
CIS 620 | Advanced Topics in AI

Profs. M. Kearns and L. Saul

Solutions to Problem Set 1

Distributed: Sunday, February 10, 2002

1. E�ective horizon for discounted return. Let 0 � < 1, and let
P
1

i=0
iri

be an in�nite sum (which we may regard as the discounted return in an
MDP) with all ri 2 [0; 1]. Let 0 < � < 1. Prove that, for some constant
c0 > 0,

t �
c0

log(1=)
log

1

(1�)�

implies
P
1

i=t
iri � �. Thus, for any chosen amount of tolerated approxima-

tion (�), we can view in�nite-horizon discounted return as similar to �nite
horizon return, where the length of this �nite horizon grows as ! 1. Note
that as ! 1, log(1=) behaves like 1=(1 �).

Solution. First we note
P
1

i=t
iri �

P
1

i=t
i = t=(1�), where the inequal-

ity follows from the fact that all ri 2 [0; 1] and the equality can be veri�ed by
long division. To obtain the desired result we can simply solve the inequality
t=(1�) � � for t. Taking logs of both sides of t � �(1�) and multiply-
ing both sides by -1 to reverse the inequality yields t � 1

log(1=) log
1

(1�)� .

2. Approximation to optimal value function yields near-optimal policy. Let
V � be the value function for the optimal policy �� in an MDP, and let V̂ be
an approximation to V � (as might be computed, for instance, via the value
iteration algorithm). Let �̂ = greedy(V̂). Recall that this means

�̂(s) = argmaxa

(
R(s; a) +

X
s0

P (s0js; a)V̂ (s0)

)

for every state s, where is the discount factor. (Note that V �̂ 6= V̂ in
general.) De�ne the regret L̂(s) of �̂ from s as

L̂(s) = V �(s)� V �̂(s):

Show that if jV �(s)� V̂ (s)j � � for every s, then maxsfL̂(s)g � 2�=(1�).
Thus, following the greedy policy determined by a good approximation to
the optimal value function is, in fact, a near-optimal policy. You may �nd
it helpful to break the proof into the following two steps (though you are
free to use any proof you like):

1

� Let a = ��(s) and b = �̂(s). First use the assumed approximation
bound on V̂ and the greediness of �̂ to give a bound on R(s; a)�R(s; b).

� Substitute your bound on R(s; a) � R(s; b) into a one-step expansion
of L̂(s).

Solution. See the Singh and Yee paper posted on the course web page.

3. Computation of optimal policy via linear programming. A linear program

is a maximization (or minimization) problem with the following special form:
maximize the linear function ~w �~x, subject to the linear inequalities A~x � ~b.
Here ~w;~b 2 <n are given vectors, A is a given n by n matrix of reals, � de-
notes inner product, and the problem is to compute ~x 2 <n accomplishing
the stated maximization. Show that the problem of computing the optimal
policy in a given MDP can be formulated as a linear program. Thus, stan-
dard linear programming algorithms (such as the simplex algorithm, whose
worst-case running time may be exponential in n, or Karmarkar's algorithm,
whose running time is polynomial) can be used to compute (exactly) opti-
mal policies.

Solution. The idea here is to introduce a variable vi to represent V �(si),
where si is the ith state of the MDP. To enforce Bellman optimality, we
introduce the constraints vi � R(si; a)+

P
j P (sjjsi; a)vj for every state si

and every action a. Note that this has the desired e�ect of ensuring that vi
exceeds the Bellman argmaxa of the right-hand side via a system of linear
inequalities | in e�ect, we have replaced the non-linear argmaxa with a
series of linear lower bounds, one for each action.

Of course, this is not enough | there are many non-V � solutions to this
system of inequalities (for example, just let all the vi have absurdly large
values). To force V � to be the only solution, we let the objective func-
tion to be minimized be

P
i vi. Now if for some i, the solution found had

vi > V �(si), note that we could reduce vi to V
�(si) without violating any of

the inequalities, contradicting the assertion that linear programming found
the minimizing solution.

4. Policy iteration improves policies. Recall that policy iteration maintains
a policy �̂t, and for each state s, sets

�̂t+1(s) argmaxafQ
�̂t(s; a)g = argmaxa

(
R(s; a) +

X
s0

P (s0js; a)V �̂t(s)

)

2

where the computation of V �̂ can be accomplished via the solution of a
system of linear equations, and no change is made to �̂t(s) if the argmaxa
is already achieved. Prove that if the policy �̂t+1 is di�erent than �̂t, it is
strictly better than �̂t | that is, V �̂t+1(s) � V �̂t(s) for all s, with strict
inequality for at least one state. (Hint: consider only the change at a sin-
gle state, and look at the time-dependent policy that makes the suggested
change on the �rst i steps of a random walk under �̂t, but not afterwards.
Show that i+ 1 is better than i.)

Solution. Several of you found a more elegant solution than the one sug-
gested by the hint. Since policy iteration is greedy with respect to Q�̂t(s; a),
we have that for all states s,

V �̂t(s) � Q�̂t(s; �̂t+1(s)) = R(s; �̂t+1(s)) +
X
s0

P (s0js; �̂t+1; 1)V
�̂t(s0):

But now we can again subsitute the same inequality for all the V �̂t(s0) to
obtain

V �̂t(s) � R(s; �̂t+1(s))+
X
s0

P (s0js; �̂t+1; 1)R(s
0; �̂t+1(s

0))+
X
s0

P (s0js; �̂t+1; 2)V
�̂t(s0):

Note that this expansion shows that taking two steps under �̂t+1 is still an
improvement over �̂t. Continuing in this manner in�nitely yields the desired
result.

5. Relating value iteration and policy iteration. For any natural number k �
1, de�ne the algorithm rollout(k) as follows. Like value iteration, rollout(k)
will proceed in rounds, and maintain a current policy �̂t and value function
V̂t at round t. The update equations are

V̂t+1(s)

k�1X
i=0

i
X
s0

P (s0js; �̂t; i)R(s
0; �̂t(s

0))

!
+ k

X
s0

P (s0js; �̂t; k)V̂t(s
0)

and �̂t+1 = greedy(V̂t+1). Here P (�js; �̂t; i) is the distribution induced over
states by taking an i-step walk under �̂t starting from s. Prove that value
iteration is equivalent to rollout(1) and that policy iteration is equivalent to
rollout (1). Based on this observation, conjecture which algorithm is better,
and give your reasons. (Extra credit: prove your conjecture.)

3

Solution. For rollout (1), the equivalence with value iteration is more or less
immediate, with the usual argmaxa being computed by the greedy assign-
ment of �̂t+1. For rollout(1), we simply note that the in�nite expansion
on the right-hand side (which gives weight 1 = 0 to the current estimate
V̂t) is doing an exact evaluation of the current policy �̂t, which is precisely
what policy iteration does. The correct conjecture is that the error in value
function of policy iteration is, at any given round, at most that of value iter-
ation, since policy iteration computes the exact value of the current policy
before updating, while value iteration makes a \noisy" estimate based on
the current value function.

4

