
Notes on Online Learning for CIS 625

Jacob Abernethy

March 30, 2012

1 Randomized Weighted Majority

We’re hoping to predict a sequence of bits y1, y2, y3, . . . ∈ {0, 1}. The algorithm we design will make
predictions ŷ1, ŷ2, ŷ3, . . . ∈ [0, 1]. To measure performance, we have a loss function `(ŷ, y) which takes values
in [0, 1] and is convex in its first argument. Two standard loss functions are the absolute loss |ŷ− y| and the
squared loss (ŷ − y)2.

Let us imagine we have a set of n “experts” each of which gives us a prediction on every round. Let’s say
that expert i say ei,t ∈ [0, 1] on round t. Now we want to choose ŷt using our received advice (e1,t, . . . , en,t)
and the past performance of the experts. How shall we do this?

Here’s where we use the “Randomized Weighted Majority” algorithm. Let’s define the cumulative loss
of expert i as

Li,t :=

t−1∑
s=1

`(ei,s, ys).

Now we can define a “weight” for each expert. Assume we have some parameter η > 0, then let

wi,t := exp(−ηLi,t).

Let us now use these weights as a level of “trust” in each expert. So our prediction will be a weighted average
of the experts’ predictions, but the weights will decay with the past performance or the expert. Precisely,
we will set

ŷt :=

∑n
i=1 wi,tei,t∑n
i=1 wi,t

We now state the big theorem. A good writeup of this result with proof can be found here: http:

//goo.gl/m9jR6.

Theorem 1. Let η > 0 and T be arbitrary, and let i∗ be the “best expert” at time T , i.e. the i acheiving the
minimum cumulative loss Li,T . Then we can bound the loss of the algorithm as

LT :=

T∑
t=1

`(ŷt, yt) ≤
lnn+ ηLi∗,T

1− exp(−η)
.

This bound can be a little hard to interpret, since it has the “learning rate” parameter η in a number of
places. The bound becomes a lot nicer once we tune η correctly. I’ll spare the details on how to do this, and
just mention that this requires having a known bound L̃ on the loss of the best expert Li∗,t.

Corollary 1. If L̃ ≥ Li∗,T , if we set

η = ln

(
1 +

√
2 lnn

L̃

)
then the bound in the previous theorem becomes

LT ≤ Li∗,T +
√

2L̃ lnn+ lnn

1

Notice here that our algorithm is performing essentially as well as the best expert in hindsight. Our

“regret to the best” is only a constant lnn plus a square-root term O(
√
L̃).

2 The (almost identical) Hedge Algorithm

After some initial work in online learning for combining the predictions of experts, it became quite clear that
the “weighted majority” trick is actually more general than was originally thought. For the moment, let’s
forget about experts and think instead about “actions” that we can take. On each round t of a repeated
game, we must select a distribution pt over these n actions and then, once we have committed to this
distribution, we observe a “loss vector” `t := (`1,t, . . . , `n,t), where `i,t is the loss of having chosen action i
on round t. The original paper of Freund and Schapire (http://goo.gl/LiOHb) imagined a gambler betting
on a repeated horse race, so action i would be placing a bet on the ith horse. Since the gambler would want
to “hedge” his bets, the algorithm I will now show you became known as the Hedge Algorithm.

Freund and Schapire noticed that we can use the same weighed majority strategy for betting on horses.
We can redifine the cumulative loss of an action as simply

Li,t :=

t−1∑
s=1

`i,s.

In other words, if I had just been betting on the ith horse all along, Li,t is how much I would have lost up
to time T . With this notion of cumulative loss, the weight of an action is the same

wi,t := exp(−ηLi,t).

Now the gambler must choose a distribution over the n actions, and he shall choose the weighted majority
distribution which we’ve already seen:

pt :=

(
w1,t∑n
i=1 wi,t

, . . . ,
wn,t∑n
i=1 wi,t

)
The cumulative loss of the gambler after T rounds is just his total expected loss had he sampled it from pt

and suffered `it,t. That is

LT :=

T∑
t=1

pt · `t.

It’s worth noting here that the gambler does not necessarily have to play in a randomized fashion. Ran-
domness is necessary in some scenarios, as a gambler may only be able to place a single bet and hence will
randomize hoping to do will in expectation. On the other hand, on each round the gambler could simply
spread his bet over all n actions according to the distribution pt, which would be more like a “portfolio”
strategy. But because we are looking at linear loss here, in each case the quantity we care about is still pt ·`t
on each round.

Theorem 2. The cumulative loss of the Hedge Algorithm at time T with parameter η > 0 satisfies the same
bound as Theorem 1; namely,

LT =

T∑
t=1

pt · `t ≤
lnn+ ηLi∗,t

1− exp(−η)
.

Given a bound L̃ ≥ Li∗,T , and with η tuned appropriately, we have that

LT ≤ Li∗,T +
√

2L̃ lnn+ lnn

2

3 No Regret and the Minimax Theorem

Such online learning methods are typically referred to as “no-regret” algorithms, for the following reason.

As T →∞ LT

T
→ min

i=1,...,n

Li,T

T
.

To see why this is true, notice that we need to simply divide both sides of the Hedge regret bound by T .
Notice that L̃, which is used to tune η, can always be set as T , since Li,T ≤ T . Then, it’s clear that the

average regret
√

2T lnn+lnn
T → 0 as T →∞. This is why we say “no-regret”. We often write this statement

in the following way:
LT

T
= min

i=1,...,n

Li,T

T
+ o(1).

Let us ponder the above observation. We we now have is that the performance of our learning algorithm,
on average, is essentially no worse than if it had known the best expert/action in hindsight! This is kind
of a striking fact, given than we made no assumptions on the process generating the sequence of losses (or
predictions ei,t, or the outcomes yt) – these could have even been generated by an adversary.

What is quite surprising is that the existence of a no-regret algorithm gives us a simple way to prove the
minimax theorem of von Neumann. Here we use the notation ∆n as the n-dim probability simplex.

Theorem 3. Let M ∈ [0, 1]n×m be a payoff matrix for a 2-player zero-sum game. Then we have

min
p∈∆n

max
q∈∆m

p>Mq = max
q∈∆m

min
p∈∆n

p>Mq

Proof. Let v1 = minp∈∆n
maxq∈∆m

p>Mq and let v2 = maxq∈∆m
minp∈∆n

p>Mq. It is easy to show that
v1 ≥ v2 (this is known as “weak duality”). The easy proof of this inequality is just to see that minimizing
player choosing p would rather play 2nd, hence can achieve a smaller value when minimizing within the
maxq objective. The more technical proof is to note that, if we take the optimal p∗ for v1, then we

min
p∈∆n

max
q∈∆m

p>Mq = max
q∈∆m

p∗>Mq ≥ max
q∈∆m

min
p∈∆n

p>Mq

where the inequality holds because p∗ may not be the optimal choice for p when chosen as a function of q
(i.e. when the min player gets to go 2nd).

Now we prove “strong duality”, v1 ≤ v2. To achieve this, we take an odd detour and imagine a repeated
game where, on each round t, the minimizing player chooses a distribution pt (to be defined soon) having
learned from the past observations. The maximizing player gets to see this pt and in response chooses
qt := arg maxq∈∆m

p>t Mq. Notice that since pt was possibly not chosen optimally, we have that for every t,

min
p∈∆n

max
q∈∆m

p>Mq ≤ max
q∈∆m

p>t Mq = p>t Mqt.

Now how do we choose pt? Let’s use the Hedge Algorithm! We’ll define the loss vectors to be `t := Mqt

which is natural since `i,t is the cost of choosing action i for the minimizing player given that the maximizing
player chose qt. Now let’s use our no-regret statement to control how much cost the minimizing player
suffered on average:

1

T

T∑
t=1

p>t Mqt =
1

T
pt · `t

(no-regret) ≤ 1

T
min
i
Li,T + o(1)

=
1

T
min
p∈∆n

p ·

(
T∑

t=1

`t

)
+ o(1)

= min
p∈∆n

p>M

(
1

T

T∑
t=1

qt

)
+ o(1)

3

Notice now that q̂ := 1
T

∑T
t=1 qt is a distribution, but it is probably not the optimal distribution for the

maximizing player! Hence we have

min
p∈∆n

p>M

(
1

T

T∑
t=1

qt

)
+ o(1) ≤ max

q∈∆m

min
p∈∆n

p>Mq + o(1).

What we have just shown is that

v1 = min
p∈∆n

max
q∈∆m

p>Mq ≤ 1

T

T∑
t=1

p>t Mqt ≤ max
q∈∆m

min
p∈∆n

p>Mq + o(1) = v2 + o(1).

Since T can be chosen in order that the o(1) term is arbitrarily small, we have that v1 ≤ v2 and we are
done.

4

