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ABSTRACT

In higher education, artificially intelligent (AI) learning technology emerged as a transforma-
tive pedagogical approach, particularly in adaptive learning systems (ALS). Breakthroughs
in Al and machine learning (ML) are helping to enhance intelligent, data-driven algorithms
for personalized and optimized learning experiences. However, their implementations have
been limited in scale and, as a result, a precise measurement of successful and failing func-
tionality. Thus, we explore the gap between theory and practice in adaptive learning systems.
We begin with an overview of adaptive learning and its relationship with AI/ML. Following
this, we examine existing academic applications using AT/ML algorithms and their role in
adaptive learning. We conclude by discussing the ethics regarding adaptive learning algo-

rithms, potential mitigations, and ideas for bridging the gap.
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I. INTRODUCTION

Adaptive learning describes a responsive teaching method that provides personalized instruc-
tional content compatible with the given learners’ abilities. This educational approach is a
data-driven form of customized learning designed to make real-time analyses and adjust-
ments to students’ learning pathways in response to their performance. The foundational
framework of ALS revolves around three pivotal components: the learner model, the content
personalization techniques, and the continuous, real-time assessments [70]. Each parameter
can be specified according to academic features and social, emotional, and psychological
content, which are critical factors in student motivation and retention per the learner model
requirements. Ultimately, adaptive learning aims to provide a holistic educational experience
that meets the learners where they are and assists them in academic success [1, 36].

While adaptive learning can exist both with and without technology, it is becoming evident
that intelligent technology has the potential to revolutionize the way we approach teach-
ing and learning in education. Computer-based education blossomed in the 1970s with the
increasing accessibility of personal computers and flourished with the introduction of the
World Wide Web in the early 1980s. Many contemporary adaptive learning initiatives lever-
age adaptive learning technologies (ALTs), often supported by quickly advancing Al and
ML-base algorithms [2]. The core objectives of the technologies supporting adaptive learn-
ing are automation, sequencing, assessment, real-time data collection, and self-organization
[1]. The three championing algorithms used to achieve these core requirements of an adap-
tive system are feedforward neural networks (FFNNs), Bayesian neural networks (BNNs),
and Recurrent Neural Networks (RNNs) [3, 22]. By applying these Al-backed structures,
adaptive learning platforms can now analyze vast amounts of data on learner behavior and
performance, enabling unprecedented levels of personalization.

We will provide an in-depth analysis of adaptive learning within the context of higher ed-
ucation. Beginning with a historical overview, we will examine the traditional educational
methodologies and the pedagogical challenges ALSs present. We will then transition into
a discussion on the advent of adaptive learning, highlighting its evolution and the pivotal
role of Al in shaping its current and future trajectory. The core components and mecha-
nisms that define adaptive learning systems, including personalized content delivery, learner
assessment, and competency frameworks, will be explored in detail [1]. Through a critical
lens, we will also address the potential pitfalls and ethical considerations associated with the
deployment of Al-driven adaptive learning systems, including but not limited to algorithmic
bias and data privacy concerns, providing a balanced perspective crucial for informing new
and updating old educational practices and policies.



II. A BRIEF HISTORY OF ADAPTIVE LEARNING IN EDUCATION

Recognition of diverse learner needs and the efficacy of adaptive technologies in enhancing
student outcomes has been a concept for decades. Typical teaching methods (i.e., stan-
dardized lectures, textbooks, examinations, etc.) designed to cater to an average student
profile were combined with adaptive techniques such as one-on-one tutoring and individu-
alized learning plans (i.e., AP, English language learner classes, special education, Socratic
seminars, etc.). However, implementing strategies to address diverse learner needs faces
challenges such as limited resources, accessibility issues, cultural and linguistic diversity, and
socioeconomic disparities, all of which require a concerted effort and commitment to over-
come. Thus, instructors and institutions have continuously sought more flexible, responsive,
and engaging teaching models to address these challenges, leading to the development and
adoption of adaptive learning technologies.

2.1 Origins and Early Innovations

The varying scales at which tailored educational experiences are designed and implemented
are often a hybrid of macro- and micro-level adaptation approaches.

2.1.1 Macro-Adaptive Systems

Macro-adaptive systems operate broadly, focusing on overarching decisions regarding in-
structional goals, curriculum content, and delivery systems. The primary objective is to
accommodate diversity among learners by offering different alternatives or pathways to meet
their needs effectively. Essentially, students are organized into different learner groups based
on similar learning styles, goals, and capabilities, and the instruction is tailored to each
group’s needs and requirements. The key part here is that students are not just placed into
diverse, homogeneous groupings but also receive different curricula and resources based on
that grouping. For example, higher achieving students may have a curriculum that differs
from the one used for students who need more support, or different majors will have different
instructional systems [4].

2.1.2 Micro-Adaptive Systems

Micro-adaptive systems operate more granularly, focusing on individual learners’ specific
learning needs during instruction. The primary objective is to diagnose each learner’s
strengths, weaknesses, and learning preferences in real time and provide personalized in-
structional prescriptions to address those needs. The system uses real-time performance
data (response time, accuracy, emotional state, etc.) to perform personalized interventions
or updates to ongoing instruction, categorized into diagnostic or prescriptive measures. For
example, a smart tutoring system operating at the micro-adaptive level would diagnose
which students need more help or more challenging activities and prescribe guided content
or additional practice questions, respectively [4].

2.1.8 Farly Innovations of Macro-Adaptive Systems: The Keller Plan

The earliest applications of ALSs trace back to the foundational principles of macro-adaptive
learning systems, primarily manifested through modifications to curriculum or pedagogical



methods rather than technology. In the latter half of the twentieth century, personalized
systems of instruction (PSIs) gained significant popularity after psychologist Fred S. Keller
developed the Keller Plan in the 1960s. The Keller Plan is a mastery-based approach to
teaching that emphasizes individualized instruction, self-paced learning, and frequent for-
mative assessment. It outlines five foundational elements of PSI: 1) subject mastery, (2)
proctors, (3) self-pacing, (4) written materials (i.e., textbooks, written assignments, etc.),
and (5) motivational lectures [5]:

e Mastery: In a standard PSI class, course content is broken down into smaller parts.
Mastery of one part is a prerequisite for progression to the next, without penalization
for incorrect answers, emphasizing a thorough understanding of each topic.

e Proctors: Proctors serve as teaching assistants for the class to provide feedback and
other student support services.

e Self-Pacing: PSI courses were designed to be unbounded by traditional academic
timelines (i.e., semesters, trimesters, etc.) to allow students enough time to master the
course material at their own pace.

e Written Material: Engaging with instructional content outside the classroom is a
cornerstone of PSI. Students are expected to interact with detailed written materials,
such as textbooks and assignments, to reinforce their learning independently.

e Motivational Lectures: Since students are expected to learn outside of the classroom
on their own time, classroom lectures are meant to encourage students in their learning,
and educators are meant to provide any assistance that makes the learning process
easier rather than teach.

The Keller Plan is often used in higher education settings but can be adapted for various
educational levels and subjects. While its popularity waned in subsequent years due to
new, state-of-the-art technologies, the Keller Plan’s impact on self-paced learning remains
evident in the continued research of student-centered instructional methods and the princi-
ples of mastery-oriented education. Other examples of macro-adaptive applications inspired
by the Keller Plan include the Individually Guided Education (IGE) and Individually Pre-
scribed Instructional System (IPI) developed in the mid-to-late 1970s, which also served as
comprehensive models for future macro-adaptive solutions [5].

2.1.4 Early Innovations of Micro-Adaptive Systems: Teaching Machines

While these historical models for adaptive learning were powerful tools, they required tools
to be implemented at scale in the classroom. Born out of this need were the roots of
micro-adaptive learning, which trace back to the 1920s, when early innovators like Sidney
L. Pressey and B. F. Skinner laid the groundwork for its development. The two American
psychologists explored the principles of individualized instruction and behaviorism through
teaching machines.

Pressey is often credited with inventing the first teaching machine in the 1920s. His teaching
machines were mechanized devices equipped with instructional content, such as text, images,



or audio recordings, along with mechanisms for sequentially presenting questions or problems
and providing immediate feedback on users’ responses. If a user provided the correct answer,
the machine would move them to the next question. If a user provided an incorrect answer,
the machine recorded it and remained on the question until the learner chose the correct
answer. This design allowed students to work at their own pace and learn from their mistakes.

Skinner expanded upon Pressey’s design, creating a machine that focused more on the learn-
ing process than simply serving as a self-testing device. Skinner’s machine emphasized
carefully curated programming material, as he believed that the content and the order of its
presentation were essential to learning complex behavior effectively. The goal of Skinner’s
machine was to function as a personal tutor for the student, offering gradual learning, imme-
diate reinforcement, engaging content, and real-time assessment of student understanding for
educators. However, these teaching machines were often analog devices operated by simple
mechanisms like buttons or levers, limiting their adaptability to all types of programming
material (e.g., verbal, written, or kinesthetic). Additionally, the frame-by-frame presentation
of material could be time-consuming and unsuitable for all learner styles or content, poten-
tially impacting student motivation. Despite these limitations, teaching machines served
as precursors to today’s intelligent tutoring systems and contributed to the evolution of
psychological philosophies and practices in academia [6].

2.1.5 The Prelude of Al in Educational Settings

Educational methodologies and their corresponding instructional materials continue to evolve,
incorporating psychological theories and philosophies in a standardized, quality-driven man-
ner. In pursuit of adaptive agents, or intelligent systems capable of dynamically adjusting
to individual learner needs, several AI movements emerged in the late 1970s. These move-
ments often occurred once funding opportunities increased and reinforced the development
of more sophisticated, adaptive learning tools. For instance, between 1980-1987, Al research
shifted towards creating expert systems and domain-specific applications, diverging from the
earlier reliance on general-purpose search mechanisms or “weak methods.” Adopting robust,
domain-specific knowledge enabled the design of systems proficient in conducting intricate
reasoning within specialized areas, thereby enhancing the performance and efficiency of Al
applications. Among the noteworthy advancements during this era were Rodney Brooks’
contributions, including the development of Cog, iRobot, and Roomba and the introduction
of Gammonoid, the first software to win a world championship in Backgammon. These
technological strides would not have been possible without the substantial improvements
in computer hardware, which promoted the transition of computers from bulky, inaccessi-
ble units to personal and approachable devices. This evolution mirrored a broader societal
shift towards individualism, characterized by a growing demand for personalized technol-
ogy solutions that resonated with users’ unique preferences and requirements. In essence,
the Al movements of the twentieth century significantly propelled the intersection of Al
with educational methodologies, ushering in a new age of adaptive learning tools, systems,
and philosophies requiring more interdisciplinary research than ever before to craft these
technologies [7, 23].



III. THE ADAPTIVE LEARNING FRAMEWORK

An actual ALS integrates three essential components to enhance the learning experience.
First, it features a learner model that dynamically (and accurately) profiles each user by
tracking and analyzing their performance, preferences, and interactions. Secondly, it delivers
customized educational content that fits each learner’s specific requirements based on
their learner model. Lastly, real-time feedback is provided to learners as they engage with
the material, allowing learners to adjust their study plans and improve efficiency in real-time
1, 70].

3.1 Learner Model

e Metadata: Metadata such as social, academic, mental, and emotional identifiers must
be incorporated into the learner’s profile to personalize the content they receive.

e Prerequisite Knowledge and Prior Knowledge Qualifiers: The ALS must set a
baseline to determine what the student already knows and still needs to know. Without
a baseline, the ALS will be unable to properly engage with the learner content that is
suitable for the learner. The baseline is often set using what the ALS gathers about
the following after the initial knowledge assessment.

— Competencies/Sub-Competencies: Core competencies refer to the knowledge
needed for proficiency in a field or discipline. In ALSs, core competencies should
be composed of smaller sub-competencies that students gradually master to learn
the core competency.

— Skill Standards Libraries: Skill standard libraries provide ALSs with a struc-
tured, pedagogical framework for identifying, organizing, and categorizing the
essential skills, knowledge, and abilities a student needs for mastery.

3.2 Content Personalization

e Content Interoperability: Content should be adaptable, flexible, and dynamic,
updating to match the student’s current learning abilities, course material, and any
new information gathered about the learner. This ensures that the content remains
relevant and engaging for each student.

e Social Interaction: The system correlates learners through collaborative content
based on their attributes (such as past grades, behaviors, or current mental health
state). This communal aspect enhances learning through shared resources and inter-
actions.

3.3 Assessment

e Diagnostic Classification Modeling: An ALS must be able to diagnose what the
learner needs, identifying areas of strength and weakness to guide personalized instruc-
tion and support.

e Normed vs. Criterion-Referenced Assessments: Assessments measure students’
performance relative to others or the knowledge they should know. Normed-referenced



assessments compare students to a predetermined “norm group” of their peers with
similar characteristics (i.e., age, previous test taker, learning style, etc.). In contrast,
criterion-referenced assessments evaluate performance against standard criteria or re-
sults. Assessment should incorporate predictive psychometric design to determine the
right learning pathway (i.e., content sequence) for each student based on their answers.

e Zone of Proximal Development: The system should consider the Zone of Proximal
Development, which refers to the difference between what a learner can do on their
own and what they can achieve with support from a more knowledgeable individual,
typically a teacher, tutor, or peer. This helps determine when a student needs more
or less content scaffolding.

o Self-Assessment: Self-assessment allows students to compare what they believe they
have learned to what the system has gathered about their knowledge and understand-
ing. This promotes metacognition and self-awareness, empowering students to take
ownership of their learning process.

3.4 Assessing an Adaptive Learning System

When evaluating the effectiveness of an adaptive learning system, it is imperative to assess its
capability to dynamically tailor learning experiences, provide accurate feedback, and foster
learner engagement. These core requirements collectively contribute to what constitutes a
genuine adaptive learning system. First and foremost, personalization stands as the founda-
tion of adaptive learning, epitomizing its ability to discern individual students’ unique needs,
preferences, and learning styles. A good ALS employs sophisticated algorithms to construct
and maintain comprehensive learner profiles, incorporating factors such as prior knowledge,
learning pace, and preferred modalities to tailor learning pathways accordingly. Moreover, an
effective ALS should seamlessly adapt to various types of content without compromising the
integrity of the adaptive process. For example, an ALS that offers diverse content formats,
including text, multimedia, simulations, and interactive exercises, gives students more onus
in how they engage with the course content. Secondly, feedback mechanisms facilitate contin-
uous adaptation and improvement within adaptive learning systems. Feedback helps ALSs
understand how to positively influence the third evaluation criterion: learner engagement.
Learner engagement is a crucial determinant of an adaptive learning system’s effectiveness,
impacting motivation, retention, and comprehension. ALSs that sustain student motivation
and enthusiasm for learning, enhancing retention and comprehension over extended periods,
are considered satisfactory. In summary, a “good” adaptive learning system excels in person-
alization, feedback mechanisms, and learner engagement, thereby fostering optimal learning
experiences and outcomes for students across diverse educational settings [1, 70]. The fol-
lowing section will explore the main Al methods employed in adaptive learning systems to
achieve these objectives.



IV. COMMON AI TECHNIQUES USED IN ADAPTIVE LEARNING

This section delves into the primary Al-based learning methods pivotal in tailoring educa-
tional experiences, emphasizing the versatility and depth of ML technologies. We begin by
examining a precursor to artificial neural networks (ANNs), Decision Trees (DTs), and the
challenges associated with this traditional AI method. We then introduce the fundamental
components and architectural blueprints of ANNs, along with the principles of nonlinearity
that drive their learning capabilities. Further, we expand our discussion to include BNNs
and RNNs, each representing unique models within machine learning. These methodolo-
gies illustrate the broad spectrum of ML techniques employed to make informed learning
path predictions (i.e., skipping, including, or revisiting lessons) given observed data such as
engagement level and past assessment lengths.

4.1 A Traditional AI Algorithm: Decision Trees

DTs in adaptive learning originated from ML and data mining methodologies, initially de-
veloped for classification and regression tasks. They are supervised learning algorithms, and
their adaptation to educational contexts provides a hierarchical approach to decision-making
based on learner attributes and learning content features. The primary goal of DTs in ma-
chine learning is to create a predictive model that can accurately classify or predict outcomes
based on a set of input features.

In classification tasks, where the target variable is categorical, DTs assign data points to
predefined classes based on their features. For instance, a classification decision tree could
categorize students into distinct learning styles—visual, verbal, auditory, kinesthetic, or a
combination—by examining engagement patterns and performance across various content
types like text, videos, and hands-on activities. This approach enables tailoring teaching
methods and materials to better align with each student’s learning preferences. Conversely,
regression tasks involve a continuous target variable representing a numerical value. A
regression decision tree might predict students’ future test scores by leveraging historical
data, including past performance, study duration, and attendance. This predictive capability
allows for the customized tailoring of interventions to enhance individual student outcomes,
demonstrating the versatile application of DT's in addressing both categorical and continuous
data scenarios within educational settings.

The architecture of DTs in adaptive learning comprises nodes representing attributes or
features, branches denoting the details of the decision, and leaf nodes indicating outcomes,
as illustrated in Figure 1.
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Figure 1: An illustration of the decision tree structure and its components: the root node,
decision node, and leaf node [16].

Starting from the top, the root node acts as the starting point, containing the source set of
input features that inform the decision-making process. As we traverse the tree, we find in-
ternal or decision nodes, each labeled with a feature from the source set. These nodes signify
the criteria based on which decisions are made, guiding the path taken through the tree. At
the culmination of each decision path lie the leaf nodes, or terminal nodes, representing a
distinct, homogeneous class of the target feature, essentially the possible outcomes derived
from the source set. These leaf nodes signify the final classification decisions made by the
tree. Connecting these components are the edges, or branches, of the tree. Each branch de-
lineates a decision point that leads to a subsequent decision node for further analysis based
on additional input features or to a leaf node, marking the conclusion of the decision-making
path with a definitive classification outcome. This structured approach enables the decision
tree to systematically break down complex decision-making processes into more straightfor-

ward, manageable parts, ultimately leading to precise classification or regression outcomes
16, 17].

4.1.1 Limitations of Decision Trees

Despite their ease of implementation, DT's often encounter several limitations affecting their
performance and applicability. DT's are prone to overfitting, mainly when dealing with com-
plex, noisy, or high-dimensional data [18, 19, 20]. Additionally, DTs exhibit brittleness,
meaning they can drastically change structure with slight variations in training data, lead-
ing to challenges in generalization across different datasets [50, 51]. The inherent sensitivity
to noise and the inability to capture complex nonlinear relationships without significant
complexity further complicate their use in practical scenarios. This section explores these
limitations, detailing how they impact the effectiveness of DTs and model performance rel-
ative to their more novel counterparts.

Firstly, complex DTs tend to overfit and thus do not generalize well to new data, unlike their
more advanced counterparts, such as ANNs. As the sample size increases, neural networks



perform better than DTs. This scalability is crucial in practical applications where large
datasets are standard. Neural networks can handle high dimensional data better by using
it to fine-tune their parameters, enhancing their predictive accuracy. In contrast, DTs may
suffer from increased overfitting without careful pruning and complexity control [18, 19, 20].
For instance, in Kim [2008], the performance of ANNs improved relative to DTs as the
sample size increased. With five independent variables (including categorical variables), the
Root Mean Squared Error (RMSE) for ANNs decreased more significantly compared to DT's
as the sample size went from 100 to 10,000 [51].

Secondly, their tendency towards overfitting makes them highly sensitive to variations in the
data and ultimately brittle. The depth of a decision tree is a primary contributor to its
variance. A deeper tree with more branching can capture more details of the training data.
While this might improve accuracy on the training set, it can lead to overfitting, where the
model captures noise, assuming it is a significant pattern. The model’s variance increases as
the tree’s depth increases because it becomes more sensitive to fluctuations in the training
data [18, 19, 20]. Additionally, DTs aim to create leaf nodes that are as pure as possible. In
pursuit of purity, a tree might create splits that are too specific and do not reflect genuine
relationships between the nodes. This pursuit can increase the tree’s complexity, leading
to higher variance [50, 51]. Unlike DTs, which make all decisions based on a single pass
through the nodes from root to leaf, neural networks process data through layers where
each layer captures different levels of abstraction. This layered approach helps control the
complexity of the model, as lower layers do not directly make final decisions but contribute to
a more distributed learning process. Furthermore, neural networks optimize their parameters
through backpropagation, a concept discussed later. This continuous and iterative refinement
helps ensure that neural networks find a balance between accuracy and generalization, unlike
DTs that optimize for local purity or accuracy at each node independently, often at the
expense of overall performance [10].

Lastly, DTs often cannot handle data with uncertain or missing values effectively. In many
real-world scenarios, the class labels or attributes may have a certain level of uncertainty that
needs to be modeled. This is, again, where neural networks step in [50]. Neural networks
can be adapted and designed to handle various data and tasks. This versatility is achieved
through changes to the amount and type of layers, connections, statistical inferences, and
so on, resulting in different architectures, such as the BNN, capable of modeling uncertainty
[13].

Overall, DTs, though a simple and intuitive Al approach, possess significant drawbacks in
dynamic and uncertain environments, both of which describe adaptive learning systems.
With their sophisticated structure and learning capabilities, neural networks offer a stronger
and more versatile solution for the complex and large-scale data modeling challenges that
adaptive learning systems bring.

4.2 Artificial Neural Networks

ANNSs are machine learning models distinguished by their capacity to assimilate, encode,
and apply knowledge to execute complex tasks. Their ability to mirror the dynamic learn-
ing process inherent in human cognition is central to our exploration of adaptive learning



systems.

4.2.1 Components of an Artificial Neural Network

The building blocks of a neural network are the nodes (also known as processing units,
perceptrons, etc.), which can be organized into three layers: the input layer, the hidden
layer(s), and the output layer. As depicted in Figures 2 and 3, the input layer receives the
raw data and transports it to the succeeding layer, and nothing is transformed here. The
hidden layer processes the data from the input nodes by applying nonlinear functions called
activation functions. The output layer receives the processed data and outputs a prediction.
These layers are interconnected through weighted, directed edges. The flow of information
in a neural network is facilitated by the components visualized in Figure 2 [8, 24, 25, 26].
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Figure 2: The first half of a neural network, specifically a feedforward (acyclic) neural
network. This section depicts the connections between the input layer and hidden layer
leading to the outputs of the hidden layer [8].
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Figure 3: A continuation of the neural network shown in Figure 2. It illustrates the
connections between the hidden and output layer leading to the final outputs of the network
3].
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e Input Vector, x: The raw data input to the neural network, where each element
corresponds to a feature or attribute of the data.

e Weights, w & Biases, b: The learnable parameters of the network that describe its
behavior and performance.

e Weight Matrices, W;;, & W,,,: The matrices that determine the strength of influence
of inputs on outputs. W;;, describes the connections between the input and hidden layer
while W}, describes the connections between the hidden and output layer.

e Hidden Vector, h: An internal vector containing the information learned by the
network. A is computed through a dot product operation between the input vector
and the weight matrix, followed by activation through an activation function

e Output Vector, o: The neural network’s final output. o is typically processed through
an activation function like softmax to produce a probability distribution.

4.2.2 The Training Process: How the Artificial Neural Network Learns

Before training begins, the appropriate construction of these neural network components
must be selected based on the problem at hand. In a neural network, knowledge, or patterns
and information the network has learned, is stored within the parameters of the network, such
as the weights and biases. Determining the number of layers, types of layers and connections
between them, number of nodes in each layer, types of activation functions, parameters, and
so on can significantly impact how these models acquire, represent, and utilize knowledge to
perform tasks effectively [10].

With this understanding of neural network architecture and knowledge acquisition in mind,
let’s delve into the specifics of the training process. As our running example, we will use
the three-layer feedforward network, pictured in Figure 2. During training, the network
iteratively adjusts its parameters to minimize the difference between its predictions and the
actual outputs, effectively refining its understanding of the underlying patterns in the data.
This process involves several key steps:

1. Initialization: Initially, the network parameters, including weights and biases, are
randomly initialized. This sets the starting point for the training process.

2. Backpropagation: Backpropagation is a commonly used algorithm for learning or
training the parameters. It consists of two phases: the forward phase and the backward
phase. During the forward phase (forward propagation), input data is fed into the
hidden layer. The weight matrix W, governs the connections between the input and
hidden layers. To compute the hidden layer’s outputs, the input vector z undergoes a
dot product operation with W;,. A bias term b may also be added to each neuron’s
activation to allow for shifting along the activation function’s axis [8, 10]. The combined
result of the dot product operation and bias term forms an intermediate vector y, the
argument to an activation function as shown below
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Y = w1T; + Wokoy + ... + WpT, + b

= iwlxi + b [10] (1)

The activation function is applied element-wise to the y, producing the final output vector
h of the hidden layer:

h=o(_wiwi+b) [8 (2)

Activation functions play a crucial role in learning by introducing nonlinearity to the net-
work’s computations. Nonlinearity allows neural networks to capture complex patterns and
relationships in the data (i.e., recognizing learner speed, determining comprehension level,
grouping learners) that are not immediately apparent or are too complex for conventional,
linear methods. The activation function determines both the range and the interpretation of
the output value, enabling the network to transform input features into higher-dimensional
representations and enhancing its capacity to learn and represent knowledge effectively [9].
For neural networks, this activation function is either Rectified Linear Unit (ReLU)

r, ifx>0

(3)

= O, =
J(@) = maz(0,) {O, otherwise

or sigmoid,

B 1
C l4e®

[52]. (4)

Similarly, the connections between the hidden layer and the output layer are represented
by a weight matrix Wj,. The output vector o is calculated in a similar fashion to A, but
recognizing that the typical output of a neural network is a probability distribution, an
activation function like softmax,

o(x)

071-:;—11 5
(=5 )

is applied instead to ensure it represents probabilities.

If the predicted output of the neural network is not similar to the expected output, then
the backward phase, or backpropagation, ensues. The primary objective of this phase is to
minimize a cost function or loss function, which measures how well the model performs on
a given task. The computation of loss functions differs based on the availability of labeled
data, which is determined by the learning algorithm applied. Supervised and unsupervised
learning are two fundamental types of algorithms in machine learning that determine how
the weights, or strength of connections between the perceptrons, are modified throughout
backpropagation [10].
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4.2.8 The Supervised Learning Approach

In supervised learning, algorithms are trained on labeled data, where the correct outputs are
provided, guiding the adjustment of parameters based on the error between predicted and
actual outputs. An iteration of training under supervised learning begins with comparing the
predictions generated by the network to the exact target values using a loss function, typically
the mean squared error (MSE) method. After the loss has been computed, the next step is
to update the network’s weights to minimize this loss. The algorithm performs a gradient
descent, which iteratively updates the model’s parameters in the direction that reduces the
loss. This direction is determined by calculating the derivative of the loss function J with
respect to each model parameter. The derivative indicates how the J changes concerning
changes in the model parameters. The update rule for gradient descent specifies how to
adjust the model’s parameters based on the derivative of the loss function. It typically
involves subtracting a fraction of the derivative (scaled by a learning rate, a/) from the
current weight value, w, to get the weight of the next time step, w;.1, as shown in Equation

6.
oJ
Wy = Wy — a— |12 6
=m0 iy ©
Here, a is the learning rate, which is a positive scalar determining the size of the step, and

AJ(0) is the gradient of the objective loss function J concerning the parameters 6 [12].

The learning rate is a crucial parameter of the gradient descent as it determines the length
of the training process. A high rate may expedite the network’s convergence on an output
but risks overshooting, while a low rate ensures stability at the cost of longer training times.
Typically, a = 0.01 is used, but it can also be calculated to be iteration dependent rather
than a simple constant using either exponential decay,

o = age " [12] (7)
inverse decay,
Qg
= 12 8
Qi 1+ kt [ ] ( )
or potential decay
oy = kag [12]. (9)

Once the weights are updated, the loss function is computed again using the updated pa-
rameters and the current training data. This iterative process continues until a stopping
criterion is met, such as reaching a certain number of iterations, attaining convergence, or
observing no significant improvement in the loss function [12].

Supervised learning encompasses two primary types of tasks: classification and regression,
distinguished by the nature of the target variable. In classification tasks, the objective is to
categorize input data into predefined classes or labels. This involves mapping input features
to discrete output categories. For instance, consider a scenario where a neural network
is tasked with predicting a student’s major based on the classes they have taken. Here,
the network’s goal is to assign each student to one of the predetermined majors correctly.
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Conversely, regression tasks involve predicting continuous numerical values as the output. In
this context, the network learns to map input features to a continuous target variable. For
example, in a dataset containing students’ grades from previous semesters, the task might
involve predicting a student’s GPA for an upcoming semester. Unlike classification, where
the output is a discrete label representing a class, regression outputs a continuous value, such
as a GPA score. These distinctions guide the design of supervised learning algorithms and
the interpretation of their outputs, catering to different types of predictive modeling tasks
based on the nature of the target variable [10].

4.2.4 Challenges and Limitations of Neural Networks

Navigating the landscape of neural networks, we encounter various challenges and limi-
tations, including concerns regarding overfitting, vanishing gradients, computational com-
plexity, and scalability, which collectively impact their efficacy and applicability in diverse
contexts. Overfitting occurs when a model, likely one with too many parameters relative to
the number of observations, learns the noise in the training data instead of the underlying
distribution. Additionally, the issue of vanishing gradients is prominent in deep neural net-
works. When this happens, the gradient of the loss function with respect to the weights may
become increasingly small as it is propagated back through the network. The computational
complexity can be roughly estimated as O(nm) for a fully connected layer where each node
in the first layer is connected to each node of the subsequent layer. n is the number of
nodes in the first layer, and m is the number of nodes in the second. Lastly, scalability
concerns arise from this significant computational need. That said, the challenge is not only
computational but also statistical, as models must maintain or improve performance without
succumbing to issues like overfitting [10]. As these issues are addressed, the potential for
neural networks to revolutionize more domains remains vast, from automating complex tasks
to enabling breakthroughs in predictive analytics. Alternative architectures like RNNs and
Bayesian Networks are introduced to address some of these issues.

4.3 Recurrent Neural Networks

Recurrent Neural Networks are designed for sequential data, allowing previous outputs to
be used as inputs while having hidden states, thus helpful in creating adaptive models that
better understand and predict based on evolving learner patterns. Unlike in conventional
FFNNSs, information can be passed into and processed by itself, allowing it to consider the
current and past inputs as depicted:
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Figure 4: The recurrent neural network and a feedforward neural network [54].

4.8.1 Architecture of a Recurrent Neural Network

The mathematical notation, pictured in Figure 5, describing the RNN architecture contains
similar components as FFNNs in addition to a weight matrix W, € R"" to account for the
loops.

Output O Output O,
1‘ Wi Wi 1 | —
Hidden Layer H Hidden Layer H;
Wi
T wxﬁ wxh T
Input X Input X;
Feedforward Neural Network Recurrent Neural Network

Figure 5: Comparison between the mathematical notations of RNNs and FFNNs [53]

The slight differences in notation seen moving forward are because the core of an RNN’s
operation lies in its ability to retain information across time steps, t, as seen in the state
update equation below

H, = ¢n(X,W — ih + H,_yWiyh + by) [53)] (10)

where H, is the hidden state at time ¢, X, is the input at time ¢, W;, and W}, are weight
matrices for the input to hidden and hidden to hidden states respectively, by, is the bias, and
¢y, is the activation function typically sigmoid or hyperbolic tangent function (tanh),

et —e”
xr) = ——— [53]. 11
flao) = S 53] (1)
Tanh is often used due to its output range of [1, 1], which centers the activation outputs
around zero, enhancing the stability and efficiency of learning. The symmetric nature of tanh
around zero provides balanced gradients, reducing bias in updates and improving convergence

during training [52].

15



The output of an RNN at time ¢, Oy, is

Or = ¢o(HiWho + bo) [53] (12)

where Oy is the ouput at time ¢, W), is the weight matrix from the hidden state to, by is the
output bias, and ¢, is the output activation function [53].

4.3.2 The Training Process: How a Recurrent Neural Network Learns

Training RNNs involves adjusting weights to minimize error over sequences, which is achieved
through Backpropagation Through Time (BPTT). BPTT simply performs backpropagation
on an unrolled RNN visualized below [53].

FAj = A A A

¢
/G s Sl Gl

Figure 6: An unrolled RNN expanded across each time step representing the sequential
dependencies underpinning their design [54].

v

v
v

For BPTT, the gradients of the loss function concerning the weights are computed by un-
folding the network through time and applying the chain rule. For instance, the loss function
is given by Equation 13.

£(0,Y) = imot,m 53] (13)

t=1
The gradients of the loss function with respect to the weights are computed by unfolding the

network through time and applying the chain rule [54]. The gradient with respect to Wy, is
computed by Equation 14.

(%t 80t 0 o aét aOt
Z . Z 1, [53) (14)

6W;w 0, 0y W, 80, 0p,

Here, /, is the loss at time ¢, and L is the cumulative loss over all time steps T' [53].

As with standard neural networks, RNNs also experience issues with vanishing or explod-
ing gradients. This problem occurs because RNNs process data sequentially, using matrix
multiplication to pass information from one time step to the next. If the values in this
multiplication are small (less than 1), the gradients get smaller as they are passed back
through each time step. Eventually, these gradients can become so small that they effec-
tively “vanish,” meaning they don’t add much to the learning process. Conversely, if these
values are large (greater than 1), the gradients can grow too large or explode, leading to
wildly fluctuating network weights and unstable training [53]. Specialized structures like
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Long Short-Term Memory (LSTM) units and Gated Recurrent Units (GRU) were developed
to address the issue of vanishing gradients. RNNs using either LSTM or GRU have proven
to be more effective than traditional RNNs for various tasks, making them a popular choice
for models that need to recall information over long sequences [53, 54, 55].

4.3.8 Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs)

LSTMs are composed of three gates (input gate I, forget gate F;, and output gate Oy)
depicted in Figure 7. In contrast, GRUs are a simplification of the LSTM model using only
two gates (the update gate z; and the forget gate r;) depicted in Figure 8 [53, 54, 55].

Memory o
cf_ 1 @— L C,
Forget
gate
Fy
I ;J
Hidden state
Hy 4 [y
8
|
Input XI

FC layer with Element-wise
activation fuction Operator _J_. iy I SRR
Figure 7: An LSTM cell processing data sequentially while maintaining its hidden state
over time [53].
|

v

)
J
® =
a \’.ll' tanh
J
4

Y

Figure 8: A GRU cell processing data sequentially while maintaining its hidden state over
time [55].
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Information in both models is kept in structures called gate cells, and the gates determine
what is done with the information. I; and z; read inputs into cells, O, reads the contents of
cells, and F; and r; forget, or delete, the contents of cells. The gates essentially determine
how much past information is kept, how much new information is added, and how much of
the current state is considered in the output. The equations describing Iy, F}, Oy, z;, and ry
are shown in Equations 15 through 19, respectively [53, 55].

I, = o(X, Wi + Hy_ Wi + b;) [53] (15)
Op = 0(XWoo + Hy 1 Who + b,) [53] (16)
Fy = o(XW, + Hi_\ Wiy + by) [53)] (17)
2 = o(Walzs, her] +b.) [55] (18)
ry = o (Wrlzs, he_] + b,) [55] (19)

RNNSs using either units learn similarly to those without them. Firstly, a candidate memory
cell (proposed update to the previous memory cell) is computed using tanh, representing new
information the LSTM might add to its internal memory. Equation 20 depicts the candidate
memory cell for LSTMs, while Equation 21 depicts the candidate memory cell for GRUs.

Cy = tanh(X,Wyc + Hy Wi + be) [53] (20)

hy = tanh(Wh[z;,ri © hy_1] + bp) [55] (21)

The actual memory cell update is a combination of old memory content, C;_; modulated
by F; (to determine which past features should be forgotten), and C; is modulated by I;
(to determine the extent to with the new information should be incorporated). Equation 22
depicts the actual memory cell for LSTMs, while Equation 23 depicts the actual memory
cell for GRU [53, 55].

Ct = Ft @ Ct—l + It @ CN’t [53] (22)

ht =2z ® ht_l + (]. - Zt) ® Bt [55] (23)

Finally, the hidden state of the LSTM for the current timestep is computed, as shown in
Equations 22 (substituting C; for h; for GRU), by filtering the memory cell’s content through
O; which modulates the C}’s influence on the hidden state at time ¢ [53].

H; = O; ® tanh(C}) [53] (24)

Ultimately, each component and operation within an LSTM and GRU is designed to control
the flow and influence of information throughout the sequence processing, making it robust
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for tasks involving long or complex dependencies between events in the data.

4.4 Bayesian Neural Networks

Traditional neural networks, while powerful tools, often encounter hurdles like overfitting
and overconfidence, particularly in the context of conventional deep learning methods. Enter
BNNSs, a promising solution to mitigate overfitting and overconfidence issues through train-
ing “uncertainty-aware” neural networks. In this section, we show how BNNs spearhead
the paradigm shift towards uncertainty quantification and modeling, particularly crucial in
academia, where accurately capturing uncertain parameters such as a learner’s knowledge
state and learning processes is critical [27].

BNNs are skilled at describing the uncertainty of the network because of their probabilis-
tic treatment of neural network parameters. In doing this, BNNs can consider a range of
possible models (weights, biases, or activations) and their associated probabilities, enabling
uncertainty expressions in their predictions. The fusion of stochastic modeling and neural
network architecture, as illustrated in Figure 9, is underpinned by Bayesian inference.

Point Estimate Neural Network Bayesian Neural Network
( Architecture H Functional model J
e r
( Supervision (§IV-D) — Stochastic model (§1V)
( Loss (§lI) }—— Likelihood (§IV-A) p(ylx,6)
= . Prior (§IV-C) p(0)
Regularization ~ /
Penalization in Loss (§IV-C3) ( Inference (§V-A)
Dropout ( MOMG GV-A) J
N ¥,
Variational Inference
il Training 3 MC-Dropout (§V-E1)
Gradient Descent Algorithms Stochastic Variational
(e.g. SGD, Adam, ...) Inference (§V-B)
Backpropagation Bayes-by-backprop (§V-C)
L / /

Figure 9: A schematic matching concept used in deep learning for point-estimate neural
networks with their counterparts in a BNN [13].

Bayesian inference hinges upon the Bayes Theorem named after statistician and philosopher,
Thomas Bayes. The theorem in Equation 25 below describes two ideas: 1) probability is a
measure of “belief,” and 2) prior beliefs influence posterior beliefs. Here, “belief” refers to
the probability distribution that represents the network’s current knowledge or uncertainty
about the parameters (such as weights and biases).

P(DIH)P(H) P(D,H)
P(D) - [, P(D,H")dH'

The parameters of the theorem are defined as follows:

P(H|D) =

13]. (25)
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e Hypothesis Space, H: A set encompassing all possible values that the model’s
parameters, such as weights and biases, can assume. It represents the neural network’s
beliefs or hypotheses about the observed data D.

e Observed Data, D: A set of inputs, x;, and corresponding labels y {(z1,v1), ..., (Zn, Yn) }
used to update the network’s beliefs about H.

e Likelihood, P(D|H) : A probability distribution quantifying the likelihood of observ-
ing D given a particular H. It encodes the network’s aleatoric uncertainty or inherent
noise in the data.

e Prior, P(H) : The probability of H occurring. It is determined before any data has
been observed and thus serves as the initial belief about the hypothesis space.

e Evidence, P(D) : Also known as the normalization constant or marginal likelihood,
P(D) is the probability that the model will generate D regardless of H. It ensures
that the posterior distribution, which reflects updated beliefs, integrates into one.

e Posterior Probability, P(H|D) : The posterior probability describes the probability
that H (old belief) was true given D. It quantifies the updated beliefs about the
hypothesis space based on new evidence, encoding the model’s epistemic uncertainty.

4.4.1 Bayes Theorem Applied to Neural Networks

When applied to neural networks, H is often called § = (w,b). We will be using § mov-
ing forward. To build a BNN, the following elements are required: a stochastic model, a
functional model, and a training dataset.

A. Functional Model: Choosing a functional model, or neural network structure (i.e.,
ANN, CNN, RNN, etc.), is the first step as it determines the physical construction of the
network (i.e., how many layers, which parameters will be stochastic, etc.) and what the
output of the network should be. The mathematical derivation of the functional model is

y = Qo(x) + € [15] (26)

where y is the output the model intends to predict, ®g(x) is the function modeled by the
neural network, and ¢ is the variable that denotes random noise. Since the activation function
is only an approximation, € captures the aleatoric uncertainty of the model [13, 15].

B. Stochastic Model: We then begin to establish the priors, P(6), and P(D|#), which
provide our initial convictions on the model’s parametrization and predictive accuracy. Be-
fore observing any data, our belief about 6 is encapsulated in P(#). Each unique set of
values that 6 can take represents a different instance of the hypothesis. For instance, if 0
consists of weights w; and ws, then w; = 0.2 and wy = 0.4 represents one instance while
wy; = 0.1 and wy = 0.3 represents another. This distribution reflects our initial confidence
in the different parameter values based on previous data, expert knowledge, or any other
information available before the current analysis. We calculate the P(D|H) when observing
the data. A higher likelihood under a particular set of parameters suggests that the network
with those parameters is more consistent with the observed data [13, 15].
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C. Training Data: The network needs a training set of input features, z, and target vari-
ables, y, pairs to feed into the network. With these elements, we can then build the Bayesian
posterior, which reflects our updated understanding of the parameters after considering the
evidence provided by the data. Bayes’ theorem shows us how to calculate the posterior
probability. However, the integral required to compute the evidence, P(D),

P(O|D) /9 P(D,0')d0' [13 (27)

is often challenging and computationally expensive. BNNs can have thousands of weights and
biases, resulting in a high-dimensional parameter space where each dimension corresponds
to one of these variables. Markov Chain Monte Carlo (MCMC) and variational inference are
two generally used alternatives for addressing these issues.

4.4.2 Markov Chain Monte Carlo (MCMC)

MCMC describes a family of methods that explore some state space, €2, so that, over time,
the samples collected eventually converge to the stationary distribution, =, of interest. For
BNNs, the state space would be 0, where a state is some set of values for the weights and
biases at that point in training, and the stationary distribution P(6|D). Sampling occurs
from some number, T, of steps, beginning at an arbitrary initial state in 2. MCMC methods
progress from the initial to the final state, 7, through Markov chains, which are built on the
principle that the probability of transitioning to a subsequent state depends exclusively on
the current state, not on the sequence of transitions that preceded it. The final state is a
finite collection of samples that were found to approximate the target distribution [14] best.

A Markov process is said to have a unique 7 if the following two conditions are true:

1. A 7 exists for the state space in question: A common way to ensure this is
through the principle of detailed balance, which states for every pair of states, the
probability of moving from state 6 to state 6’ is balanced by the probability of moving
from state ¢’ to state 8 Mathematically, this is expressed as

T(0)P(0')9) = m(6')P(0]0') [14] (28)

where P is a transition matrix whose entries represent the probability of transitioning
from state 6 to state 6’ [14].

2. The process is ergodic: FErgodicity means that the Markov chain will eventually
reach 7 from any initial state if given enough time. Once the system has reached 7,
mathematically expressed as 7(0)P = m(#), it will remain in 7 as the Markov chain
evolves because, at this point, the chain is producing samples representative of the
target distribution [14].

Of the many MCMCs, the Metropolis-Hastings algorithm, described by Algorithm 1 below,
is notably the most applicable to BNNs [13].

21



Draw @ ~ Initial probability distribution;
while n =0 to N do
Draw 8’ ~ Q(0’]6,.):
| Q'8 £(6)

= min .
d Q(enlﬂ’; 18, ))
Draw k ~ Bernoulli(p);
if k£ then
9n+1 — 9!;
n=n-+1;
end if
end while

Algorithm 1: The steps for the Metropolis-Hasting algorithm [13].

The appeal of the Metropolis-Hastings algorithm lies in its ability to sample from a distribu-
tion without knowing the precise form of the target probability distribution P(z). It operates
effectively with a function f(x) proportional to P(x). The algorithm goes as follows:

1. Initialization

(a) Select an initial state 6 from the target distribution P(#) to be sampled from

(b) Select a proposal distribution Q(6'|6,,) where ¢’ is the new suggested state and
0, is the prior state. @), often a Gaussian distribution centered at 6, is used to
propose candidate states ¢’ for the Markov chain to transition to.

2. Iteration: Each step n involves the following

(a) Proposal: A new candidate 6’ is chosen from

(b) Acceptance Probability: The acceptance probability, or ratio, p for transition-
ing to &', is calculated

(¢) Acceptance Decision: A uniform random number k € [0, 1] is generated and
checked against p.

[13] (29)

0,,, otherwise

{9', if k < p(0,6,)
Qn—f—l =

Note that if 6’ is more probable than 6,,, the algorithm always accepts the transi-
tion to #’. This occurs when ¢ exists in a region of P(6) with higher density than
PO’

0,,, which results in the ratio 0] being greater than 1. When p = 1 is checked

against k the condition k£ < p is consistently met.

(d) Convergence and Burn-in: After enough iterations, the samples generated by
the algorithm are deemed to approximate the target distribution P(6) [13].

4.4.8 Variational Inference

Though MCMC algorithms are indispensable when addressing posterior distributions of
BNNs, they are limited in their ability to scale. When dealing with MCMC methods in
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general, there is a burn-in time, which describes the initial phase of sampling where the
chain requires time to attain a steady state that properly represents the target distribution.
Though samples from this phase are often discarded, it can be challenging to determine the
appropriate length of the burn-in period, and generating unused computations is computa-
tionally expensive. Additionally, storing all of the sustained samples of high dimensional
parameter space can be very resource-intensive [13, 14].

This is where variational inference comes into play. Instead of sampling from the posterior,
variational methods approximate the posterior using a parametrized distribution g,(H),
called the variational distribution or approximate posterior. During training, the parameters
¢, analogous to 6, undergo optimization to refine ¢,(H ), aiming for maximal alignment with
the exact posterior distribution P(H|D). Maximizing the closeness between the approximate
and true posteriors if often done through minimizing Kullback-Liebler (KL) divergence.
KL-divergence measures the dissimilarity between two distributions and is calculated using
Equation 30.

Dre(@IP) = | autir) o (k) it 13 (30)

Minimizing the KL-divergence, however, is difficult because it still requires that we compute
the posterior. Thus, variational inference often employs an alternative approach that focuses
on maximizing the Evidence Lower Bound (ELBO) derived from a rearrangement of terms
in the KL divergence equation, leading to the following formula:

| et og (2475 ) dtt’ = 10s(P(D)) = Dicu(aalP) 113 (31)

In this equation, log(P (D)) is constant with respect to ¢ as it only depends on the prior.
Therefore, the optimization process is the adjustment of ¢ to increase the ELBO, leveraging
the fact that doing so indirectly minimizes the KL divergence between g4(H) and the true
posterior. To do this, Stochastic Variational Inference (SVI) is a type of variational inference
that utilizes stochastic gradients to incrementally update ¢ in a direction that increases the
ELBO. Due to this incremental update process, SVI can process and handle data that cannot
be stored in memory entirely, making it scalable and computationally efficient [13].

4.4.4 Challenges and Limitations

Despite their advantages, Bayesian Networks face significant challenges that hinder their
widespread application. Overparameterization complicates their structure and undermines
computational efficiency, often obscuring authentic causal relationships and impeding the ef-
fective utilization of insights. Additionally, BNNs struggle with unsupervised algorithms and
managing sparse or noisy data, common in real-world settings. To address these issues, ad-
vanced methodologies are needed to handle incomplete datasets and adapt to non-standard
models, though this increases complexity, consuming more time and resources. A specific
challenge arises with autocorrelation within the MCMC methods. Since each sample in
the chain depends on its predecessor, samples can become highly similar or autocorrelated,
leading to a biased representation of the probability distribution, which requires subsam-
pling techniques to obtain a more accurate and representative set of samples for inference.
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However, subsampling itself introduces the need for careful consideration regarding the se-
lection of samples and the potential for information loss, further adding to the complexity
of employing Bayesian Networks effectively [15].

In spite of these hurdles, Bayesian networks are a robust framework for probabilistic learning
amidst uncertainty. Enhancing their handling of sparse data, reducing overparameteriza-
tion, and personalizing learning models are crucial for improving their efficacy. Leveraging
the probabilistic nature of Bayesian inference, BNNs use both MCMC and SVI for effi-
cient training, maintaining scalability, and meeting diverse learning needs. This integration
of stochastic modeling and neural networks enables the creation of adaptive, personalized
learning environments, potentially transforming education by making learning more tailored,
effective, and inclusive.
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V. APPLICATIONS OF AI IN ADAPTIVE LEARNING SYSTEMS

This section will delve into various implementations of Al, focusing on systems like As-
sessment and LEarning in Knowledge Spaces (ALEKS) and Bayesian Intelligent Tutoring
System for Computer Programming (BITS), among others. Exploring these tools will not
only highlight their technical intricacies but also discuss the practical benefits and challenges
posed by the integration of Al into adaptive learning environments.

5.1 ALEKS

Before the incorporation of Al, the ALEKS learner model only leveraged Knowledge Space
Theory (KST) to provide a tailored educational experience for students from grades 3-12 and
in higher education [59]. This cognitive framework allows ALEKS to construct a detailed
map of a student’s comprehension and mastery over discrete concepts, defined as ‘items.’
In practice, KST enables systems like ALEKS to identify which ‘items’ students know and
which they are ready to learn based on their current knowledge state or set of items they
have mastered. For example, in the context of learning Python, one part of the knowledge
structure could involve mastering basic Python syntax. Within this knowledge state, specific
items might include tasks such as writing and executing a Python script requiring the student
to know how to use the “print()” function and understand how to enclose strings [60]. The
ALEKS system, backed by billions of past student interactions with the software, continually
updates these states through regular Progress Knowledge Checks [28, 61]. During these
checks, ALEKS categorizes each assessment item into three categories based on the student’s
responses: in-state, items that the student is likely to know based on their answers; out-of-
state, items that the student is likely not to know; and uncertain, items ALEKS was unable
to classify as known or unknown [56, 57, 58]. Tools like the ALEKS Pie Report, as shown
in Figure 10, work to visualize the results of these checks, showing tangible progress and
helping time the introduction of further practice or new questions, ensuring that learning
interventions are both timely and contextually relevant [28].

Nice job, Jane. Here are your results.
You've mastered 177 of 582 topics (30%) In
this class

o —
ed 177 Remal 405

Arithmetic Readiness
(29 Topics)

171 O
MALTERED (52 Topics)
~ \ . Linear Equations
(76 Topics)

o Linear Inequalities
(25 Topics)

Lines and Functions.
[53 Topics)

Figure 10: ALEKS Knowledge Checks, which contain no more than 30 questions, help
determine which subjects a learner has mastered and identify areas needing further work.
The results from these Knowledge Checks are represented in the ALEKS Pie Chart within,
showing the learner both their mastered topics and those requiring more practice [28, 61].
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However, while these methods helped ALEKS be effective at “know[ing] what each student
is ready to learn,” feedback revealed that students were experiencing “assessment fatigue”
due to frequent progress and placement assessments [56, 59]. They expressed a preference for
shorter testing, which would afford them more time to learn new material [59]. Researchers at
ALEKS then decided to figure out a way to shorten the tests. In their 2019 study, Matayoshi
et al. [2019a] analyzed over 3.3 million questions from progress tests across 10 different math
and chemistry courses, identifying key areas for improvement in ALEKS’s learning retention
model. They found that uncertain items were more frequently retained and that there was
a negative correlation between the length of the tests and the retention of learned items, as
illustrated in Figures 11 and 12 respectively. In response, ALEKS worked to improve their
KST-powered assessment algorithm by incorporating the classification capabilities of RNN
models. RNNs are well-suited for modeling time-dependent data, as they can retain past
inputs in their hidden layers, enabling them to make informed predictions based on observed
patterns within a sequence. The incorporation of RNNs into their system enhanced ALEKS’
capacity to both predict which items were more likely to be retained and stop the test once
a classification had been reached, reducing the need for frequent testing [56].
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Figure 11: This graph displays how items classified during initial ALEKS assessments as
“out-of-state,” “uncertain,” or “CC” (learning sequence where students successfully answered
the first two questions of an uncertain item correctly) are retained by students over time. The
three colored lines represent different response types: blue for correct, green for incorrect,
and red for “I don’t know” responses [56].
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Figure 12: The proportion of correct test responses decreases as the number of events, or
questions, in a learning sequence increases indicating that longer learning sequences, initially
thought to provide more practice, do not necessarily lead to better retention of the material
[56].

Matayoshi et al. [2019a] developed a neural network classifier model to predict whether a
student would correctly answer questions about recently learned items. The model incor-
porated several key features: a categorical variable representing ALEKS courses, which had
ten distinct values corresponding to different classes; a categorical variable accounting for a
diverse range of 2,190 distinct items that students might encounter; a continuous variable
ranging from 0 to 1 representing the initial score of their Initial Knowledge Check; a dis-
crete variable spanning from 0 to 399 measuring the time in days since each item was first
learned; and lastly, a sequence of categorical variables, each with three values representing
a correct answer, an incorrect answer, or the action of reading an explanation. The learning
sequences, inherently sequential as they track actions over time, were then processed by the
hidden layers of the RNN, for which two types of hidden processing units were evaluated:
GRUs and LSTMs. To optimize the neural network and prevent overfitting, the researchers
used the following techniques: batch normalization by adjusting and scaling activations to
stabilize the network, early stopping to prevent overfitting, and randomly dropping process-
ing units (and their connections) during training also to prevent overfitting. The researchers
determined that the most effective configuration of their RNN model consisted of four layers
of LSTM units. The output from these LSTM layers was then concatenated with the other
features to form the input for a Multi-Layer Perceptron structured with an initial hidden
layer containing 800 units, followed by two hidden layers, each with 400 units with each unit
using a ReLLU as the activation function, which contributed to the model performing better
than the forgetting curve. Overall, as illustrated in Figure 13, the neural network was more
precise, meaning the ratio of items correctly identified as retained to all items predicted as
retained was higher, and capable of recalling or classifying more items in one of the three se-
quence categories. Since the neural network model combined sequential data from students’
learning activities with other static (non-sequential) variables to enhance predictions, it pro-
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vided more insight into which variables significantly affect retention beyond what traditional
one-dimensional forgetting curve models could. With this information, ALEKS can better
classify the uncertain items thereby minimizing time spent on recently learned material [56].
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Figure 13: A precision-recall curve demonstrating the predictive accuracy of the neural
networks. As recall increases, precision tends to decrease, indicating that while the model
identifies a larger number of items as retained, it does so with decreasing accuracy.

Another method they discovered for streamlining assessments was an intelligent stopping
algorithm. Matayoshi et al. experimented with this approach using the ALEKS Placement,
Preparation, and Learning (ALEKS PPL) assessment, which is administered to students in
post-secondary mathematics courses to ascertain their placement in one of six math courses.
The ALEKS PPL assessment categorizes each of the 314 items it tests for as either in-state,
out-of-state, or uncertain [57]. The original stopping algorithm, prior to the additions of
Al terminated when either ALEKS classified all items or the preset limit of 29 questions
had been answered [29]. Seeing as course placements did not require students to answer all
questions, Matayoshi et al. [2019b] proposed the current stopping algorithm described in
Algorithm 2 and an updated one in 2021 described in Algorithm 3 for the RNN models [57,
58].

28



Inputs:

a, stopping threshold probability

P(k|x,). predicted probability of class k, k= 1...., 6, after question n
K, =argmax,_, ,P(k|x,); i.e., the most likely class after question n
C,., the current recommended course placement after question n

Iterations:
for n = 10 to 29 do
Compute K, and C,, using information from questions 1 to n

if n == 29 or (P(K,|Xn) > a and K, == C,,) then
Stop the assessment
end if
end for
Output:
', the (predicted) course placement recommendation

Algorithm 2: The 2019 stopping algorithm [57].

Inputs:

«, stopping threshold probability

Xn, the input features of the classification model after question n

P(k | x,), predicted probability of class k, k = 1, ..., 6, after question n

K, = argmaxg—,. 6 P(k|Xy); i.e., the most likely class after question n

C29, the recommended course placement after question 29 (based on computing
the student’s percentage score and applying the cut scores in Table 1)

Iterations:
forn =5t029do
if n == 29 then
Return Cyg
else if P(K, |x,) > « then
Stop the assessment and return K,
end if
end for

Output:
The predicted course placement recommendation

Algorithm 3: The 2021 stopping algorithm [58].

Both algorithms employ a vector, x,,, consisting of 942 independent variables, which repre-
sent all possible combinations of three item states across 314 assessment items. x,, classifies
each item’s state after the nth question. The variable k indicates one of the six potential
course placements, and P(k|z,) is the probability of the student being placed in course k
after answering question n. Subsequently, both algorithms compute the classifier’s predicted
class label, K, alongside the recommended course placement based on the student’s cur-
rent percentage score, C,,. The assessment process halts when the confidence K, surpasses
a preset threshold, or the 29th question is reached. The methodology for deriving course
placement from these variables has evolved. Unlike the earlier algorithm by Matayoshi et al.
[2019b], the 2021 stopping algorithm no longer required C,, = K,,. Initially, this alignment
aimed to boost performance by integrating predictions from both sources, but it sometimes
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led to unnecessarily prolonged assessments. Moreover, the 2021 version initiates after five
questions, a reduction from the previous 10-question minimum. This change addresses in-
stances where prolonged assessments were unnecessary, as the classifier frequently provided
high probability estimates well before the 10th question [57, 58].

The 2021 stopping algorithm significantly enhanced the efficiency and accuracy of the course
placement assessments, as demonstrated by several key metrics. On the test set of 45,470
students, the GRU model, leveraging this algorithm, showed marked improvements over the
logistic regression model used for baseline comparison. Specifically, when completing all
29 questions, students took an average of 93.6 minutes, with a typical (median) time of
82.5 minutes. However, after applying a stopping algorithm, the researchers saw the aver-
age test-taking time drop to 70.1 minutes and the typical time fall to just under an hour
at 59.7 minutes. Furthermore, for the 3,483 students who took over three hours to com-
plete the assessment, their average duration was reduced dramatically from 221.1 minutes
to 149.8 minutes, as shown by the stopped assessments distribution’s left skew in Figure 14.
Consequently, the number of students taking more than three hours to complete the assess-
ment dropped to 1,299, representing a reduction by a factor of approximately 2.7. These
improvements underscore both the algorithms and the artificial intelligence behind its role
in optimizing the assessment process, making it a valuable tool for educational institutions
aiming to streamline course placements while ensuring precise student evaluations [58].
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Figure 14: A histogram depicting the distribution of durations for assessments employing
the 2021 stopping algorithm utilizing the combined features GRU model with a threshold of
a = 0.99, and for full-length assessments encompassing all 29 questions [58].
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5.2 BITS

BITS is an Intelligent Tutoring System (ITS) designed to tutor students in introductory C++
[62]. ITS are advanced computer programs designed to simulate personalized teaching by
adapting to the individual learner’s needs. They generally consist of four interconnected
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modules simulating the effectiveness of one-on-one tutoring at scale: Expert module, User
Interface module, Student module, and Tutor module [32]. Each module is captured in
Figure 15, and they work together to accomplish BITS” main goal: help students navigate
online learning environments through appropriate recommendations of learning goals and
the generation of learning sequences to achieve them [62].

f User Interface \
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- Lecture noles
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Figure 15: The architecture of BITS.

The Expert module, known as the Knowledge Base in BITS, serves as the core repository of
what the system knows about the subjects it teaches. Students interact with the Knowledge
module through BITS’ User Interface module, depicted in Figure 16 below.
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Figure 16: The UI of BITS presenting lecture notes on the File I/O concept while also
prompting the user to indicate their understanding of this concept (note “original in color”)
[62].

BITS’ front-end design displays the problem with an accompanying figure, the question to
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solve, and a place to answer (either through selection or filling in the blanks). Then the
learner model, or Student module, is developed from the user’s interaction with the UI.
Students have the option to follow the prerequisite path recommended by BITS or select a
path from the generated learning sequences. This latter option enables students to tailor
their learning experience by choosing topics of interest carefully curated into a sequence
accommodating their learning style. The most important module backing BITS’ ability to
help students navigate online educational resources is the Tutor module, where the human-
like tutor provides feedback to the learner and monitors how it impacts their course of study.
BITS formulates its Student and Tutor modules using BNNs [62].

5.2.1 Implementation of Bayesian Neural Networks in BITS

Bayesian Networks are often utilized in adaptive tutoring systems for their ability to model
the uncertainty in learners’ knowledge states and dynamically adapt instructional strategies
based on probabilistic inference. Furthermore, a Bayesian Network can model prerequisites
as it is a DAG, as shown in Figure 17, which depicts the BNN for the For Loop construct in

C++ [30, 62].
Variable Assignment Relational Operators
operators

Figure 17: Model of the prerequisites to understand the For Loops [62].

Each node in the network is associated with conditional probability distributions (CPDs)
that describe the likelihood of a student mastering a concept given their mastery of prereq-
uisite concepts. As students interact with the system, BITS updates its beliefs about their
knowledge state, approximated by calculating the following posterior distribution [62].

p(a; = known, P; = known)

[62] (32)

a; = known|P; = known) =
M | ) p(P; = known)
, where q; is the system’s initial hypothesis, 6, about their knowledge of concept a;, and P; is
the system’s already observed data, D, of the student’s mastery of the concept’s prerequisites.
Using this, BITS can calculate all of the CPDs for a given concept, such as for loops, shown
in Figure 18, to determine what the student knows and doesn’t know [13, 62].
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As:;m:l g;‘:r‘;‘l’o“: Ao m"‘”""‘“’ﬁ:‘:“‘ For Loop p(FIV.RI)
known known known known 0.75
known known known not known 0.25
known known not known known 0.39
known known not known not known 0.61
known not known known known 0.50
known not known known not known 0.50
known not known not known known 0.22
known not known not known not known 0.78

not known known known known 0.50

not known known known not known 0.50

not known known not known known 0.29

not known known not known not known 0.71

not known not known known known 0.40

not known not known known not known 0.60

not known not known not known known 0.15

not known not known not known not known 0.85

Figure 18: The CPD associated with all possible known, unknown combinations of the for
loop’s prerequisites [62].

These probabilities help determine the Student module consisting of the most likely current
state of the student’s understanding. If p(a; = known|P; = known) > 0.70 (an arbitrarily
chosen threshold), the a; is considered already known. If p(a; = known|P; = known) < 0.70
and all P; are known, the a; is considered ready to learn. Lastly, if at least one concept in P,
is unknown, a; is considered not ready to learn known. Based on this, the BITS” Tutor, or
Adaptive Guidance, module decides the next educational steps by refining its prerequisite
recommendations and learning sequence generation. Students can study the next best topic
BITS recommends or select a learning sequence path. This latter option enables students to
tailor their learning experience by choosing topics of interest that are thoughtfully curated
into sequences that accommodate their learning style [62].

In essence, the BNN within BITS supports handling uncertainty and variability in student
learning paths and enhances the system’s ability to provide personalized education efficiently.
This intelligent system significantly improves the adeptness of web-based tutoring environ-
ments.

5.3 Other Applications

Several other adaptive tools stand out for their innovative use of artificial intelligence to
enhance learning experiences. These include systems like ChatGPT, OATutor, Jill Watson,
and various virtual assistants, leveraging different aspects of Al technology, including natural

33



language processing (NLP), data mining, and predictive analytics.

5.3.1 ChatGPT

ChatGPT, developed by OpenAl, is built on the Generative Pre-trained Transformer (GPT)
architecture, a neural network designed for natural language processing (NLP) tasks. It
enhances user interaction by interpreting and generating human-like text, enabling dynamic,
context-aware conversations. This Al tool is handy in educational settings, where it provides
real-time explanations, tutoring, and personalized feedback, making learning more accessible
and tailored to individual needs. Through its ability to respond to diverse educational
scenarios, ChatGPT supports various functions such as automated grading and adaptive
curriculum development, enhancing engagement and academic outcomes [66].

5.3.2 OATutor

OATutor, developed at UC Berkeley, is an open-source ITS that supports the learning sci-
ences research community. It provides students and educators with one-on-one tutoring,
primarily in mathematics, that understands and responds to their learning needs in real-
time. It does this using Bayesian Knowledge Tracing (BKT), a widely implemented model
that operates on the principles of Bayesian inference [33]. Recently, generative Al tools such
as ChatGPT have been added to OATutor’s functionality to quicken the time it takes to gen-
erate hints for learners and enhance the hints provided. Additionally, the open-source nature
of generative Al was particularly attractive to OATutor. By integrating ChatGPT into their
platform, instructors could have greater control over the content delivered to students. Their
familiarity with their students would allow them to tailor inputs into the system, ensuring
that the content is more aligned and relevant to their specific student populations [31, 32,
60, 67].

5.8.8 Jill Watson

Jill Watson is an Al-powered teaching assistant created by Professor Goel at the Georgia
Institute of Technology. Like ChatGPT, Jill employs advanced NLP capabilities to answer
students’ questions based on the course syllabus and other educational materials, effectively
reducing teachers’ time on administrative tasks. By handling routine queries, Jill Watson
enables educators to focus more on personalized teaching and less on repetitive duties. Since
its debut in 2016, it has been fulfilling its function to the fullest, having been deployed in
approximately 17 different classes, ranging from undergraduate to graduate levels, online
and in-person [68, 69].

In the end, AI in education is not just about automating tasks but about enhancing and
personalizing the learning experience to meet the unique needs of every student. Integrating
Al-driven tools like ChatGPT, OATutor, and Jill Watson into educational environments
represents a significant advancement in adaptive learning. However, it is crucial to approach
the deployment of these Al technologies with caution, which the following section discusses
in further detail.
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VI. ETHICAL FRONTIERS IN AI-DRIVEN ADAPTIVE LEARNING

Al-driven systems can now analyze vast amounts of data in real time, tailoring educational
pathways to suit individual learners’ strengths, weaknesses, and preferences. However, this
technological leap has sparked significant ethical concerns within academic circles. Issues
such as algorithmic bias, data privacy, and an over-reliance on Al tools have initiated cru-
cial conversations regarding the future of educational practices and policies. This section
will delve into the ethical implications of Al in adaptive learning, exploring how these tech-
nologies can both enhance and challenge traditional educational frameworks. By balancing
the transformative potential of AI with moral considerations, educators aim to ensure that
technology serves learners’ best interests while upholding principles of equity, privacy, and
pedagogical integrity. As Al continues to revolutionize adaptive learning systems, providing
personalized educational experiences and insights into student performance, it is imperative
to address potential ethical challenges. Ultimately, the focus lies not on whether Al should
be utilized in classrooms but rather on how to establish structures that prevent its misuse.

6.1 Bias

In Al-powered adaptive learning, the issue of bias is particularly critical because it can in-
fluence both the design and the outcome of learning algorithms. Harini Suresh and John
Guttag of MIT identified six distinct categories of bias in machine learning, each stemming
from various sources. Historical Bias results from past inequalities or societal prejudices being
considered in the training data, perpetuating biased outcomes in the algorithm’s predictions.
This bias is notably prevalent in education, particularly in Educational Data Mining (EDM)
[39]. In their study, Paquette et al. [2020] found that nearly half of the papers analyzing
demographic data used such attributes as predictive features in models without including
them in testing or validation [40]. Measurement Bias occurs when the data collection process
systematically favors certain ideologies, structures, or groups and excludes others. Aggre-
gation Bias arises when data from different sources or contexts are combined in a way that
ignores variations among individual or group needs. Representation Bias occurs when the
features used to represent data fail to capture the full diversity of the population [39]. For
instance, Anderson et al. [2019] studied the fairness of machine learning models predict-
ing student graduation rates. They noted that the small sample size of only 44 indigenous
learners limited meaningful predictions for dropout rates among this demographic [40, 41].
Evaluation Bias is present when the metrics used to evaluate performance do not accurately
represent the user groups upon which the algorithm operates. Finally, Deployment Bias
refers to discrepancies that arise when an algorithm is implemented in a different setting
than the one it was originally designed for. An example of this would be deploying a student
engagement monitoring tool originally meant to help educators identify struggling students
and provide targeted support, but school administrators now use it to evaluate teacher ef-
fectiveness based solely on student engagement metrics. Without addressing these biases,
new implementations of educational practices and policies risk being based on data that
misrepresents reality and leads to educational interventions that are not only ineffective but
also unjust [37, 39].
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6.1.1 Addressing Bias

Mitigating bias in machine learning is complex but not impossible. Implementing a combi-
nation of diverse data sets, transparent methodologies, and regular ethical audits can ensure
that Al-driven tools function equitably across all student demographics. This begins with
gathering data from a broad spectrum of sources, encompassing various educational insti-
tutions, geographic regions, and socioeconomic backgrounds, to ensure a rich diversity that
reflects the vast array of student experiences. The researchers and engineers behind these
technologies should collaborate with educators, sociologists, and cultural experts to ensure
the data’s relevance and inclusivity, providing essential context that prevents skewed perspec-
tives. Furthermore, an ongoing data evaluation is necessary to maintain representation and
address emerging societal changes or educational shifts [43, 48]. This may require targeted
efforts to collect data or forming partnerships with organizations that advocate for these
groups (such as Diversity.Al, an organization leading research in combating discrimination
by humans and Al and providing open access datasets of representative data for developers),
thereby enriching the data pool with a wider range of perspectives [49]; incorporating feed-
back loops allows for the continuous refinement of data collection and Al training processes,
as feedback from users and stakeholders can highlight unforeseen biases and areas for im-
provement; and lastly, training for faculty on when to trust or question the outputs given by
the adaptive learning systems. This should not be a one-time task but a continuous process
that ensures the Al’s outputs are consistently fair and unbiased. By adhering to these prac-
tices, Al in education can be harnessed as a powerful tool for personalized learning without
compromising fairness or ethical standards [34, 43, 48].

6.2 Data Privacy and Security

Data privacy in the academic sector is becoming a critical issue, mainly due to the various
problems of disregarding the fair information practice principles: notice, consent, choice, and
transparency. First and foremost, efficient adaptive learning systems require the collection
and analysis of vast amounts of personal data (i.e., age, gender, school location, learning
style, emotional state, past test scores, etc.) from learners, which raises concerns about how
this data is stored, who has access to it, and how it is used beyond the educational context.
A notable example illustrating these concerns is the case of InBloom. InBloom, originally a
data aggregator initiative, encountered substantial resistance and ultimately shut down due
to widespread privacy concerns, lack of parental consent, and issues surrounding access to
sensitive student information. It collected data across 400 optional fields, which included
sensitive details such as disability status and social security numbers—details that were often
collected without full user awareness. The controversy, highlighted by a lawsuit from con-
cerned parents and subsequent legislative actions, led to the withdrawal of several states and
the shutdown of InBloom in 2014 [42]. Secondly, maintaining confidentiality poses significant
challenges with the enhancement of tools for aggregating large datasets. Although person-
ally identifiable information may be removed from these datasets, the risk of re-identification
persists. Furthermore, the increased tracking of past and present actions to predict future
behaviors exposes new realms of personal data, all in the pursuit of enhanced understand-
ing and productivity. The wrongful disclosure of student information can undermine the
beneficial impacts of adaptive learning platforms on social and academic development. It
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deprives the users of these educational technologies of control over their learning path be-
cause characteristics about themselves, which they did not consent to be included in their
student profiles, are utilized to generate probabilistic predictions about the opportunities
and resources they can or cannot access. Lastly, these concerns are compounded by artificial
systems and algorithms that are often opaque, creating a “black-box” scenario where data
processing and decision-making mechanisms are hidden from view. As seen with InBloom,
the users and their parents were unaware of the extensive tracking being done. This lack of
transparency inhibits the ability of stakeholders—students, parents, and educational author-
ities—to audit and understand how personalized learning decisions are being made. Such
conditions prevent stakeholders from holding institutions accountable and hinder efforts to
build trust and acceptance of digital assessment tools. As algorithms play a more significant
role in shaping educational outcomes, the call for transparency, accountability, and ethical
considerations in their deployment becomes more urgent [38, 42].

6.2.1 Addressing Data Privacy and Security

Data protection in educational technology requires a multifaceted approach that includes
technical, organizational, and legal defense. Each defense operates on two fronts: protecting
the user and securing the technology. Technology safeguards must combine transparency and
privacy-preserving algorithms so that users are aware of and can consent to how and why their
data is being collected and that developers are held accountable for how they extract, process,
store, and distribute sensitive data [64]. The privacy-preserving techniques often used are k-
anonymity, which ensures that each record in a dataset is indistinguishable from at least k—1,
L-dwersity, which addresses k-anonymity’s limitations by ensuring that each “equivalence
class” (a group of records indistinguishable from each other) contains at least [ distinct
values for sensitive attributes, and T-closeness, which addresses L-diversity’s shortcomings
by ensuring that the distribution of a sensitive attribute in any group of records closely
resembles the distribution of that attribute in the entire dataset, reducing the likelihood
that these attributes can be guessed or deanonymized [47, 63, 64].

Organizations must implement strict access controls to student data and establish robust
auditing procedures to evaluate the impact of educational technologies, ensuring that risks
are minimized. They should regularly update these protocols and any associated technical
defense systems to adapt to new security challenges and maintain compliance with evolving
privacy regulations. Additionally, regular training sessions for educators and updates on
data protection best practices and relevant legal changes are essential for those utilizing
educational technologies [47].

Finally, on the legal side, a thorough understanding of relevant laws such as the Family
Educational Rights and Privacy Act (FERPA) and the Children’s Online Privacy Protection
Act (COPPA) is essential. FERPA is a federal law in the United States that restricts
disclosing personally identifiable information from student records without explicit consent
from the parent or eligible student. At the same time, COPPA is another U.S. federal law
requiring websites and online services to obtain parental consent before collecting, using, or
disclosing personal information from children under 13. Outlining these (and similar) rights,
most notably in terms of data use, needs to be precise. Participating in regular training
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sessions and updates on the best practices in data protection and any legal changes that
might affect their use of educational technologies needs to occur. By collaboratively taking
these comprehensive measures, developers and educators can ensure a secure educational
environment [42, 64].

6.3 Overdependence on Technology

Concerns regarding the overdependence on Al in academic spaces are twofold, affecting
educators and students. From an educator’s standpoint, overreliance on Al can lead to com-
pliance challenges, especially when adhering to educational standards and regulations. The
outputs of Al systems can significantly shape how insights from Al systems are presented
and interpreted. On the one hand, some adaptive learning systems may offer advanced
learner modeling, yet they carry inherited biases, potentially leading to unjust treatment
or outcomes for specific groups of students. On the other hand, other tools may generate
less informative observations [45, 46]. A case in point involves BlackBoard Learn, a predic-
tive analytics tool used in an organic chemistry class at California State University, which
estimated that 80 percent of the students were likely not to complete the semester. While
statistically significant, this information was not news to Professor Fernandes, who was left
without actionable guidance on what steps to take next [35, 44]. In both situations, the Al
behind the learning system cannot grasp the full context of a student’s situation, such as
personal challenges or cultural backgrounds. Relying heavily on Al for profiling and decision-
making can diminish the role of educators in understanding and supporting students. This
might lead to a one-size-fits-all approach, where subtle nuances in individual student needs
and contexts are overlooked, contradicting the intended purpose of these systems. Educators
need to be aware of the benefits and the limitations to prevent complacency with artificial
suggestions that do not align with their professional judgments [45, 46].

From a student standpoint, one primary concern revolves around reduced learner agency,
which describes the capacity for individuals to take ownership of their learning journey.
With Al assuming a predominant role in decision-making processes, educators worry that
avenues for creativity, scientific discovery, and reflection may be quashed. Sophisticated
technologies such as natural language processing especially call into question the authen-
ticity and originality of student work, particularly in tasks involving writing assignments
and scientific research. For instance, if students use Al to generate homework answers, op-
portunities to set goals and reflect on their learning progress are missed. It also becomes
challenging for educators to assess their students’ analytical and critical thinking abilities.
Moreover, the use of Al in educational settings prompts discussions about the role of human
instructors in guiding students’ interactions with these technologies. Furthermore, while Al
can provide valuable support in personalized learning experiences and feedback mechanisms,
it minimizes essential human elements in education, such as teacher-student interaction and
peer collaboration, that help develop students’ social and behavioral skills [45].

6.3.1 Addressing Overdependence

The strategy to tackle overreliance on Al in education spans various fronts, from educational
initiatives to regulatory measures. While the degree of restriction on Al usage is left to the
discretion of educators, we recommended that if restrictions are imposed, they should be
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accompanied by digital literacy programs. These initiatives can help students view Al as a
supportive tool rather than a crutch. Central to this approach is incorporating educational
initiatives that enhance understanding and effective use of Al technologies while empha-
sizing ethical considerations. By promoting a curriculum that underscores the importance
of human oversight and ethical use of technology, students are better equipped to recog-
nize Al’s limitations and navigate its complexities responsibly [45, 46]. Research findings,
such as those by Vasconcelos et al. [2023], shed light on the nuanced nature of Al reliance
in decision-making processes. These insights emphasize the significance of adequate expla-
nations in mitigating overreliance alongside considerations of cognitive costs and contextual
utility [65]. Integrating Al into project-based learning environments offers students hands-on
experience, demystifying its complexities, fostering high effort, and rewarding collaborative
engagement. Measures such as plagiarism checkers and requiring students to cite Al usage
can be implemented to reinforce accountability and responsible Al usage further. These
steps promote transparency and underscore the importance of ethical considerations in Al
utilization. By adopting a comprehensive approach that combines educational, ethical, and
practical strategies, educators can empower students to navigate the evolving landscape of
AT with confidence and responsibility [45, 46, 65].
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VII. CONCLUSION

Exploring the landscape of adaptive learning, particularly when hand-in-hand with Al, re-
vealed a profound evolution in educational methodologies. From the early days marked by
the pioneering efforts of macro and micro-adaptive systems like the Keller Plan and teaching
machines to the contemporary period dominated by advanced Al algorithms, the trajec-
tory underscores a relentless pursuit of diverse learning experiences. The adaptive learning
framework outlines essential elements such as learner modeling, content personalization, and
instantaneous feedback, illustrating the holistic approach necessary for the success of adap-
tive systems. However, it is imperative to acknowledge the drawbacks of older Al algorithms
like Decision Trees, which paved the way for more dynamic solutions such as ANNs, RNNs,
and BNNs. In doing so, we understand what to keep from old technologies and what to leave
behind, much like an LSTM or GRU. We also discussed several implementations of Al in
ALSs, as exemplified by platforms like ALEKS and BITS, showcasing the tangible impact
of these technologies in revolutionizing education. Yet, alongside these advancements come
ethical considerations that demand careful navigation and proactive mitigation strategies.
In navigating these challenges lies the promise of a future where adaptive learning powered
by Al enhances educational outcomes and promotes inclusivity, equity, and ethical practice.
It is a future where technology catalyzes empowering learners, educators, and academic in-
stitutions alike to thrive in an ever-changing environment of knowledge sharing. Ultimately,
the intertwining of Al and adaptive learning represents more than just technological innova-
tion; it embodies a paradigm shift, parallel to the 1970s AT Movement, in how we consume,
deliver, and engage with education. As we stride into this future, it is imperative to remain
vigilant, continuously assessing, refining, and reshaping our approaches to ensure that the
transformative potential of Al in adaptive learning is realized in its fullest, most beneficial
form for all stakeholders involved.
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