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Abstract

We consider the problem of a data analyst who may purchase an unbiased estimate of some
statistic from multiple data providers. From each provider i, the analyst has a choice: she may
purchase an estimate from that provider that has variance chosen from a finite menu of options.
Each level of variance has a cost associated with it, reported (possibly strategically) by the data
provider. The analyst wants to choose the minimum cost set of variance levels, one from each
provider, that will let him combine his purchased estimators into an aggregate estimator that
has variance at most some fixed desired level. Moreover, he wants to do so in such a way that
incentivizes the data providers to truthfully report their costs to the mechanism.

We give a dominant strategy truthful solution to this problem that yields an estimator that
has optimal expected cost, and violates the variance constraint by at most an additive term
that tends to zero as the number of data providers grows large.
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1 Introduction

We consider a data analyst who wishes to compute an unbiased estimate of some underlying popu-
lation statistic, by buying and aggregating data from multiple strategic data providers. Each data
provider may experience different costs for different levels of data accuracy (variance), and may
strategically price access to his data if doing so would benefit him. The analyst must design a
mechanism for choosing which level of accuracy to purchase from each provider, and for combining
the purchased data into a single aggregate quantity that forms an unbiased estimator of the statistic
of interest. Her goal is to do so at minimum cost, given some target level of overall accuracy.

This model captures a number of interesting scenarios. For example:

• Each “data provider” might in fact be a single individual, who is selling a (possibly perturbed)
bit signifying some property of interest to the data analyst (e.g., the cancer status of the
individual). Here, the variance of each of these estimates comes from two sources: each
individual’s bit is the realization of an independent sample from some underlying population
distribution, with an inherent variance. A data provider may also add his own perturbation
(e.g., noise from a Gaussian or Laplace distribution) in order to guarantee a certain level
of (differential) privacy. He can therefore potentially offer the data analyst access to his
data at a menu of different variance levels (and costs), corresponding to differing levels of
privacy protection. Intuitively, the different costs the individual experiences at different
levels of accuracy may correspond to his (potentially arbitrary) preferences for privacy. Since
we model data providers as strategic agents, they will report the cost that maximizes their
utility, and their reported costs need not necessarily match their true costs. We allow each
individual to report an arbitrary cost separately for each variance level, so this approach does
not require assuming that agent preferences for privacy respect any fixed functional form.

• Each data provider might be an organization (such as a university) that has the ability to
collect a random sample of varying size from a sub-population that it controls (e.g. students,
professors, etc). Under the assumption that the individuals in the data provider’s populations
are sampled i.i.d. from some underlying distribution, the variance of the estimate that they
offer is inversely proportional to the number of individuals that they sample. Here, the costs
for different levels of variance correspond to the costs required to recruit different numbers of
participants to a study. These costs may differ between organizations, and behave in compli-
cated ways: for example, the marginal cost for each additional sample might be decreasing (if
there are economies of scale – for example by advertising on a campus TV station), or might
be increasing (for example, after exhausting the undergraduate population at a university,
obtaining additional samples may require recruiting faculty, which is more difficult). Again,
because we allow data providers to report arbitrary cost schedules corresponding to different
variance levels, we need make no assumptions about the form that these costs take.

1.1 Our Results and Techniques

We model the data analyst’s problem as a combinatorial optimization problem: From each of the
data providers, the analyst buys an unbiased estimator of the population statistic of interest, for
which she must choose a variance from a fixed, finite menu of options. Given these purchased
estimators, the data analyst may then take any convex combination to obtain her final unbiased
estimator of the underlying population statistic. The choices made by the data analyst affect both
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the variance of the final estimator that she derives, as well as the total payment that she must
make. We consider the problem of finding the cheapest way of constructing an estimator that has
variance below some fixed desired level, specified in advance by the data analyst.

Our main tool in solving this problem is linear programming. However, the solution is not
straightforward. First, our problem actually consists of two nested optimization problems: we must
choose a variance level for each of the estimators, and then we must find the optimal weighted linear
combination of these estimators. Rather than solving these problems separately, we use the KKT
conditions to derive a closed form for the optimal weights to use in the linear combination of each of
the estimators as a function of their variance. This allows us to express the problem as a one-shot
optimization problem, with decision variables only for the choices of variance for each estimator.
Unfortunately, the natural fractional relaxation of this optimization problem (in which the data
analyst may fractionally choose different variance levels) is non-convex. Instead, we consider a
further (linear) relaxation of the constraint in our problem, which matches the original constraint
only for integer solutions. We show that all optimal extreme points of the linear program that
result from this relaxation do in fact yield integer choices for all but at most one data provider, and
then show that if the number of data providers is sufficiently large, then rounding the one fractional
assignment to an integer assignment only marginally violates our target variance constraint.

We note that our algorithm chooses the minimum expected cost lottery over purchase decisions
from among a pre-specified feasible set of lotteries, and hence is maximum-in-distributional-range.
This means it can be paired with payments such that truthful reporting of costs is a dominant
strategy for each of the data providers. (We recall that although we allow data providers to
misreport their costs, they cannot lie about their data or its accuracy.)

In summary, we show the following theorem:

Theorem 1 (Informal). Given any finite menu of variance levels, and any feasible aggregate vari-
ance level for the data analyst, there exists a dominant strategy truthful mechanism that selects the
minimum cost assignment of variance levels to providers, and generates an unbiased linear esti-
mator that satisfies the analyst’s variance constraint up to an additive term that tends to 0 as the
number of data providers grow large.

Finally, we observe that VCG payments (although always truthful) do not guarantee individual
rationality in our setting. We prove an upper bound on the degree to which individual rationality
can be violated for any player, and hence can add a fixed amount to the payment given to each
player, to guarantee individual rationality for all providers with sufficiently low minimum costs.

1.2 Related Work

There is a growing body of work [10, 15, 19, 7, 8, 17, 9] related to our first motivating example:
buying sensitive data from individuals. This line of work considers the problem of incentivizing
individuals to provide their data to an analyst, when they experience a cost — usually due to
privacy loss — from sharing their data. These papers have used differential privacy, defined in [6],
to combat this privacy loss, but have generally offered only a single privacy level to participants,
or have made assumptions about the functional form of this privacy loss in terms of the differential
privacy parameter. Our construction, on the other hand, allows the analyst to offer each data
provider a menu of different variance levels, corresponding to different levels of differential privacy,
and allows the agents to express arbitrary costs for each level independently. This requires no
assumptions at all about the functional form of agent costs. As in our setting, these papers all
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consider the individual data providers to be selfish agents, and thus allow agents to strategically
misreport their costs to secure them a higher payment. Recently, [9] considered a setting where
individuals have unverifiable data, and can also misreport their data. We restrict to a setting
where data is verifiable (as the other papers in this literature do), but allow individuals to lie about
their costs for providing data. In this setting, we are making the implicit assumption that the
sensitive data held by individuals is independent of their privacy costs. This is motivated by an
impossibility result of [10], later strengthened by [17], that when privacy costs are correlated with
data, no mechanism can satisfy individual rationality and estimate the statistic of interest with
non-trivial accuracy, while making finite payments.

Our paper is also related to the vast body of work on optimal experiment design, in which
an analyst wishes to learn parameters of an underlying distribution by optimizing a multi-set of
samples to observe from the population, each at some cost. (For a survey of results see [18] or
[2]; for a textbook treatment see Section 7.5 of [3].) Each data sample is an “experiment” with
observable attributes. The analyst assumes a linear relationship between experiment attributes
and outcomes, and wishes to accurately learn the linear parameter by performing a collection of
experiments subject to a budget constraint. Although the problem we consider seems to be a special
case of experiment design (i.e. with attribute vector of dimension 0), these two problems differ in
a few key aspects. First, optimal experiment design allows the analyst to repeat experiments, and
performing the same experiment multiple times may result in different outcomes. We do not allow
this, and we further constrain the problem to require the analyst to buy exactly one “experiment”
(i.e. observation of data) from each data provider. The techniques used in this line of work do
not generically extend to the more constrained setting that we consider. Additionally, optimal
experiment design is a problem in the full information setting, so the cost of each experiment
is a priori known by the analyst. That is, data providers cannot misreport their costs. The
experimental design literature generally gives approximation algorithms which are not maximal in
range, and hence do not yield truthful mechanisms. We consider a setting in which data providers
are strategic agents, and we must additionally ensure that our optimization process is incentive
compatible. Recent work of [13] considered experimental design for strategic agents, but their work
considered a different accuracy objective (other than minimizing variance), and their techniques
fail under the additional constraint that the analyst can buy at most one estimate from each data
provider.

The truthfulness of our mechanism depends on a property called maximal-in-distributional-
range (MIDR), defined in [4]. MIDR mechanisms are guaranteed to select a distribution over
outputs that maximizes expected welfare. Similar properties were also used in [1], [5] and [14].
[4] showed that MIDR mechanisms are truthful-in-expectation when paired with VCG payments.
That is, with an MIDR mechanism, no player can increase her expected utility by lying about her
private information. We first show that our proposed mechanism is MIDR, and then use this result
to show that data providers do not have an incentive to misreport their costs.

2 Preliminaries and Model

We consider an analyst who wishes to estimate the expected value µ of some statistic on the
underlying population. She has access to a set of n data providers, each of which is capable of
providing some unbiased estimate µi of the statistic of interest with different levels of variance
E
[
(µi − µ)2

]
. The provider may also experience some cost for computing the estimate at each
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variance level. The analyst’s goal is to obtain an accurate unbiased estimate for µ, using the
estimates from the providers, while minimizing the social cost for computing such data.

We equip the analyst with a mechanism that offers a menu specifying a discrete range of possible
variance levels 0 < v1 < v2 < . . . < vm < ∞, and asks each provider i report back a set of costs
{cij}mj=1 for computing the estimates at all levels. The mechanism then selects a variance level to
purchase from each provider, and generates an estimate for µ that is a weighted sum of the providers’
reported estimates µi’s: µ̂ =

∑
iwiµi. Note that the expectation E [µ̂] =

∑
iwiE [µi] =

∑
iwiµ, so

µ̂ will be an unbiased estimate as long as
∑

iwi = 1. The following proposition, often called the
Bienaymé formula, allows us to express the variance of µ̂ as a linear combination of the variances
of µi.

Proposition 1. Let X1, . . . , Xn be uncorrelated real-valued random variables, and w1, . . . , wn be
any real numbers, then

Var

(∑
i

wiXi

)
=
∑
i

w2
i Var(Xi).

The goal of the analyst is to minimize the total cost among all providers, while maintaining a
guarantee that the variance of µ̂ is below some threshold α. This can be expressed in the following
program, where each xij indicates whether we assign provider i to variance level j:

min
∑
i,j

xijcij (1)

subject to
∑
i

w2
i

∑
j

xijvj

 ≤ α (2)

∑
j

xij = 1 for all i (3)

xij ∈ {0, 1} for all (i, j) (4)∑
i

wi = 1 and for all i, wi ≥ 0 (5)

2.1 Mechanism Design Basics

We study our optimization problem in the setting of mechanism design, with n players, and a set
Ω of possible outcomes. In particular, this set Ω corresponds to the set of possible assignments of
players to variance levels. Each player also has a cost function ci : Ω→ R, where ci(ω) is player i’s
cost for outcome ω. Let c = (c1, . . . , cn) denote the profile of cost functions for all players. We want
to minimize total cost, so our objective is

∑n
i ci(ω). A (direct-revelation) mechanism M consists

of an allocation rule A, a function mapping reported cost profiles to outcomes, and a payment
rule p, a function mapping cost profiles to a payments to each player. Such a mechanism takes as
input reported cost functions from the players, and outputs (possibly randomly) an allocation ω
and payments to all the players. Two important desiderata in mechanism design are truthfulness
and individual rationality.

Definition 1 (Truthful-in-Expectation). A mechanism M = (A, p) on n players is (dominant
strategy) truthful-in-expectation if for any reported cost profile c and for all i ∈ [n]:

E
M

[pi(c)− ci(A(c))] ≥ E
M

[pi((ci, c−i))− ci (A(ci, c−i))] .
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Definition 2 (Individually Rational). A mechanism M = (A, p) is individually rational (IR) if
for any reported cost profile c and for all i ∈ [n]:

E
M

[pi(c)− ci (A(c))] ≥ 0.

We will use VCG-based mechanisms to minimize total cost while achieving truthfulness. A
VCG mechanism is defined by the allocation rule that selects the cost-minimizing outcome ω∗ ∈
arg minω∈Ω

∑
i ci(ω) for any reported cost functions, and the payment rule p that rewards each

player his “externality”:

pi(c) = min
ω∈Ω−i

∑
i′ 6=i

ci′(ω)−
∑
i′ 6=i

ci′(ω
∗). (6)

Let dist(Ω) be the set of all probability distributions over the set of outcomes Ω, and let
R ⊆ dist(Ω) be a compact subset. Then a maximal-in-distributional-range (MIDR) allocation
rule is defined as sampling an outcome ω from distribution D∗ ∈ R, where D∗ minimizes the
expected total cost Eω∼D∗ [

∑
i ci(ω)] over all distributions in R. A VCG payment rule can be

defined accordingly:

pi(c) = min
D′∈dist(Ω−i)

E
ω∼D′

∑
i′ 6=i

ci′(ω)

− E
ω∼D∗

∑
i′ 6=i

ci′(ω)

 .
It is known from [4] that when an MIDR allocation rule is paired with a VCG payment rule, the
resulting mechanism is truthful-in-expectation.

To guarantee individual rationality, we pay each player some entrance reward R before running
the MIDR mechanism so that R + E [pi(c)− ci(A(c))] ≥ 0 for all player i. It suffices to set R ≥
maxi E [pi(c)− ci(A(c))], and in Section 4.2 we derive a more refined bound for R to get individual
rationality.

3 Rewriting the Program

The optimization problem introduced in Section 2 is non-convex because the variance constraint (2)
contains the product of decision variables xij and wi. To achieve convexity, we will transform the
program in three steps:

1. First, we will eliminate the decision variables wi by deriving a closed form solution for the
weights wi that minimize variance, once the variables xij are fixed. However, this will still
leave us with a non-convex optimization problem.

2. Next, we will replace the non-convex constraint derived above with a linear constraint, that
is identical whenever the xij variables take on integral values.

3. Finally in Section 4, we relax the integrality constraint. Because our linear variance constraint
is no longer identical to the original “correct” non-convex variance constraint, we must in the
end argue that a rounded solution does not substantially violate the original constraint.

First, to simplify notation, for any assignment {xij}, let v̂i denote the variance level assigned to
provider i. We want to write wi as a function of v̂i’s. In particular, given the variance assignments,
we want to choose the weights wi so that the variance of the aggregate statistic µ̂ is minimized.
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Lemma 1. Given a variance level assignment {v̂i}, the weight vector w∗ that minimizes the vari-
ance of µ̂ =

∑
iwiµi satisfies

w∗i =
1/v̂i∑
i 1/v̂i

for all i.

Proof. The problem can be written as a convex program

min
∑
i

w2
i v̂i subject to

∑
i

wi = 1 and wi ≥ 0 for all i (7)

We know that strong duality holds because the program satisfies Slater’s condition, and the
Lagrangian is given by

L(w, λ) =
∑
i

v̂i · w2
i − λ

(
1−

∑
i

wi

)
= wTV w − λ(1− 1Tw),

where V = diag(v1, . . . , vn). Note that∇wL(w, λ)T = 2V w+λ1. By KKT conditions,∇wL(w∗, λ)T =

0, and so w∗ = −λ
2V
−1
1, which gives minw L(w, λ)T = −λ2

4

∑
i 1/v̂i − λ. Now the dual problem

can be written as

max
λ

min
w≥0
L(w, λ) = max

λ

[
−λ

2

4

∑
i

1/v̂i − λ

]

= max
λ

[
−

(∑
i

1/v̂i

)(
λ/2 +

1∑
i 1/v̂i

)2

+
1∑
i 1/v̂i

]
.

It is easy to see that the maximum is reached at λ∗ = −2∑
i 1/v̂i

. It follows that

w∗ =
−λ∗

2
V −1

1 =
V −1

1∑
i 1/v̂i

, and so, w∗i =
1/v̂i∑
i 1/v̂i

for all i.

Lemma 1 shows that we can rewrite the variance constraint of µ̂ as

∑
i

(
1/v̂i∑
i 1/v̂i

)2

v̂i =
∑
i

1/v̂i

(
∑

i 1/v̂i)
2 =

1∑
i 1/v̂i

≤ α.

Plugging in v̂i =
∑

j xijvj and taking the inverse on both sides, constraint (2) becomes

1/α ≤
∑
i

1∑
j xijvj

(8)
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Note that the constraints are not linear, but since each xij ∈ {0, 1}, and only one xij = 1 for each
i, we have 1/

∑
j xijvj =

∑
j xij/vj . Thus, we can write our whole program as the following ILP.

min
xij

∑
i,j

xijcij (9)

subject to 1/α ≤
∑
i

∑
j

xij/vj (10)

∑
j

xij = 1 for all i (11)

xij ∈ {0, 1} for all (i, j) (12)

Remark 1. Note that our problem is only interesting if the target variance α is in the range of
[v1/n, vm/n]. This is due to the following observation based on constraint (10): if 1/α < n/vm, then
the problem is trivial since the variance constraint is satisfied by any assignment; if 1/α > n/v1,
then the problem is infeasible, i.e. even if we assign the lowest variance level to all providers, the
variance constraint is still violated.

4 An MIDR Mechanism via a Linear Programming Relaxation

In order to obtain a computationally efficient mechanism, we consider the LP relaxation of the
integer linear program we derived in the previous section, by replacing constraint (12) by xij ≥
0 for all (i, j). We interpret a fractional solution xi = (xi1, . . . , xim) as a lottery over assignments
for player i, i.e. the probabilities of getting assigned to different variance levels. Since the objective
is to minimize the total cost, the LP gives a maximum in distributional range allocation rule, where
the restricted distributional range is,

Sα = {x ≥ 0 |
∑
ij

xj = 1 for all i, and
∑
ij

xij/vj ≥ 1/α}.

Given a collection of reported costs, our mechanism first computes a distribution x over assign-
ments, based on the MIDR allocation rule defined by the LP. We then pay each provider based
on the VCG payment rule, in addition to some entrance reward R. Given the realized variance
assignment sampled from x, we ask the providers to compute their estimates µi at the correspond-
ing variance levels. Finally, we re-weight the estimates to obtain the linear combination estimator
µ̂ with the minimum variance based on the optimal re-weighting rule in Lemma 1. The formal
description of our mechanism is presented in Algorithm 1.

Theorem 2. Given n data providers with reported costs {cij} for variance levels {vj} and a feasible
target variance level α, Algorithm 1 selects an minimum expected cost assignment with a truthful-
in-expectation mechanism, and,

1. for any ε > 0, computes an estimate µ̂ with variance Var(µ̂) ≤ (1 + ε)α as long as

n ≥
(
vm
v1
− 1

)(
1

ε
+ 1

)
,
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Algorithm 1 MIDR Mechanism for Buying Estimates

Input: Data providers’ reported costs {cij} for different variance levels {v1, . . . , vm}, target
variance α, initial payment R

Compute assignment and payment based on MIDR allocation rule and VCG payment rule:

x∗ ∈ arg min
x∈Sα

∑
i

cijxij pi = min
x−i∈Sα

∑
i′ 6=i

ci′(x)

−∑
i′ 6=i

ci′(x
∗) +R

Let v̂ = (v̂1, . . . , vn) be the realized variance assignments sampled from x∗ and

wi =
1/v̂i∑
i 1/v̂i

for all i.

Collect the estimates from providers {µi} based on v̂
Output:

∑
iwiµi as our estimate µ̂

2. the mechanism is individually rational if the entrance reward R ≥ maxi minj cij.

The properties of cost minimization and truthfulness follow from the MIDR allocation rule and
VCG payments. We show the other two properties in the following subsections.

Remark 2. To achieve a 2-approximation for the variance (i.e. ε = 1), it will suffice to have
n = 2vm/v1 providers. Plugging in the bound in Remark 1, the meaningful range of target variance
should be v2

1/2vm ≤ α ≤ v1/2. Note that v1/vm < 1, so this range is always non-empty.

4.1 Variance Violation

The fractional solution we obtain could violate the variance constraint (8), and so could the final
assignment sampled from the fractional solution. Let x be an optimal solution to the LP, then x
violates the variance constraint (8) by at most

∆(x) =
∑
i

∑
j

xij/vj −
∑
i

1/
∑
j

xijvj =
∑
i

(
∑
j

xij/vj − 1/
∑
j

xijvj).

The quantity ∆(x) represents the distance between the “real” desired variance constraint and
our linear relaxation. Note that for any agent who happens to receive an integral allocation, the
corresponding terms in the two constraints are equal, but they may diverge for agents who have
fractional allocations. To simplify and bound this quantity, we show that at any optimal fractional
solution, all but at most one agent receives an integral allocation:

Lemma 2. At any extreme point x∗ of the feasible region for the LP, there are at least n−1 indices
i such that xij ∈ {0, 1} for all j.

Proof. Suppose not. Then let x be a point in the feasible set Sα such that at least two players (say
players 1 and 2) are assigned to lotteries. In other words, each of these two players are assigned
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nonzero weight on at least two different variance levels. Let a < b, k < l be the indices such that
x1a, x1b, x2k, x2l 6∈ {0, 1}. Let ε > 0 be a small enough number such that

x1a ± ε, x1b ± ε, x2k ± ε, x2l ± ε ∈ [0, 1]

and
x1a ± ε′, x1b ± ε′, x2k ± ε′, x2l ± ε′ ∈ [0, 1],

where ε′ = ε
(

1/va−1/vb
1/vk−1/vl

)
. Now consider the following two points that differ from x only in four

coordinates:

y : y1a = x1a + ε, y1b = x1b − ε, y2k = x2k − ε′, and y2l = x2l + ε′

z : z1a = x1a − ε, z1b = x1b + ε, z2k = x2k + ε′, and z2l = x2l − ε′

Note that x = 1/2(y + z), and recall that 1/α ≤
∑

i

∑
j xij/vj because x ∈ Sα. Furthermore,∑

i

∑
j

yij/vj =
∑
i

∑
j

xij/vj + ε(1/va − 1/vb) + ε′(1/vl − 1/vk)

=
∑
i

∑
j

xij/vj + ε

[
1/va − 1/vb + (1/vl − 1/vk)

1/va − 1/vb
1/vk − 1/vl

]
=
∑
i

∑
j

xij/vj ≥ 1/α.

Similarly,
∑

i,j zij/vj =
∑

i,j xij/vj ≥ 1/α, so both y and z are in the feasible region Sα. Since
x is a convex combination of y and z that are both in Sα, we know that x cannot be an extreme
point of the feasible region.

Lemma 2 says that at any extreme point x, at least n− 1 players have an integral assignment
in x. To use this property, we will compute the solution using an (ellipsoid-based) polynomial-time
LP solver from [16] that always returns an optimal extreme point solution.1 Now we can bound
the variance of our aggregate estimate µ̂.

Lemma 3. For any ε > 0, the variance of our estimate Var(µ̂) ≤ (1 + ε)α, as long as

n ≥
(
vm
v1
− 1

)(
1

ε
+ 1

)
.

Proof. Suppose that n satisfies the bound above. If the solution x is fully integral, then the variance
is no more than α. Otherwise let a be the data provider receiving a lottery in x. Since for every
player i with an integral assignment

∑
j xij/vj =

∑
j 1/

∑
j xijvj , we can further simplify,

∆(x) =
∑
j

xaj/vj − 1/
∑
j

xajvj .

1The algorithm consists of two steps: first compute a sufficiently near optimal solution x̂ using the ellipsoid
algorithm; then round the solution x̂ to an optimal extreme point solution x∗ using the method of continued fractions.
For more details, see [16].
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Then we can bound the violation of (8) by the final assignment v̂:∑
j

xaj/vj − 1/vm ≤ 1/v1 − 1/vm.

In other words, the resulting variance Var(µ̂) satisfies

1

Var(µ̂)
≥ 1

α
− (

1

v1
− 1

vm
).

Since we assume n > vm/v1−1, we have n/vm−(1/v1−1/vm) > 0. As stated earlier in Remark
1, the only interesting range of α is v1/n ≤ α ≤ vm/n. (Recall that if α < v1/n, then the problem
is infeasible; if α > vm/n, then the problem is trivial.) For the remainder of the proof, we assume
α ∈ [v1/n, vm/n]. By this assumption, 1/α− (1/v1 − 1/vm) > 0, and so,

Var(µ̂) ≤ 1
1
α −

1
v1

+ 1
vm

= α

(
1

1− α
v1vm

(vm − v1)

)

≤ α

(
n

n− (vmv1 − 1)

)
≤ (1 + ε)α.

We also give an example in Appendix A showing that this analysis cannot be improved, and
we do need n = Ω(vm/v1) to approximately satisfy the target variance constraint.

4.2 Individual Rationality

In order to ensure individual rationality, we need to set the entrance reward R large enough, so
that for each player i , R+ pi− ci ≥ 0, where ci denotes the cost for player i to provide its assigned
estimate. To reason about the payment player i gets, we need to compute the following two costs
C1 and C2, for all players except i. Let x∗ be the optimal (fractional) solution for our LP, and v̂i be
the expected variance level assigned to player i:

∑
j x
∗
ijvj . Let OPT denote the optimal min-cost

value in the LP, and C1 denote the total cost for all players except i in x∗:

C1 = min
∑
a6=i,j

xajcaj (13)

subject to
∑
a6=i,j

xaj/vj ≥ 1/α− 1/v̂i (14)

∑
j

xaj = 1 for all a (15)

xaj ≥ 0 for all (a, j) (16)
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Let C2 be the minimum cost had we removed agent i from the input:

C2 = min
∑
a6=i,j

xajcaj (17)

subject to
∑
a6=i,j

xaj/vj ≥ 1/α (18)

∑
j

xaj = 1 for all a (19)

xaj ≥ 0 for all (a, j) (20)

The VCG payment given to player i in Algorithm 1 is pi = C2−C1. Note that since the second
LP is more constrained than the first, we know C2 ≥ C1 and the payment is always non-negative.
We can write down the expected utility of player i:

R+ pi − ci = R+ C2 − C1 − ci = R+ C2 −OPT .

Lemma 4. The mechanism in Algorithm 1 is individually rational if the entrance reward satisfies

R ≥ max
i

min
j
cij .

Proof. Let x−i be the optimal assignment for the second program (with optimal objective value
at C2). Now let’s add back player i to the problem, and construct an assignment x such that
x = (xi, x−i), where xi assigns player i to the assignment with minimum cost (minj cij).

Note that x is a feasible solution to our original problem since x−i already satisfies the variance
constraint. It follows that the cost given by x is at least as large as OPT, the optimal solution:

OPT ≤ C2 + min
j
cij .

Therefore, as long as R ≥ minj cij for each player i, we have individual rationality.

We give an example in Appendix A to show that this bound is tight. In particular, our example
shows that without the entrance reward, individual rationality constraint could be violated by up
to minj cij for each player i.

Remark 3. Let cmin = maxi minj cij . If costs are drawn from a known distribution, the analyst
can set R to ensure that with high probability, all players have cmin ≤ R. If cmin is unbounded,
it is clear that no Groves mechanism2 can be individually rational for all players in this setting.
The Green-Laffont-Holmström theorem [11, 12] shows that under certain technical conditions, any
mechanism which is dominant strategy incentive compatible and maximizes welfare must be a
Groves mechanism. Thus without additional information on the players’ costs, we should not hope
to satisfy individual rationality for all players while still achieving our other desiderata.

2A Groves mechanism is one which selects the welfare maximizing outcome, and each player’s payment is his
externality plus an amount that is independent of his report. In particular, the payments induced by any Groves
mechanism to a player i are shifts of the payments induced by our mechanism, by an amount that is independent of
player i’s report. Hence by reporting a large enough value of cmin, individual rationality can always be violated by
a Groves mechanism.
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A Tightness of Our Bounds

A.1 Example for Variance Violation Bound

Consider an example where there are only two options of variance levels, v1 and v2, and we set the
target variance α = v1v2

nv1+δ(v2−v1) . Suppose the reported costs ci1 = t1 and ci2 = t2 for each player

i ∈ [n− 1], and cn1 < t1 and cn2 = t2 for player n. We also assume that t2 < t1. Let x denote the
assignment such that xi1 = 0 and xi2 = 1 for each i ∈ [n− 1], and xn1 = δ ∈ (0, 1) and xn2 = 1− δ.
That is, the assignment gives v2 to the first (n − 1) players, and give a lottery between the two
levels to player n. Note that

1

α
=
n− δ
v2

+
δ

v1
.

We know that the fractional solution x exactly satisfies the variance constraint 8, and is also the
optimal min-cost solution. Therefore, with probability (1− δ), the realized variance is

1

Var(µ̂)
=

n

v2
=
n− δ
v2

+
δ

v1
+

δ

v2
− δ

v1
=

1

α
− δ( 1

v1
− 1

v2
) > 0.

It follows that

Var(µ̂) =
α

1− αδ( 1
v1
− 1

v2
)

=
α

1−
δ
(

1
v1
− 1
v2

)
n
v2

+δ
(

1
v1
− 1
v2

) =

1 +
δ
(
v2
v1
− 1
)

n

α

If we want δ(v2/v1−1)
n ≤ ε, we would need to have the number of providers

n ≥
(
v2

v1
− 1

)
δ

ε
.

For δ close to 1 and constant ε, the number of providers we need does scale with v2/v1, which
shows that the Ω(vm/v1) for n is essentially tight.
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A.2 Example for Entrance Reward Bound

Consider an example with two providers, two possible variance levels v1, v2 such that v2 = 2v1, and
target variance α = v1. Suppose the costs satisfy c11 = c21 = t and c12 = c22 = t − ε for some
ε > 0.

Since we need to an estimate from each provider, the optimal solution is to assign v2 to both
players, which yields cost OPT = 2t−2ε. Now suppose we remove any provider from the mechanism.
Then we would assign the remaining provider to v1, which yield cost C2 = t. Therefore, the utility
for each provider is

R+ C2 −OPT = R+ t− 2(t+ ε) = R+ 2ε− t = R+ ε− t.

In order to ensure non-negative utility, we need R ≥ t− ε. Note that the right hand side tends to
maxi minj cij when ε tends to 0. Therefore, the bound in Lemma 4 is tight.
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