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Abstract

Higher-order intensional type analysis is a way of defining
type-indexed operations, such as map, fold and zip, based on
run-time type information. However, languages supporting
this facility are naturally defined with a type-passing seman-
tics, which suffers from a number of drawbacks. This paper,
describes how to recast higher-order intensional type anal-
ysis in a type-erasure semantics. The resulting language is
simple and easy to implement—we present a prototype im-
plementation of the necessary machinery as a small Haskell
library.

1 Polytypic programming

Some functions are naturally defined by the type struc-
ture of their arguments. For example, a polytypic pretty
printer can format any data structure by using type in-
formation to decompose it into basic parts. Without such
a mechanism, one must write separate pretty printers for
all data types and constantly update them as data types
evolve. Polytypic programming simplifies the maintenance
of software by allowing functions to automatically adapt to
changes in the representation of data. Other classic exam-
ples of polytypic operations include reductions, comparison
functions and mapping functions. The theory behind such
operations has been developed in a variety of frameworks
[1, 2, 5, 7, 11, 12, 13, 14, 21, 24, 26, 28].

While many of these frameworks generate polytypic op-
erations at compile time (through a source-to-source trans-
lation determined by static type information), higher-order
intensional type analysis [31] defines polytypic operations
with run-time type information. Run-time type analysis has
two advantages over static forms of polytypism: First, run-
time analysis may index polytypic operations by types that
are not known at compile time, allowing the language to
support separate compilation, dynamic loading and poly-
morphic recursion. Second, run-time analysis may index
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polytypic operations by universal and existential types. Be-
cause these quantified types hide information, the semantics
of the programming language must provide type information
at run time to define most operations over these types.

Run-time type analysis is naturally defined by a type-
passing semantics because types play an essential role in the
execution of programs. However, there are several signifi-
cant reasons to prefer a semantics where types are erased
prior to execution:

• A type-passing semantics always constructs and passes
type information to polymorphic functions. It can-
not support abstract data types because the identity
of any type may be determined at run time. Further-
more, parametricity theorems [20, 27] about polymor-
phic terms are not valid with this semantics.

• Because both terms and type constructors describe run-
time behavior, type passing results in considerable com-
plexity in the semantics of languages that precisely de-
scribe execution. For example, a language that makes
memory allocation explicit [16, 17] uses a formal heap
to model how data is stored; with run-time types it is
necessary to add a second heap (and all the attendant
machinery) for type data.

• Operators that implement type analysis in a type-
erasure semantics are easier to incorporate with exist-
ing languages (such as Haskell and ML) that already
have this form of semantics. Extending these languages
with this form of type analysis does not require global
changes to their implementations. In fact, for some
languages it is possible to define type analysis oper-
ators with library routines written in that language.
For example, Weirich [30] shows how to encode first-
order run-time type analysis in Fω [9] and Cheney and
Hinze [3] implement the same capabilities in the Haskell
language [19].

In first-order intensional type analysis, types such as int
and bool × string are the subject of analysis—an operator
called typerec computes a catamorphism over the structure
of run-time types. The idea behind higher-order intensional
analysis is that the structure of parameterized types (i.e.
higher-order type constructors) is examined. In this frame-
work, typerec acts like an environment-based interpreter of
the type language during execution. Higher-order analy-
sis can define more polytypic operations than first order
analysis. For example, a polytypic function that counts the
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Figure 1: Language comparison

number of values of type α in a parameterized data struc-
ture of type τα must analyze the type constructor τ . Many
of the most important examples of polytypic programming
are only definable by higher-order analysis, including maps,
zips, folds and reductions.

Crary, Weirich and Morrisett [6] (CWM) describe how
to support first-order intensional type analysis in a language
with a type-erasure semantics. In their language λR, typerec
examines terms that represent types instead of analyzing
types. In a type-erasure version of higher-order analysis,
typerec should examine term representations of higher-order
type constructors. However, while CWM define represen-
tations of higher-order type constructors in λR, these rep-
resentations cannot be used for higher-order analysis. For
technical reasons discussed in Section 3, we cannot define
a term that operates over these type constructor represen-
tations in the same way as the type-passing typerec term
operates over type constructors. These difficulties prohibit
an easy definition of a type-erasure language that may define
higher-order polytypic operations.

In this paper, we show how to reconcile higher-order
analysis with type erasure. Our specific contributions in-
clude:

• A language, called LHR, that supports higher-order
intensional type analysis in a type-erasure semantics.
Surprisingly, in some respects LHR is a simpler calcu-
lus than the type-passing version of higher-order type
analysis.

• A translation between the type-passing version of
higher-order intensional type analysis and LHR, with
a proof of correctness.

• A prototype implementation of LHR as a Haskell li-
brary that is simple, easy to use and specialized to the
Haskell type system, allowing polytypic functions to
operate over built-in Haskell datatypes.

The structure of this paper is as follows. Section 2
reviews higher-order intensional type analysis (formalized
with the language LH) and Section 3 discusses the problems
with defining a type-erasure version of this language. In Sec-
tion 4 we present the type-erasure language called LHR. We
describe the translation between LH and LHR in Section 5.
Section 6 describes the prototype implementation of LHR
as a Haskell library. In Section 7 we discuss extensions of
this translation, and in Section 8 we present related work
and conclude. Appendix A contains the proof of correctness
of the translation.

2 LH: Higher-order analysis with type-passing

The LH language (Figure 2) is a lightweight characteriza-
tion of higher-order intensional type analysis that captures
the core ideas of the language of Weirich [31]. It is a call-by-
name variant of the Girard-Reynolds polymorphic lambda

(kinds) κ ::= ? | κ1 → κ2

(operators) ⊕ ::= int | → | ∀?

(type constructors) τ ::= α | λα:κ.τ | τ1τ2 | ⊕
(types) σ ::= τ | int | σ1 → σ2 | ∀α:κ.σ
(terms) e ::= i | x | λx:σ.e | e1e2

| Λα:κ.e | e[τ ]
| typerec [∆, η, ρ][τ ′]〈τ : κ〉 of θ

(typerec branches) θ ::= ∅ | θ{⊕ ⇒ e}
(term environment) η ::= ∅ | η{α ⇒ e}
(tycon environment) ρ ::= ∅ | ρ{α ⇒ τ}
(tycon context) ∆ ::= ∅ | ∆{α ⇒ κ}
(term context) Γ ::= ∅ | Γ{x ⇒ σ}
(operator signature) Σ ::= { int ⇒ ?,

→ ⇒ ? → ? → ?,
∀? ⇒ (? → ?) → ?}

Figure 2: Syntax of LH

calculus [10, 9, 20] plus the typerec term to define polytypic
operations.1 The choice of call-by-value or call-by-name is
not significant, and call-by-name slightly simplifies the pre-
sentation. Also for simplicity, the formal language contains
only integers, functions, and polymorphic terms, although
we will include additional forms (such as products, sums,
and term and type recursion, with their usual semantics) in
the examples. The behavior of typerec on these new type
forms is analogous to that for integers, functions and poly-
morphic types.

Types, σ, which describe terms, are separated from type
constructors, τ , although we often call type constructors of
base kind, ?, types. The operators, ⊕, are a set of con-
stants of the type constructor language. These constants
correspond to the various forms of types: for example, the
constant → applied to τ1 and τ2 is equivalent to the function
type τ1 → τ2, and ∀?τ is equivalent to the type ∀α: ? .τα.2

The signature, Σ, is a fixed finite map that describes the
kinds of the operators. We use the notation Σ(⊕) to refer
to the kind of the operator ⊕. The language includes several
other finite maps, such as ρ, η, θ, etc. We write the empty
map as ∅, add a new binding to ρ with ρ{α ⇒ τ} (defined
only when α 6∈ Dom(ρ)) and retrieve a binding with ρ(α)
(defined only when α ∈ Dom(ρ)). We also use the notation
ρ(τ ) to substitute in τ for all variables bound in ρ. The
notation for the other maps is analogous.

The term typerec [∆′, η, ρ][τ ′]〈τ : κ〉 of θ defines poly-
typic operations. Essentially, it behaves like an interpreter
of the type constructor language, translating the type con-
structor τ (of kind κ) to an element of the term language
using the branches θ for the interpretation of operators and
the environment η for the interpretation of type variables.
The typerec term is the binding occurrence for the variables
that might appear in τ at run-time—those that have a def-
inition in the environment η. The context ∆′ describes the
kinds of those variables. The finite map ρ defines a substi-
tution for the variables when τ appears outside of the scope

1Unlike other languages with intensional type analysis such as
λ

ML

i
[11] and λR [6], LH does not include Typerec—a type construc-

tor that defines other types by intensional analysis.
2There are no type constructors analogous to polymorphic types

(∀α:κ.σ) when κ is not ?. Including them would require either an
infinite number of operators or kind polymorphism.
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size =
Λα:? → ?. typerec [∅, ∅, ∅][λβ: ? .β → int ]〈α : ? → ?〉 of θ

where θ =
{ int ⇒ λy: int .0

unit ⇒ λy: unit .0
× ⇒ Λβ: ? .λx:(β → int).Λγ: ? .λy:(γ → int).

λv:(β × γ).
x(π1v) + y(π2v)

→ ⇒ undefined
+ ⇒ Λβ: ? .λx:(β → int).Λγ: ? .λy:(γ → int).

λv:(β + γ). case v of
(inj

1
z ⇒ x(z) | inj

2
z ⇒ y(z))

∀? ⇒ undefined
∃? ⇒ Λα:? → ?.λr:(∀β: ? .(β → int) → αβ → int).

λx:∃α.
let〈β, y〉 = unpack x in

(r [β] (λx:β.0) y)
µ? ⇒ Λα:? → ?.

λx:(∀β: ? .(β → int) → αβ → int).
fix f :µ?α → int .

λy:µ?α. (x [µ?α] f (unroll y))
}

Figure 3: Example: size

defined by typerec. The type constructor τ ′ is an annotation
that makes type checking syntax directed. We call it the re-
turn type constructor and will always use the metavariable
τ ′ to refer to it. The type of a typerec term is [τ ′]〈ρ(τ ) : κ〉.
This type uses the definition of a polykinded type, below.

Definition 2.1 A polykinded type, written [τ ′]〈τ : κ〉,
where τ ′ has kind ? → ? and τ has kind κ, is defined by
induction on κ by:

[τ ′]〈τ : ?〉
def
= τ ′τ

[τ ′]〈τ : κ1 → κ2〉
def
= ∀α:κ1.[τ

′]〈α : κ1〉 → [τ ′]〈τα : κ2〉

A simple example of a typerec term is

typerec [{α ⇒ ?}, {α ⇒ 3}, {α ⇒ int}]
[λβ: ? .β]〈α : ?〉 of {int ⇒ 0}

The environment for this term maps the type vari-
able α to the number 3. This term has type
[λβ: ? .β]〈{α ⇒ int}(α) : ?〉 = ((λβ: ? .β) int) = int .

The function size in Figure 3 is a more realistic example
of a polytypic function defined with typerec. This function is
defined over type constructors of kind ? → ?. For example,
lists are defined in this language as

List
def
= λβ: ? .µ?(λα : ?. unit +(β × α))

The type application size[List] is a function that takes a
method to compute the size of values of type β (i.e. a func-
tion of type β → int), and returns a function to compute
the size of the entire list of type List β.

In size, the return type constructor is (λβ: ? .β → int)
so the type of size is

∀α:? → ?.[λβ: ? .β → int ]〈α : ? → ?〉
= ∀α:? → ?.∀β: ? .(β → int) → (αβ) → int .

∆; Γ[τ ′] ` ∆′ | η | ρ ∆; Γ[τ ′] ` ∅ | ∅ | ∅

∆; Γ[τ ′] ` ∆′ | η | ρ
∆; Γ ` e : [τ ′]〈τ : κ〉 ∆ ` τ : κ

β 6∈ Dom(∆, ∆′)

∆; Γ[τ ′] ` ∆′{β ⇒ κ} | η{β ⇒ e} | ρ{β ⇒ τ}

∆; Γ ` e : σ

∆ ` τ ′ : ? → ? ∆; Γ[τ ′] ` ∆′ | η | ρ ∆, ∆′ ` τ : κ
∆; Γ ` θ(⊕) : [τ ′]〈⊕ : Σ(⊕)〉 (∀⊕ ∈ Dom(Σ))

∆; Γ ` typerec [∆′, η, ρ][τ ′]〈τ : κ〉 of θ : [τ ′]〈ρ(τ ) : κ〉

Figure 4: Static Semantics of LH typerec

We can use size to generate the length function for lists
if we supply the constant function (λx:β.1) to compute the
size of the list elements. In other words, length = Λβ: ?
.size[List][β](λx:β.1). Likewise, if we would like a function
that counts the number of values stored in a tree or the
number of values in a Maybe (either 1 or 0), we replace

the type constructor argument List above with Tree
def
=

λβ: ? .µ?(λα : ?.β + (α × α)) or Maybe
def
= λβ : ?. unit +β.

The branches θ define interpretations for the operators.
For the types int and unit , size returns the constant func-
tion 0 because we only wish to count values of type α. Be-
cause the × constructor must be applied to two types β
and γ to produce a product type, its interpretation uses the
size functions for β and γ to produce the size function for a
product type β × γ. The size of a product type is the sum
of the sizes of the two components of the product. Likewise,
the size function for a sum type determines the case of the
sum and applies the appropriate size function. Like many
polytypic functions, size is undefined for functions and poly-
morphic terms and will produce an error if these operators
appear in its argument. For existential types, size unpacks
the existential and then computes the size of the body, using
the constant zero function as the size of the abstract type β.
Finally, for recursive types, the argument x will compute the
size function of the body of the recursive type if it is given
the size function for the recursive type itself; this function
is defined using fix .

The static semantics of LH (Figure 4) includes a judg-
ment of the form ∆; Γ ` e : σ to indicate that a term e has
type σ in type context ∆ and term context Γ. ∆ maps type
variables to kinds and Γ maps term variables to types. Most
of the rules for deriving this judgment are standard and are
not described in this paper. We describe the rule for typerec
below. In the expression typerec [∆′, η, ρ][τ ′]〈τ : κ〉 of θ, the
context ∆′ describes the kinds of type variables that may
appear in the argument τ . The term environment η and
type environment ρ are used to interpret those type vari-
ables. We check that ∆′, η, and ρ are well-formed with the
judgment form ∆; Γ[τ ′] ` ∆′ | η | ρ. This judgment declares
that η maps type variables in ∆′ to appropriate terms for
the return type constructor [τ ′], and that ρ maps those vari-
ables to type constructors with kind specified by ∆′. The
first two inference rules in Figure 4 show when this judgment
may be derived.

With this judgment, we can state the formation rule for
higher-order typerec (the last rule in Figure 4). If the re-
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e 7→h e′ typerec [∆′, η, ρ][τ ′]〈α : κ〉 of θ 7→h η(α)

typerec [∆′, η, ρ][τ ′]〈(λα:κ′.τ1) : κ′ → κ〉 of θ 7→h

Λβ:κ′.λx:[τ ′]〈β : κ′〉.
typerec [∆′{α ⇒ κ′}, η{α ⇒ x}, ρ{α ⇒ β}][τ ′]〈τ1 : κ〉 of θ

∆′ ` τ2 : κ′

typerec [∆′, η, ρ][τ ′]〈τ1τ2 : κ〉 of θ 7→h

(typerec [∆′, η, ρ][τ ′]〈τ1 : κ′ → κ〉 of θ) [ρ(τ2)] (typerec [∆′, η, ρ][τ ′]〈τ2 : κ′〉 of θ)

typerec [∆′, η, ρ][τ ′]〈⊕ : Σ(⊕)〉 of θ 7→h θ(⊕)

Figure 5: Dynamic semantics of LH typerec

turn type constructor is well formed, the environments are
well formed, the argument τ is well formed (with context
extended by ∆′) and all branches are described by the ap-
propriate polykinded type (where Σ(⊕) is the kind of ⊕),
then the typerec term is well formed.

The operational semantics for typerec (Figure 5) precisely
describes how typerec interprets its argument τ . If τ is a type
variable α, typerec looks up the interpretation of that vari-
able in the environment η. If τ is a type function (λα:κ.τ1),
typerec steps to a polymorphic term function that, after re-
ceiving x (the interpretation of α), interprets τ1. If τ is a
type application τ1τ2, typerec steps to an application of the
interpretation of τ1 to the type τ2 and its interpretation.
Because τ2 escapes the scope of typerec in the type appli-
cation, we use ρ to substitute for the variables. If τ is an
operator ⊕, typerec retrieves that branch from θ.

For example, Haskell’s Maybe (or ML’s option) type
constructor is defined as λα: unit +α. We can use size to
define a function that returns 0 when no data is present
(the first case of the sum) and 1 otherwise. The expres-
sion size[Maybe][unit ](λx : unit .1) does so for arguments
of type Maybeunit . We can trace the evaluation of this
term as follows (Let Ψ abbreviate the context and environ-
ments {α ⇒ ?}, {α ⇒ (λx:unit .1)}, {α ⇒ unit}, let θ be
the branches for size and let τ ′ be the return type construc-
tor (λx:α.α → int)):

size[λα: ? .α + unit ][unit ](λx : unit .1)
7→h (Λβ: ? .λw:(α → int).λv:(α × unit).

typerec [{α ⇒ ?}, {α ⇒ w}, {α ⇒ β}][τ ′]
〈α + unit : ?〉 of θ)[unit ](λx: unit .1)

7→h typerec[Ψ][τ ′]〈α + unit : ?〉 of θ
7→h (typerec[Ψ][τ ′]〈+ : ? → ? → ?〉)

[{α ⇒ unit}(α)](typerec [Ψ][τ ′]〈α : ?〉)
[{α ⇒ unit}(unit)](typerec[Ψ][τ ′]〈unit : ?〉

7→h (Λβ: ? .λx:(β → int).Λγ: ? .λy:(γ → int).
λv:(β + γ). case v of

(inj
1
z ⇒ x(z) | inj

2
z ⇒ y(z)))

[unit ] typerec [Ψ][τ ′]〈α : ?〉[unit ] typerec[Ψ][τ ′]〈unit : ?〉
7→h λv:(unit + unit). case v of

(inj
1
z ⇒ (typerec[Ψ][τ ′]〈α : ?〉)(z)

| inj
2
z ⇒ (typerec [Ψ][τ ′]〈unit : ?〉)(z))

Reduction shows that this result is equivalent to:
λv:(unit + unit). case v of (inj 1 z ⇒ 1 | inj 2 z ⇒ 0)

3 The problem with type constructor representations

The LH language requires a type-passing semantics. The op-
eration semantics of typerec examines type constructors that
must be present at run-time. However, for many reasons we
might want to add the facilities of higher-order typerec to
a language with a type-erasure semantics. Crary Weirich
and Morrisett [6] (CWM) defined the λR language that has
a type-erasure semantics and operations for first-order type
analysis. We can use ideas from that language to define a
type-erasure language that supports higher-order analysis.

In λR, typerec analyzes terms that represent types in-
stead of types. A special type R τ is the type of the repre-
sentation of τ . This language also includes term constants
to represent types, such as Rint that represents the integer
type and so has type R int , and R× that represents τ1 × τ2

when applied to the representations of τ1 and τ2. R× has
type ∀α: ? .Rα → ∀β: ? .Rβ → R(α × β).

CWM define representations for the entire type construc-
tor language, including higher-order type constructors, so
that it is conceivable that we could extend CWM’s typerec to
the representations of higher-order type constructors. The
execution of higher-order typerec in LH depends on the syn-
tactic form of its type constructor argument: whether it is
a variable α, a function λα:κ.τ , an application τ1τ2 or a
constant (such as int or →). It would seem reasonable for
a type-erasure typerec to determine whether the syntactic
form of its argument is the representation of a variable, the
representation of a function, the representation of an appli-
cation or the representation of a constant.

However, there is a problem with this idea. Not all terms
with representation types are syntactically equal to the rep-
resentation of some type constructor. CWM represent a
type variable with a term variable, a type function with a
polymorphic term function, a type application with term
application, and a type operator with a new representation
constant. More specifically, R[[τ ]], the representation of the
type τ is defined as:

R[[α]] = xα

R[[λα:κ.τ ]] = Λα:κ.λxα:[R]〈α : κ〉.R[[τ ]]
R[[τ1τ2]] = (R[[τ1]])[τ2](R[[τ2]])

R[[⊕]] = R⊕

The type of a representation term is determined by the kind
of the constructor it represents. If τ has kind κ, then R[[τ ]]
has the polykinded type [R]〈τ : κ〉. However, because other
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τ  wh p

α wh α ⊕ wh ⊕
τ1[τ2/α] wh p

(λα:κ.τ1)τ2  
wh p

τ1  
wh p

τ1τ2  
wh p τ2

e ⇒k e′

∆′(α) = κ1 → . . . → κn → ?

typerec [∆′, η, ρ][τ ′]〈α τ1 . . . τn : ?〉 of θ
⇒k η(α) [ρ(τ1)] (typerec [∆′, η, ρ][τ ′]〈τ1 : κ1〉 of θ) . . .

[ρ(τn)] (typerec [∆′, η, ρ][τ ′]〈τn : κn〉 of θ)

Σ(⊕) = κ1 → . . . → κn → ?

typerec [∆′, η, ρ][τ ′]〈⊕ τ1 . . . τn : ?〉 of θ
⇒k θ(⊕) [ρ(τ1)] (typerec [∆′, η, ρ][τ ′]〈τ1 : κ1〉 of θ) . . .

[ρ(τn)] (typerec [∆′, η, ρ][τ ′]〈τn : κn〉 of θ)

e 7→k e′

τ  wh p
typerec [∆′, η, ρ][τ ′]〈p : ?〉 of θ ⇒k e

typerec [∆′, η, ρ][τ ′]〈τ : ?〉 of θ 7→k e

typerec [∆′, η, ρ][τ ′]〈τ : κ1 → κ2〉 of θ
7→k Λβ:κ1. λx:[τ ′]〈β : κ1〉.

typerec [∆′{γ ⇒ κ1}, η{γ ⇒ x}, ρ{γ ⇒ β}]
[τ ′]〈τγ : κ2〉 of θ

Figure 6: Kind-directed operational semantics

terms besides R[[τ ]] have type [R]〈τ : κ〉, it is difficult to
define an operational semantics for typerec based on match-
ing R[[τ ]]. Consider trying to match the representation of
a type function. The type of the argument is the repre-
sentation of a constructor of kind κ → κ′ so it has type
∀:κ.[R]〈α : κ〉 → [R]〈τα : κ′〉. The type-erasure version of
typerec must determine if that argument is exactly a type
abstraction surrounding a term abstraction, a variable, a
representation constant or an application of a representa-
tion to a type and another representation. These rules do
not cover every case. For example, the term

Λα:κ.((λy:[R]〈α : κ〉 → [R]〈τα : κ′〉.y)(λxα:[R]〈α : κ〉.e))

has type ∀:κ.[R]〈α : κ〉 → [R]〈τα : κ′〉. Even if the oper-
ational semantics evaluates the argument before analyzing
it with typerec , it will still not produce a syntactic λ as the
subterm of the type abstraction. Because evaluation will not
reduce the application under the type abstraction, this term
will be stuck and evaluation of the typerec will not continue.

We solve this problem by reconsidering the operational
semantics of typerec. We can redefine the operational seman-
tics of typerec so that we never have to determine whether
its argument is a syntactic type function. (See the relation
7→κ in Figure 6.) This new semantics first determines the
kind of the argument to typerec. If that argument is of kind
type, it cannot be a type function. Therefore, we weak-
head normalize it and then use the relation ⇒κ to examine
its syntax.

If the argument to typerec has a function kind then we
make the following observation: Because typerec in LH in-
terprets a type constructor, it is not important whether
it analyzes the type constructor τ or its eta-expansion
(λα : ?.τ α). Both arguments to typerec should produce the

(kinds) κ ::= ? | κ1 → κ2

(operators) ⊕ ::= int | → | ∀?

(type con’s) τ ::= α | λα:κ.τ | τ1τ2 | ⊕

(types) σ ::= τ | int | σ1 → σ2 | ∀α:κ.σ | Rτ ′τ

(operator rep’s) R⊕::= Rint | R→ | R∀?

(terms) e ::= i | x | λx:σ.e | e1e2

| Λα:κ.v | e[τ ] | R⊕

| typerec[τ ′] e of θ | untyrec[τ ′] e

(values) v ::= i | λx:σ.e | Λα:κ.v

| p | untyrec[τ ′] e

(paths) p ::= R⊕[τ ′] | p [τ ] e1 e2

Figure 7: Syntax of LHR

same result. Because something of a function kind is always
equivalent to a literal type function, we know it will always
step to a term function in LH. So with this semantics, an
argument of function kind will always step to a term func-
tion. Though it may proceed in a different evaluation order
than that of LH, this operational semantics will eventually
produce the same result (see [32] for a formalization and
proof of this statement.)

In a type-erasure language, we do not want to make the
operational semantics depend on any type information, in-
cluding its kind. However, because that kind is known at
compile-time, higher-order typerec is definable as a “macro”
in the erasure language. A typerec on an argument of kind
κ1 → κ2 can always be replaced by a typerec on argument
of κ2. As a result, the erasure language restricts analysis to
arguments that represent constructors of kind ?.

An additional concern is one of linguistic complexity.
Because the type-passing version of typerec examines argu-
ments with type variables, we need to evaluate terms with
free term variables (the representations of those type vari-
ables.) Extending the semantics to include the evaluation
of open terms would require many new rules and the imple-
mentation of such a calculus would be complicated.

Instead, there is a simpler way to define the type-erasure
calculus, based on an implementation of induction over
higher-order abstract syntax [8, 29]. To avoid evaluating
representations with free term variables, we change how
typerec interprets type variables. Instead of using an envi-
ronment to store the interpretations of variables, we use sub-
stitution. We add a special inverse operator (called untyrec)
to immediately substitute the interpretation of a variable for
its representation.

4 LHR: Higher-order analysis in a type-erasure language

Figure 7 shows the syntax of the LHR language. This lan-
guage has a type-erasure semantics. Unlike Figure 5, no
rule in the dynamic semantics of typerec (Figure 8) exam-
ines the syntax of a type constructor. Instead, typerec ana-
lyzes the term representations of type constructors formed
from the representations of the operators Rint , R→ and R∀?

.
Furthermore, in this language typerec may only analyze the
representations of constructors of kind ?.

Each rule for a specific operator of LHR in Figure 8 is
generated from the following general rule that corresponds
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e 7→LHR e′

typerec[τ ′] (untyrec[τ ′] e) of θ 7→LHR e

typerec[τ ′] (Rint ) of θ 7→LHR θ(int)

typerec[τ ′] (R→ [τ ′][τ1] e′τ1
eτ1

[τ2] e′τ2
eτ2

) of θ
7→LHR θ(→) [τ1] e′τ1

(typerec [τ ′] eτ1
of θ)

[τ2] e′τ2
(typerec[τ ′] eτ2

of θ)

typerec[τ ′] (R∀?
[τ ′][τ1]e

′
τ1

eτ1
) of θ

7→LHR θ(∀?) [τ1] e′τ1
(Λβ: ? .λxβ:R̂〈β : ?〉.λy:(τ ′β).

typerec [τ ′] (eτ1
[β] xβ (untyrec[τ ′] y)) of θ)

e 7→LHR e′

typerec[τ ′] e of θ 7→LHR typerec[τ ′] e′ of θ

Figure 8: LHR: Operational semantics of typerec

to ⇒k evaluation of an operator of kind κ1 → . . . → κn → ?.

typerec[τ ′] (R⊕ [τ ′] [τ1] e′1 e1 . . . [τn] e′n en) of θ 7→
θ(⊕) [τ1] e′1 (typerec [τ ′]〈e1 : κ1〉 of θ) . . .

[τn] e′n (typerec[τ ′]〈en : κn〉 of θ)

With term representations of types and the restriction
of typerec to the representation of types, LHR bears many
similarities to λR. However, there is one crucial difference
between this language and λR that allows the embedding
of higher-order typerec . LHR includes an “inverse” oper-
ator to typerec, called untyrec. When typerec analyzes
(untyrec[τ ′]e), the embedded term e is returned. This in-
verse plays the role of η in higher-order typerec by recording
the interpretation of type variables. Where we might ana-
lyze an argument with a free type variable in LH:

typerec [∆{β ⇒ ?}, η{β ⇒ e}, ρ{β ⇒ τ}][τ ′]〈β : ?〉 of θ

we will translate that term to the LHR term:

typerec[τ ′] (untyrec[τ ′] e) of θ

For type soundness, we must restrict what terms may be
the argument to untyrec . Essentially, untyrec coerces any
term into a representation of some type. If an arbitrary term
were allowed, analysis of an untyrec term could result in the
wrong type. The coercion is sound if we restrict the type of
analysis allowed for the resulting representation. Therefore
LHR parameterizes the R type with an extra argument to
describe the result of type analysis allowed for that repre-
sentation. When a term representation is polymorphic over
this return type constructor (for example, if it is of type
∀β:? → ?.Rβτ ) then it may be used for any analysis. We

use the notation R̂〈τ : κ〉 as type of the representation of τ
of kind κ that may be used for any analysis. It is defined
(in the next section) to be ∀β:? → ?.T [[[Rβ]〈τ : κ〉]], the
type translation of the polykinded representation type. As
a technicality, we trivially add R types to the source lan-
guage and extend the type translation in the obvious way
so that we can use this definition.

The untyrec term allows us to implement higher-order
typerec . Consider analyzing the List type constructor in
LH:

typerec [∆, η, ρ][τ ′]〈List : ? → ?〉 of θ

∆ ` σ

∆ ` τ ′ : ? → ? ∆ ` τ : ?

∆ ` R τ ′ τ

∆ ` σ = σ′

∆ ` τ ′ = τ ′′ : ? → ? ∆ ` τ1 = τ2 : ?

∆ ` R τ ′ τ1 = R τ ′′ τ2

∆ ` τ : ? → ?

∆ ` ∀?τ = ∀α: ? .R̂〈α : ?〉 → τα

∆; Γ ` e : σ

∆ ` ⊕ : Σ(⊕)

∆; Γ ` R⊕ : R̂〈⊕ : Σ(⊕)〉

∆ ` τ : ?
∆ ` τ ′ : ? → ?

∆; Γ ` θ(⊕) : T [[[τ ′]〈⊕ : Σ(⊕)〉]] (∀⊕ ∈ Dom(Σ))
∆; Γ ` e : R τ ′τ

∆; Γ ` typerec[τ ′] e of θ : τ ′τ

∆ ` τ : ?
∆ ` τ ′ : ? → ?
∆; Γ ` e : τ ′τ

∆; Γ ` untyrec[τ ′] e : R τ ′τ

Figure 9: LHR: Static Semantics of typerec

In LHR, the representations of type constructors of higher
kinds are term functions. For example, if eList is the repre-
sentation of List then it is a function from the representa-
tion of some type α to the representation of the type List α.
Therefore, in LHR, we can analyze the list constructor with
a term that abstracts the interpretation of α and then an-
alyzes the result of applying eList to untyrec surrounding
that interpretation.

Λα: ? .λxα:R̂〈α : ?〉.λy:(τ ′α).
typerec [τ ′] (eList [α] xα (untyrec[τ ′] y)) of θ.

LHR does not include a higher-order version of typerec
because it may encode such terms. If eτ is the representation
of the type τ of kind κ, the general encoding of the analysis
of eτ , notated typerec [τ ′]〈eτ : κ〉 of θ is in Figure 11. This
operation is defined in conjunction with its inverse, a higher-
order version of untyrec. Both operations are defined by
induction on κ, the kind of the represented type constructor.

Figure 9 shows the static semantics for the representa-
tion terms, typerec and untyrec. If ⊕ is an arbitrary type
constructor constant, such as int , →, ∀? in LHR, R⊕ is its
term representation. If ⊕ is of kind Σ(⊕), then the type of

R⊕ is R̂〈⊕ : Σ(⊕)〉. The argument to typerec is the repre-
sentation of a type. The types of the branches of typerec are
the translations of the types of the LH branches. The result
of untyrec is also a term representation.

So that we may prove the correctness of this translation,
we must change the type equivalence rule for the opera-
tor ∀? to witness the type translation. However, it is also

possible to add the operator ∀̂? to this calculus, such that
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typerec[τ ′]〈eτ : ?〉of θ
def
= typerec [τ ′] eτ of θ

typerec [τ ′]〈eτ : κ1 → κ2〉of θ
def
= Λα:κ1.λx:R̂〈α : κ1〉.λy:T [[[τ ′]〈α : κ1〉]].N

where
N = typerec [τ ′]〈(eτ [α] x M) : κ2〉of θ
M = untyrec[τ ′]〈y : κ1〉of θ

untyrec[τ ′]〈eτ : ?〉of θ
def
= untyrec [τ ′] eτ

untyrec[τ ′]〈eτ : κ1 → κ2〉of θ
def
= Λα:κ1.λx:R̂〈α : κ1〉.λy:T [[[τ ′]〈α : κ1〉]].N

where
N = untyrec[τ ′]〈(eτ [α] x M) : κ2〉of θ
M = typerec[τ ′]〈y : κ1〉of θ

Figure 11: Higher-order typerec

size = Λα: ? .λxα:R(λβ: ? .β → int) α.
typerec [λβ: ? .β → int ] xα of θ

where θ =
{ int ⇒ λy: int .0

unit ⇒ λy: unit .0

× ⇒ Λβ: ? .λxβ:R̂〈β : ?〉.λx:(β → int).

Λγ: ? .λxγ :R̂〈γ : ?〉.λy:(γ → int).
λv:(β × γ).

x(π1v) + y(π2v)
→ ⇒ undefined

+ ⇒ Λβ: ? .λxβ:R̂〈β : ?〉.λx:(β → int).

Λγ: ? .λxβ:R̂〈γ : ?〉.λy:(γ → int).
λv:(β + γ). case v of

(inj
1
z ⇒ x(z) | inj

2
z ⇒ y(z))

∀? ⇒ undefined

∃? ⇒ Λα:? → ?.λxα:R̂〈α : ? → ?〉.

λr:(∀β: ? .R̂〈β : ?〉 → (β → int) → αβ → int).

λx:(∃β : ?.R̂〈β : ?〉 × (αβ)).
let〈β, 〈xβ, y〉〉 = unpack x in

(r [β] xβ (λx:β.0) y)

µ? ⇒ Λα:? → ?.λxα:R̂〈α : ? → ?〉.

λx:(∀β: ? .R̂〈β : ?〉 → (β → int) → αβ → int).
fix f :(µ?α → int).

λy:µ?α. (x [µ?α] R̂[[µ?α]] f (unroll y))
}

Figure 10: Example: Erasure version of size

∀̂?τ = ∀α: ? .τα. This operator produces the type of para-
metric functions that cannot analyze their type arguments.
Because all types are analyzable in LH, this operator is not
a part of the source language.

The static semantics agrees with the dynamic semantics
of LHR.

Theorem 4.1 (Type Safety) If ∅ ` e : σ then e either
evaluates to a value or diverges.

Proof

(Sketch) Proof follows from the usual progress and preser-
vation theorems [33].

T [[τ ]] = τ
T [[int ]] = int

T [[σ1 → σ2]] = T [[σ1]] → T [[σ2]]

T [[∀α:κ.σ]] = ∀α:κ.R̂〈α : κ〉 → T [[σ]]
T [[Rττ ′]] = R T [[τ ]] T [[τ ′]]

E [[i]] = i
E [[λx:σ.e]] = λx:T [[σ]].E [[e]]
E [[e1e2]] = E [[e1]]E [[e2]]

E [[Λα:κ.e]] = Λα:κ.λx:R̂〈α : κ〉.E [[e]]

E [[e[τ ]]] = E [[e]] [τ ] R̂[[τ ]]
E [[ typerec [∆, ρ, η][τ ′]

〈τ : κ〉 of θ
]] = typerec[τ ′]〈R[[τ, ε]] : κ〉of E [[θ]]

where
ε = (∅, τ ′, (∆, ρ, E [[η]], E [[θ]]))

Figure 13: Translation of LH to LHR

We end this section with an example in Figure 10: size
written in the type-erasure language. This function analyzes
xα, the representation of the type α. Even though α must
be a type, we can still use this size to define length for lists
below, where eList is the representation of List.

length = Λα: ? .λxα:R̂〈α : ?〉.
size[List α](eList [α] xα (untyrec[λβ: ? .β → int ](λx:α.1)))

There are two more differences between this version and
the LH version of size. Whenever a type is abstracted
its representation is also abstracted (for example, in the
branches for × and +). Whenever a type is applied, its
representation is also applied. (In the µ branch, the appli-
cation of x to the type [µ?α] is followed by the representation

of µ?α, the term R̂[[µ?α]] defined in the next section.)

5 Translating LH to LHR

The translation between LH and LHR is based on phase
splitting. This process separates the static and dynamic
roles of types by producing type representations in the tar-
get language for each type in the source language. The
translation for types T [[σ]] and terms E [[e]] appears in Fig-
ure 13. Kinds and type constructors are unchanged. We use
a number of auxiliary definitions in this translation, listed in
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Type translation T [[σ]] (Figure 13)
Term translation E [[e]] (Figure 13)
Open representation R[[τ, ε]] (Figure 14)

Parameter of open rep Ψ
def
= (∆, ρ, η, θ) | •

Closed representation R̂[[τ ]]
def
= Λα:? → ?.R[[τ, (∅, α, •)]]

Type of open representation T [[[Rτ ′]〈τ : κ〉]] Translation of polykinded type

Type of closed representation R̂〈τ : κ〉
def
= ∀α:? → ?.T [[[Rα]〈τ : κ〉]]

Higher-order typerec typerec[τ ′]〈e : κ〉of θ (Section 4)
Higher-order untyrec untyrec[τ ′]〈e : κ〉of θ (Section 4)
Polykinded type [τ ′]〈τ : κ〉 (Section 2)

Figure 12: Notation used in the translation

Figure 12. Most importantly, this translation replaces the
argument to typerec with its term representation R[[τ, ε]] (ε
contains the components of the enclosing typerec). To cre-
ate this representation, the translation must ensure that for
every type variable in scope, its term representation is also
in scope. Therefore every type abstraction is immediately
followed by an abstraction of its representation. Likewise,
if τ is a type argument to a polymorphic term, it is fol-

lowed by its representation, R̂[[τ ]]. Consequently, the type
translation for polymorphic types includes the type of this

representation R̂〈τ : κ〉, where κ is the kind of τ .

5.1 Representing the constructor language

There are two sorts of term representations in LHR. The
first sort, called open representations and notated R[[τ1, ε]],
represent types that are arguments to typerec. These rep-
resentations are called open because they may contain the
term representation of LHR’s free type variables. They are
of type T [[[Rτ ′]〈τ : κ〉]], where τ ′ is the return type con-
structor of the enclosing typerec. Such representations may
be used only in an analysis that produces a result of type
T [[[τ ′]〈τ : κ〉]]. Inside these representations there may be
untyrec terms holding the interpretations of the free vari-
ables and those results must agree with τ ′.

The second sort are the closed representations, R̂[[τ ]], of

type R̂〈τ : κ〉 = ∀β:? → ?.T [[[Rβ]〈τ : κ〉]]. These representa-
tions are not arguments to typerec—they are polymorphic
with respect to the return type constructor of any possi-
ble analysis. That polymorphism must be instantiated to
the appropriate type constructor before these representa-
tions may be analyzed. Because untyrec terms depend on
this instantiation, closed representations cannot have any
untyrec expressions as subterms.

Open and closed representations are both defined by
R[[τ, ε]] in Figure 14. The parameter ε describes the context
of this representation (∆′), the return type constructor (τ ′)
and (possibly) the components of a surrounding typerec (Ψ).
In an open representation Ψ = (∆, ρ, η, θ), holding the con-
text, environments and branches of an enclosing typerec. In
that event, the translation constructs an appropriate higher-
order untyrec for variables in ∆. Otherwise, for a closed
representation Ψ = •.

The tricky part of this translation is the case for vari-
ables. If the variable is in ∆ and Ψ is not • then the variable
is bound by an enclosing typerec, and there is a binding for
it within η. This result should be wrapped by an untyrec .

Otherwise, if the variable is in ∆′, then this variable is bound
by some type-level λ, and there will be a closed representa-
tive yα already specialized to τ ′. Otherwise, this variable is
bound by some term-level Λ or is in a closed representation
and bound by a type-level λ, and there is some closed rep-
resentation xα for it. However, xα is polymorphic over the
return type constructor, so we need to instantiate it with τ ′.

The representations of type-level abstractions are poly-
morphic functions that abstract both the closed represen-
tations xα and the open representations yα. Likewise, the
representations of type-level applications provide both the
closed and open representations of the type argument τ2.
We use ρ to substitute for any type variables in τ2 when we
form the closed representation.

For example, R̂[[λα: ? .α → int ]] expands to

Λβ:? → ?.Λα: ? .λxα:R̂〈α : ?〉.λyα:T [[[Rβ]〈α : ?〉]].
R→[β] [α] xα yα [int ] Rint (Rint [β])

Here, we instantiate R→ with the return constructor β,
the first component of the arrow type α, along with its
closed representation xα and its open representation yα, and
the second component of the product type int , along with
its closed representation Rint and its open representation
Rint [β].

Why must R→ be applied to both the open and closed
representations of its subcomponents? The branch for →
in typerec expects both the closed representation and the
iteration over the open representation for each component.
Recall the dynamic semantics for this branch:

typerec [τ ′] (R→ [τ ′][τ1] e′τ1
eτ1

[τ2] e′τ2
eτ2

) of θ
7→LHR θ(→) [τ1] e′τ1

(typerec[τ ′] eτ1
of θ)

[τ2] e′τ2
(typerec[τ ′] eτ2

of θ)

We cannot generate the closed representations from the open
representations, yet we must produce them as the θ(→)
branch may use them as the arguments to other polytypic
functions.

6 Implementation

In this section we describe an implementation of a simplified
version of LHR in Haskell. 3 The interface to this implemen-
tation is the following:

3This implementation requires the extensions of first-class poly-
morphism and existential types [18] supported by the implementa-
tions GHC and Hugs.
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R[[⊕, ε]] = R⊕[τ ′]

R[[α, ε]] =





untyrec [τ ′]〈η(α) : ∆(α)〉of θ if Ψ is (∆, ρ, η, θ) and α ∈ Dom ∆
yα if α ∈ Dom ∆′

xα[τ ′] otherwise

R[[λα:κ.τ1 , ε]] = Λα:κ.λxα:R̂〈α : κ〉.λyα:T [[[Rτ ′]〈α : κ〉]].R[[τ1 , (∆′{α ⇒ κ}, τ ′, Ψ)]]

R[[τ1τ2, ε]] = R[[τ1, ε]] [ρ(τ2)] R̂[[ρ(τ2)]] R[[τ2, ε]]

where ε = (∆′, τ ′, Ψ)

Figure 14: Representation of constructor language

type R c a

rint :: R c Int
runit :: R c ()
rtimes :: R c a -> R c b -> R c (a, b)
rname :: (String, [DataCon (R c) b]) -> R c b
rex :: (forall b. R c b -> R c (a b))

-> R c (Ex a)

typerec :: Theta c -> R c a -> c a
untyrec :: c a -> R c a

data Theta c = Theta {
int :: c Int,
unit :: c (),
times :: forall a b. R c a -> R c b -> c (a, b),
name :: forall b. (String, [DC (R c) b])

-> c b,
ex :: forall a. (forall b. R c b -> R c (a b))

-> c (Ex a)
}

This implementation includes definitions of the R type con-
structor, constants for the representations of type operators
R⊕, the untyrec operator, and the type analysis operator
typerec . The datatype Theta is a record that describes the
types of the branches to typerec.

The name branch in Theta is for the analysis of Haskell
data types and newtypes. These type forms represent re-
cursive types such as lists and trees. There is a list of DCs
in the argument to the name branch that corresponds to the
constructors of the datatype.

data DC c a =
forall b. DC String (c b) (b -> a) (a -> Maybe b)

For each data constructor, This datatype contains the
name of that constructor, the result of typerec for the ar-
gument of that constructor (for uniformity we uncurry data
constructors), the constructor itself, and a “matching” func-
tion to determine if an element of type a is the specified
constructor.

For example, we represent the list type constructor by
a term function. This function uses rname to create a rep-
resentation of [a] given the information about the named
type: the string "List" and the representations of the data
constructors nil and cons. The string can be used to aug-
ment a generic function with a special case for a particular
named type.

rlist :: R c a -> R c [a]
rlist ra = rname ("List", [rnil, rcons ra])

rnil :: DC (R c) [a]
rnil = DC "[]" runit (\x -> [])

(\x -> case x of
[] -> Just ()
( ) -> Nothing)

rcons :: R c a -> DC (R c) [a]
rcons ra = DC ":" (rtimes ra (rlist ra))

(\(t1,t2) -> t1 : t2)
(\x -> case x of

(t1:t2) -> Just(t1,t2)
( ) -> Nothing)

The last branch of Theta is for existential types. We use
the following datatype to represent an existential type that
includes the closed representation of the hidden type (i.e.
∃a.(∀c. R c a × f a)).

data Ex f = forall a. Ex (forall c. (R c a, f a))

We could also omit the closed representation from the ex-
istential type constructor but the polytypic operations that
we could instantiate with this constructor are limited be-
cause we do not have access to the representation of the
hidden type variable.

The difference between this interface and LHR is that
here the branches for typerec do not provide the closed rep-
resentation of the subcomponents of the types or the result
of typerec for that subcomponent. Otherwise, the type of
the times branch would be:

times :: forall a b.
(forall c. R c a) -> R c a -> c a

-> (forall c. R c b) -> R c b -> c b
-> c (a, b)

This omission means that type representations also do not
carry closed representations. Extending this implementa-
tion to include those representations is tedious but not dif-
ficult. Furthermore, open representations would allow our
polytypic operations to be defined in terms of other poly-
typic operations.

However, even without closed representations, we have
enough information to implement the size example. To pass
the return type constructor (λα:? .α → int) as an argument
to the R type constructor requires that we first give it a
name with a newtype. (Haskell does not allow type-level
lambdas).

newtype Size a = S (a -> Int)
unS (S a) = a

size :: R Size a -> a -> Int
size ra = unS . (typerec theta size ra)
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The branches for size are very similar to the ones in Fig-
ure 10, except for the coercions into the newtype Size. For
example, in the int branch, we use S to coerce the constant
zero function to be of type Size Int.

theta size :: Theta Size
theta size = Theta {

int = S (\x -> 0),
unit = S (\x -> 0),
times = \xa xb -> S $ \v ->

size xa (fst v) + size xb (snd v),
name = (string, cons) ->

S $ \v ->
let loop (DC xa inn out: rest) =

case (out v) of
Just y -> size xa y
Nothing -> loop rest

loop [] = error "impossible"
in loop cons,

ex = \xa -> S $ \(Ex w) ->
let (rep,z) = w in
size (xa (untyrec (S $ \x -> 0))) z

}

As before, we can use size to implement length for lists by
using (λx:α.1) as the size function for α.

length :: [a] -> Int
length = size (rlist (untyrec (S $ \x -> 1)))

We can apply length to Haskell lists. For example,
length [1,2,3] = 3.

We can also use this facility to implement first-order
polytypic operations (such as those usually implemented by
type classes). For example, instead of defining the Show type
class, we can implement rshow:

newtype RepShow a = RS (a -> String)
unRS (RS a) = a
rshow :: R RepShow a -> a -> String
rshow ra = unRS . (typerec theta show ra)
theta show :: Theta RepShow
theta show = Theta {

int = RS showInt,
unit = RS (const "()"),
times = \xa xb -> RS $ \v ->

"(" ++ rshow xa (fst v) ++ ","
++ rshow xb (snd v) ++ ")",

name = \(string, cons) ->
RS $ \v ->
let loop (DC str xa inn out : rest) =

case (out v) of
Just s ->

let s’ = rshow xa s in
if s’ == "()" then str
else str ++ " " ++ s’

Nothing -> loop rest
loop [] = error "impossible"
in loop cons,

ex = \xa -> RS $ \ (Ex w) ->
let (rep,z) = w in
rshow (xa rep) z

}

rshow (rlist rint) [1, 2, 3]
= ": (1,: (2,: (3,[])))"

The result of rshow is different from how we might want to
display lists because rshow does not use infix notation or
precedence rules. Below, we describe how to modify rshow
to use infix. (It is also possible to account for precedence).
To show cons with infix, we change the case for data con-
structors above so that it checks the string to see if it is
cons (:). If so, we use the polytypic infixshow to show the
argument to cons. We are able to call infixshow because
it returns the same type of result as rshow and so we can
call it with the open representation. For most flexibility in
calling other polytypic functions, we need the closed repre-
sentations.

case (out v) of
Just s ->

if str == ":" then infixshow xa s
else let s’ = rshow xa s in ....

The infixshow function behaves just like rshow except that
in the case of a pair it shows the first component, then ":"
and then the second component.

infixshow :: R RepShow a -> a -> String
infixshow = unRS . (typerec (theta show {

times = \xa xb -> RS $ \v ->
"(" ++ rshow xa (fst v) ++ "):("

++ rshow xb (snd v) ++ ")"}))

rshow (rlist rint) [1, 2, 3]
= "(1):((2):((3):([])))"

Unlike type classes, rshow extends to existential types.
An extension to type classes that supports existential types
would still be problematic because it would only work for
existentials that contain the right dictionaries. Because this
version requires a general representation of the type instead
of a specific dictionary, we can use it for existentials.

For example, we can represent the type ∃α. int ×α with:

type Hidden = Ex ( (,) Int)
rhidden :: R c Hidden
rhidden = rex (rtimes rint)

hidden int :: Hidden
hidden int = Ex (rint, (3, 4))

The branch for existentials prints out the entire term, in-
cluding those parts with the abstract type. For exam-
ple, rshow rhidden hidden int = "(3,4)". However, the
branch for existentials can also hide components of abstract
type by providing a constant function:

ex = \xa -> RS $ \ (Ex w) ->
let (rep,z) = w in

rshow (xa (untyrec (RS $ const "XXX" ))) z

With the above branch, any values of the ab-
stract type appear as "XXX". In other words,
rshow rhidden hidden int = "(3,XXX)".

We implement type representations in Haskell in a man-
ner similar to representing Church numerals—each type rep-
resentation is implemented as its elimination form. Because
of that, we define the R type to be a function from the record
of typerec branches to the return type.

newtype R c b = R (Theta c -> c b)

10



The implementation of typerec applies its representation
argument to the branches to get the result. The definition
of untyrec takes those branches, ignores them, and returns
its argument x.

typerec :: Theta c -> R c a -> c a
typerec theta (R rep) = rep theta
untyrec :: c a -> R c a
untyrec x = R (\theta -> x)

The type representations each select the corresponding com-
ponent from theta. (For each record label, Haskell defines a
function with the same name that projects that label from a
record.) For example, in the definition of rint, int is a func-
tion that retrieves the int component of theta. Therefore,
it is of type Theta c -> c Int, and the R data constructor
coerces it to be of type R c Int.

rint :: R c Int
rint = R int
runit :: R c ()
runit = R unit

The times branch of theta needs the representations of the
two subcomponents t1 and t2. The name branch needs the
name of the type and the representations of the data con-
structors. Furthermore, the existential branch just needs
the representation of its subcomponent.

rtimes :: R c a -> R c b -> R c (a, b)
rtimes t1 t2 = R (\theta -> times theta t1 t2)
rname :: (String, [DC (R c) b]) -> R c b
rname = \(str,cons) -> R (\x -> name x (str,cons))
rex :: (forall b. R c b -> R c (a b))

-> R c (Ex a)
rex t1 = R (\theta -> ex x t1)

7 Extensions

LH is only a subset of the language described by Weirich [31].
The LH language is lacking two features that complicate
(but do not prohibit) the translation to the type-erasure
language. The first is that the full language (following
Hinze [12]) generalizes polykinded types to a relation of n
arguments for more expressiveness. For example, the poly-
typic definition of map requires two arguments and the def-
inition of zip requires three. A type-erasure version must
have multiple representations and multiple typerecs, one for
each n. However, all of these representations and typerecs
have the same erasure, so a direct implementation (instead
of the Haskell library implementation) could use the same
terms at runtime.

A second difference is that the full language includes
kind polymorphism and extends typerec to constructors with
polymorphic kind. There are two reasons for this extension.
First, a polytypic function in LH (such as size) must specify
and therefore restrict the kind of its type argument. This
restriction is artificial in LH because typerec may iterate
over type constructors with any kind. However, the lack
of kind polymorphism does not restrict LHR, as typerec in
LHR is not kind-polymorphic. We do not need to make a
polytypic function kind-polymorphic because we can apply
such a function to the representations of higher-kinded con-
structors by first using untyrec.

The second reason for kind polymorphism is that poly-
morphic types (universal and existential) bind type variables

with many kinds. Kind polymorphism allows typerec to
handle all such types with one branch. We believe that
it is possible, though complicated, to add kind polymor-
phism to LHR. The complexity arises in the definition of
typerec [τ ′]〈e : κ〉of θ and untyrec[τ ′]〈e : κ〉of θ when κ is an
abstract kind χ. The translation to LHR must provide this
information. Therefore, all kind abstractions must also ab-
stract a term that knows how to implement typerec for that
kind of argument.

8 Summary and related work

This paper develops a type-erasure language supporting
higher-order intensional type analysis. While type-erasure
versions of several other type analyzing languages have been
previously developed [6, 22], several aspects of the source
language made this a not-so-straightforward task.

The largest difficulty was to develop a kind-directed op-
erational semantics for typerec so that we did not need to
rely on the syntactic properties of the representations of
higher kinds. This operational semantics is similar to Stone
and Harper’s language with singleton kinds [25], which was
inspired by Coquand’s approach to βη-equivalence for a
type theory with Π types and one universe [4]. Because
equivalence of constructors in Stone and Harper’s language
strongly depends on the kind at which they are compared,
their procedure drives the kind of the compared terms to
the base form before weak-head normalizing and comparing
structurally.

A second issue with creating the type-erasure language
was that we did not want to define a version of evaluation
for terms with free variables. Instead, we chose to directly
replace those variables with a place holder for the result
of their interpretation. This place holder draws inspiration
from the calculus of Trifonov et al. [26] who themselves re-
fer to Fegaras and Sheard [8]. Fegaras and Sheard designed
their calculus to extend catamorphisms to datatypes with
parametric function spaces, employing a place holder as the
trivial inverse of the iterator. Trifonov et al. adapted this
idea in a type-level Typerec for recursive types. Like the
parameterized return constructor of the R-type in this cal-
culus, they parameterize the return kind of a Typerec itera-
tion. Such an extension to LHR would allow a higher-order
type-level Typerec. Washburn and Weirich [29] examine the
general technique of using a place holder to implement in-
duction over higher-order abstract syntax. In particular,
they are able to show a close connection between using this
technique in Fω and the modal calculus of Schürmann, De-
speyroux and Pfenning [23].

The result of this paper, however, is a fairly simple type-
erasure language that supports higher-order type analysis.
Such a language is an important step in the implementation
of a system that allows run-time polytypic programming.
The calculus that we have defined is very simple to imple-
ment: we give a prototype implementation in only a few
lines. Closely related work to this paper is a new proposal
for Dependency-Style Generic Haskell [15] that addresses the
problem in Generic Haskell of defining polytypic operations
that depend on one another. Because closed representations
to the branches of polytypic operations are already provided,
that capability already exists in LHR to some extent. Fur-
thermore, by not allowing type interpretation at run-time
(or any sort of general run-time type information), Generic
Haskell cannot allow types to be defined in separate mod-
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ules from generic operations or analyze first-class abstract
types.
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A Correctness of Embedding

We call the LH language with the operational semantic of
Figure 6 LK. Below we prove the correctness of the transla-
tion between LK and LHR.

A.1 Static correctness

The static correctness of this translation follows from a
straightforward set of inductive arguments. To prove that
the translation of a LK term is well-typed in LHR, we must
show that the representation of a LK-constructor has the
correct representation type.

Because we essentially have two versions of type
representations—one for constructors that may have vari-
ables bound by an enclosing typerec, and one for construc-
tors that are in other contexts, there are two lemmas about
the type soundness of the representations.

In these two results, we must define two different trans-
lations of ∆ to produce the context for the type represen-
tations variables. In the first case, the translation is spe-
cialized by a return type constructor. The type of each rep-
resentation variable must be specialized to this constructor.
In the second case, for those variables bound by a term-level
type abstraction (Λ), the types of the representations must
be polymorphic over the return type.

|∆, α:κ|c = |∆|c, yα : T [[[τ ]〈α : κ〉]]

|∆, α:κ| = |∆|, xα : R̂〈α : κ〉

In the following two lemmas, we show that the representa-
tion of a LK constructor τ is well-typed. The free variables
of τ may be bound in many different situations. We let
∆1 refer to all of those bound by enclosing term-level type
abstractions (Λ), ∆2 refer to variables bound by type level
type abstractions (λ), and ∆3 list variables bound by enclos-
ing typerec expressions. This lemma establishes the static
correctness for closed representations, when the constructor
does not appear inside of a typerec:

Lemma A.1 Let ∆ = ∆1, ∆2. If ∆ ` τ : κ and
∆1, ∆2 ` τ ′ : ? → ? then

∆1∆2; |∆1|, |∆2|τ ′ ` R[[τ, (∆2, τ
′, •)]] : T [[[Rτ ′]〈τ : κ〉]]

The second lemma handles the case when we add the
Ψ component to the representation. We cannot generalize
these two lemmas into one as we need to use the first lemma
to prove the second.

Lemma A.2 Let
∆ = ∆1, ∆2, ∆3 and Ψ = (∆3, E [[η]]ρ, E [[θ]]). If ∆ ` τ : κ
and ∆1, ∆2 ` τ ′ : ? → ? and ∆1, ∆2; Γ[τ ′] ` ∆3 | η | ρ and
∆1, ∆2; Γ ` θ(⊕) : [τ ]〈⊕ : κ⊕〉 for (θ(⊕) ∈ Dom θ). then

∆1∆2; |∆1|, |∆2|τ ′ ` R[[τ, (∆2, τ
′, Ψ)]] : T [[[Rτ ′]〈ρ(τ ) : κ〉]]

Theorem A.3 (Static Correctness) If ∆; Γ ` e : σ then
∆; |∆|, T [[Γ]] ` E [[e]] : T [[σ]]

A.2 Dynamic correctness

We will prove operational correctness up to the definition in
Figure A.2 of equivalence of result terms. The symbol ≡E

relates two LHR terms that differ only by type β-expansions.

Type-β

(Λβ:? → ?.e)[τ ] ≡E e[τ/β]

Symmetry

e′ ≡E e

e ≡E e′

Congruence rules

i ≡E i x ≡E x R⊕ ≡E R⊕

e ≡E e′

λx:σ.e ≡E λx:σ.e′
e1 ≡E e′1 e2 ≡E e′2

e1e2 ≡E e′1e
′
2

e ≡E e′

Λα:κ.e ≡E Λα:κ.e′
e ≡E e′

e[τ ] ≡E e′[τ ]

e ≡E e′ θ(⊕) ≡E e′⊕

typerec[κ][τ ] e θ ≡E typerec [κ][τ ] e′ θ′

e ≡E e′ θ(⊕) ≡E e′⊕

untyrec[κ][τ ] e θ ≡E untyrec[κ][τ ] e′ θ′

Figure 15: Type β-equivalence

This notion of equivalence does not weaken our dynamic-
correctness result as all equal terms differ only in the type
annotations. All equivalent terms have the same erasure, so
we can argue that they model the same computation.

The reason that we can prove operational correctness
only up to this notion of equivalence is because of how sub-
stitution interacts with the definition of representation. We
would like substitution to commute with representation, but
that is not the case.

R[[τ1[τ2/α], (∆, τ, •)]] 6= R[[τ1, (∆, τ, •)]][τ2/α][R̂[[τ2]]/xα]

For example, if τ1 is α then the left hand side
equals R[[τ2, (∆, τ, •)]] while the right hand side equals

(xα[τ ])[R̂[[τ2]]/xα] = (Λβ:? → ?.R[[τ2 , (∆, β, •)]])[τ ].

Proposition A.4 By examination of the definition of ≡E ,
we assert the following properties of this relation:

1. ≡E is an equivalence relation.

2. If e1 ≡E e2 then e[e1/x] ≡E e[e2/x].

3. If e1 ≡E e2 then e1[e/x] ≡E e2[e/x].

4. If e is not of the form (Λβ:? → ?.e1)[τ ] and e ≡E e′

then e′ 7→∗ e′′ where e′′ has the same outermost form
as e and e′′ ≡E e.

Lemma A.5 (Strengthening) If α is not free in τ , then
for any ∆, c, τ ′, Ψ,

R[[τ, (∆{α ⇒ κ}, τ ′, Ψ)]] = R[[τ, (∆, τ ′, Ψ)]]

Proof

Examination of the definition of R[[τ, ε]].

Lemma A.6 (Substitution of closed constructors) If
∆, α:κ2 ` τ1 : κ1 and ∅ ` τ2 : κ2 then

R[[τ1[τ2/α], (∆, τ, •)]] ≡E R[[τ1, (∆, τ, •)]][τ2/α][R̂[[τ2]]/xα]
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Lemma A.7 (Open substitution) Let Ψ = (∆′, η, ρ, θ).
If ∆, α:κ′ ` τ1 : κ and ∆ ` τ2 : κ′ then

R[[τ1[τ2/α], (∆, τ, Ψ)]] ≡E

R[[τ1, (∆{α ⇒ κ′}, τ, Ψ)]][ρ(τ2)/α][R̂[[ρ(τ2)]]xα][R[[τ2, (∆, τ, Ψ)]]/yα]

Lemma A.8 If ∆ ` τ1 : κ and τ1  
wh τ2 then for all e1 ≡E

R[[τ1, (∆, τ ′, Ψ)]], e1 7→∗ e2 and e2 ≡E R[[τ2, (∆, τ ′, Ψ)]].

Corollary A.9 If τ weak head normalizes to p, and e ≡E

R[[τ, (∆, c, Ψ)]] then e 7→∗ p′ ≡E R[[p, (∆, τ, Ψ)]].

Lemma A.10 (Path correctness) If
∅ `κ typerec [∆, η, ρ][τ ′]〈p : ?〉 of θ : σ

and typerec [∆, η, ρ][τ ′]〈p : ?〉 of θ ⇒k e and θ′ ≡E E [[θ]] and
p′ ≡E R[[p, (∅, τ ′, (∆, E [[η]], ρ, E [[θ]]))]] then

typerec[τ ′] p′ θ′ ⇒LHR e2 ≡E E [[e]].

Lemma A.11 (Typerec Correctness) Let Ψ = ∆, η, ρ.
If typerec Ψ[τ ′]〈τ : κ〉 of θ 7→k e and e1 ≡E

E [[typerec Ψ[τ ′]〈τ : κ〉 of θ]] then e1 7→∗
LHR e2 ≡E E [[e]].

Lemma A.12 (Constructor substitution)
If ∆, α:κ; Γ ` e : σ and ∆ ` τ : κ, then E [[e[τ/α]]] ≡E

E [[e]][τ/α][R̂[[τ ]]xα].

Lemma A.13 (Term substitution) If ∆, ; Γ, x : σ′ ` e :
σ and ∆; Γ ` e′ : σ′, then E [[e[e′/x]]] = E [[e]][E [[e′]]/x].

Lemma A.14 (Dynamic correctness) If ∅ ` e1 : σ and
e1 7→k e2 then if e′1 ≡E E [[e1]], e′1 7→∗

LHR e′2 ≡E E [[e2]].
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