
Vellvm: Formalizing the Informal LLVM
(Experience Report)

Calvin Beck1(�) , Hanxi Chen1 , and Steve Zdancewic1

University of Pennsylvania, Philadelphia PA 19104, USA
{hobbes,hanxic}@seas.upenn.edu stevez@cis.upenn.edu

Abstract. This report presents our methodology for and experience
with formalizing a specification of LLVM IR in the Verified LLVM Project
(Vellvm). Vellvm provides a specification for a large, practical subset of
LLVM IR in the Rocq Proof Assistant in the support of verified compilers
and program transformations. Program transformations often rely on the
subtle details, and as a result Vellvm’s semantics are quite comprehen-
sive: for instance we provide a sophisticated low-level memory model to
support low-level operations, such as casts between pointers and integers,
and justify optimizations in their presence. Our approach implements the
semantics via monadic interpreters, which rely on a coinductively-defined
data structure called ITrees. Crucially, this methodology supports the ex-
traction of an executable interpreter, proved to refine the specification.
We use the reference interpreter to validate the accuracy of the formal-
ization, employing random differential testing between Clang and Vellvm
implemented in our own LLVM IR program generator (GenLLVM), as
well as via state-of-the-art C compiler testing frameworks (CSmith and
YARPGen). Such testing has found bugs in both the Vellvm semantics
and Clang. We believe that tools from the Vellvm project can be useful
for other LLVM IR-related projects, and that the overall methodology
applies to other formal verification efforts.

Keywords: Rocq · LLVM · Semantics.

1 Formalizing LLVM IR

Vellvm [3, 4, 26, 28, 29] is an extensive undertaking to formalize a large subset of
LLVM IR in the Rocq proof assistant. LLVM IR [11, 21] itself is an intermediate
language that is widely used as a common target for front-end compilers for a
variety of languages, like C and Rust, that share the LLVM infrastructure for
performing optimizations and generating lower-level target code. Since LLVM
IR is the bedrock of many languages, formalizing it has great significance. The
Vellvm project is an effort to 1) provide a robust and detailed specification for
the LLVM IR language, 2) ensure that this specification aligns with real world
implementations via a differential testing approach, and 3) reason about LLVM
IR programs and verify the correctness of LLVM optimization passes.

https://orcid.org/0000-0002-3469-7219
https://orcid.org/0009-0006-4486-7222
https://orcid.org/0000-0002-3516-1512


nondeterminism

state

itree

interp

interp

Fig. 1: The Vellvm Methodology: Formalize, extract, and test against llc.

Formalizing LLVM IR is not straightforward for a variety of reasons: 1) LLVM
IR is a well-established language, but has been developed with only an informal
specification in mind 2) LLVM is a rapidly evolving project, making it a moving
target for formalization efforts, 3) LLVM IR is a large language, and the scale
is non-trivial for formalization efforts, and 4) LLVM IR contains complex low-
level features—including many intentionally undefined behaviors (UB) as well
as nondeterministic operations—that are difficult to formalize, but vital to jus-
tifying important program transformations. Ultimately, LLVM IR is a complex
language and a moving target, which complicates verification efforts.

2 Methodology

To tackle this challenge, we have adopted a specific methodology for formalizing
LLVM IR at scale, as shown in Figure 1.1 At a high level, the methodology
involves three parts: 1) defining the semantics for LLVM IR in Rocq that allows
reasoning about programs and optimization passes, 2) extracting from that spec-
ification an interpreter that agrees with these semantics, and 3) using randomized
differential testing of this interpreter against existing LLVM implementations.

While similar approaches have been taken in the past (see Section 3), we
believe that the realization in Vellvm of this methodology offers an appealing
combination of properties that can applicable to other formal verification efforts.
Moreover, the Vellvm artifact itself can be useful for testing systems that involve
LLVM IR’s semantics by demonstrating (an) exact behavior of a given LLVM
IR program. The remainder of this section describes the components of our
methodology.
1 Though, this methodology is certainly applicable to languages beyond LLVM IR.



2.1 Monadic Interpreters and ITrees

The Vellvm semantics is defined via monadic interpreters [13]. Using this ap-
proach we can express much of the semantics in precisely the same way that
one would typically write an interpreter using a functional programming lan-
guage, and the modular event structure allows us to reason about the different
effectful components of the language separately. These monadic interpreters (in
Figure 1, they are represented as the stack of “interp” arrows) are operate on the
coinductively-defined data structures called ITrees [23, 25].

Interaction Trees. Interaction Trees (ITrees) abstract the complex, effectful por-
tions of LLVM IR into a variety of opaque events. These separate events can
be reasoned about individually, without worrying about the particular details of
other, separate program components. This allows us to reason about complex
features of the language (such as the memory model) separately, and alterna-
tive implementations can be provided for these events. ITrees provide a frame-
work for reasoning about program behaviors in a compositional and equational
fashion, greatly simplifying proofs about coinductive objects—used to represent
nonterminating computations—within Rocq. For instance, ITrees come with a
notion of equivalence by means of a weak bisimulation relation called “equiva-
lence up to tau” (eutt), which is useful for defining behavioral equivalence of
ITree-abstracted programs, as well as for rewriting ITree expressions.

Once LLVM IR programs are denoted into ITrees, which capture the control
flow of the programs, the stateful components of the semantics are implemented
modularly in terms of these abstract events. The interpreter stack for Vellvm
contains a number of event types, such as: events for handling local variables,
global variables, and stack frames; memory events (loads, stores, allocations,
frees); evaluating non-deterministic values (pick events); UB; errors; and out-
of-memory exceptions. Figure 1 symbolizes the different types of events using
different shapes of nodes in the trees. An advantage of ITrees is that all of these
events can be left opaque: we can reason about the equivalence of LLVM IR
programs up to a weak bisimulation of these visible events, and any properties
proven on opaque events should hold regardless of how these events are im-
plemented. This design enables modular reasoning: if, for instance, a program
transformation affects only local variables, its correctness proof can ignore all of
the details about memory, and the validity of the program transformation will
hold regardless of how memory is implemented.

Event Handlers and the Vellvm Memory Model. Defining the semantics for
opaque events involves writing event handlers, which interpret the events us-
ing other primitives (in Figure 1, these are the arrows that “remove” events of
a specific shape from the tree). We define a stack of handlers for each of the
events in our LLVM IR semantics. For LLVM IR, the most complex handler is
the one that implements the memory model. Our memory model is based on a
two-phase semantics [4] that separates infinitary memory from finite behavior.
This model provides a number of practical benefits, including the ability to an



accurately describe the behaviors of trickier operations such as pointer-to-integer
casts, as well as the ability to justify certain optimizations even in the presence
of low-level memory operations.

The memory model itself implements stack/heap allocations, loads, stores,
frees, and stack push/pop operations. These operations are defined byte-wise
and are used compositionally by the memory model handler uses to implement
aggregate data operations for LLVM IR’s structured values. The memory event
interface gives an appropriate boundary between Vellvm’s instruction semantics
and its memory model, allowing us to substitute different memory models into
the semantics if desired.

Memory events also mark the first place in the semantics where we introduce
nondeterminism, since allocations inherently yield nondeterministic locations in
memory. As a consequence, we provide two sets of memory handlers, one for
the propositional specification, yielding a Rocq predicate that represents the
set of all possible behaviors for memory events, and an executable one, which
implements a deterministic algorithm for allocations. We have proven that the
executable implementation’s behaviors abide by the specification.

2.2 Extractable Interpreters

An advantage of using ITrees to define our specifications is that they can be ex-
tracted into executable interpreters (in contrast to other techniques, such as step
relations). The verified executable interpreter provided by Vellvm uses the same
top-level ITree representation as the specification. The only difference between
the semantics and the executable interpreter is in the implementation of han-
dlers for non-deterministic events (the executable version of our semantics has to
pick a specific implementation for allocations, for instance); all of the handlers
for deterministic events can be shared between the interpreter and semantics.
Because of this, we obtain an executable interpreter which is verified to abide
by the specification of our language for very little effort.

With a bit of engineering to implement an LLVM IR parser and a small
driver (in Figure 1, these are the components surrounding the vellvm interpreter
box), we obtain an executable version of Vellvm’s LLVM IR semantics that is
compatible with LLVM’s .ll file format. Moreover, Vellvm’s coverage of the IR
is substantial—the only major features missing are those having to do with con-
currency and exception handling. The Vellvm interpreter, overall, has delivered
satisfactory performance, allowing us to run reasonably large programs relatively
quickly: in one of our experiments, Vellvm executed over 2.5 million non-trivial
instructions in 2m03s. Some of the interpretation overhead could potentially be
eliminated by further optimization and/or using more efficient data structures,
but the performance has been adequate for our experiments.

2.3 Random Differential Testing

Having an executable interpreter opens the door to testing, which is the last
important component of our methodology. In addition to a number of manually



written unit tests, as well as a test suite derived from the Alive2 [16] project, we
also utilize the property-based testing framework QuickChick [20] to generate
LLVM IR programs for differential testing in which we compare our verified
executable interpreter against Clang’s llc as shown on the right-hand side of
Figure 1. Using this approach, we have been able to find bugs in both Clang
and Vellvm [1], particularly around tricky edge cases such as data types of size
0, or structs and packed arrays with odd-sized elements.

Generating random programs to differentially test compiler implementations
is not a new technique: CSmith [24] and its successors YARPGen (both versions
1 and 2) [14, 15] are capable of generating expressive C programs targeting arith-
metic operations and control-flow, respectively. But because these tools generate
C programs, they only indirectly exercise LLVM IR features: generated test pro-
grams must first be compiled from C to LLVM IR. As a result, their outputs
(post-compilation) follow certain code patterns and only utilize subsets of in-
structions which are chosen by the code generation strategy. As an example,
Clang-19 favors getelementptr over struct operations like extractvalue when
compiling C into LLVM IR, reducing coverage of the latter.

To address this deficiency in coverage, we created the main artifact of our
differential testing framework: GenLLVM, a tool for generating well-formed, UB-
free LLVM IR programs. Unlike the aforementioned tools, GenLLVM focuses on
testing LLVM IR semantics directly. GenLLVM itself is built via monadic func-
tional programming on top of QuickChick’s “generator” monad. This structure
threads through a random seed and a desired size for test case generation, pro-
viding a convenient domain-specific language for randomly sampling values to
build up complex structured data—in our case, LLVM programs. GenLLVM ex-
ercises a large subset of Vellvm’s instructions, including arithmetic operations,
pointer manipulation, vector manipulation, aggregate type manipulation, and
conversion operations (e.g., inttoptr). It also generates complex control-flows
using recursion, loops, and calls.

Generating interesting, valid lower-level target programs is challenging: we
need the generated programs to be deterministic, type-safe, UB-free, and diverse
in instruction usage and code patterns. These properties allow us to meaning-
fully compare executions between Clang and Vellvm, and differences in the ex-
ecution between these implementations will be highly indicative of a bug in one
of them. To give an example of the concerns that arise during instruction gener-
ation, consider LLVM’s inttoptr instruction. According to LLVM’s Language
Reference [22], inttoptr "takes an integer value to cast, and a type to cast it
to, which must be a pointer type."2 However, simply following this type spec-
ification to generate inttoptr operations in test programs can easily lead to
UB: consider a simple LLVM snippet inttoptr i32 123 to i8*, which simply
calls inttoptr on the 32-bit integer 123; a subsequent load from the resulting
pointer accesses unallocated memory. To address this challenge while also en-
suring rich test coverage of programs containing inttoptr, GenLLVM uses a
context-aware metadata system, heavily inspired by entity-component systems

2 The Language Reference itself notes that inttoptr is “really dangerous”.



such as Ecstasy [17, 18]. Using our metadata system we are able to dynamically
track the types of variables, as well as other information, such as whether an
integer value was derived from a ptrtoint cast—information that we use to only
generate inttoptr casts from integers that point to valid addresses [1]. Other
state of the art generators like CSmith and YARPgen don’t generate these kinds
of cast instructions, so we’re able to exercise more of the semantics of LLVM.

This differential testing approach allows us to discover bugs in both Vellvm
and, more importantly, Clang. One of the newly found bugs [2], recognized by
Clang developers, can be triggered by a simple LLVM instruction extractvalue
<[3 x i8], i8> %v, 1. This snippet effectively loads a byte from an aligned,
packed struct that starts with an odd-sized vector. Clang’s implementation of
the address calculation rounds up the size of the vector to the next alignment
boundary, in this case 4 instead of 3, independently of whether the struct is
packed. Such compiler bugs lead to hard-to-find errors when correct source pro-
grams are transformed into subtly wrong assembly code.

3 Discussion: Challenges and Related Work

Our methodology allows us to successfully define a formal semantics for a large
subset of LLVM IR in Rocq and to validate the correctness of the executable
interpreter with respect to the specification. We have used the Vellvm semantics
to verify some program transformations [4] and to prove compiler correctness
results [27]. However, some challenges to using this methodology remain.

Challenges. The biggest concern with defining a semantics using monadic in-
terpreters and ITrees in this style, and more generally with using an interactive
theorem prover like Rocq, is the significant manual proof effort involved. Work
on Vellvm requires a large degree of Rocq expertise and often takes significant
time and engineering effort.

Another challenge arises in handling LLVM IR’s inherent nondeterminism.
Our strategy is to interpret nondeterministic events (such as allocations) into a
nondeterministic set, using Rocq’s Prop type, in which all possible results are
considered. This has complicated some proofs in the later stages of the inter-
pretation pipeline, and also causes a divergence in the implementation of the
semantics and interpreter. Additionally, concurrency (a feature we have not yet
tackled) similarly requires nondeterminism to model and thus presents similar
challenges. Recent advances in Choice Trees [5, 6], which natively handle non-
deterministic choices, may ameliorate these problems.

Related Work. A number of projects aim to provide specifications for both lan-
guages and hardware, each with their own approaches. Notably, our work builds
upon the ideas established in the ITrees paper [23], which provides a case study
on a simple assembly language. We have extended the techniques from this pa-
per to deal with the more complicated semantics of LLVM IR (for instance, by
introducing nondeterminism).



Cerberus [19] uses an elaboration approach to provide a model for C; language
primitives in C are implemented using a simpler core language with a straight-
forward semantics. K-LLVM [12] has a somewhat similar approach, using an
abstract state machine as the basis for the behavior of LLVM IR instructions.

The Fiat [8] library demonstrates a means of refining a specification into
efficient executable functional programs, which has some similarities to our ap-
proach of extracting an executable interpreter using ITrees. Kami [7] uses similar
approaches to bring modular reasoning to hardware verification efforts in Rocq.
Hardware modules can be verified separately from each other under Kami.

FORMED (Formal Methods Engineering Desktop) DSL [9] is a project build-
ing on Unified Modeling Language (UML) with formal methods. Using an auto-
mated theorem prover ACL2s, the authors use a similar methodology in model-
ing DSLs in UML and subsequently generating executable applications in ACL2s
code for formal verification and unit testing, as explained in their paper. Vellvm
differs from the FORMED project in a several ways: 1) we define LLVM IR se-
mantics via ITrees and reason about the correctness modularly, all in Rocq, 2)
while both use unit testing, we exploit random differential testing, which allows
us to find bugs in not only our formalization, but also real-world, large-scale im-
plementations, and 3) The formal semantics is defined via monadic interpreters,
which can then be turned into an executable version via Rocq’s extraction mech-
anism. The correspondence between the executable interpreter and the formal
semantics is formally proved in Rocq, giving us high assurance that the exe-
cutable meets the specification.

Our QuickChick generators for LLVM IR programs have largely been inspired
by similar compiler testing projects, such as CSmith [24] and YARPGen [15].
Alive2 [16] uses a translation-validation approach and SMT solvers in order to
validate program transformations on LLVM IR code. QuickChick has also used
to test other languages like SCILLA [10], an ML-style functional language for
implementing smart contracts.

4 Conclusion

The Vellvm project provides a means for reasoning about LLVM IR programs
and optimization passes within the Rocq proof assistant. Using interaction trees
we are able to define a modular semantics from which we can derive a verified
executable interpreter with relatively little effort. We have also validated our
semantics against existing implementations of LLVM using a differential testing
approach using our own test case generator, GenLLVM. We’re able to generate a
wider range of LLVM instructions when compared to existing generators which
target higher level languages, and using this approach we have been able to
discover bugs in both our own implementation and the Clang compiler. Vellvm
is a large project, and we believe that the battle-tested methodology presented
in this paper is useful for other formalization efforts.



Bibliography

[1] A selection of bugs discovered in clang / vellvm with genllvm (2024),
https://github.com/vellvm/vellvm/issues?q=is%3Aissue+label%
3Aqc-discovered-bug+

[2] Extractvalue with packed struct with vector off-by-one error (2025), https:
//github.com/llvm/llvm-project/issues/124061

[3] Beck, C., Yoon, I., Chen, H., Zakowski, Y., Zdancewic, S.: A two-phase
infinite/finite low-level memory model (Jun 2024). https://doi.org/10.
5281/zenodo.12518800, https://doi.org/10.5281/zenodo.12518800

[4] Beck, C., Yoon, I., Chen, H., Zakowski, Y., Zdancewic, S.: A two-phase
infinite/finite low-level memory model: Reconciling integer–pointer casts,
finite space, and undef at the llvm ir level of abstraction. Proc. ACM Pro-
gram. Lang. 8(ICFP) (Aug 2024). https://doi.org/10.1145/3674652,
https://doi.org/10.1145/3674652

[5] Chappe, N., He, P., Henrio, L., Zakowski, Y., Zdancewic, S.: Choice trees:
Representing nondeterministic, recursive, and impure programs in coq.
Proc. ACM Program. Lang. 7(POPL) (Jan 2023). https://doi.org/10.
1145/3571254, https://doi.org/10.1145/3571254

[6] Chappe, N., Henrio, L., Zakowski, Y.: Monadic interpreters for concurrent
memory models: Executable semantics of a concurrent subset of llvm ir.
CPP 2025, Association for Computing Machinery (2025), https://perso.
ens-lyon.fr/nicolas.chappe/muvellvm-concurrency-draft.pdf

[7] Choi, J., Vijayaraghavan, M., Sherman, B., Chlipala, A., Arvind: Kami: a
platform for high-level parametric hardware specification and its modular
verification. Proc. ACM Program. Lang. 1(ICFP) (Aug 2017). https://
doi.org/10.1145/3110268, https://doi.org/10.1145/3110268

[8] Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: Deductive
synthesis of abstract data types in a proof assistant. In: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. p. 689–700. POPL ’15, Association for Comput-
ing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/
2676726.2677006, https://doi.org/10.1145/2676726.2677006

[9] Eakman, G., Reubenstein, H., Hawkins, T., Jain, M., Manolios, P.: Practical
formal verification of domain-specific language applications. In: Havelund,
K., Holzmann, G., Joshi, R. (eds.) NASA Formal Methods. pp. 443–449.
Springer International Publishing, Cham (2015)

[10] Hoang, T., Trunov, A., Lampropoulos, L., Sergey, I.: Random testing of a
higher-order blockchain language (experience report). Proc. ACM Program.
Lang. 6(ICFP) (Aug 2022). https://doi.org/10.1145/3547653, https:
//doi.org/10.1145/3547653

[11] Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. In: Proceedings of the 2004 International

https://github.com/vellvm/vellvm/issues?q=is%3Aissue+label%3Aqc-discovered-bug+
https://github.com/vellvm/vellvm/issues?q=is%3Aissue+label%3Aqc-discovered-bug+
https://github.com/llvm/llvm-project/issues/124061
https://github.com/llvm/llvm-project/issues/124061
https://doi.org/10.5281/zenodo.12518800
https://doi.org/10.5281/zenodo.12518800
https://doi.org/10.5281/zenodo.12518800
https://doi.org/10.5281/zenodo.12518800
https://doi.org/10.5281/zenodo.12518800
https://doi.org/10.1145/3674652
https://doi.org/10.1145/3674652
https://doi.org/10.1145/3674652
https://doi.org/10.1145/3571254
https://doi.org/10.1145/3571254
https://doi.org/10.1145/3571254
https://doi.org/10.1145/3571254
https://doi.org/10.1145/3571254
https://perso.ens-lyon.fr/nicolas.chappe/muvellvm-concurrency-draft.pdf
https://perso.ens-lyon.fr/nicolas.chappe/muvellvm-concurrency-draft.pdf
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3110268
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/2676726.2677006
https://doi.org/10.1145/3547653
https://doi.org/10.1145/3547653
https://doi.org/10.1145/3547653
https://doi.org/10.1145/3547653


Symposium on Code Generation and Optimization (CGO’04). Palo Alto,
California (Mar 2004)

[12] Li, L., Gunter, E.: K-llvm: A relatively complete semantics of llvm ir.
In: 34rd European Conference on Object-Oriented Programming, ECOOP
2020, Berlin, Germany (2020). https://doi.org/10.4230/LIPIcs.ECOOP.
2020.7

[13] Liang, S., Hudak, P., Jones, M.: Monad transformers and modular in-
terpreters. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. p. 333–343. POPL
’95, Association for Computing Machinery, New York, NY, USA (1995).
https://doi.org/10.1145/199448.199528, https://doi.org/10.1145/
199448.199528

[14] Livinskii, V., Babokin, D., Regehr, J.: Random testing for C and C++
compilers with YARPGen. Proceedings of the ACM on Programming
Languages 4(OOPSLA), 1–25 (Nov 2020). https://doi.org/10.1145/
3428264, https://dl.acm.org/doi/10.1145/3428264

[15] Livinskii, V., Babokin, D., Regehr, J.: Fuzzing Loop Optimizations in Com-
pilers for C++ and Data-Parallel Languages. Proceedings of the ACM on
Programming Languages 7(PLDI), 1826–1847 (Jun 2023). https://doi.
org/10.1145/3591295, https://dl.acm.org/doi/10.1145/3591295

[16] Lopes, N.P., Lee, J., Hur, C.K., Liu, Z., Regehr, J.: Alive2: Bounded trans-
lation validation for llvm. In: Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implemen-
tation. p. 65–79. PLDI 2021, Association for Computing Machinery, New
York, NY, USA (2021). https://doi.org/10.1145/3453483.3454030,
https://doi.org/10.1145/3453483.3454030

[17] Maguire, S.: ecstasy: A ghc.generics based entity component system. (2018),
https://hackage.haskell.org/package/ecstasy

[18] Maguire, S.: Why take ecstasy (Jan 2018), https://
reasonablypolymorphic.com/blog/why-take-ecstasy/index.html

[19] Memarian, K., Matthiesen, J., Lingard, J., Nienhuis, K., Chisnall, D.,
Watson, R.N.M., Sewell, P.: Into the depths of c: Elaborating the de
facto standards. In: Proceedings of the 37th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. p. 1–15.
PLDI ’16, Association for Computing Machinery, New York, NY, USA
(2016). https://doi.org/10.1145/2908080.2908081, https://doi.org/
10.1145/2908080.2908081

[20] Paraskevopoulou, Z., HriŢcu, C., Dénès, M., Lampropoulos, L., Pierce,
B.C.: Foundational property-based testing. In: Urban, C., Zhang, X. (eds.)
Interactive Theorem Proving. pp. 325–343. Springer International Publish-
ing, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_22,
https://doi.org/10.1007/978-3-319-22102-1_22

[21] llvm-admin team: LLVM (2024), https://llvm.org/
[22] llvm-admin team: LLVM Language Reference Manual (2024), https://

llvm.org/docs/LangRef.html, documentation
[23] Xia, L.y., Zakowski, Y., He, P., Hur, C.K., Malecha, G., Pierce, B.C.,

https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.4230/LIPIcs.ECOOP.2020.7
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://dl.acm.org/doi/10.1145/3428264
https://doi.org/10.1145/3591295
https://doi.org/10.1145/3591295
https://doi.org/10.1145/3591295
https://doi.org/10.1145/3591295
https://dl.acm.org/doi/10.1145/3591295
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3453483.3454030
https://hackage.haskell.org/package/ecstasy
https://reasonablypolymorphic.com/blog/why-take-ecstasy/index.html
https://reasonablypolymorphic.com/blog/why-take-ecstasy/index.html
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1007/978-3-319-22102-1_22
https://doi.org/10.1007/978-3-319-22102-1_22
https://doi.org/10.1007/978-3-319-22102-1_22
https://llvm.org/
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html


Zdancewic, S.: Interaction trees: representing recursive and impure pro-
grams in coq. Proc. ACM Program. Lang. 4(POPL) (dec 2019). https:
//doi.org/10.1145/3371119, https://doi.org/10.1145/3371119

[24] Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding
bugs in c compilers. In: Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. p. 283–294.
PLDI ’11, Association for Computing Machinery, New York, NY, USA
(2011). https://doi.org/10.1145/1993498.1993532, https://doi.org/
10.1145/1993498.1993532

[25] Zakowski, Y., Beck, C., Yoon, I., Zaichuk, I., Zaliva, V., Zdancewic, S.:
Modular, compositional, and executable formal semantics for llvm ir. Proc.
ACM Program. Lang. 5(ICFP) (aug 2021). https://doi.org/10.1145/
3473572, https://doi.org/10.1145/3473572

[26] Zakowski, Y., Beck, C., Yoon, I., Zaichuk, I., Zaliva, V., Zdancewic, S.:
Modular, compositional, and executable formal semantics for llvm ir. Pro-
ceedings of the ACM on Programming Languages 5(ICFP) (2021)

[27] Zaliva, V., Zaichuk, I., Franchetti, F.: Verified translation between purely
functional and imperative domain specific languages in helix. In: Soft-
ware Verification: 12th International Conference, VSTTE 2020, and 13th
International Workshop, NSV 2020, Los Angeles, CA, USA, July 20–21,
2020, Revised Selected Papers. p. 33–49. Springer-Verlag, Berlin, Heidel-
berg (2020). https://doi.org/10.1007/978-3-030-63618-0_3, https:
//doi.org/10.1007/978-3-030-63618-0_3

[28] Zdancewic, S., et al.: Vellvm (2024), https://github.com/vellvm/vellvm
[29] Zhao, J., Nagarakatte, S., Martin, M.M., Zdancewic, S.: Formal verification

of ssa-based optimizations for llvm. In: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation.
p. 175–186. PLDI ’13, Association for Computing Machinery, New York,
NY, USA (2013). https://doi.org/10.1145/2491956.2462164, https:
//doi.org/10.1145/2491956.2462164

https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3473572
https://doi.org/10.1145/3473572
https://doi.org/10.1145/3473572
https://doi.org/10.1145/3473572
https://doi.org/10.1145/3473572
https://doi.org/10.1007/978-3-030-63618-0_3
https://doi.org/10.1007/978-3-030-63618-0_3
https://doi.org/10.1007/978-3-030-63618-0_3
https://doi.org/10.1007/978-3-030-63618-0_3
https://github.com/vellvm/vellvm
https://doi.org/10.1145/2491956.2462164
https://doi.org/10.1145/2491956.2462164
https://doi.org/10.1145/2491956.2462164
https://doi.org/10.1145/2491956.2462164

	Vellvm: Formalizing the Informal LLVM

