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ABSTRACT

We investigate probabilistic programming and its applications in sports analytics, in par-
ticular the development of Bayesian models for futures markets prediction. We first review
topics in Bayesian statistics, providing theoretical foundation for readers unfamiliar with
the field. We establish probabilistic programming as a preferred medium for developing
probabilistic models, highlighting their frameworks for reasoning about uncertainty, ex-
ecuting Bayesian inference and generating more interpretable probabilistic models. We
then use probabilistic programming to develop a model for NBA futures prediction by
repeated sampling from an estimated posterior distribution and compare this model to
non-Bayesian accepted practices. While certain hyperparameter settings can make these
methodologies roughly equivalent, the Bayesian methodology is more robust to initial
hyperparameter settings.
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Motivation

There is an increasing need for sophisticated and interpretable models across various do-
mains where uncertainty and variability are prevalent. Traditional methods often struggle
to handle these complexities, leading to predictions that can be inconsistent or difficult
to interpret. Bayesian inference offers a powerful alternative by providing a rigorous
framework for incorporating prior knowledge and updating beliefs with new data. This
approach not only improves the accuracy of predictions but also enhances their inter-
pretability and robustness, making it easier for analysts and stakeholders to understand
and trust the results.

Probabilistic programming has emerged as a key tool in expanding the use of Bayesian
inference in practical applications. It simplifies the process of developing and implement-
ing complex probabilistic models, allowing researchers to focus on the conceptual aspects
rather than the computational intricacies. By leveraging probabilistic programming, we
can efficiently perform Bayesian inference, generate posterior distributions, and conduct
robust analyses under various scenarios. As a motivating example, we demonstrate the
advantages of probabilistic programming in developing a Bayesian model for NBA futures
prediction, showcasing its potential to outperform traditional methods.
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CHAPTER 1

Bayesian Inference

This section covers and summarises concepts in Bayesian statistics and inference.

1.1 Probability Models
Probability models quantify a distribution of outcomes by assigning a probability to every
outcome in the space of possible outcomes Ω using a probability measure P .

This measure requires that

1. P (Ω) = 1

2. P (∅) = 0

3. ∀ω ∈ Ω, P (ω) ∈ [0..1]

4. For any finite union A = A1 ∪ A2 ∪ · · · ∪ An of disjoint events on Ω, P (A) =∑
Ai∈A P (Ai)

This contrasts with many traditional statistical techniques that may not explicitly model
the uncertainty or the random nature of data but rather focus on summarizing data trends
and relationships. For instance, regression analysis predicts the relationship between vari-
ables, often focusing on estimation and inference without directly modeling the underlying
probability distributions of error terms or residuals. Further, probability models empha-
size understanding the processes that generate data. This is achieved by constructing
models that explicitly describe the probability of observing data given certain conditions
or parameters. On the other hand, non-probabilistic statistical methods focus more on
the correlation between variables rather than on describing how data is generated. Be-
cause of this, probability models are often more interpretable. Probability models also
provide a more direct way to quantify uncertainty by explicitly assigning probabilities
to all outcomes, whereas many machine learning techniques provide point estimates or
classifications without a direct measure of uncertainty.

Probability models can be both parametric and non-parametric. Parametric models as-
sume that the data adheres to a specific distributional form characterized by a finite set
of parameters. This assumption is mathematically convenient, as it often leads to mod-
els that are easier to analyze and compute. Non-parametric models don’t make these
assumptions. This makes these models more flexible – which can allow for easier iter-
ation/augmentation and modelling a wider range of distributions but also increases the
difficulty of estimation.
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1.2 Bayesian Statistics
Bayesian statistics is motivated from a perspective that uncertainty in unobservable (la-
tent) parameters can and should be modeled using probability distributions. This ap-
proach reflects a belief that our knowledge about these parameters is inherently uncertain.
Unlike frequentist statistics, which treats parameters as fixed but unknown values that are
to be estimated from the data, Bayesian methods incorporate both prior knowledge and
observed data to generate posterior estimates for the distribution of parameter values. In
particular, Bayesian models may be preferable to frequentist/classical models when data
is scarce or practicioners want to encode specific domain-knowledge.

Moreover, Bayesian statistics not only facilitates the estimation of parameters but also
enables direct probability statements about parameters and predictions. This is a dis-
tinct advantage over traditional methods, which typically focus on point estimates and
frequentist confidence intervals that do not have an equivalent probabilistic interpretation.

1.2.1 Prior Distributions
Prior distributions, p(θ), encode prior beliefs about the distributions of latent parameters.
Priors can be either informative or non-informative. Informative priors are when the
practitioner chooses to guide the inference process by specifying the hyperparameters in
the prior distribution. These are often used when the practitioner has expert knowledge in
the subject domain or there is limited data. Non-informative priors are specified such that
there is minimal influence exerted by the prior distribution, and are often used when the
practitioner is unwilling/unable to make assumptions about the parameter distribution.

Empirical Bayes is a method that attempts to strike a balance between informative and
non-informative priors by estimating the prior distribution directly from the data. This
approach starts with a prior distribution that is then adjusted based on the data, leading
to a data-driven, yet still Bayesian, estimation process.

1.2.2 Posterior Distributions
After observing new data, in Bayesian statistics the prior distribution is updated to reflect
the new information gained, resulting in the posterior distribution, namely p(θ|x). The
posterior predictive distribution is the updated distribution of the outcome of interest
p(y|x), which is determined using the model’s specified p(y|θ) and the posterior p(θ|x).

Conjugacy occurs when the sampled posterior distribution comes from the same family
as the prior distribution. Conjugate priors can often enable the model to be evaluated
analytically, and are additionally convenient because the prior distribution can simply be
interpreted as additional data on top of a non-informative prior (Gelman et al., 2021).
Non-conjugate priors may be less interpretable and more computationally expensive to
estimate but are theoretically no less effective than conjugate priors.
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1.2.3 Bayes Rule and MAP Estimation
Bayes Rule is the central tool for transitioning from the prior distribution to the posterior
distribution based on the observed data, using the following rule

p(θ|x) = p(x|θ)p(θ)
p(x)

p(x) can be considered a normalizing constant, so in practice this is often applied as

p(θ|x) ∼ p(x|θ)p(θ)

In classical statistics, maximum likelihood estimation (MLE) finds the parameter values
that maximize the likelihood of the observed data. That is,

θ̂MLE = argmax
θ

p(θ|x)

In Bayesian statistics, maximum a posteriori estimation (MAP) finds the parameter values
that maximize the likelihood of the posterior distribution. That is,

θ̂MAP = argmax
θ

p(θ|x) = argmax
θ

(p(x|θ)p(θ)) (applying Bayes)

1.3 Markov Chain Monte Carlo Sampling
In some cases, Bayes’ Rule can be used to analytically solve for and evaluate the posterior
distribution. When this becomes intractable, alternative sampling mechanisms need to
be used in order to sample from the posterior distribution. Markov Chain Monte Carlo
sampling is an alternative method for evaluating posterior distributions when analytic
evaluation is intractable or inefficient.

1.3.1 Markov Strong Law of Large Numbers
The Markov Strong Law of Large Numbers (MSLL) states that under certain conditions,
for a Markov chain visiting states S1, S2, . . . Sn with stationary distribution π through a
function of interest f(S),

lim
n→∞

1

n

n∑
i=1

f(Si) = Eπ[f(S)] almost surely

MCMC sampling algorithms work by generating a Markov chain whose stationary dis-
tribution is equivalent to the target distribution for sampling (in this case the posterior

3



distribution). The MSLL provides theoretical justification towards the convergence of this
process. With this, once the chain has converged, samples from the chain will be equiva-
lent to samples from the target distribution – which is also the posterior distribution.

1.3.2 Convergence of MCMC Sampling
There are number of diagnostic tools to evaluate convergence of the MCMC sampler. One
such measure is the R̂ statistic, where compares the variance between multiple MCMC
chains to the variance within chains. Let W be the within-chain variance and B be the
between-chain variance, then R̂ =

√
(n−1)W+B

Wn
. When the statistic is approximately one, it

indicates that the variance between chains is similar to that between chains, evidence that
the chains have converged. The R̂ statistic is computed individually for each parameter
– as it is possible that some parameters may converge faster than others (Gelman et al.,
2021).

Further, as MCMC algorithms sample from the converged chain, there can exist high au-
tocorrelation between consecutive samples. Autocorrelation between samples can violate
the MSLL and in turn lead to samples that do not truly reflect the posterior distribu-
tion. One method to combat this is thinning, where every kth sample from the chain
is used (and the rest discarded) as samples far enough apart in the chain will not be
autocorrelated with one another (Gelman et al., 2021).

These issues can exacerbate inefficiencies in the sampling procedure, as the effective (or
usable) number of samples from the posterior distribution may be significantly smaller
than the total number of samples produced.

1.3.3 Metropolis-Hastings
The Metropolis-Hastings algorithm is a common MCMC method (Gelman et al., 2021),
that effectively does a random walk through the parameter space.
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Algorithm 1: Metropolis-Hastings Algorithm
Input: Initial guess θ0, target distribution p(θ|x), proposal distribution q(θ′|θ),

number of iterations N
Output: Samples from p(θ|x)
Initialize θ ← θ0, samples ← []
for t = 1 to N do

Sample θ′ from q(θ′|θ)
Calculate acceptance probability α← min

(
1, p(θ

′|x)q(θ|θ′)
p(θ|x)q(θ′|θ)

)
Generate u ∼ Uniform(0, 1)
if u ≤ α then

θ ← θ′ (Accept the candidate)
end
Store θ in samples

end
return samples

The choice of the proposal distribution q(θ′|θ) dictates the effectiveness of the MH al-
gorithm, which will efficiently sample from the posterior distribution if (Gelman et al.,
2021):

• It is easy to compute q(θ′|θ)

• It is easy to compute α

• The sampled θ′ moves reasonably far at each step.

• The sampled θ′ is reasonably likely to be accepted

1.3.4 Other MCMC Samplers
Slice sampling is a MCMC method that does not require a proposal distribution, which can
be appealing when practitioners do not wish to tune a Metropolis-Hastings sampler. Slice
samplers effectively slice regions of the target distribution for exploration by choosing a
value of x, sampling a y value on the interval [0, f(x)] and then sampling points underneath
the density curve above the line-segment y (the slice). Slice sampling uses the property
that a distribution can be sampled from by sampling points uniformly from the region
under the density curve (Neal, 2003). However, in practice slice sampling performs poorly
in high-dimensional problems.

Hamiltonian Monte Carlo (HMC) techniques take steps informed by the gradients of the
parameters to reduce the random walk behavior often seen in techniques like Metropolis-
Hastings. This can make these techniques especially effective in high dimensions. HMC
is sensitive to the tuning parameters specified, and so in practice, the most commonly
used HMC sampler is the No-U-Turn Sampler (NUTS). NUTS requires minimal tuning
as it estimates the number of steps in the HMC sampler dynamically, while also us-
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ing automatic stopping to prevent it from inefficiently doubling back in its exploration
(Hoffman and Gelman, 2011).

1.4 Bayesian Model Evaluation
1.4.1 Prediction Evaluation
Naturally, we can evaluate models by predictive accuracy. When predicting point esti-
mates, measures like mean squared error are appropriate to assess the accuracy of the
model. However, when predicting distributions, inferences need to be additionally eval-
uated on the uncertainty inherent in the distribution. For this reason, the log-likelihood
(ie log p(y|θ) is often used to assess the fit of the probabilistic prediction (Gelman et al.,
2021). Note that this log-likelihood is taken over the predictive distribution, not the
posterior distribution because ultimately we are concerned with the model’s predictive
capabilities on the actual data, not the latent parameters.

Additionally, the posterior predictive p-value is defined by the probability that the pos-
terior predictive distribution is more extreme than the observed distribution over some
test statistic T . More specifically, repeatedly draw from the posterior distribution of θ,
compute the posterior predictive distribution given that θi and evaluate some T where
T is any query on the distribution and/or θi (for example the mean of the predictive
distribution) and compare it to the value of T on the observed data. Then the p-value is
the proportion of the time T on the drawn data is more extreme than that of the observed
data (Gelman et al., 2021).

1.4.2 Information Criterion
Information criterion are designed to compare the predictive accuracy of models of dif-
fering complexity. In particular, information criteria can be helpful when we are unwill-
ing/unable to test models on out-of-sample data from the true data generating process.
Models that have more complex structure/higher number of parameters may fit data
better by chance due to the larger number of degrees of freedom. Information criterion
adjust within-sample predictive accuracy by applying a penalty based on the number of
parameters being fit, in an effort to correct for this effect.

One such measure is the Aikake Information Criterion (AIC), defined as

−2 log p(y|θ̂MLE) + 2k

.

AIC is simple to estimate, but when using informative priors or hierarchical structures
(which tend to overfit less), the penalty term 2k can become excessive and thus AIC
struggles where there is strong prior information. Moreover, the posterior distribution on
θ is summarized by a single point estimate (Gelman et al., 2021).
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Another measure is the Deviance Information Criterion (DIC), defined as

−2 log p(y|E[θ|y]) + 2Var(log p(y|θ))

DIC is a more Bayesian alternative to AIC as it considers the posterior expectation of
θ. Alternative formulations for the penalty term exist but all are designed to not strictly
rely on the number of parameters used (Gelman et al., 2021). DIC can struggle when the
posterior distribution is not well-summarized by the mean.

Other criterion, such as Watanabe-Akaike (WAIC) averages over the entire posterior
distribution as opposed to using a single point estimate for θ (Gelman et al., 2021). WAIC
and cross-validation based techniques can struggles in cases where there is dependency
within data points (such as time-series) as it requires that data be able to be appropriately
partitioned.

1.4.3 Robustness
Beyond predictive strength, models should also be robust to changes in the prior distri-
bution and observed data. Probability models, in particular, are unlikely to perfectly
capture the true distribution – however, it is of concern if misspecification of a model
could lead to large differences in inferences. Small changes in the choice of prior distri-
bution should not lead to large changes in the resulting posterior distribution – if so, it
is likely that the prior may be too informative. Further, if changes in the observed data
lead to large changes in the posterior distribution, it may be that the prior is not strong
enough. Bayesian sensitivity analysis aims to answer this question by systematically per-
turbing the prior distribution and/or observed data and analyzing changes in the resulting
posterior distributions and inferences upon it (Gelman et al., 2021).

1.5 Bayesian Deep Learning
Bayesian deep learning aims to pair Bayesian principles of modelling uncertainty with
classical deep learning techniques, scaling Bayesian models into large data/high-parameter
settings. Previously we noted that Bayesian methods are particularly useful in small data
settings, so it is worth discussing why Bayesian methods may still be preferable in cases
of deep learning. Even with a large number of training observations, if the number
of observations is small relatively to the number of features, Bayesian methodologies
may help prevent overfitting. Furthermore, in some settings, practitioners may want to
understand the inherent uncertainty in predictions even if deep learning models may be
necessary to produce strong forecasts.

1.5.1 Variational Inference
In high-dimensional settings, MCMC methods may not be able to efficiently sample from
the posterior distribution. Variational inference combats this by approximating the poste-
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rior distribution using a parameterized distribution, q(θ|ϕ) (Xing, 2015). This transforms
the sampling problem into an optimization problem, namely finding the parameters ϕ
that makes q(θ|ϕ) most closely resemble the true posterior distribution p(θ|x).

Thus to perform variational inference we need two things:

1. Define the family of distributions q. The choice of distribution q depends on the
specific task where variational inference is being performed but often uses some
transformation of Gaussian or Bernoulli distribution.

2. Define an optimization objective relating q(θ|ϕ) to p(θ|x).

The Kullback-Leibler Divergence (KL Divergence) is a common method for measuring
the similarity of two probability distributions,

KL(q(θ|ϕ)||p(θ|x)) =
∫

q(θ|ϕ) log q(θ|ϕ)
p(θ|x)

dθ

Thus minimizing the KL divergence with respect to θ would be a reasonable optimization
objective for the variational inference problem. However, this may be intractable because
it relies on specifically knowing the true p(θ|x). As an alternative, the objective will be
maximizing the Evidence Lower Bound (ELBO),

ELBO = Eq(θ|ϕ)[log(x|θ)]−KL(q(θ|ϕ)||p(θ))

The first term in the loss function is the expected likelihood of the observed data under the
“fake” distribution q. The second term is the KL divergence between this distribution and
the prior distribution, which effectively serves as a regularization term in the optimization.
Note that despite not directly minimizing the KL divergence, maximizing the ELBO will
find the set of parameters θ that would minimize KL divergence (Xing, 2015).

1.5.2 Bayesian Neural Networks
Briefly, we recap the classical feed-forward neural network. A neural network consists
of interconnected layers of nodes, where each connection represents a synapse and each
node applies a transformation to its input. The basic architecture includes an input
layer that receives the raw data, one or more hidden layers that process the data through
weighted connections and activation functions, and an output layer that produces the final
prediction. The network learns by adjusting the weights of these connections to minimize
a given error function (often simply the mean squared error) through backpropagation.

Backpropagation calculates the gradient of the loss function with respect to each weight by
applying the chain rule, effectively propagating the error backward through the network.
These gradients are then used by an optimization algorithm, such as stochastic gradient
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descent, to adjust the weights in the direction that reduces the loss. This process is
repeated over many iterations, or epochs, until the network converges to a set of weights
that achieve the lowest possible loss.

Bayesian Neural Networks (BNNs) expand on classical feed-forward neural networks in the
same way that Bayesian models expand on frequentist statistical models, by incorporating
uncertainty in parameters. A BNN assumes that the weights in the neural networks
are uncertain, assigning a prior distribution on their values. In practice, this is often
a simple normal prior. Sampling from the posterior distribution of these parameters
given observed data quickly becomes computationally infeasible through MCMC methods.
Instead, BNNs use variational inference to approximate the posterior distribution, where
the optimization is maximising ELBO through gradient descent on the weights of the
neural network. Note that to approximate the gradient, Monte Carlo sampling techniques
are used, so BNNs do not avoid sampling altogether.

1.5.3 Mixture Density Networks
For the sake of discussion, we present an alternative to the BNN for modelling arbitrary
p(y|x), mixture density networks (MDNs) (Bishop, 1994). Considering a feed-forward
neural network with the following specifications:

• The input to the neural network remains x

• Some number of hidden layers with activation functions. A common choice is the
Rectified Linear Unit (ReLU) activation function, defined as f(x) = max(x, 0). The
ReLU activation function is used because it enables non-linearity in the model while
simultaneously having a simple gradient enabling efficient training.

• The output layers will describe a Gaussian Mixture Model, with three components,
µ (the means), Σ (the standard deviations) and Π (the probability of each Gaussian
in the mixture). Note that an exponential activation may be needed to make sure
every value in Σ is positive and a softmax activation may be needed to ensure that
Π is a valid probability distribution.

The loss function of the neural network is the negative log loss, which would correspond
to MLE estimation. MDNs maybe preferable to BNNs for a few reasons:

• They can more easily create non-normal shapes – BNNs often struggle to generate
shapes that are non-normal.

• They provide the probability density function (as opposed to BNNs which require
sampling). This also enables more efficient resolution of queries on the distribution.

In general, MDNs are a powerful tool whose application in Bayesian contexts requires more
research. Notably, MDNs do not use MAP estimation (there is no prior on the neural
network parameters) – but are better suited for modelling some p(y|x) than assuming
a prior over parameters. This observation will come up again when discussing deep
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probabilistic programming. Mixture density networks can also alternatively be used to
estimate the posterior distribution p(θ|x) directly, which can then be used in a typical
Bayesian fashion (Burton et al., 2021).
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CHAPTER 2

Probabilistic Programming

This section serves as an introduction to probabilistic programming, covering key compo-
nents of and implementations within probabilistic programming languages.

2.1 Background and Key Components
Probabilistic programming is a paradigm for simplifying, abstracting and automating
Bayesian inference. For a statistician with domain-expertise in Bayesian statistics but
limited programming background, probabilistic programming allows them to more simply
implement theoretical models. For a programmer with limited Bayesian background,
probabilistic programming makes complicated statistical models accessible.

2.1.1 Stochastic Inference Problem
We introduce the stochastic inference problem (Roy, 2016). As we noted earlier, the pri-
mary operation in Bayesian inference is the conditioning of our distribution of parameter
values based on observed data. The algorithm below is a very basic attempt to carry out
the conditioning operation.

The inputs to our algorithm will be probabilistic programs guesser() and checker()
that define some probability distribution. We will expand on what these might look like
later, but simply, guesser() provides a sample and checker(guess) returns (potentially
probabilistically) whether guess is valid or not. We ultimately return a sample from the
underlying probability distribution.

Algorithm 2: condition(guesser, checker)
Input: Probabilistic programs guesser() → sample, checker(sample) → bool
Output: A sample from the distribution of the program
accept = False
while not accept do

guess = guesser()
accept = checker(guess)

end
return guess

Clearly, this algorithm should enable sampling from any distribution so long as one can
define the guesser() and checker() functions for that distribution. Further, let’s es-
tablish the parallel between this algorithm and Bayesian inference. The distribution
of guesser() can be considered the prior distribution. The likelihood of guess is the
same as the Pr[checker(guess) = True]. Then, drawing a sample from condition
is the same as drawing a sample from the posterior distribution. Consider the prob-
ability some value θ will be returned from the stochastic inference problem. This is
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Pr[guesser() = θ] ∗ Pr[checker(θ) = True] Translating this, the first term is p(θ) and
the second term is p(x|θ). Therefore the result is p(θ|x), the posterior distribution (ig-
noring the normalizing constant).

To illustrate this, we can look at the toy example where we are flipping a (potentially-
biased) coin. Our goal is to determine p̂, the true probability of heads when flipping this
coin.

Let x ∈ [0, 1]n be a sequence of n observations from this coin.

Let’s say that our prior assumption is that the coin’s true probability is drawn
from Beta(1, 1), so it is uniform on [0..1]. Then we can specify guesser()
to return a sample from that distribution. Note that we could just as easily
specify the coin’s true probability as Beta(α, β), or any arbitrary distribution
such that Ω = [0..1] and have guesser() sample from this distribution. We
will revisit this implication later.

Then, we will specify checker(guess) as follows, where we will assume that
each flip of the coin is Bernoulli with probability p̂. :

def checker ( guess ) :
return x = Binomial ( guess , n)

In other words, sample a new vector of n observations using guess and return
True if that vector is equal to x. Once again, our data-generating assumption
could take any reasonable form.

Note that in this case our distributional assumptions on the coin have a tractable func-
tional form, so we can compare the results of the stochastic inference problem with the
theoretical results. Let our observed data x = [1, 0, 1, 1, 0, 1, 0, 1, 1, 1]. In theory, the pos-
terior distribution of the coin will be Beta(10, 4), and the output of checker() resembles
the posterior closely.
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Figure 1: Comparison of condition() with Theoretical Posterior

While condition() is a good place to start to contextualize the problem, it may not
be an efficient method for sampling. Consider that condition() is a geometric process
with probability Pr[x] of success, then in expectation it will make O( 1

Pr[x]
) calls to both

guesser() and checker(). In the toy example, randomly choosing guess from [0..1] we
need roughly 15 million calls to checker() to obtain 10,000 valid samples.

When evaluating checker() is efficient and Pr[x] is not too small, condition may be
efficient. However, checker() can be arbitrarily complex and we don’t want to be re-
stricted by Pr[x]. Furthermore, in each successive iteration of the loop, the guesser()
learns nothing new to help it propose a better candidate. We’ll discuss later how sampling
methods like MCMC are efficient approximations for condition().

The potential inefficiency of condition() is a large motivation for why probabilistic pro-
gramming exists (van de Meent et al., 2021). In fact, another explanation of probabilistic
programming is to use computer science techniques for algorithm development and im-
plementation to efficiently approximate condition().

The stochastic inference problem is a form of backwards reasoning/computation – given
observed data, what can we infer about the underlying parameters of the world? Prob-
abilistic programming languages also support forwards reasoning/computation, which
works in a generative sense – given our understanding of the underlying parameters,
what can we predict about the future? Critically, a single model/object in a probabilistic
programming language may need to support both operations.
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2.2 Language Architecture
Note that every probabilistic programming language is implemented uniquely. We first
touch on some high-level considerations for practitioners deciding which PPL to use, and
then touch on common language architecture across PPLs, highlighting interesting and
general paradigms used in the language design.

2.2.1 Choosing a Probabilistic Programming Language
There is a wide variety of existing probabilistic programming languages (PPLs); we briefly
touch on the high-level distinctions between them. These distinctions impact the perfor-
mance, usability and applicability of different PPLs. One key distinction lies in their
syntax and language design. While some PPLs employ domain-specific languages tai-
lored explicitly for probabilistic modeling, others are embedded within general-purpose
programming languages such as Python.

Moreover, PPLs diverge in the range and efficiency of the inference algorithms they offer.
Additionally, while some PPLs support both discrete and continuous latent variables,
others are tailored for one or the other. This distinction can significantly impact the
modeling capabilities of a PPL, particularly when dealing with heterogeneous data types
or complex models.

Furthermore, the backend computational frameworks used by PPLs play a crucial role
in their scalability and performance. Some languages are built on top of general-purpose
numerical libraries like TensorFlow or PyTorch, while others have custom inference engines
optimized for specific types of models or inference algorithms. Additionally, factors such
as community support, documentation availability, and integration with external libraries
and tools can impact the ease of implementation across PPLs.

For our purposes when programming probabilistic programs we will work with PyMC3,
a Python-based probabilistic programming language. Working in a language we are al-
ready familiar with will allow us to focus on conceptual paradigms over syntax. Further,
PyMC3’s integration into the existing Python ecosystem makes it flexible and compat-
ible with other data science/statistic techniques. Lastly, PyMC3 offers a wide range of
inference algorithms and scales well to large problems.

2.2.2 Language Semantics
In a probabilistic programming languages, distributions are primitives. A distribution
can be thought of in terms of its sampling function, (eg. guesser()). These kinds of
variables can be called stochastic variables, since their values change at runtime. Note
that traditional programming languages have stochastic variables too (consider the rand()
function), but in traditional programming we are often conceptually concerned with its
output as opposed to the function itself.

The reason why distributions should be considered primitives is quite intuitive. As we
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saw above, the output of the stochastic inference problem is a distribution. In Bayesian
statistics, we are interested in distributions (be it a prior distribution, posterior distribu-
tion or posterior predictive distribution) and queries on that distribution. If the primary
inputs/outputs to our system will be distributions, conceptually we need to consider these
primitives in our framework.

There are many frameworks for how a PPL should model these underlying distributional
primitives. As a starting point, we discuss a simple version of Sato’s distributional se-
mantics (Sato, 1995) that relate logical programming to probabilistic programming.

Consider a finite set F of independent random booleans, probabilistic facts each with
their own probability p of being true. Clearly these define a probability distribution over
each probabilistic fact (the joint distribution over any truth assignment of the facts can
be evaluated as the product of each of the individual truth assignments). Consider further
a set of “rules" R that are combinations of facts, other rules and/or their negations. The
combination of the set of facts and rules denotes a probabilistic model.

We provide a simple example of such a world here (De Raedt and Kimmig, 2015), denoting
the canonical alarm network:

F ={
burgulary, b : 0.1
earthquake, e : 0.2
hearsAlarm(X), h(X) : h(mary) = 0.7, h(john) = 0.4

}
R ={

alarm, a : e

alarm, a : b

calls(X), c(X) : a ∧ h(X)

call, c : c(mary) ∨ c(john)
}

Then consider a “world” where some set of facts and rules are fixed. We can see how
forward and backward reasoning would be implemented over this logic (first determin-
istically over the fixed set and then randomly when considering all possible worlds)
(De Raedt and Kimmig, 2015). Consider a set of facts given to us as true {b, h(john)}.
Then, b → a, (a ∧ h(john)) → c(john), c(john) → c. This deduction represents forward
reasoning on this world, and forward reasoning over all worlds (and the likelihood asso-
ciated with each world) will provide the likelihood of all facts/rules. Given a specific set
of observations, we can also deduce the facts that must be true to support this set given
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our world. Once again, enumerating all worlds (and their associated likelihood), we can
deduce the probability of a given fact/rule, forming backwards reasoning.

This world can be expanded beyond binary choices, though it is worth noting proba-
bilistic facts are sufficient to describe a wide array of Bayesian/Markov-based models
(De Raedt and Kimmig, 2015). Consider instead a form of facts where each fact f can
take on some value from a set fS, and each value in fS occurs with some probability (only
one value can be true at once and exactly one must be true at all times). Quickly, it
becomes apparent that enumeration over all worlds may be computationally intractable,
requiring the use of smarter (and potentially approximate) algorithms.

Beyond this, the probabilistic programming language may specify compositional rules to
combine distributions (Dahlqvist et al., 2020). While these may vary from language to
language, they will support operations on the joint distribution of individual distribu-
tions. In this way, users can define new distributional primitives – either directly through
compositional functions or by defining a function that returns samples from the new
distribution.

2.2.3 Lazy versus Eager Inference
In traditional programming, the choice between lazy and eager evaluation involves a trade-
off between simplicity and efficiency. Eager evaluation computes expressions immediately
upon encounter, ensuring that all values are available when needed, simplifying reasoning
about program behavior. However, it may lead to unnecessary computations. Lazy eval-
uation defers computations until results are demanded, potentially conserving resources,
but introducing complexity into program behavior. (van de Meent et al., 2021) The pref-
erence for eager or lazy evaluation depends on factors such as program nature and desired
trade-offs between simplicity and efficiency. Eager evaluation is common in imperative
languages for its simplicity, while lazy evaluation, prevalent in functional languages, can
enable more efficient resource usage and support advanced programming paradigms.

A similar trade-off exists in probabilistic programming languages between lazy and eager
inference (van de Meent et al., 2021). In lazy inference, the system defers the computation
of posterior distributions or other inference results until they are explicitly requested by
the user or needed for downstream tasks. This can be advantageous in scenarios where not
all parts of the model are relevant to the current inference task or when exploring large
model spaces where computing all possible inference results upfront would be prohibitively
expensive. In fact, for models that have a non-finite grammars (read: “distributional
semantic”), lazy evaluation may be required.

While PPLs are designed to carry out inference tasks, much of the code they execute
is in fact deterministic. These portions of probabilistic programs have semantics similar
to other “traditional" programming languages (Tolpin et al., 2016). Some probabilistic
programming languages, including Anglican (a probabilistic programming language inte-
grated through traditional programming language Clojure), use this blend to build smarter
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evaluation models. Through its continuation-passing style based evaluation model, An-
glican is able to treat deterministic parts of the code conventionally while providing a
separate mechanism to handle its probabilistic constructs such as sample (Anglican’s for-
ward reasoning/sampling) and observe (backwards reasoning/conditioning) differently.
Specifically, Anglican views calls to these functions as “checkpoints" where normal com-
putation stops and inference algorithms intervene, directing the computation flow based
on probabilistic logic. This facilitates efficient execution of probabilistic queries while
maintaining the integrity of deterministic computations. This method ensures efficient
execution of both deterministic and probabilistic code, preserving the natural syntax and
semantics of the underlying traditional programming language while extending it with
probabilistic programming capabilities.

2.2.4 Computational Graphs
A trace is record of a probabilistic execution of a probabilistic program (Roy, 2016). It
captures the sequence of operations, including the output of random primitives and the
resulting control flow decisions from these responses. Traces are often implemented in
tree or graph-like data structures, because changing the output of a random primitive
higher up in the tree might change the downstream decisions made by a probabilistic pro-
gram’s control flow (Yang et al., 2013). Efficient trace implementation will use evaluation
optimizations (like lazy evaluation we discussed earlier) and memoization/compacting
representations for samples repeatedly drawn from the same distributional primitive. In
theory, the trace is all that is required to run the probabilistic program – if a language
allows for the trace to be first recorded, and then replayed, it can execute probabilistic
programs. By maintaining traces, probabilistic programs can build more efficient inference
algorithms.

One such representation may be through a graph G defined by (V,A, P, Y ) (van de Meent et al.,
2021):

• V is the set of vertices that represent random variables.

• A is the set of directed edges (v1, v2) between random variables that represents
conditional dependence from v1 to v2.

• P is a function from the set of vertices to the probability mass/density function for
that random variable.

• Y is a map from random variables with observations to a (deterministic) expression
for those observations.

Because a probabilistic program is ultimately defining a probability distribution, some
probabilistic programs can be compiled to the static graph G prior to execution (van de Meent et al.,
2021). However, in other cases the graph may not be known at compile time, such as cases
where there are random variables dynamically generated during the program’s execution.
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There are a few methodologies for creating dynamic computation graphs. One method
would be to use an upper-bound on the number of objects that can be tracked by the
program simultaneously. In this case, the program must also specify which variables
need to be tracked at all times (through a separate variable), and the switching of that
variable “on/off” will allow a static G to approximate the functionality of a dynamic one
(van de Meent et al., 2021). Alternatively, the graph G can be built dynamically during
run-time. As the program executes, if additional random variables need to be added to
the context then the program will add those nodes to the graph. These methods are
known as evaluation-based methods, and do not require G to be defined explicitly at
compile-time (or even at all) (van de Meent et al., 2021). These techniques may rely on
lazy evaluation since the scope of a random variable’s support may not be known until it
needs to be evaluated.

2.3 Implementation
Consider the Beta-Binomial model described above and its implementation using tradi-
tional Python and PyMC3.

# Python
alpha_prior, beta_prior = 1, 1
alpha_post = alpha_prior + np.sum(n_successes)
beta_post = beta_prior + np.sum(n_trials) - np.sum(n_successes)

# PyMC3
with pm.Model() as model:

p = pm.Beta(‘p’, alpha=alpha_prior, beta=_prior)
y = pm.Binomial(‘y’, n=n_trials, p=p, observed=n_successes)
trace = pm.sample(n_samples, return_inferencedata=False)

First we can discuss the sample() function in PyMC3. This function abstracts the infer-
ence algorithms discussed earlier to provide samples from the posterior distribution of the
model’s parameters given the observed data. Note that sample() doesn’t require explicit
references to the probability model itself, as the code is instantiated within the context
of model.

At first glance it is unclear why the PyMC3 implementation seems more complicated,
and doesn’t take advantage of the model’s conjugacy. In fact, in this specific setting, the
Python code will outperform the PyMC3 implementation. When the exact form of the
model is known, the practitioner can specifically tailor their implementation.

However consider minor modifications to this scenario that illustrate the power of the
probabilistic programming approach.

1. The practitioner is unaware of or unable to resolve the model analytically, despite
an analytical solution existing.
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In the above, we assumed that the practitioner has sufficient knowledge of Bayesian
statistics to find the analytical form of the posterior distribution for their chosen
prior and mixing distribution. This assumption is fairly realistic for a simple case of
a Beta-Binomial, but even then creates a barrier to entry for programmers without a
strong statistics foundation. Moreover, even for practitioners with strong statistics
backgrounds, estimating analytical solutions can be time-consuming. Moreover,
some PPLs (although not PyMC3) can recognize conjugacy in certain probabilistic
models, and directly apply the analytical solution in those cases.

2. The practitioner wishes to slightly modify either the prior or mixing distribution.
For example, they would like the to use a Normal prior instead of the Beta prior.
In PyMC3, this is a simple change:

# PyMC3
with pm.Model() as model:

BoundedNormal = pm.Bound(pm.Normal, lower=0, upper=1)
p = BoundedNormal(‘p’, mu=mean_prior, sd=std_prior)
y = pm.Binomial(‘y’, n=n_trials, p=p, observed=n_successes)
trace = pm.sample(n_samples, return_inferencedata=False)

Because sample() abstracts the inference algorithm, the necessary code change is
extremely simple. While no analytical solution may exist for this particular model,
the probabilistic programming language returns samples from the posterior distri-
bution using one of many inference algorithms (that could be specified by the user).

Furthermore, Bound() is the PyMC3 method to establish a distribution needs to be
bounded, which allows it to be a suitable prior on p, the parameter for the binomial
distribution. The simplicity of this transformation should not understate its useful-
ness. There is no abstraction for such a distribution in traditional Python, and to
use a normal prior one would need to specify some transformation function to map
its outputs to [0..1]. The wide range of distributional primitives offered in PyMC3
(and other equivalent probabilistic programming languages) creates numerous po-
tential modifications to even this simple model.

Even within a simple example, it quickly becomes apparent how implementation in a
probabilistic programming language can save practitioners time, enable experimentation
with non-standard models and simplify the process of structuring probabilistic models.

We can see that even as probabilistic models scale in complexity, probabilistic program-
ming languages allow for relatively simple implementation. Consider the example of a
normal-normal hierarchical model. That is, consider each realisation yij ∼ Normal(µj, σ

2)
where µj ∼ Normal(µ, τ 2). Then there are priors on µ ∼ Normal and τ ∼ HalfNormal (to
enforce it is positive).
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#PyMC3
with pm.Model() as hierarchical_model:

mu = pm.Normal(‘mu’, mu=0, sd=10)
tau = pm.HalfNormal(‘tau’, sd=5)

mu_j = pm.Normal(‘mu_j’, mu=mu, sd=tau, shape=J)
y_ij = pm.Normal(‘y_ij’, mu=mu_j, sd=sigma, observed=data)

trace = pm.sample(1000, return_inferencedata=False, target_accept=0.95)

Defining such a model without using probabilistic programming would require defining
the log-likelihoods for each of the prior distributions p(θ), the function p(x|θ) and the log-
likelihood of the posterior distribution p(θ|x). This would require explicit mathematical
definitions for each distributional primitive, and would make changing these primitives
difficult (since it would require permeating the change in the likelihood function across
everywhere it was previously defined).

That additional complexity exists before discussing the MCMC sampling algorithm re-
quired to sample from the posterior distribution. Without using a probabilistic pro-
gramming language, the practitioner has to explicitly create a sampling algorithm. This
requires not only an understanding of the background statistics of MCMC and MCMC
algorithms, but also sufficient programming expertise to efficiently implement this solu-
tion. When naively implemented, sampling algorithms can become inefficient enough as
to become impractical – writing comparably efficient sampling algorithms in a native pro-
gramming language requires an understanding of the language’s underlying computation
and ability for vectorized/parallel computation. Moreover, practitioners lose the flexibil-
ity to switch between sampling algorithms depending on use cases. Modern probabilistic
programming languages often abstract variational inference as well. In PyMC3, functions
like pm.fit() abstract the optimization logic required to generate the distribution q(θ|ϕ).

Lastly, evaluating models is much simpler when using a probabilistic programming lan-
guage. Earlier, we discussed the difficulties in evaluating the output of Bayesian models,
both in evaluating the converge of MCMC sampling as well as the model’s overall fit.
Robust convergence checks are not difficult to implement (checking for auto-correlation,
R̂ values and counting effective number of samples are simple computational tasks) but
can create additional overhead in the modelling process when they exist external to the
sampling process. Probabilistic programming languages abstract and automate the eval-
uation process of Bayesian models within the sample() call so that practitioners don’t
need to verify convergence manually and can be easily alerted to potential sampling
issues before moving forward in the modelling process. Furthermore, probabilistic pro-
gramming languages implement modules for evaluating model performance and compar-
ing models. Specifically in PyMC3, models can compute their element-log likelihood
through pm.compute_log_likelihood() and can be compared to one another through
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az.compare(), which computes (among other relevant statistics) the leave out one cross
validation score and WAIC. PyMC3 also supports integrations with Python plotting li-
braries to visualize models and predictions. Once again these abstractions are not com-
plicated but reduce barriers for practitioners to effectively iterate on models.

Probabilistic programming doesn’t necessarily enable practitioners to do anything they
couldn’t do without it – ultimately it is an abstraction and we can see that any model
built using a probabilistic programming language could be similarly built without one.
However, throughout the life cycle of the model-building process, probabilistic program-
ming reduces barriers to entry, ensures more efficient implementation and enables effective
model iteration. In short, probabilistic programming makes using Bayesian models more
practical, which will increase their overall use.

2.4 Deep Probabilistic Programming
Thus far, the probabilistic programming paradigms we’ve discussed are appropriate under
a few assumptions (van de Meent et al., 2021):

1. We are capable of specifying a probabilistic model that can accurately model our
data.

2. We perform the conditioning operation on a single set of observations at a time, and
are concerned with producing the best possible inference on this set of observations.

These assumptions are fairly broad and cover most use cases for traditional Bayesian
analysis, which thrives on small datasets (where the use of a prior is necessary to com-
bat variance) or in simulation-based studies where estimating parameter uncertainty is
important to capture the correct amount of variance in outcomes (more on this later).

However, in modern machine learning and artificial intelligence tasks, these assumptions
can break down (van de Meent et al., 2021). Firstly, there are many datasets for which
specifying a realistic probabilistic model may not be possible. Consider tasks like nat-
ural language processing or computer vision which operate on datasets like images or
language – specifying a probabilistic model over the distribution of images/language may
not be feasible. Furthermore, these datasets may not be consistently structured, with
data sometimes entirely or partially unlabelled. Secondly, there is a question of scalabil-
ity. While probabilistic programming languages attempt to efficiently implement inference
algorithms, as datasets increase in size and models increase in complexity these algorithms
may not scale well.

Deep generative models are similar to the traditional generative models we’ve discussed
previously – they will still perform both forwards and backwards inference. The criti-
cal addition is that deep generative models will use neural networks as primitives, in the
same way our traditional generative models use generic distributions (van de Meent et al.,
2021). These operations are supported by tensors, and most primitive functions in mod-
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ern probabilistic programming languages support vectorization that allows them to accept
tensors as inputs and outputs. The use of neural networks presents a new problem – pa-
rameter estimation. Deep probabilistic programs may have millions of parameters, which
is orders of magnitude larger than the models we’ve discussed. Furthermore, practition-
ers may lose the advantage of domain-knowledge, previously the structure of our models
and parameter estimation could be informed by knowledge of the problem, whereas here
parameters must be estimated entirely from data.

The problem of parameter estimation can be solved through inference using Bayesian deep
learning. However, this is computationally complex, and implementations may prefer a
simpler methodology: stochastic gradient descent. That is, consider some observed data
Y generated from X and parameters θ, and assume that the joint distribution p(Y ,X, θ)
is the product of the individual distributions p(Yi, Xi|θ). Then one can use stochastic
gradient descent to find the θ that maximises the likelihood of p(Y |θ). Note that this
seems like a departure from traditional Bayesian inference, since we no longer specify a
prior p(θ). Specifying a prior may be impractical (because it is an open question of how
to specify the prior), and in the case where we have a lot of data, the prior term may be
dominated anyways (van de Meent et al., 2021).

In stochastic gradient descent, an estimate of the gradient is required to determine the
direction to move parameters at each step. Consider∇θ log p(Y ) = Ep(X|Y )[∇θ log p(Y,X)]
(van de Meent et al., 2021). In other words, the gradient of the marginal log likelihood can
be computed as an expectation over the posterior distribution. Then, a simple algorithm
for performing deep probabilistic programming might perform the typical probabilistic
programming inference task of producing samples from the posterior distribution for X,
use these samples to estimate the gradient of θ and update θ accordingly via a stochastic
gradient descent step (van de Meent et al., 2021). Recall that this framework is essentially
performing variational inference – it has changed the sampling task into an optimization
task.

Deep probabilistic programming lies at the intersection of traditional machine learning
models and Bayesian inference. Further research into efficiently estimating Bayesian mod-
els over large datasets will enable a host of new techniques for machine learning practi-
tioners.
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CHAPTER 3

Futures Modelling

This section utilises probabilistic programming language PyMC3 and Bayesian inference
techniques to propose a futures modelling technique.

3.1 Problem Description
3.1.1 Overview
A futures market is a market where participants can buy and sell binary contracts that
are worth $1 if the event specified in the contract occurs and is worth $0 otherwise. Team
futures markets are related to the future performance of a team, including division/con-
ference/championship winner, playoff likelihood and win totals. While this discussion can
apply generally to any futures market, we will focus specifically on NBA win totals.

Define a set of n teams T and a list of games G between two teams (one denoted the home
team and the other denoted the away team). Note that G is an ordered list because games
are played on a schedule. For every game, there is exactly one winner. We’ll let Gi,j,x

denote the xth time team i plays team j where team i is the home team. For simplicity,
assume that every team will play the same number of games, and further that every team
will play the same number of home games as away games. Consider some point where
m < |G| games have been played in the season. Our goal is to output the joint probability
distribution p(W ), where W is the vector of total wins for each team after all games in
G have been played.

While we only require p(W ), we’ll look for the joint probability distribution p(R), where
R is the result of every game in G. Note that any R determines a W , so p(R) is sufficient
for the original task. However, we may prefer to estimate p(R) because it would allow for
consistent pricing of other futures markets (such as probability to make playoffs, which
would require a knowledge of R).

3.1.2 Key Statistical Properties of Solution
Before developing a methodology for a solution, we will describe some of the statistical
characteristics that are necessary for a strong solution.

Firstly, given that we want p(R), our solution must output a probability distribution.
This may seem obvious but it is certainly non-trivial. The requirement of a probability
distribution eliminates a large swath of potential statistical techniques, and lends itself
well towards a probability model. Moreover, estimating an entire probability distribution
can quickly become computationally expensive – we require a methodology that can be
estimated backwards-looking and predict forwards-looking quickly.

Further, to predict the future performance of a team, we’d like to predict their performance
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in future games. Note that while this is not a necessary condition (we could estimate
p(R) directly and then use that to estimate the marginal distribution) – it is a simpler
problem to predict the outcome of a game given the teams than directly compute the
joint distribution. If we can predict the outcome of every game Gi,j,x then we can use
Monte-Carlo sampling to draw samples from p(R).

Consider then the task of predicting the outcome of an individual game Gi,j,x. Further,
let’s assume that the covariate space is ti, tj, xg – a parameter for teams i, j and another
parameter for any extraneous game variables. Then we have a function f : (T, T,G) →
[0..1] that maps the covariate space to a probability of team i winning Gi,j,x. If we
could know ti, tj (ie., we know exactly how good every team is) then the accuracy of the
predictor would come down to the accuracy of the function f . However, ti and tj need
to be estimated – specifically from data from previous games. Yet recall that we assume
that each individual game result is the outcome of some random process. Therefore
our estimates for ti, tj are conditional on the outcome of this random process. This
introduces uncertainty into the latent parameter estimates. Therefore for Gi,j,x we need
an understanding of p(ti|G), p(tj|G), which is equivalent the posterior distribution for ti
and tj given the observed data.

3.2 Literature Review
We examine a few methods for estimating the strength parameters ti, tj.

3.2.1 Bradley-Terry Models
Generically, the Bradley-Terry methodology assumes that

Pr[Gi,j,x = i|ti, tj, xg] =
ti

ti + tj
, s.t.

∑
i

ti = 1, ti, tj > 0

. (Hamilton et al., 2023)

This is commonly reformulated as

Pr[Gi,j,x = i|ti, tj, xg] =
1

1 + e−(
(ti−tj)

B
+S+xT

g λ)

. (Zanco et al., 2024)

There are a few things to note here. The Bradley-Terry model assumes a logistic win-
probability relationship. The use of the logistic link contrasts to alternative approaches
such as Thurstone Models that assume a normal relationship (Thurstone, 1927). This is a
nice relationship for a few reasons. Firstly, the logistic function is bounded between 0 and
1, so its output is already on a probability scale. Secondly, the logistic function’s shape
matches our natural intuition that differences in team-strength should matter closer to 50-
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50 than in the tails. That is, win-probability is not a linear relationship on the difference
in strength, an incremental improvement in team quality should have a larger impact
when teams are evenly matched than when they are already mismatched. S and B are
arbitrary tuning parameters to scale the team strength parameters. Notably, B allows one
to change the base of the logistic-link. Lastly, xT

g λ allows for the inclusion of game-state
covariates, including home-court advantage.

Given this functional form, the parameters ti, tj can be estimated by maximum likelihood
estimation across the set of observed games. Notably, there is no requirement that we have
priors on ti, tj, but if there were, we may be able to estimate their posterior distributions,
using MAP estimation.

3.2.2 Elo Models
The Elo rating system is an alternative methodology for computing relative strength pa-
rameters in two-player games. The Elo system assumes the same implied win-probability
relationship as the Bradley-Terry model (Zanco et al., 2024), however its method of esti-
mation is different (note that there are alternative formulations that use a Thurstone-esque
normal win probability link). Where Bradley-Terry models estimate parameters by full
MLE estimation, Elo models (in an online-learning fashion) use gradient descent after
every game is played to update team beliefs (Aldous, 2017).

More formally, in Gi,j,x, consider the estimated win probability Pr[Gi,j,x = i|ti, tj, xg] from
above (abbreviated as pi). Then, let the outcome gi be the indicator on i winning the
game. Then, after the game is played, update to t′i, t

′
j for some parameter K:

t′i = ti +K(gi − pi)

t′j = tj +K((1− gi)− (1− pi))

We can think of this as a gradient descent towards to the true MLE parameters ti, tj,
where K is a parameter controlling the step size. There are also theoretical guarantees
that this process will converge to the true parameters ti, tj as the number of games tends
to ∞. Specifically, if one considers the the ratings after x games have been played as tx
as a continuous-state Markov Chain, then (assuming logistic win probability), as x→∞,
the chain will converge to its stationary distribution (Aldous, 2017).

While convergence in the limit for Elo models is a strong guarantee, futures models need
to be estimated when x << ∞. In an entire NBA season, each team will only play 82
games, equating to just over 1200 total games. If Elo models don’t converge quickly, or
there is large variation in their results based on the observed sample, then they may not
be good estimators of forward-looking team-strength.

With both Elo models and Bradley-Terry models, assuming a fixed strength parameter
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estimate based on the previous games will lead to futures prediction models with lower
variance than observed. This should not be surprising given our earlier discussion. These
models would be missing a key source of variance in their eventual distributions – the
uncertainty on the the team strength parameter. That is, Elo models (and other non-
Bayesian approaches) ignores our earlier observation that the training data is itself the
outcome of a random process. To combat this, most methodologies re-calculate the team
strength parameter dynamically within a given simulation. That is if teams i and j have
a simulated game against one another, their strength parameters are updated using the
results of the simulated game as if the season was continuing. This methodology may be
practically effective but it is unclear whether it is theoretically accurately capturing the
variance from parameter uncertainty.

3.2.3 Microsoft TrueSkill
Microsoft’s TrueSkill ratings system extends Elo models by incorporating Bayesian in-
ference to handle uncertainties in skills (Herbrich et al., 2006), assuming that the rating
ti ∼ Normal(µi, σi). Note that TrueSkill actually estimates a player skill rating that is
Normal with fixed variance, but to compare this approach with the above we aggregate
the assumptions to the team level. The player-based formulation for TrueSkill allows it to
be applied to multi-player and team-based games more appropriately than an Elo model
(which assumes every team is the same entity each time it plays).

TrueSkill is estimated in an online-fashion (similar to Elo models) using Gaussian den-
sity filtering, where the posterior distribution from the last game is used as the prior
distribution for the subsequent game (Herbrich et al., 2006). Similar to Elo, the update
to skill ratings is a function of the expected outcome of that game, however the ratings
adjustment is also a function of the number of observed games we’ve seen. Note that this
is a natural consequence of a Bayesian framework – as we see more games the impact of
the prior is reduced, so the uncertainty on team strength is reduced.

3.3 Proposed Methodology
3.3.1 Description
Our methodology will use the same logistic link function for win probability as Elo, but
given the current set of games, will estimate posterior distributions for the team strength
parameters. To get predictions over the outcomes of the rest of the games, we will sample
team strengths from the posterior distribution and hold them constant in predicting future
outcomes. Note that this differs from the dynamic update methodology Elo uses.

More formally, in the simplest case we’ll define the prior on team strength ti ∼ Normal(µi, σ),
where σ ∼ HalfNormal(σ0). In order to include the effect of HFA, we will include an ad-
ditional bias term β ∼ Normal(β0, τ). Then, the probability of team a beating team b will
be 1

1+exp(−(ta−tb+β))
.
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Notably, we’ve yet to define any of µi, σ0, β0, τ . Recall that because we are using proba-
bilistic programming, we can flexibly iterate through different implementations for defin-
ing these parameters. Moreover, we could change the shape/distributional structure easily
from the base model.

For µi, we might consider any of the following (among others):

1. Provide an non-informative prior (∀i, µi = 0)

2. Provide an informative prior using an estimate of team strength from previous sea-
sons, potentially regressed back towards zero. This would be similar to an Empirical
Bayes approach.

3. Use a hierarchical model, such that µi ∼ Normal(µ′, σ′).

For σ0 and τ , we can change the information in the prior by increasing/decreasing the
parameter. For β0 we can consider similar approach as µi, choosing a non-informative
prior (β0 = 0) or informative prior estimated from prior data.

3.3.2 Implementation
with pm.Model() as model:

# home court advantage
hfa = pm.Normal(‘hfa’, mu=prior_hfa, sd=0.7)

# prior for standard deviation of team strength
strength_sd = pm.HalfNormal(‘strength_sd’, sd=1)

# prior distribution on team strength
strength = pm.Normal(‘strength’, mu=prior_strength,

sd=strength_sd, shape=num_teams)

# logistic win probability
strength_diff = tt.dot(matchups, strength) + hfa
p_win = pm.Deterministic(‘p_win’, 1 / (1 + tt.exp(-strength_diff)))

# observed data
outcomes = pm.Bernoulli(‘outcomes’, p=p_win, observed=results)

# sample from posterior
trace = pm.sample(2000, tune=1000, cores=8, target_accept=0.95)

Once again, the brevity and clarity of building Bayesian models in probabilistic program-
ming is apparent. Each assumption made earlier is clearly modularized (ie. to change
the assumption on home court advantage, the only place the practitioner needs to ad-
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just the program is in the variable hfa). The sampling methodology (which uses NUTS)
is abstracted in pm.sample() as discussed earlier – trace now holds samples from the
posterior distribution.

The simplicity of this code should not be taken for granted. Implementing a similar model
without using a probabilistic programming language would require explicit declarations
for the likelihood of the prior distributions, full specification of a sampling algorithm and
separate convergence diagnostic/evaluation frameworks. Beyond not taking advantage of
efficient trace-based computation (leading to slower sampling times), it would take more
time to initially develop, has more potential for bugs and is harder to change in the
future. Using a probabilistic programming language here makes it feasible for someone
with little knowledge of Bayesian statistics to create this model (consider that nothing
in the above required an explicit understanding of anything beyond a prior distribution)
and for someone with little vector-based computer science knowledge to create an efficient
sampling mechanism for an arbitrary model.

Recall that we care about p(R), which can be obtained by simulating game results with
the posterior samples.

with model:
# Calculate skill differences for non-played games using posterior samples
ppc = pm.sample_posterior_predictive(trace, samples=10000,

var_names = [‘hfa’, ‘strength’])

# Extract p_win values for non-played games R
p_win_test = 1 / (1 + tt.exp(-(tt.dot(R,

ppc[‘strength’].T) + ppc[‘hfa’].T)))

This now gives the posterior estimates for the win probability of each game – and from
this the actual results can be estimated via Monte Carlo simulation from this distribution.

posterior_seasons = np.random.binomial(n=1, p=p_win_new.eval()).

This now provides p(R), as desired (a single sample from posterior_seasons is a sample
from the posterior predictive distribution over the results of all games).

3.4 Evaluation and Discussion
The above implementation was applied on the 2018-2019 NBA season, as if the day was
January 1st 2019 (roughly 35 games played per team in observation and 47 games played
per team remaining in the season). In order to compare this methodology with the Elo
methodology, the Elo model will be built as specified:

• Elo ratings will be assumed to be centered at zero, with a HFA bias of 0.2 added to
a logistic win probability function.
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• The initial Elo rating for each team will be calculated by MLE on the previous
season’s data, regressed back to 0 by multiplying the rating by ρ.

• Elo will be continuously re-fit after every game using the formulation described
above, with K = 0.05.

Further, µi, σ0, β0, τ are specified follows:

• µi will be the same value as the initial Elo rating from above (ie informative).

• σ0 will be 0.5 and τ will be 0.7 – so as to be relatively non-informative.

• β0 will be the estimated MLE value from the previous season (similar to µi).

Beyond differences in the results, the methodologies differ in sampling efficiency. The Elo
model must be evaluated sequentially, since within each “simulation," the Elo rating has
to be updated based on the result of the fake game. Thus even with multi-processing of
each simulation, samples cannot be drawn in a vectorized fashion. This contrasts with
the Bayesian approach – because the strengths are sampled from the posterior distri-
bution and held constant, the probability of victory for every game can be computed
simultaneously in each “simulation”. Of course, obtaining the posterior samples requires
computation, but probabilistic programming implementations are designed to efficiently
do this computation. Empirical results suggest that including sampling the Bayesian
methodology is 4-5 times faster than the Elo methodology.

While the Elo methodology doesn’t create a true posterior distribution (since it is not
Bayesian), we will compare the simulated distribution of end-of-season ratings with the
posterior distributions implied by our methodology. These choices were made to as closely
resemble our chosen implementation, so that meaningful differences in outputs (and the
distributions) are likely a result of the difference in methodology for incorporating variance
as opposed to parameters/formulation. It is important to note that the Elo methodology’s
“distribution" is not a probability distribution because there is no probabilistic assumption
on the team strength parameter (there is no sample space or probability measure). This
is a relevant theoretical difference between the two methodologies since we may want
the ability to make probabilistic statements about parameters (and only the Bayesian
method would support that). That said, visually inspecting these differences may still be
informative to understand where the methodologies differ.
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Figure 1: Comparison of ti Posterior Distributions, 2019 NBA (∼ 35 games)

The figure above shows the output distributions for, µi plotted in purple and the final
full-season MLE estimate for ti is in green. There are a few high-level observations we
can make. Universally, the Bayesian methodology has fatter tails – recall that this is
expected because of the additional uncertainty using a prior distribution provides. For a
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significant number of teams, the two distributions have a similar shape/center. For these
teams, the Bayesian methodology will not lead to notable differences in average prediction
but will predict a higher likelihood of extreme (or wing) outcomes. In other cases, the
two distributions do not share the same center. We can see that in the cases where they
diverge, the center for the Bayesian method is often closer to the full season ti than the
Elo methodology. Specifically, we can look at the case of CLE. At the conclusion of the
2018 season, LeBron James left the Cavaliers, and so the 2019 CLE team was among the
worst in the league. The Bayesian model picks this up more quickly, because the prior
distribution for CLE incorporates uncertainty on its strength – whereas the Elo model is
forced to start from µi and update as it sees evidence that CLE is not very good.

More generally, when the full-season ti rating significantly diverges from the initial µi, the
Bayesian model is often quicker to pick up on the difference. This may be counterintuitive,
since the use of a prior distribution often makes Bayesian techniques less reactive to new
information than traditional statistical techniques. Because the Elo model is trained in an
online fashion, it has to start from the starting µi, which may make it slower to adapt to
new information. However, we note that the changing of the hyperparameters K and σ0

could change this relationship. In fact, consider a slight alteration to the existing model
that uses K = 0.1.
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Figure 2: Comparison of ti Posterior Distributions, 2019 NBA (∼ 35 games)

Under these settings, the resulting Elo distributions are practically indistinguishable from
the Bayesian posterior distributions. Taking this a step further, we can compare the
average standard deviation in the resultant distributions for different parameter settings
for K and σ0 in Tables 1 and 2.

K Value

0.01 0.031
0.05 0.159
0.1 0.316
0.2 0.610
1 2.337

Table 1: Avg Std Dev of Simulated ti

σ0 Value

0.1 0.1921
0.25 0.2651
0.5 0.2817
1.5 0.2876
5 0.2882

Table 2: Avg Std Dev of p(ti|x)
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The relationship between the Elo and Bayesian models becomes more clear. The out-
putted variance of the Elo model is extremely (and roughly linearly) dependent on the
learning rate K. In the context of the discussion on robustness, the outputs of the Elo-
based model is sensitive to the hyperparameter K, which may be undesirable. For settings
where the appropriate K is not clear, this places the onus on the practitioner to either
select an appropriate K, perhaps using cross-validation or other techniques. Moreover,
it may mean that K needs to be re-chosen whenever augmentations or iterations on the
model are made. This might further exacerbate the efficiency difference between the two
techniques, as performing cross-validation techniques across different values of K requires
repeated re-sampling.

This contrasts with the Bayesian methodology, where setting informative priors like σ0 =
0.1 can reduce variance, but setting relatively non-informative priors lead to the same
result. This makes this strategy much more robust, and far easier to iterate with (because
one can safely set a non-informative prior without worrying about dramatically altering
results).

To further verify this, we can compare the posterior predictive distribution of wins between
the Bayesian model and Elo models with different parameters of K. This is important
because it will verify that the impact of differing posterior strength parameters permeate
to the outcome of interest, R.
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Figure 3: Comparison of Posterior Predictive Win Distributions, 2019 NBA

As expected, when K is specified correctly, the posterior predictive win distributions for
the two methodologies are close to each other. However, when K is specified to a different
value (in this case 0.5) the variance in the resulting posterior predictive distribution is
clearly different – and predictions using this altered distribution may be inaccurate, as it
will over-predict wing outcomes and under-predict central outcomes.
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3.5 Extensions
To further highlight the flexibility that probabilistic programming provides, here are a
few extensions of the simple Bayesian model that could be further pursued.

3.5.1 Hierarchical Variance
This model assumes that the variance on team skill is a shared parameter across all teams
(ie every team has the same prior variance), an assumption that is fair given that teams
have played roughly the same number of games at all points of the season. However,
extensions of this model might relax that assumption and use σi ∼ HalfNormal(σ0),
defining the variance in a hierarchical fashion.

3.5.2 Non Stationarity
Both the Bayesian and Elo models assume that team strength is stationarity. Extensions
of the model may relax this assumption by allowing the team strength distribution to
“drift” over time.

Consider an alternative formulation where team strength starts at an initial true strength
ti and then drifts according to a Gaussian random walk. The probabilistic program could
easily be refactored to support this addition as follows:

with pm.Model() as model:
hfa = pm.Normal(‘hfa’, mu=prior_hfa, sd=0.7)
strength_sd = pm.HalfNormal(‘strength_sd’, sd=0.25)
initial_strength = pm.Normal(‘initial_strength’, mu=prior_strength,

sd=strength_sd, shape=num_teams)

# Define the drift as a Gaussian random walk
drift_sd = pm.HalfNormal(’drift_sd’, sd=0.1)
strength = pm.GaussianRandomWalk(‘strength’, sigma=drift_sd,

shape = (num_games, num_teams)) + initial_strength

strength_diff = tt.dot(matchups, strength[game_time_indices].T) + hfa

In practice this assumption might pose computational problems (the posterior being sam-
pled from is more difficult to estimate) – but the flexibility of probabilistic programming
languages means that the random walk assumption could be adapted to a hierarchical
model for different time periods, or an auto-regressive model simply by changing the
distributional primitive used within strength. Alternatively because probabilistic pro-
gramming abstracts the sampling process, different sampling algorithms/methods can be
easily experimented with, including variational inference.
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Conclusion

First, we highlighted the importance of Bayesian models as tools for quantifying uncer-
tainty and modelling distributional outcomes. These models have been relatively unused
because designing Bayesian models not only required a high-level statistical background,
but also adequate computer science knowledge to efficiently implement them. We then
established how probabilistic programming languages are used to simplify, abstract and
automate Bayesian inference. We demonstrated that probabilistic programming not only
makes the code itself cleaner, but can be built to leverage the unique computational prop-
erties of the stochastic inference problem to make the code more efficient compared to
generic implementations.

Then, using the probabilistic programming language PyMC3, we explored the sports
futures modelling problem, implementing a Bayesian approach to contrast with accepted
industry standards. We noted that the Bayesian model had four distinct advantages over
Elo-based simulation approaches:

1. Sampling from the Bayesian approach is more efficient since it does not require
sequential recalculation.

2. The Bayesian approach enables direct probability statements on team strength since
it assumes a probability distribution on the latent strength parameter.

3. The Bayesian approach is more robust to hyperparameter settings. While there are
settings for the learning rate K that make both methodologies virtually identical,
we showed that both the “posterior” and “posterior-predictive” distributions for the
Elo model can be significantly biased by the choice of K.

4. The Bayesian (and more accurately a probabilistic programming) approach enables
easy extensions of the base model.

We hope that this thesis inspires further exploration into Bayesian models, specifically in
sports analytics contexts where they may be particularly useful and robust compared to
current state of the art.
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