qm(D) = Fm(
n∑
i=1

D[i]).

Note that the global sensitivity of any query Qm satisfies GSQm ≤ 1. Therefore, the mechanism A that
answers queries Qn by A(D,Qm) = Qm(D) + Z where Z is drawn from Lap(1/ε) satisfies ε-differential
privacy.

Theorem 7.5. There exist mechanismsA that satisfy ε-differential privacy, but do not satisfy (ε, β)-distributional
privacy for any ε < 1, β = o(1) (that is, for any meaningful values of ε, β).

Proof. Consider databases with elements drawn from X = {0, 1}n and the query Q2/ε. As observed
above, a mechanism A such that A(D,Qi) = Qi(D) + Z for Z ∼ Lap(1/ε) satisfies ε-differential privacy
for any i. Note however that with constant probability, two databases D1, D2 drawn from S = X have
|Q2/ε(D1) − Q2/ε(D2)| ≥ 1/ε. Therefore, for any output x, we have that with constant probability over
draws of two S neighbors D1 and D2:

Pr[A(D1, Q2/ε) = x]

Pr[A(D2, Q2/ε) = x]
= e−ε|Q2/ε(D1)−Q2/ε(D2)|

= e−ε(
1
ε
)

=
1

e
.

Therefore the mechanism does not satisfy (1, o(1))-distributional privacy.

Although there are simpler functions for which preserving distributional privacy requires more added
noise than preserving differential privacy, the mirrored-mod function above is an example of a function
for which it is possible to preserve differential privacy usefully, but yet impossible to reveal any useful
information while preserving distributional privacy.

We note that in order for distributional privacy to imply differential privacy, it is important that in the
definition of distributional privacy, database elements are drawn from some distribution D without replace-
ment. Otherwise, for any non-trivial distribution, there is some database D∗ that is drawn with probability
at most 1/2n, and we may modify any distributional-privacy preserving mechanism A such that for every
query Q, A(D∗, Q) = D∗, and for any Di 6= D∗, A(Di, Q) behaves as before. Since this new behavior
occurs with probability ≤ β over draws from D for β = O(1/2n), A still preserves distributional privacy,
but no longer preserves differential privacy (which requires that the privacy guarantee hold for every pair of
neighboring databases).

8 Conclusions and Open Problems

In this paper we have shown a very general information theoretic result: that small nets are sufficient to
certify the existence of accurate, differentially private mechanisms for a class of queries. For counting
queries, this allows algorithms which can accurately answer queries from a class C given a database that is
only logarithmic in the size of C, or linear its VC-dimension. We then also gave an efficient algorithm for
releasing the class of interval queries on a discrete interval, and for releasing large-margin halfspace queries
in the unit sphere.

The main question left open by our work is the design of algorithms which achieve utility guarantees
comparable to our net mechanism, but have running time only polynomial in n, the size of the input database.
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This question is extremely interesting even for very specific classes of queries. Is there such a mechanism
for the class of conjunctions? For the class of parity queries?
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