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by Jay Vishwarupe

Distributed caching has become a go-to tool for developers seeking to build ef-
ficient, scalable, and responsive systems. Popular industry frameworks have been
built on traditional shared-nothing architecture to provide an appropriate balance
between performance and resiliency. The inherent problem in this design is that it
forces compute and memory to be coupled, requiring significant over-provisioning
for peak load and driving costs up exponentially. Machine learning has only made
this problem harder, as workloads are now often terabytes in size. This thesis exam-
ines how the emerging paradigm of memory disaggregation can offer a solution to
these problems. Memory disaggregation refers to an architecture in which compute
and memory are decoupled and are instead interconnected by a high-performance,
low-latency network fabric. We examine the development of physical disaggrega-
tion (CXL) and logical disaggregation (RDMA). We develop an understanding of the
eviction policies at the heart of caching, from simple primitives to intricate combi-
nations. By grasping these principles, we can understand how to apply them to dis-
aggregated memory systems, with existing infrastructure and next-generation plat-
forms. Our investigation finds that while open challenges relating to performance
isolation, memory allocation, and fault tolerance persist, distributed caching in dis-
aggregated memory significantly outperforms its shared-nothing counterparts and
provides a framework to grapple with the increasingly large workloads of tomor-
row.
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Chapter 1

Introduction

With an increasingly digitized world comes more data than ever before. Over the
last three decades, the monthly volume of internet traffic has grown exponentially,
reaching 456 Exabytes per month in 2024 [2]. As applications scale to serve billions
of users and their traffic, there becomes an increasing need for quick data access and
retrieval. Concurrent with this transformation have also been prolific advancements
in data processing. In particular, the advent of novel machine learning and artificial
intelligence techniques that employ complex, long-running algorithms has strained
what we can achieve with current computers. Given the complexity of these algo-
rithms, it has become untenable to reproduce or recreate outputs every time they
are needed when dealing with the demands of efficiency, scalability, and latency of
modern applications.

One approach to mitigate these problems has been caching. Caching is a tech-
nique that involves creating a copy of computationally expensive or frequently uti-
lized data. From CPUs to large-scale content distribution networks, caching mani-
fests itself at every stage of the technology stack. However, traditional single-node
caching, while effective, has limited scalability. Modern applications require thou-
sands of servers spread across the globe to serve requests in a timely and efficient
manner. Despite consistency and fault tolerance challenges, distributed environ-
ments offer significant performance gains. Each approach to caching in distributed
networks comes with unique performance profiles and trade-offs. As such, dozens
of distributed caching frameworks like Redis [39], Memcached [32], and Hazelcast
[17] have been developed, each with their unique design philosophies. Such sys-
tems have proliferated throughout the industry and have become synonymous with
performance in modern computing architectures.

1.1 Key Definitions

We introduce a few key definitions relevant to the problem space.

1. Cache: A temporary storage intended for data access and operation.

2. Object: A single entry in a cache.

3. Page: A fixed-unit entry in a cache (often used interchangeably with object).

4. Working set: The set of objects used by a workload.

5. Distributed Systems: A collection of independent servers coordinating to achieve
a common goal.

6. Distributed Cache: A collection of independent servers connected by a net-
work that pool resources to operate as a cache.
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7. Hotness/Coldness: Characterization of the rate at which an object is accessed.
A hot object is frequently accessed while a cold one is not.

8. Consistency: “The system behaves as if there is a single copy of the data, and
all operations are executed one after another without any concurrent or out-
of-order effects.“ [3]

9. Shared-nothing architecture: A distributed computing architecture where each
node manages and owns its resources and only communicates with one an-
other through messages.

1.1.1 The Memory Hierarchy

FIGURE 1: The Memory Hierarchy [15]

The memory hierarchy pictured in Figure 1 defines the storage tiers. As we go
from the bottom left corner to the top right, the trade-off is increasing bandwidth at
the expense of increased price per gigabyte. The speed comes from the proximity of
the memory source to the compute source. The increased cost comes from two main
sources:

1. R&D costs: Manufacturing and development costs to build increasingly faster
and smaller memory multiply. For example, CPU-level caches require far more
transistors per byte of storage than DRAM.

2. Physical constraints: Physical constraints limit the maximum speed of cer-
tain types of memory. For example, growing the CPU level caches (e.g. L1
cache) in size results in greater cache latency as it takes more type to index and
sift through objects. Additionally, the limited bandwidth of communication
channels can constrain the capacity of a storage level. For example, the size of



Chapter 1. Introduction 3

DRAM is physically constrained by the number of addressing lines connect-
ing it to the CPU. This becomes particularly relevant as servers reach a point
where they can no longer utilize more RAM, regardless of the cost.

FIGURE 2: Performance of two FB workloads with varying amounts
of the working set fitting in a MemCached instance [14]

Even with this limitation, the most popular distributed caches utilize DRAM.
This is because the working set of most applications falls into the rough order of
magnitude of 1 GB to 1 TB. However, they sometimes have to drop into Flash mem-
ory (NAND) due to the scale of their data [8]. RAM and NAND offer a happy bal-
ance between the capacity and speed required to serve the needs of modern com-
puting applications.

The importance of an application’s working set all fitting in memory is evident
in Figure 2. The diagram details the performance fall-off in operations per second
and latency at different levels of the working set that fits in memory for a specific
set of Facebook workloads. More generally, the study found an 8× to 25× perfor-
mance decrease across all their tests if half the working set doesn’t fit in memory
[14]. The intuition comes from the fact that the time it takes to carry out operations
far exceeds the time it takes to load the relevant data. In particular, a modern CPU
operates at more than 3 GHz [10]. Combined with the fact that modern CPUs can
often conduct more than one operation per cycle and have multiple cores working
in tandem, CPUs can execute tens of billions of instructions every second. As a re-
sult, the time to access memory or disk almost always dwarfs the time to perform
any complex operation. Thus, if an operation requires even one object not located
in memory, the time to retrieve it will bottleneck the system. This makes caching
frequently accessed information hypercritical.

1.2 Caching Applications

Distributed caching has a wide array of use cases. We highlight a few of the most
popular applications of distributed caching as evidence of its importance.

1) Application Caches: One of the most diverse and popular applications of dis-
tributed caches is at the application cache level. From social media, and e-commerce
to video streaming, gaming, and mobile, almost any application at scale in the mod-
ern world utilizes this technology. Some popular companies have gone as far as to
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develop specialized caches tuned to their needs (e.g. Facebook’s CacheLib [8] and
Twitter’s Twemcache [50]). Before Facebook developed CacheLib, by 2013, Face-
book was already running the world’s largest installation of MemCached [37]. The
importance of caching comes from the demand to handle the latency and through-
put requirements, mitigate database load, and enable modular scaling of persistent
and non-persistent storage tiers. A frequent use-case for data stored in these caches
is to tune and train online machine learning algorithms deployed in search, recom-
mendations, and other domains.

2) Content Distribution Networks (CDNs): Content distribution networks form the
backbone of the web’s infrastructure. They comprise an extensive network of proxy
servers that serve web pages, images, videos, and more from origin servers [1].
CDNs are sometimes called edge stores because they live at the boundaries of server
networks and are intended to serve data to clients geographically nearby, dramati-
cally reducing page load times and alleviating the load on origin servers. Together,
they effectively operate as a large system of distributed caches storing frequently
accessed media close to users around the globe.

3) Search Result Caches: With over 8.5 billion search results daily and 65 billion
web pages indexed [40], it’s no wonder that caching is central to search at Google.
Caching is especially useful here as the most popular queries appear extremely fre-
quently. Three months of AOL search logs from 2006 revealed that just the top
100,000 queries of the 36,000,000 unique queries make up 34% of the unique queries
[48]. It’s no wonder that the companies that have invested the most into open-source
caches also have extensive search systems.

1.3 Traditional Distributed Caching Architecture

FIGURE 3: Architecture of a simple distributed cache [17]

A traditional distributed cache is composed of a series of nodes that sit between
an application and an underlying data store as pictured in Figure 3. Each node uses
an associative array or hash table to map hashed keys to their respective values.

Data is usually split across the nodes using a mechanism called sharding. Com-
mon ways to shard the data include modulo (send every Xth row to a node), range
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(split the key range into contiguous subsections assigned to nodes), and hash (as-
signs rows randomly to nodes via a hash function). The process equitably splits the
load across the nodes so no one node becomes a bottleneck.

Data is replicated using either a primary-backup or a quorum scheme. A primary-
backup architecture means a singular primary node coordinates the nodes in its
shard group. The backups hold copies of the data and changes are synchronized
with the other nodes synchronously or asynchronously depending on the level of
consistency and performance required. A quorum approach requires that multiple
nodes be queried for a given operation to ensure data is propagated to copies. The
number of nodes involved in an operation is configurable based on whether the
workload of the application is read or write-heavy. While primary-backup schemes
are usually easier to implement and offer lower latency, quorums can offer the strongest
consistency.

1.3.1 Caching Strategies

There are five popular caching strategies [17] used by applications depending on
their needs:

1. Cache-aside: The application queries the cache for the data. On a hit, the
entry is retrieved. On a miss, the application queries the underlying data store,
updates the cache, and returns the entry.

2. Read-through: Identical to cache-aside except during a miss, the cache re-
quests the data to the data store directly and updates its local entry.

3. Write-through: When an application updates the data store, it also updates the
cache.

4. Write-back: The application writes data to the cache only, which asynchronously
updates the data store.

5. Refresh-ahead: The cache is proactively populated with cache entries based
on the expected usage patterns of the application.

Which strategy is chosen depends on the characteristics of the workload. For ex-
ample, a workload where performance outweighs consistency would be an ideal
candidate for a write-back strategy as writing to the cache is much faster than to the
underlying data store.

1.3.2 A Novel Approach

The traditional design for distributed caches associated with modern workloads has
a few fundamental issues.

1) Limited maximum capacity: CPUs are constrained in how much memory they
can manage at once by the limited number of DDR channels and memory slots per
channel [33]. This means that not only is memory expensive, but even after a cer-
tain point, it cannot be expanded any further (§ 1.1.1). This is especially problematic
for the increasingly large workloads of modern applications like machine learning
where the data and model sizes together can exceed a terabyte. Often intermedi-
ate results in these computations need to be stored in a distributed cache of a size
proportional to the application data.

2) Effective resource utilization: While shared-nothing architectures provide bet-
ter fault tolerance due to the isolation of each node, they also ensure that compute
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and memory are tightly coupled. Every node has to have a CPU and some memory
pool and the addition/removal of a node necessarily means a change in both com-
pute and memory. This is especially inefficient in distributed caching environments
where memory and compute needs are not proportional (memory >>> compute).

FIGURE 4: RDMA-based disaggregated memory configuration [46]

The proposed solution to both problems is to utilize a technique known as disag-
gregated memory. The idea of disaggregated memory is to have independent com-
pute and memory nodes interconnected by a high-bandwidth, low-latency network
fabric. Figure 4 outlines an example of an RDMA-based configuration of disaggre-
gated memory. Not only does this dramatically increase the maximum capacity of
a single server/cache system, but it also means compute and memory can be scaled
independently by selecting the appropriate type of nodes to be plugged into the
fabric.

Naturally, such a paradigm shift has cascading effects on how the rest of dis-
tributed caching functions. In this thesis, we will survey the development of tech-
niques for distributed caches in disaggregated memory environments. In particu-
lar, we will first understand the types of eviction algorithms used by caches. Then,
we will explore how these algorithms are applied in novel distributed caching ap-
proaches for disaggregated environments.
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Chapter 2

Eviction Algorithms

While caches are quite fast, they trade off in capacity. Their small size makes care-
fully selecting what pages to retain and what pages to remove hypercritical to their
performance. The algorithms that define these rules are called eviction policies.
These approaches have evolved from simple beginnings to sophisticated designs
that leverage modern machine learning advances.

2.1 Key Metrics

1. Cache Hit Ratio: The cache hit ratio is mathematically defined as:

Cache Hits
Cache Hits + Cache Misses

× 100%

This is a common measure of how well an eviction policy performs.

2. Cache Miss ratio: The cache miss ratio is mathematically defined as:

Cache Misses
Cache Hits + Cache Misses

× 100%

This measure of eviction policy performance is simply a mathematical restate-
ment of the cache hit ratio. That is, Cache Miss Ratio = 1−Cache Hit Ratio.

While algorithms attempt to maximize (minimize) the cache hit (miss) ratio, they
must also do this efficiently to maximize throughput and minimize the overhead of
each operation. While there is no single, standardized measure of this concept due
to the varying ways to measure it (under different workloads, different scales, etc.),
it is undoubtedly a significant consideration when evaluating eviction policies.

2.2 Eviction Primitives

The most popular, straightforward approaches to eviction are known as eviction
primitives. We’ve identified and described a sampling of the most popular primi-
tives.

2.2.1 First-in, First-out

First-in, first-out (FIFO) is perhaps the most intuitive approach to eviction. Items are
evicted from the cache in the same order they are inserted. Historical statistical anal-
yses have shown approaches like least recently used (LRU) to be strictly better than
FIFO, hence its unpopularity. What it lacks in performance in cache hits, it makes up
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for in its throughput and scalability due to its space and compute efficiency. This is
because the approach requires minimal additional metadata and overhead to track
what object needs to be evicted next.

2.2.2 Least Recently Used

Temporal locality has been a fundamental principle guiding the development of
caching algorithms over the last half-century. The idea conveys that recently used
pages are more likely to be used again and should be more likely to be preserved.
Approaches proposed back in the 60’s like Belady’s MIN algorithm [7] utilize this
finding in their designs.

Naturally, this gives rise to least recently used (LRU) eviction, in which the least
recently used page is the first to be evicted. As items continue to be accessed, their
recency is updated accordingly. The relatively simple design but high performance
has led to utilization by the most popular caching frameworks [17, 32, 39].

Research has shown LRU performs better than naive FIFO in many experiments
[11] due to this exact phenomenon. Such capability has made it the object of study
for decades. However, the large overhead required to eagerly promote pages to the
head of the queue whenever they are accessed has led to much research on how to
replicate, approximate, and extend LRU’s behavior (see CLOCK/CLOCK-PRO [19],
Fixed Segmented LRU [35], etc.).

2.2.3 Least Frequently Used

Least frequently used (LFU) operates orthogonally to least recently used. Pages in
the cache are given frequency counters that are incremented every time they are
requested. At eviction, the page with the lowest frequency score is evicted. Main-
taining, updating, and re-ranking such information for every page hit is naturally
quite costly. While constant time approaches have been developed for the LFU evic-
tion scheme [30], it’s rarely chosen over LRU due to its inability to adapt to changes
in the working set of an application (e.g. when a set of new pages should replace the
old ones, LFU tends to hold onto the existing pages). However, certain datasets like
networking do appear to exhibit better performance with LFU over LRU [25].

2.3 Combined Approaches

While many of the eviction primitives discussed often produce respectable perfor-
mance, much of their power is unlocked when they are combined and composed in
novel ways. Below, we take a sampling of different approaches taken to weaving
eviction primitives together.

2.3.1 Adaptive Replacement Caching

LRU and LFU have unique merits that perform well under different environments.
This naturally led to exploring ways to leverage both approaches and dynamically
adapt to evolving requirements. This area of research yielded several popular ap-
proaches that could be characterized into two groups: offline and online. Offline ap-
proaches entail those with pre-configured parameters that determine the mix of LRU
and LFU behavior exhibited during eviction. Given the dynamic nature of work-
loads, tuning these parameters is often complicated and insufficient. Some popular
approaches in this space include LRU-2 [38], 2Q [21], LRFU [23], and MIN [7]. The
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second class of algorithms, online replacement, tweaks its LRU-LFU balance as it
processes requests rather than being confined to static values.

While online algorithms struggle to beat their offline counterparts under ideal
circumstances, they perform better under empirical ones because offline replace-
ment cannot grapple with heterogeneous and changing workloads (e.g. fluctuating
hotspots) with a static set of parameters. As the quest for the best caching algo-
rithm waged on, one particular online algorithm, proposed by IBM research in 2003,
emerged superior to its counterparts [31]. Adaptive Replacement Caching (ARC) of-
fered a relatively simple algorithm that excelled under diverse workloads all while
requiring only constant time for processing requests.

FIGURE 5: ARC algorithm design [31]

Figure 5 demonstrates the design of ARC. For caching policy π, two lists, L1 and
L2 are maintained. L1 captures pages that have been seen only once in the cache
(LRU) and L2 captures cache pages that have been seen at least twice (LFU). The
cache has size c but tracks 2c pages. At any given time, the cache holds a prefix of
L1 (T1) and a prefix of L2 (T2). The sizes of T1 and T2 are governed by parameter p
where |T1| = p and |T2| = n− c. A page is moved to either T1 or T2’s MRU position
on a cache hit. On a cache-miss, the LRU page is placed at the MRU position of the
appropriate queue L1 or L2.

The parameter p dynamically adapts to the current workload. If the missed page
is in B1 of L1, we increase p as LRU better captures the workload; otherwise, if it’s
in L2, we decrease p. The rate at which p is scaled is a function of how big the other
queue is relative to the one to be grown. Intuitively, this means that when the system
heavily favors one type of replacement policy but it receives requests more in line
with the other, it transitions faster.

The algorithm exhibits a multitude of advantages over its counterparts:

1. Scan Resistance: When the cache is flooded with requests that scan (retrieve
every page) once, they filter through the L1 cache with minimal impact on L2
meaning frequently used pages are retained.

2. Constant Time Replacement: The relatively simple design and implementa-
tion enables O(1) time replacements.
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3. High Hit Rates: The algorithm consistently exhibits excellent empirical per-
formance (hit ratios) when pitted against LRU in various settings as seen in
table 1. In particular, ARC performs relatively best when cache sizes are small.

Workload c space (MB) LRU ARC
P1 32768 16 16.55 28.26
P2 32768 16 18.47 27.38
P3 32768 16 3.57 17.12
P4 32768 16 5.24 11.24
P5 32768 16 6.73 14.27
P6 32768 16 4.24 23.84
P7 32768 16 3.45 13.77
P8 32768 16 17.18 27.51
P9 32768 16 8.28 19.73
P10 32768 16 2.48 9.46
P11 32768 16 20.92 26.48
P12 32768 16 8.93 15.94
P13 32768 16 7.83 16.60
P14 32768 16 15.73 20.52

ConCat 32768 16 14.38 21.67
Merge(P) 262144 128 38.05 39.91

DS1 2097152 1024 11.65 22.52
SPC1 1048576 4096 9.19 20.00

S1 524288 2048 23.71 33.43
S2 524288 2048 25.91 40.68
S3 524288 2048 25.26 40.44

Merge(S) 1048576 4096 27.62 40.44

TABLE 1: A comparison of hit ratios for the ARC and LRU replace-
ment policies across varying workloads and cache sizes [31]

While this framework is quite flexible, it does struggle in one particular case.
There is constant churn when the working set of pages is slightly larger than the
cache size. This is because, in this pattern, the page that is just about to be used
has just been evicted. Such behavior repeats, resulting in continuous churn and
high overhead. While incremental improvements on the ARC framework have been
proposed like mARC [42] to deal with this phenomenon known as the ARChilles’
heel, they target a slightly different subset of the caching problem space in which
new pages do not always have to be added to the cache.

2.3.2 Learning Cache Replacement

The principles of the ARC have been lifted and translated into the machine-learning
world. In particular, this combined approach can be recharacterized as a multi-arm
bandit problem from reinforcement learning and solved using online-learning-based
regret minimization techniques.

Reinforcement learning (RL) is one of three key machine learning paradigms. It
deals with problems of dynamic environments in which cumulative reward must
be maximized. However, the exploitation-exploration trade-off remains a key chal-
lenge of solutions addressing this class of problems. Exploration refers to the process
of discovering new actions an agent can take. Exploitation is the process of an agent
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utilizing an action from its knowledge set that will maximize its immediate reward.
The tricky challenge is to balance between exploring to uncover the actions that may
maximize reward and exploiting the current actions to build up cumulative reward.

Perhaps the space where this exploration-exploitation trade-off has been studied
the most is in the space of the multi-arm bandit problem, a subclass of RL. One can
think of this problem as an agent who must operate a series of N slot machines, each
with independent probability distributions governing their reward/win rates. An
agent is tasked with maximizing the reward they win and must balance between
exploring slot machines to gauge their reward rates and exploiting known slot ma-
chines to play the ones it knows will maximize its immediate reward.

This multi-arm bandit problem can be applied to cache eviction by considering
LRU and LFU as the two arms of a bandit. During an eviction, the model must
decide which policy to apply to maximize its reward. Only two caching policies
are chosen to minimize the time the model spends in exploration. Additionally,
LRU and LFU are chosen because the policies are orthogonal in their philosophy of
eviction and produce vastly different results. Here, the reward is based on regret
minimization of making an eviction decision. Every eviction is graded based on
how good or bad of a decision it was, and the agent is tasked with minimizing this
regret.

The Learning Cache Replacement (LeCaR) approach utilizes this multi-arm ban-
dit characterization with the additional assumption that a dynamic combination of
LRU and LFU can handle any workload. In particular, the task of LeCaR is to tune
and adapt weights for a probability distribution that determines which eviction pol-
icy will be used.

The model maintains a FIFO queue of the history of evictions by LRU and LFU
denoted HLRU and HLFU respectively. The history is sized equally to the cache itself.
Evictions of entries in history are graded based on whether the entry being main-
tained in the cache would have prevented a cache miss. Intuitively, more recently
evicted entries are punished more as it reflects the deliberate decision to eliminate
something used recently, a potentially risky decision.

Algorithm 1: The algorithm responds with the relevant page if it is present, updat-
ing the metadata for the cache with it. If it is not present, it removes the page from
the history of HLRU or HLFU since we are about to re-insert the page in the cache.
The weights are updated according to 2. Then, if eviction is necessary, it samples the
Bernoulli distribution to determine the appropriate eviction policy. It then removes
the last page from its corresponding history FIFO queue if it is full, adds the evicted
page to the head of the history queue, and then removes the old page from the cache.
Finally, the new page is added to the cache.

Algorithm 2: The weights are updated whenever we encounter a cache miss. We
identify the eviction policy responsible for the eviction of this page (e.g. the mistake
we “regret“). Intuitively, we want to increase the weight on the counterpart eviction
policy since it is more optimal. This is done using an exponential quantity and is
scaled based on how bad the eviction was (e.g. a more recent eviction is punished
more). Finally, the weights are re-normalized.

The LeCaR model consistently outperforms LFU, LRU, and the combined ARC
approach. In Figure 6, the algorithm exhibits the highest hit rate. The tested dataset
utilized changing behavior in workload and the model adapted quickly, as evident
in the re-weighting between LRU and LFU. In real-world datasets, the model ex-
hibits a hit rate up to 18x of ARC at the cost of double the overhead. The model
more generally performs relatively better when the cache size is smaller. This is be-
cause it is in these exact situations that the working set doesn’t fit completely in the
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Algorithm 1 LeCaR(LRU,LFU)

INPUT: requested page q
if q is in C then

C.UPDATEDATASTRUCTURE(q)
else

if q is in HLRU then
HLRU .DELETE(q)

else if q is in HLFU then
HLFU .DELETE(q)

end if
UPDATEWEIGHT(q, λ, d)
if Cache C is full then

ACTION ← (LRU, LFU) with probability (wLRU , wLFU)
if ACTION = LRU then

if HLRU is full then
HLRU .DELETE(LRU(HLRU))

end if
HLRU .ADD(LRU(C))
C.DELETE(LRU(C))

else
if HLFU is full then

HLFU .DELETE(LRU(HLFU))
end if
HLFU .ADD(LFU(C))
C.DELETE(LFU(C))

end if
end if
C.ADD(q)

end if

Algorithm 2 UPDATEWEIGHT(q, λ, d)

Require: page q, learning rate λ, discount rate d
t := time spent by page q in History
r := dt

if q is in HLRU then
wLFU := wLFU · eλ·r ▷ increase wLFU

else if q is in HLFU then
wLRU := wLRU · eλ·r ▷ increase wLRU

end if
wLRU := wLRU

wLRU+wLFU
▷ normalize

wLFU := 1− wLRU
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FIGURE 6: Dynamic performance of LeCaR

cache. Hence, evictions are frequent, and judicious decisions are rewarded highly
with better hit rates.

Since its creation, researchers have found ways to improve the algorithm further.
A modified version of the algorithm called OLeCaR [53] utilizes a new adaptive re-
inforcement learning algorithm EXP4-DFDC to dynamically set an optimal learning
rate rather than use a static, empirical value as done in the LeCaR paper.

Thus, while ARC’s heuristic and other approaches offer simpler and faster imple-
mentations, the learning-based strategy reflects one of the first ML-based techniques
that shows a marked improvement over its deterministic counterparts.

2.3.3 S3-FIFO

While recent approaches have become increasingly complicated and required greater
overhead, breakthroughs in the space have yielded a return to fundamentals and
simplicity. Two key traits make eviction algorithms effective: evicting unpopular
objects fast (quick demotion) and efficiently retaining popular objects (lazy promo-
tion) [51].

1) Quick Demotion: The most common culprit for unpopular pages to be evicted
are one-hit wonder pages which are only ever requested once (often common in
scan). These objects must be evicted as soon as possible to prevent cache pollution.
Findings have shown that most contemporary algorithms wait too long to evict ob-
jects as they try to determine if an object should be retained or not. When applying a
probationary FIFO queue on even existing algorithms like ARC and LIRS [20], their
miss ratios were improved by up to 59.8% and 49.8% respectively.

2) Lazy Promotion: While most algorithms proactively re-order or re-rank entries
on cache hits (eager promotion), lazy promotions posits that this promotion process
should only be done at the point of eviction. The primary benefit comes from im-
provements in throughput as the amount of work and metadata managed on any
given cache hit is significantly reduced. Secondarily, better promotion decisions can
be made at eviction time as more insight can be accumulated about the object while
it traverses through the cache. When tested on 5307 production traces from 10 data
sources, variants of lazy promotion FIFO regularly exhibited lower miss ratios than
LRU.
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These principles culminated in the development of a contemporary approach
called S3-FIFO. The approach utilizes just three static FIFO queues demonstrated
empirically lower miss ratios than its counterparts in 6594 cache traces [52].

As seen in Figure 7, an intermediate filtering queue, known as the small FIFO,
filters out objects only accessed once. The items evicted from the small FIFO queue
are put into a ghost queue. This ghost queue potentially promotes objects into the
main FIFO queue based on whether the object was visited.

FIGURE 7: S3-FIFO design [49]

The success of this approach is a product of its adherence to the principles of lazy
promotion and quick deletion. Objects are only (re-)promoted to the main queue
when evicted from the small or main FIFO queues. Objects also undergo prompt
removal due to the small nature of the FIFO queue (generally about 10% of the total
cache size).

FIGURE 8: Improvement in miss ratio of S3-FIFO as compared to
other leading eviction policies (higher is better) [49].

Careful examination of many real-world traces shows that they truly exhibit the
one-hit-wonder phenomenon S3-FIFO can benefit from. This yields the following
benefits:

Scalability: FIFO queue implementations are quite efficient and require only con-
stant overhead with respect to the queue. In particular, no additional metadata like
frequency must be tracked alongside the object entry. FIFO also avoids the need to
lock when reading or writing, increasing its throughput as compared to its counter-
parts like LRU which must do more complicated book-keeping.

Performance: Analysis finds that algorithms with faster and precise demotion
speed of entries sporadically accessed tend to perform best on real-world data [52].
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S3-FIFO robustly guarantees that unpopular objects are evicted timelier than any of
their counterparts. As seen in Figure 8, when compared with a standard FIFO evic-
tion policy and a variety of other popular replacement policies, S3-FIFO exhibits the
greatest improvement in miss ratio. An analysis of 153 in-memory cache clusters
with over 80 TB of data similarly concluded that even vanilla FIFO is best suited for
production cache replacement strategies [50].

Similar approaches like SIEVE [54] have been developed using the same prin-
ciples to beat LRU although its downfall is its lack of scan resistance. Shockingly,
the simple composition of FIFO primitives significantly outperforms the increas-
ingly complicated eviction approaches developed during the last twenty years. This
leaves us with the conclusion that sometimes, less is more.
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Chapter 3

Memory Disaggregation

3.1 Background

Modern internet-based applications have become increasingly data-intensive. To
serve millions of clients and billions of requests, applications have relied on dis-
tributed memory-based caches.

The fundamental challenge with memory-based caches in contemporary dis-
tributed systems is that they don’t adapt well to the heterogeneous load of web ser-
vices. This high volatility in activity means administrators must provision for peak
load, leaving much of the memory idle at all times. For example, one deep-dive into
traces of Alibaba’s infrastructure found that memory utilization sat below 50% on
average [27]. In some cases, 50% of the server operating costs come from DRAM
alone [36], much of which is devoted to distributed caches. Given that the compute
and memory needs are often uncorrelated, the natural question arises of how to sep-
arate them so they can be provisioned accordingly. This exact question has given
rise to one of the most prolific domains for research in recent years: disaggregated
memory.

3.1.1 Memory Disaggregation

Memory disaggregation is the process of decoupling compute from memory. This
concept of disaggregation itself is not novel in computer science. Perhaps the most
canonical example comes in the transition from large, monolithic mainframe com-
puters to distributed systems as we know them today. Memory disaggregation fol-
lows similarly and can be implemented at the hardware and software levels as seen
in Figure 9.

Hardware: Compute and memory are completely physically separated. Separate
compute and memory blades are created with the first containing only CPUs with
minimal memory and the second containing minimal CPUs with mostly memory.
These blades communicate with one another with a high-bandwidth network.

Software: Traditional compute-memory coupled hardware is transparently used.
Computers utilize an appropriate portion of their local memory. Excess memory is
“leased“ out to the broader cluster and repurposed as part of the memory address
space of a remote process. This result is a single process’s memory space mapping
to dozens of computers underneath the hood. Traditional underlying hardware in
this case is utilized transparently.

This exact kind of memory disaggregation has also been around for decades. The
earliest implementations of this system were known as non-uniform memory ac-
cess (NUMA) [12] and were designed for high-performance compute applications.
NUMA utilizes physically separated memory with high-bandwidth interconnects
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FIGURE 9: Physical vs Logical Disaggregation [29]

so that its processors can fetch data from anywhere in the system. While the tech-
nology appeared promising, it was dwarfed by its much more popular counterpart,
“shared-nothing“ where each node in a distributed system is completely indepen-
dent with its own compute, memory, storage, etc., and only communicates through
messages with one another. This model has become an industry standard. We can
identify a few key reasons for this phenomenon:

1. Scalability: It’s easier to insert an extra node in a system where they are inde-
pendent rather than highly coupled.

2. Accessibility: Shared-nothing architectures can operate with commodity hard-
ware that is highly heterogeneous, as long as they can adhere to a consistent
communication protocol.

3. Fault Tolerance: The independent, loosely coupled component design elimi-
nates any single point of failure.

While shared-nothing architectures are omnipresent in data centers today, there
has been a greater push toward exploring novel disaggregation techniques. As we
reach the asymptotic limits of Moore’s laws and rules of physics, engineers are left
with no choice but to turn to specialized hardware to achieve the performance they
need.

In the context of distributed caching, this means redesigning systems to leverage
elastic memory environments and grappling with the challenges of running eviction
algorithms without single entry points.

3.1.2 Remote Memory Access

Remote memory access is a communication paradigm that enables a process to ac-
cess the memory of another node without invoking a remote process. RMA is a pro-
gramming model for memory that distinguishes between local and remote memory
[18]. RMA offers a means to achieve the logical disaggregation seen in Figure 9b.
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3.1.3 Remote Direct Memory Address

Remote direct memory address (RDMA) is a lower-level primitive that enables high-
throughput, low-latency data transfer. In particular, it allows a process to access
memory remotely without invoking the remote CPU. The RMA interface is often
implemented with RDMA. RDMA does, however, support additional functional-
ity beyond the RMA specification (e.g. two-sided message passing) [18]. RDMA
operates on various network architectures including InfiniBand and RDMA over
Converged Ethernet (RoCE) [13].

Memory frameworks built on RDMA have been created to offer page-based re-
mote memory abstractions. Infiniswap [14] represents one of the first frameworks
with transparency at the hardware, OS, and application levels. These memory sys-
tems must grapple with issues like remote memory latency minimization, perfor-
mance isolation, memory heterogeneity, additional failure modes, scalability, and
security [29].

3.1.4 Compute Express Link

Although RDMA provides logical disaggregation at the network level, a gap per-
sisted in achieving physical disaggregation of hardware components (Figure 9) within
an individual server. In 2019, the Compute Express Link (CXL) framework offered
a radical rethinking of memory [36]. The technology came from a desire to solve a
slightly different problem but is undoubtedly a boon to distributed caching. Com-
puter processors internally employ specialized units like the arithmetic logic unit
(ALU) and the memory management unit (MMU). Hardware accelerators general-
ize this principle, acting as external processors purpose-built for specific tasks that
work with the rest of the computer. Normally, these hardware accelerators main-
tained their own pool of memory which imposed two-fold downsides:

1. Memory provisioned for each component means frequently underutilized mem-
ory sitting idle as the pools are isolated.

2. Additional data copies must be made whenever data between components
(e.g. CPU and GPU) needs to be exchanged.

CXL [4], a cache-coherent open interconnect standard, provided a solution to
these issues by enabling high-speed communication between hardware accelerators
and other components within a server. Built on the PCIe standard, CXL technology
allows hardware accelerators to access and share byte-addressable memory pools
and dedicated memory expansion cards. CXL-based memory pooling platforms are
already in development, with one of the most promising being Pond, a collabora-
tion between Microsoft and Google [24]. Their research reveals that although CXL
systems may experience latencies up to 222% more than DRAM, this difference is
significantly smaller than the performance gap between DRAM and SSDs, which
can be an order of magnitude or more.

With the advent of CXL 3.0 comes the opportunity to expand the fabric topolo-
gies supported by the interconnect. The update leverages PCIe 6.0 to double the
bandwidth to 64GT/s and expands support to 4,096 nodes within a single network
all without increasing latency [41]. Figure 10 demonstrates how these changes can
be utilized to design a complex CXL fabric with multiple attached devices each with
their own and shared attached memory.
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FIGURE 10: Complex topology of a possible CXL fabric [9]

3.1.5 A Hybrid Approach

The future of disaggregation involves combining physical and logical disaggrega-
tion. Since CXL systems are limited in the distance they can cover, RDMA can be
used to interconnect CXL clusters with one another. One of the most recent of these
frameworks is Rcmp [47]. The framework addresses the incongruencies between the
two systems regarding performance and cache line granularity and yields 5.2× lower
latency and 3.8× higher throughput than RDMA-based systems. Together, CXL and
RDMA offer memory utilization in ways never seen before:

1. Efficient Memory Utilization: Idle memory can be re-assigned and utilized
by physical servers that may encounter higher traffic. Additionally, external
fragmentation can be minimized as objects/data too large to fit onto a single
server can be transparently split across many different servers.

2. Load-based Adaptation: Data migration when nodes enter and exit the cache
cluster can be complex, time-consuming, and resource-heavy during reshard-
ing events [32, 39]. The abstraction of a singular contiguous block of memory
accessible to the entire compute pool means data rarely needs to be copied.
Only in exceptional cases where a hot data entry is causing a performance bot-
tleneck will data be additionally split/replicated to balance the load.

However, RDMA brings a new host of challenges as well:

1. Increased Latency: While the standards continue to improve, CXL introduces
at least a 50-100 nanosecond increase in latency as compared to DRAM [29].
This comes from the controller, up to two switches, and a network each opera-
tion must pass through in CXL [16].

2. More points of failure: Singular sections of data (and potentially even objects)
may now be split across many computers. Thus, the failure of one node has
significantly more cascade effects than previous systems. This is as opposed
to shared-nothing systems where individual nodes maintain their physical re-
sources.
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3. Complicated eviction algorithms: Architectures in which the CPU is bypassed
mean servers have no bookkeeping on cache accesses. This requires novel
client-centric eviction approaches.

The intricate tradeoffs make disaggregated memory a powerful but challenging
tool that demands further research and exploration.

3.2 CliqueMap

While distributed caching frameworks that leverage disaggregated memory have
been proposed for years, Google’s CliqueMap [5] was one of the first to legitimize
the concept and initiate more widespread adoption of the approach. Previous ap-
proaches like MICA [26] helped laid the foundation for efficient multi-core memory
access that bypassed the kernel by implementing a custom, lightweight network-
ing stack that would map client requests to the cores which would process requests
most efficiently. Others like HERD [22] and Pilaf [34] took varying approaches to
utilizing RDMA to build key-value stores. While promising, the industry appeared
hesitant to deploy these prior solutions because they lacked the fault tolerance, scal-
ability, deployment, availability, flexibility, and testing that came with their estab-
lished counterparts. [32, 39].

3.2.1 Design & Architecture

CliqueMap synthesizes the insights and lessons from its predecessors to provide a
production-caliber implementation of a remote memory access (RMA) based dis-
tributed cache, backed by a credible name organization like Google. As of 2021,
CliqueMap deployments managed 1 PB of DRAM and served queries at 150M per
second.

Central to the design of CliqueMap was the consideration of how to evolve dis-
tributed caching while maintaining interoperability with existing infrastructure. In
essence, CliqueMap provides a roadmap for performance in a brownfield environ-
ment with potential for improvement under newer infrastructure.

CliqueMap’s core design employs a hybrid usage of remote procedure calls (RPC)
and remote memory access (RMA). Remote procedure calls are a mechanism that
enables developers to transparently call remote procedures in distributed environ-
ments while maintaining the abstraction of it being a local call. While this tech-
nique offers ease of programmability and robust support for fault-tolerance, error-
handling, and retries, it comes at the minimum cost of at least 50µs/operation in
overhead. In contrast, the no-frills RMA can offer a low latency and high-bandwidth
pipeline along the idempotent read-only path where issues of concurrency and race
conditions are minimal.

Entries in CliqueMap are stored in an associative hash table, with write requests
carried out via RPCs. The normal course of reads is conducted via a pattern known
as 2xR. The client retrieves the associated IndexEntry which holds the location of
the key-value pair in the data region as seen in Figure 11. It then directly fetches
the DataEntry from the Data Region. Both these operations are conducted via RMA,
bypassing the server CPUs and offering significant speedup.
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FIGURE 11: Layout of data in CliqueMap[5]

FIGURE 12: Comparison of a standard 2xR vs SCAR lookup[5]

3.2.2 Evaluation

The CliqueMap authors benchmarked the framework under different load settings
and networking infrastructure. For example, RMA allows CliqueMap to be de-
ployed on various transports like Pony Express [28], 1RMA [45], and RDMA. Some
of these protocols even offer advanced RMA primitives like scan and read (SCAR)
which can eliminate one network hop in the 2xR and effectively double the speed
of operation. Figure 12 demonstrates this speedup on both the client and server
sides. Standard RPCs can be used for reads and writes on deployments without
support for RMA. Such flexibility makes CliqueMap an ideal solution for environ-
ments entrenched in heterogeneous data center deployments. Figure 13 shows that
CliqueMap also achieves effectively constant lookup times for common-sized ob-
jects, which is ideal for read-heavy workloads.

However, an important caveat of using RMA is that server CPU bypass means
only clients have a record of data access patterns. This information is necessary to
conduct efficient eviction using algorithms discussed in Chapter 2. CliqueMap’s so-
lution is for clients to periodically send over batched metadata about object accesses
to servers in a background process, offering timely enough information to still rea-
sonably approximate many popular eviction algorithms like LRU (§ 2.2.2) and ARC
(§ 2.3.1).

Combined with other features like transparent retries, interoperability with het-
erogeneous software and hardware stacks, and high availability through quorum
deployments, CliqueMap cemented itself as one of the first successful disaggregated
distributed caching frameworks at scale.
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FIGURE 13: Latencies of operations on common-sized objects[5]

3.3 Ditto

While CliqueMap has been tailor-made to address the challenges of leveraging cur-
rent infrastructure, Ditto, a state-of-the-art caching framework, presents an approach
with greenfield technologies hyper-optimized for speed and performance [43]. The
framework was designed to work with both RDMA and CXL systems.

The authors identify two hurdles that make distributed caching in disaggregated
memory environments distinctly more challenging than its counterparts:

1) Evaluating data hotness: Caching in a disaggregated memory environment means
there is no centralized point on the data path to keep track of data access patterns.
Requests may query different memory nodes and will bypass all the CPUs. Even
though clients may keep track of their access patterns, they cannot be aware of those
of their neighbors. Even maintaining a separate data structure to keep track of this
information would significantly bottleneck throughput due to sequential reads/writes
and lock contention.

2) Re-scaling resources: Disaggregated memory environments offer the double-
edged sword of being hyperelastic to the system demands. Changes to the funda-
mental characteristics of the system in terms of compute, load, and memory capacity
can dramatically change what is the most efficient eviction policy, rendering tradi-
tional static approaches to caching insufficient.

3.3.1 Design & Architecture
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FIGURE 14: Architecture of Ditto [44]

The core design of Ditto design is pictured in Figure 14. Ditto proposes a dis-
tributed hotness measure with sample-based eviction to evaluate data hotness. Ditto
co-locates and automatically updates a small set of metadata associated with each
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object in the memory pool that includes size, insert timestamp, last access times-
tamp, frequency, latency, and cost to fetch from the storage server. Metadata fields
tagged as global must be stored in the object metadata itself while its local counter-
parts can be maintained in the client. Stateful objects which are those that depend
on their prior values are grouped to be able to be updated in a single write. Such
optimizations minimize the additional overhead needed to access the underlying
data. To sample the candidates that may be evicted, a sample-friendly hash table
allows fetching multiple contiguous objects from an arbitrary offset in a single read.
Combining the breadth of metadata with the sampling mechanism allows Ditto to
implement various distributed adaptive caching policies.

FIGURE 15: Performance of LRU and LFU under varying load and
capacity sizes [44]

To address the second issue of adapting to dynamic environments, Ditto uses a
variety of eviction algorithms. In Figure 15, we see the results of a simulation with
varying client counts (load) and cache size (capacity). LRU (§ 2.2.2) and LFU (§ 2.2.3)
perform better under different circumstances. Ditto achieves distributed adaptive
caching by reformulating the problem as a multi-arm bandit problem. The authors
implement a modified version of the LeCaR approach (§ 2.3.2). This was achieved
with a lightweight logical FIFO queue to keep track of eviction history and a lazy
weight update scheme like the original LeCaR. Combined with regret minimization
to adjust which eviction algorithm is deployed, Ditto successfully achieves elasticity
under changing load and capacity.

3.3.2 Evaluation

Ditto significantly outperforms the competition, including distributed caches de-
signed for shared-nothing architectures like Redis [39] and even other modern RMA-
based alternatives like CliqueMap [5].

As expected, Ditto defeats Redis due to the inherent challenges of shared-nothing
designs. Redis shards data, meaning hot nodes in skewed workloads are bottle-
necked by the single CPU that can access it. This is exacerbated by the migration
costs incurred during capacity changes and the additional CPUs, often unnecessary,
required for every addition of memory (due to their coupled nature). In testing, the
authors found that Redis can take hundreds of seconds to rebalance and reshard
while Ditto’s performance effectively adjusts immediately.

Ditto was also benchmarked against CliqueMap, the current state-of-the-art, and
Shard-LRU, a straightforward LRU-based implementation for disaggregated mem-
ory environments. In tests with the Yahoo Cloud Serving Benchmark [6], a stan-
dardized set of research workloads, Ditto achieves up to 9x the throughput. Figure
16 shows the p99 latency of Ditto stays about constant and only begins to creep at the
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FIGURE 16: Tail latency as a function of throughput under popular
workloads [44]

end when bottle-necked by the memory nodes’ RDMA Network Interface Controller
(RNIC).

We can identify two key reasons why Ditto outperforms Cliquemap:
1) Ditto better executes eviction algorithms. CliqueMap struggles under heavy-write

workloads due to its use of RPCs processed by CPUs on the cache side. In contrast,
Ditto’s use of client-side caches means reads and writes don’t require special han-
dling that may limit throughput.

2) Ditto better adjusts to changing environments. CliqueMap is relegated to a single
eviction algorithm at a time and can only use RPCs to send batched access infor-
mation periodically to the system. This means the information is not timely and
forces the system to expend compute cycles on collating this information. In con-
trast, Ditto’s adaptive caching algorithm continuously monitors and updates the
eviction policy in use with every single access that occurs.

In real-world benchmarks across five different workloads and with multiple cache
sizes, Ditto consistently demonstrated superior throughput compared to CliqueMap,
namely CM-LRU and CM-LFU.

Ditto fundamentally re-imagines what distributed caching means while apply-
ing advancements in eviction policies in novel ways.
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Chapter 4

Conclusion

Reflecting on the development of distributed caching over time, we have come quite
far since the days of the original NUMA approaches from the 1980s and 1990s. While
traditional distributed caching has brought us far, the time is ripe for novel disag-
gregated memory breakthroughs that can revolutionize the field in much-needed
ways.

4.1 Continued Areas of Research

While distributed caching in disaggregated memory has come far, open challenges
that require additional innovation persist. We highlight the three most significant
problems on the horizon [29]:

1) Performance Isolation: Although CXL 3.0-based systems support up to 4,096
nodes and numerous concurrent applications, ensuring performance isolation among
them remains an open challenge. These applications contend for memory of differ-
ent tiers, network bandwidth, OS scheduling time, and more. Finding the appropri-
ate way to share finite resources will be an important hurdle to achieving scalability.

2) Memory Heterogeneity: An application faces many additional memory tiers
in large, disaggregated memory environments. This includes but is not limited to
DRAM of the running process, memory modules in the local CXL fabric, and remote
memory accessible by RDMA. The challenge remains of how applications ought to
balance the distribution of their data across these tiers and how this should be done
in tandem with other concurrent applications.

3) Fault Tolerance: One of the benefits of a shared-nothing architecture is that
the nodes manage and own their resources. This means that the failure of any sin-
gle node is not debilitating to the entire system. However, for disaggregated ap-
proaches, one could have various issues ranging from correlated faults like failures
in the CXL fabric that impact all the nodes to issues with even single memory mod-
ules used by many applications. Such problems require a rethinking of fault toler-
ance mechanisms best suited to this problem space.

4.2 Review

Overall, we’ve seen significant advancements along all dimensions of the field. In
terms of eviction policies, we saw how simple eviction algorithms (LRU, LFU, and
FIFO) have both served as effective replacement policies in a standalone manner
and as primitives to be composed and combined in new and interesting ways (ARC,
LeCaR, S3-FIFO). In terms of novel caching approaches in disaggregated memory,
we saw how Google developed CliqueMap to serve as one of the first industrial
strength caches of its kind that was highly interoperable with the heterogeneous
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technology infrastructure of today. Meanwhile, Ditto showcased how RDMA and
CXL can be fully leveraged to maximize performance. Ditto and similar technologies
represent the culmination of decades-long advancements. As researchers push the
boundaries of what is possible, the future of disaggregated memory shines brightly,
with even more groundbreaking developments on the horizon.
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