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ABSTRACT

We give mechanisms in which each of n players in a game is given their component of an
(approximate) equilibrium in a way that guarantees differential privacy — that is, the revelation
of the equilibrium components does not reveal too much information about the utilities of other
players. More precisely, we show how to compute an approximate correlated equilibrium (CE)
under the constraint of differential privacy (DP), provided n is large and any player’s action affects
any other’s payoff by at most a small amount. Our results draw interesting connections between
noisy generalizations of classical convergence results for no-regret learning, and the noisy mech-
anisms developed for differential privacy. Our results imply the ability to truthfully implement
good social-welfare solutions in many games, such as games with small Price of Anarchy, even if
the mechanism does not have the ability to enforce outcomes. We give two different mechanisms
for DP computation of approximate CE. The first is computationally efficient, but has a subopti-
mal dependence on the number of actions in the game; the second is computationally inefficient,
but allows for games with exponentially many actions. We also give a matching lower bound,
showing that our results are tight up to logarithmic factors.
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1 Introduction

The field of mechanism design studies how to provide incentives to implement a desired outcome
when agents have relevant private information. We revisit this with an additional desideratum moti-
vated by privacy concerns — that no agent’s information be revealed to any other agent, either directly
or by the portion of the outcome that is revealed to any agent. This is relevant for mechanism design
when the underlying private information is sensitive (e.g. healthcare) or agents presume privacy (e.g.
agents’ activity on social networks). Similarly, if there are (unmodeled) future interactions between
the agents, privacy concerns are a reduced-form way to incorporate strategic concerns regarding the
future. For a broad class of games, we derive a mechanism which (approximately) truthfully imple-
ments an (approximate) correlated equilibrium, where the approximation error quickly approaches
zero as the size of the game grows. In particular, this gives us an approximately truthful equilibrium
selection mechanism which does not need the power to enforce outcomes, but can instead simply
make suggestions.

Consider a motivating example: imagine a city in which Google Navigation has become the
dominant navigation service. Every morning, each person enters their starting point and destination
into their Google device, receives a set of directions, and chooses his/her route according to those
directions. In this setting our question reduces to the design of the navigation service such that: 1)
Each agent should be incentivized to report his starting and end points truthfully, and then follow the
driving directions provided. Both misreporting start and end points, and truthfully reporting start and
end points, but then following a different (shorter) path should be ruled out for each agent. 2) Players
are guaranteed the privacy of their starting and ending points, i.e. the mechanism should be such
that other player or players cannot infer ‘much’ about a given player’s source or destination based on
the directions they received. As an alternative example with perhaps more realistic privacy concerns,
consider a setting in which the members of a large population must contemplate revealing their status
regarding an infectious disease (infected, uninfected, unknown) to a centralized mechanism that will
recommend vaccinations based on social or physical proximity among members in a way that ensures
best responses (equilibrium). Again in this setting, members would like to receive the best-response
benefits of participation, but also want to strongly limit information leakage about their infection
status.

Intuitively, our two desiderata are in conflict. In the commuting example above, if we are to
guarantee that every player is incentivized to truthfully follow their suggested route, then we must
compute an equilibrium of the game in question. On the other hand, to do so, our suggested route to
some player i must depend on the reported location/destination pairs of each other player j 6= i. This
tension seems also to pose a problem in terms of incentives: if we must compute an equilibrium of
a game that is defined based on the reports of the players in step 1), an agent can potentially benefit
by misreporting in the first step, causing us to compute an equilibrium of the wrong game. However,
as we show, both of these problems can be alleviated by computing the equilibrium subject to the
constraint of differential privacy.

Our mechanism is based on a combination of two ideas from the literature. The first of these
ingredients is the use of ‘no-regret methods’ to compute approximate correlated equilibria (see, e.g.
Foster & Vohra [16] and Hart & Mas-Colell [25]). A crucial feature of these methods is that equilibria
can be computed without the algorithms having direct access to the game matrix. Instead, we “simu-
late play” of the game for only a small number of rounds, and need only feed each algorithm certain
numeric values at each round: namely, the payoff that each simulated agent would have received,
given the actions being played in the current round by the other simulated agents. We show that these
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algorithms are extremely noise tolerant: that is, they work even if the reported payoffs are perturbed.
This means that we can compute equilibria by accessing the game only via a small number of per-
turbed numeric valued queries. We may therefore apply the large body of literature in differential
privacy addressing the question of how to privately answer numeric valued queries as accurately as
possible.

We can view our algorithm as a mechanism that takes as input each player’s report of (private)
type; and outputs a suggested action to each player. It implements an approximate correlated equilib-
rium of the full information game given players’ reports. Therefore, as in our example, the mecha-
nism can also be used as a recommender mechanism for a game in which agents take actions directly.
Further, this mechanism has both the desired incentive properties and preserves the privacy of each
agent’s information. Moreover, the approximations quickly become exact as the size of the game (i.e.
the number of players) grows, so long as the game is “insensitive” in a sense in which we precisely
define.

1.1 Overview of Model and Results

We consider a setting in which a centralized planner simultaneously receives type reports from each
agent and proposes an action to each. We study the design of mechanisms that:

1. Propose an approximate equilibrium of the full information game given the reports. Our solu-
tion concept here is ε-correlated equilibrium.1

2. Make it an approximately-dominant strategy for agents to report their type truthfully.

3. Preserve the privacy of each agent’s private information. Here we use a new variant of differen-
tial privacy defined in this paper. Informally speaking, we require that simultaneously for each
player i, the joint distribution over actions reported to players j 6= i be differentially private
in the report of player i. This means, roughly, that although player i’s suggested action can be
highly sensitive in his own reported type, it must be insensitive to the reported type of any other
player.

We note that this natural variant of differential privacy, which we call joint differential privacy is
necessary in our setting, and may be of independent interest. In our case, it provides equally strong
guarantees of privacy to each player i, even if all other agents j 6= i collude and share their outputs,
while allowing us to circumvent the impossibility of computing an equilibrium under the standard
notion of differential privacy.

It is easy to see that the goal of computing an approximate equilibrium while preserving the
privacy of the player’s utility functions is hopeless in a 2-player game (or more generally a small
number of players). Therefore we consider ‘large’ n-player games. We define these formally in
Section 2, but roughly speaking, these are n-player games in which for all players i 6= j, i’s choice
of action can affect j’s payoff by at most an additive ±γ. We call γ the sensitivity of the game. In
what follows, we discuss our results for games where γ is O(1/n), but our results extend to other
scales for γ. Examples of such games include atomic routing games as the player size decreases

1For certain classes of games, this can be extended to ε-Nash equilibria. The main constraint is our proof technique. We
need that the solution concept must be computable by an appropriate distributed algorithm, to which we can add carefully
calibrated noise. In certain special cases, these conditions are satisfied for Nash equilibrium, but in this paper we restrict
our attention to correlated equilibrium so as to maintain generality.
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(i.e. as the game approaches a non-atomic routing game), anonymous matching games, and more
generally, any game in which a player’s payoff depends in some Lipschitz-continuous manner only
on the distribution of actions played (in aggregate) by his opponents.

We consider two equilibrium concepts: coarse correlated equilibrium (CCE), and correlated equi-
librium (CE). For both solution concepts, we give a computationally efficient mechanism for privately
computing α-approximate versions in games with k actions where α is O(poly(k)/

√
n). Holding the

number of actions fixed, the approximation is O(1/
√
n), or to put it alternately, we get almost exact

equilibria if the number of players n is large.
For games with a large number of actions (relative to n) the above algorithm is not useful, due to

the poly(k) term in the numerator. For example, in the routing game discussed earlier, the number of
actions available to a player is the number of paths, which can be exponentially large relative to the
size of the graph. For such settings with large numbers of actions, we show that positive results are
still possible as long as the number of possible types for each player is bounded. Formally, we show
that it is possible to privately compute an α-approximate equilibrium in a large k-action n-player
game, with U types for each player, where α is O(log k log3/2 |U |/

√
n). However, the mechanism in

this case is computationally inefficient.
We also show a matching lower bound: we give a family of n-player 2-action large games in

which it is not possible to privately compute an α-approximate CCE (and therefore an α-approximate
CE or an α-approximate Nash equilibrium) for α� 1/

√
n, showing that even our efficient algorithm

gives nearly the best possible approximation guarantees in the case that k is small (i.e. a fixed number
independent of n). Our inefficient upper bound of course remains tight up to a factor of log k log3/2 U
for arbitrary k-action games with U feasible utility functions. Whether there is an efficient algorithm
for privately computing α-approximate equilibria to error α = O(polylog(k, U)/

√
n) is left as an

open question.
What do these results mean in terms of incentive properties? It has been observed previously that

differential privacy implies approximate strategy proofness (McSherry & Talwar [32]). Specifically,
an ε differentially private mechanism is also ε-approximate dominant strategy truthful2. Since the
actions proposed jointly constitute a α-approximate correlated equilibrium of the full information
game defined by everyone’s reports, it is a (ε + α)-approximate Nash equilibrium for everyone to
follow the strategy “truthfully report type, then follow the recommended action”.3 Note that crucially
this does not require the mechanism to have the power to enforce any outcome! We show a mechanism
such that (ε + α) quickly tends to zero in the size of the game. Therefore, as the size of the game
grows large, truthfully reporting type and following the suggested action approaches an exact Nash
equilibrium of the full information game.

Finally, note that for many games of interest (including the traffic routing game that serves as our
running example), the Price of Anarchy over the set of (coarse) correlated equilibria is very small
[3, 42]. Indeed, in any smooth game, the Price of Anarchy over this set of equilibria is no worse
than the Price of Anarchy over pure strategy Nash equilibria [42]. Since our mechanism implements
a correlated equilibrium, it has welfare guarantees that are at least as strong as the Price of Anarchy
bound in the game of interest, which in many cases is extremely strong.

2In fact, every action is an ε-approximate dominant strategy in such a mechanism, which has been a criticism of privacy
as a solution concept [35]. This objection does not apply to our setting, since the messages reported to each agent are not
differentially private in their own reported type, but only in the reported types of others.

3It is always an ε-approximate Dominant strategy to truthfully report type. It is an ε + α Nash equilibrium to follow
both parts of the two-part strategy, of truthfully reporting, and then following the resulting suggested equilibrium action.
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1.2 Related Work and Discussion

Market and Mechanism Design Our work is closely related to the large body of literature on mech-
anism/market design in ‘large games’. This literature looks to exploit the large number of agents to
provide mechanisms which have good incentive properties, even when the small market versions do
not. It stretches back to Roberts & Postlewaite [36] who showed that market (Walrasian) equilibria
are approximately strategy proof in large economies. More recently Immorlica and Mahdian [27] ,
Kojima and Pathak [29], Kojima, Pathak and Roth [30] have shown that various two-sided match-
ing mechanisms are approximately strategy proof in large markets. There are similar results in the
literature for one-sided matching markets, market economies, and double auctions. Azevedo and
Budish [2] in a recent paper provide conditions for a mechanism to be ‘strategy proof in the large’,
i.e. approximately strategyproof as the game grows large.

By comparison with these works, which study settings where the mechanism designer/principal
can enforce outcomes (or take actions on behalf of participants), we study settings where the mecha-
nism only suggests an action to participants. This leads to slightly weaker incentive properties (due to
the possibility of ‘double-deviations’). Indeed, if our mechanism could act on behalf of participants,
it would be (ε + α)-approximately strategy proof when an α-approximate correlated equilibrium is
computed while satisfying ε-differential privacy.4

On a related subject, there is literature suggesting that even if the mechanism can enforce out-
comes rather than only suggest an action, other considerations may require the mechanism to select a
‘equilibrium’ outcome of the underlying game rather than an ‘optimal’ outcome. An influential body
of work, starting with Roth and Xing [41] argues that in two-sided matching markets, centralized
mechanisms that implement a stable outcome (a full information solution concept) are more resistant
to unraveling, i.e. members of the market pre-empting the mechanism by contracting in advance.

Large Games Our results hold under two sufficient (and almost necessary) conditions: that the
number of players be ‘large’, and the game be insensitive toO(1/

√
n), i.e. a player’s action affects the

payoff of all others by a small amount. These are closely related to the literature on large games, see
e.g. Al-Najjar and Smorodinsky [1] or Kalai [28]. There has been recent work studying large games
using tools from theoretical computer science (but in this case, studying robustness of equilibrium
concepts)– see Gradwohl and Reingold [19, 20].

Differential Privacy Differential privacy is a formalization of privacy first defined by Dwork, Mc-
Sherry, Nissim, and Smith [10] that has since become the standard privacy “solution concept” in the
theoretical computer science literature. It is a quantification of the worst-case harm that can befall an
individual as a result of his decision to allow his data to be used in some computation, as compared
to if he did not provide his data.

There is by now a very large literature on differential privacy, which we will not attempt to survey.
Instead, we mention here only the most relevant work. Interested readers can consult [8, 37] for a
more thorough introduction to the field.

The most well studied problem in differential privacy is that of accurately answering numeric-
valued queries on a data set. A basic result is that any single query that has sensitivity at most 1 (i.e.
the addition or removal of a single individual from the data set can change the value of the query by at

4In fact, if the participants did not have the option of acting independently of the mechanism (i.e. still playing the game,
but selecting an action without consulting the mechanism), then our mechanisms would be ε-strategyproof.
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most 1) can be answered in a computationally efficient manner while preserving ε-differential privacy,
and introducing error only O(1/ε) (Dwork et al [10]). Another fundamental result in differential
privacy is that it composes gracefully: Any algorithm composed of T subroutines, each of which are
O(ε/

√
T )-differentially private is itself ε-differentially private [9, 13]. Combined with the previous

result, this gives an efficient algorithm for privately answering any T low sensitivity queries with
error that grows only with O(

√
T ), a result which we make use of.

Another line of work has shown that it is possible to privately answer queries much more accu-
rately using computationally inefficient algorithms [4, 13, 21, 22, 24, 39]. Combining the results of
[24, 39] yields an algorithm which can privately answer arbitrary low sensitivity queries, interactively
as they arrive, with error that scales only logarithmically in the number of queries. We make use of
this when we consider games with large action spaces but small type spaces.

There is also a line of work proving information theoretic lower bounds on the accuracy to which
low sensitivity queries can be answered while preserving differential privacy [6, 7, 11, 14]. Our
lower bounds for privately computing equilibria work by reducing the problem to privately answering
queries: we design a game whose only equilibria encode answers to large numbers of queries about a
database.

Finally, related to this paper, there is a recent literature on connections between differential privacy
and game theory. McSherry and Talwar [32] were the first to observe that a differentially private
algorithm is also approximately truthful. This line of work was extended by Nissim, Smorodinsky,
and Tennenholtz [35] to give mechanisms in several special cases which are exactly truthful (although
no longer privacy preserving) by combining private mechanisms with non-private mechanisms which
explicitly punish non-truthful reporting. Huang and Kannan [26] showed that the mechanism used
by Mcsherry and Talwar (the “exponential mechanism”) is in fact maximal in distributional range,
and so can be made exactly truthful with the addition of payments. We remark that the immediate
connection between privacy and approximate incentive compatibility leveraged by these works only
holds in settings in which the mechanism has the power to enforce its outcome or otherwise compel
actions. The novelty in our work relative to this line is that our mechanisms implement approximate
equilibria of the full information game. Therefore, truthful reporting and subsequently following the
suggested equilibria actions remain approximate best responses even if the players have the ability to
act in the game, independently of the mechanism.

Another interesting line of work considers the problem of designing truthful mechanisms for
agents who explicitly experience a cost for privacy loss as part of their utility function [5, 34, 43]. The
main challenge in this line of work is to formulate a reasonable model for how agents experience cost
as a function of privacy. We remark that the approaches taken in the former two can also be adapted
to work in our setting, for agents who explicitly value privacy. Gradwohl [18] studies the problem of
implementation for various assumptions about players’ preference for privacy and permissible game
forms. A related line of work which also takes into account agent values for privacy considers the
problem of designing markets by which analysts can procure private data from agents who explicitly
experience costs for privacy loss [15, 17, 31, 40]. See Roth [38] for a survey.
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2 Model & Preliminaries

There is a set of n players, {1, 2, . . . , n}, the generic player is indexed i. Player i can take actions in
a set A, |A| = k.5 We denote a generic action by j and a generic action for player i by ai. A tuple of
actions, one for each player, will be denoted a = (a1, a2, . . . an) ∈ An.6

Player i’s payoff function will be denoted ui : An → <. We will restrict attention to ‘insensitive’
games. Roughly speaking a game is γ-sensitive if a player’s choice of action affects any other player’s
payoff by at most γ. Note that we do not constrain the effect of a player’s own actions on his payoff.
Formally:

DEFINITION 1 (γ-Sensitive). A game is said to be γ-sensitive if for any two distinct players i 6= i′,
any two actions ai, a′i for player i and any tuple of actions a−i for everyone else:

|ui′(ai, a−i)− ui′(a′i, a−i)| ≤ γ. (1)

Denote a distribution over An by π, the marginal distribution over the actions of player i by πi,
and the marginal distribution over the (joint tuple of) actions of every player but player i by π−i.
We now present (approximate versions of) two standard solution concepts—correlated and coarse
correlated equilibrium.

DEFINITION 2 (Approximate Coarse Correlated Equilibrium). Let (u1, u2, . . . un) be a tuple of utility
functions, one for each player. Let π be a distribution over tuples of actions An. We say that π is
an α-approximate coarse correlated equilibrium of the game defined by (u1, u2, . . . un) if for every
player i, and any a′i ∈ A:

E
π

[ui(a)] ≥ E
π−i

[
ui(a

′
i, a−i)

]
− α

DEFINITION 3 (Approximate Correlated Equilibrium). Let (u1, u2, . . . un) be a tuple of utility func-
tions, one for each player. Let π be a distribution over tuples of actions An. We say that π is
an α-approximate correlated equilibrium of the game defined by (u1, u2, . . . un) if for every player
i ∈ [N ], and any function f : A→ A,

E
π

[ui(a)] ≥ E
π

[ui(f(ai), a−i)]− α

Let U be the set of all possible utility functions for the players,7 with a generic profile of utilities
u = (u1, u2, . . . un) ∈ Un. A mechanism is a function from a profile of utility functions to a
probability distribution over Rn, i.e. M : Un → ∆Rn. Here R is an appropriately defined range
space.

First we recall the definition of differential privacy, both to provide a basis for our modified
definition, and since it will be a technical building block in our algorithms. Roughly speaking, a
mechanism is differentially private if for every u and every i, knowledge of the outputM(u) as well
as u−i does not reveal ‘much’ about ui.

5It is trivial to extend our results to the case where agents have different sets of actions, k will then be an upperbound
on the number of actions across agents.

6In general, subscripts will refer indices i.e. players and periods, while superscripts will refer to components of vectors.
7It is trivial to extend our results to the case where agents have different sets of possible utility functions, Ui. U will

then be
⋃n

i=1 Ui.
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DEFINITION 4 ((Standard) Differential Privacy). A mechanismM satisfies (ε, δ)-differential privacy
if for any player i, any two possibility utility functions for player i, ui and u′i, and any tuple of utilities
for every else u−i and any S ⊆ Rn,

P
M

[(M(ui;u−i)) ∈ S] ≤ eε P
M

[(
M(u′i;u−i)

)
∈ S

]
+ δ.

We would like something slightly different for our setting. We propose a relaxation of the above
definition, motivated by the fact that the action recommended to a player is only observed by her.
Roughly speaking, a mechanism is jointly differentially private if, for each player i, knowledge of
the other n − 1 recommendations (and submitted utility functions) does not reveal ‘much’ about
player i’s report. Note that this relaxation is necessary in our setting, since knowledge of player i’s
recommended action can reveal a lot of information about his utility function. It is still very strong-
the privacy guarantee remains even if everyone else colludes against a given player i, so long as
i does not himself make the component reported to him public. This relaxation also preserves the
approximate truthfulness properties of private mechanisms.

DEFINITION 5 (Joint Differential Privacy). A mechanismM satisfies (ε, δ)-joint differential privacy
if for any player i, any two possible utility functions for player i, ui and u′i, any tuple of utilities for
everyone else u−i and S ⊆ Rn−1,

P
M

[
(M(ui;u−i))−i ∈ S

]
≤ eε P

M

[(
M(u′i;u−i)

)
−i ∈ S

]
+ δ.

An important result we will use is that differentially private mechanisms ‘compose’ nicely.

THEOREM 1 (Adaptive Composition [13]). Let A : U → RT be a T -fold adaptive composition8 of
(ε, δ)-differentially private mechanisms. Then A satisfies (ε′, T δ + δ′)-differential privacy for

ε′ = ε
√

2T ln(1/δ′) + Tε(eε − 1).

In particular, for any ε ≤ 1, if A is a T -fold adaptive composition of (ε/
√

8T ln(1/δ), 0)-
differentially privacy mechanisms, then A satisfies (ε, δ)-differential privacy.

Finally, differentially private mechanisms often involve adding Laplacian random noise. We will
denote a (mean 0) and scale σ Laplacian random variable by Lap(σ). The following foundational
result shows that adding Laplacian noise to a insensitive function makes it differentially private.

THEOREM 2 (Privacy of the Laplace Mechanism [10]). Let Q : U → R be any γ-sensitive function.
Define the mechanismM(u) = Q(u) + Lap(σ). If σ = γ/ε, thenM is (ε, 0)-differentially private.

We state a known concentration inequality for Laplacian random variables that will be useful.

THEOREM 3 ([22]). Suppose {Yi}Ti=1 are i.i.d. Lap(σ) random variables, and scalars qi ∈ [0, 1].
Define Y := 1

T

∑
i qiYi. Then for any α ≤ σ,

Pr[Y ≥ α] ≤ exp

(
−α

2T

6σ2

)
.

8See [13] for further discussion
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2.1 No-Regret Algorithms: Definitions and Basic Properties

Here we recall some of the basics about no-regret learning. See [33] for a text-book exposition.
Let {1, 2, . . . , k} be a finite set of k actions. Let L = (l1, . . . , lT ) ∈ [0, 1]T×k be a loss matrix

consisting of T vectors of losses for each of the k actions. Let Π =
{
π ∈ [0, 1]k |

∑k
j=1 π

j = 1
}

be
the set of distributions over the k actions and let πU be the uniform distribution. An online learning
algorithm A : Π × [0, 1]k → Π takes a distribution over k actions and a vector of k losses, and
produces a new distribution over the k actions. We use At(L) to denote the distribution produced
by running A sequentially t − 1 times using the loss vectors l1, . . . , lt−1, and then running A on the
resulting distribution and the loss vector lt. That is:

A0(L) = πU ,

At(L) = A(At−1(L), lt).

We use A(L) = (A0(L),A1(L), . . . ,AT (L)) when T is clear from context.
Let π0, . . . , πT ∈ Π be a sequence of T distributions and let L be a T -row loss matrix. We define

the quantities:

λ(π, l) =

k∑
j=1

πjlj ,

λ(π0, . . . , πT , L) =
1

T

T∑
t=1

λ(πt, lt),

λ(A(L′), L) = λ(A0(L
′),A1(L

′), . . . ,AT (L′), L).

Note that the notation retains the flexibility to run the algorithm A on one loss matrix, but measure
the loss A incurs on a different loss matrix. This flexibility will be useful later.

Let F be a family of functions f : {1, 2, . . . , k} → {1, 2, . . . , k}. For a function f and a distribu-
tion π, we define the distribution f ◦π to be

(f ◦π)j =
∑

j′:f(j′)=j

πj
′
.

The distribution f ◦π corresponds to the distribution on actions obtained by first choosing an action
according to π, then applying the function f .

Now we define the following quantities:

λ(π1, . . . , πT , L, f) = λ(f ◦π1, f ◦π2, . . . , f ◦πT , L),

ρ(A, L, f) = λ(A, L)− λ(A, L, f),

ρ(A, L,F) = max
f∈F

ρ(A, L, f).

As a mnemonic, we offer the following. λ refers to expected loss, ρ refers to regret. Next, we define
the families Ffixed,Fswap :

Ffixed =
{
fj(j

′) = j, for all j′ | j ∈ {1, 2, . . . , k}
}

Fswap = {f : {1, 2, . . . , k} → {1, 2, . . . , k}}

9



Looking ahead, we will need to be able to handle not just a priori fixed sequences of losses, but
also adapted. To see why, note that for a game setting, a player’s loss will depend on the distribution
of actions played by everyone in that period, which will depend, in turn, on the losses everyone
experienced in the previous period and how everyone’s algorithms reacted to that.

DEFINITION 6 (Adapted Loss). A loss function L is said to be adapted to an algorithm A if in each
period t, the experienced losses lt ∈ [0, 1]k can be written as:

lt = L(l0,A(l0), l1,A(l1), . . . , lt−1,A(lt−1)).

We will make use of the following well-known results from the theory of no-regret algorithms,
which show the existence of algorithms that guarantee low regret even against adapted losses (see e.g.
[33]).

THEOREM 4. There exists an algorithmAfixed such that for any adapted loss L, ρ(Afixed,L,Ffixed) ≤√
2 log k
T . There also exists an algorithm Aswap such that ρ(Aswap,L,Fswap) ≤ k

√
2 log k
T .

2.2 From No Regret to Equilibrium

Let (u1, . . . , un) be utility functions for each of n players. Let S = {(πi,1, . . . , πi,T )}ni=1 be a
collection of n sequences of distributions over k actions, one for each player. Let {(li,1, . . . , li,T )}ni=1
be a collection of n sequences of loss vectors l ∈ [0, 1]k formed by the action distribution. More
formally, for every j, lji,t = 1− Eπ−i,t [ui(j, a−i)]. Define the maximum regret that any player has to
her losses

ρmax(S,L,F) = max
i
ρ(Si, Li,F)

where Si = (πi,0, . . . , πi,T ) and Li = (li,1, . . . , li,T ).
Given the collection S, we define the correlated action distribution ΠS be the average distribution

of play. That is, ΠS is the distribution over An defined by the following sampling procedure: Choose
t uniformly at random from {1, 2, . . . , T}, then, for each player i, choose ai randomly according to
the distribution πi,t, independently of the other players.

The following well known theorem (see, e.g. [33]) relates ρmax to the equilibrium concepts
(Definitions 2 and 3):

THEOREM 5. If the maximum regret with respect to Ffixed is small, i.e. ρmax(S,L,Ffixed) ≤ α, then
the correlated action distribution ΠS is an α-approximate coarse correlated equilibrium. Similarly,
if ρmax(S,L,Fswap) ≤ α, then ΠS is an α-approximate correlated equilibrium.

3 Noise Tolerance of No-Regret Algorithms

In this section we show that no-regret algorithms are tolerant to addition of ‘some’ noise, that is we
still get good regret bounds with respect to the real losses if we run the no-regret algorithm on noisy
losses (real losses plus low-magnitude noise).

Let L ∈ [0, 1]T×k be a loss matrix. Define L = L+1
3 (entrywise) and note that L ∈ [13 ,

2
3 ]T×k.

The following states that running A on L doesn’t significantly increase the regret with respect to the
real losses.

10



LEMMA 1. For every algorithm A, every family F , and every loss matrix L ∈ [0, 1]T×k,

ρ(A(L), L,F) ≤ 3ρ(A(L), L,F).

In particular, for every L ∈ [0, 1]T×k

ρ(Afixed(L), L,Ffixed) ≤
√

18 log k

T
and ρ(Aswap(L), L,Fswap) ≤ k

√
18 log k

T
.

PROOF. Let π0, . . . , πT ∈ Πk be any sequence of distributions and let f : {1, 2, . . . , k} →
{1, 2, . . . , k} be any function. Then

ρ(π0, . . . , πT , L, f) = λ(π0, . . . , πT , L)− λ(f ◦π0, . . . , f ◦πT , L)

= 3
(
λ(π0, . . . , πT , L)− λ(f ◦π0, . . . , f ◦πT , L)

)
= 3

(
ρ(π0, . . . , πT , L, f)

)
.

The second equality follows from the definition of λ and from linearity of expectation. The Lemma
now follows by setting (π0, . . . , πT ) = AT (L), taking a maximum over f ∈ F , and plugging in the
guarantees of Theorem 4.

In light of Lemma 1, for the rest of this section we will take L to be a loss matrix in [13 ,
2
3 ]T×k.

This rescaling will only incur an additional factor of 3 in the regret bounds we prove. Let Z ∈ RT×k
be a real valued noise matrix. Let L̂ = L + Z (entrywise). In the next section we will consider the
case where Z is an arbitrary matrix with bounded entries. Then we will prove a tighter bound for the
case where Z consists of independent draws from a Laplace distribution.

3.1 General Noise

The next lemma states that when a no-regret algorithm is run on a noisy sequence of losses, it does
not incur too much additional regret with respect to the real losses.

LEMMA 2 (Regret Bounds in the Presence of Bounded Noise). Let L ∈ [13 ,
2
3 ]T×k be any loss matrix.

Let Z = (zjt ) ∈ [−b, b]T×k be an arbitrary matrix with bounded entries, and let L̂ = L + Z. Let A
be an algorithm. Let F be any family of functions. Then

ρ(A(L̂), L,F) ≤ ρ(A(L̂), L̂,F) + 2b.

PROOF. Let (π0, . . . , πT ) be any sequence of distributions and let f : {1, 2, . . . , k} → {1, 2, . . . , k}

11



be any function. Then:

ρ(π0, . . . , πT , L, f)− ρ(π0, . . . , πT , L̂, f)

= (λ(π0, . . . , πT , L)− λ(f ◦π0, . . . , f ◦πT , L))− (λ(π0, . . . , πT , L̂)− λ(f ◦π0, . . . , f ◦πT , L̂)).

= (λ(π0, . . . , πT , L)− λ(π0, . . . , πT , L̂)) + (λ(f ◦π0, . . . , f ◦πT , L̂)− λ(f ◦π0, . . . , f ◦πT , L̂))

=

 1

T

T∑
t=1

k∑
j=1

πjt (l
j
t − l̂

j
t )

+

 1

T

T∑
t=1

k∑
j=1

(f ◦πt)j(ljt − l̂
j
t )

 (by definition of λ)

=

 1

T

T∑
t=1

K∑
j=1

πjt z
j
t

+

 1

T

T∑
t=1

k∑
j=1

(f ◦πt)jzjt

 (by definition of z) (2)

≤ b

 1

T

T∑
t=1

K∑
j=1

πjt

+ b

 1

T

T∑
t=1

K∑
j=1

(f ◦πt)j
 (∀j, t |zjt | ≤ b)

= 2b,

where the final equality follows from the fact that πt, f ◦πt are probability distributions.

COROLLARY 1. Let L ∈ [13 ,
2
3 ]T×k be any loss matrix and let Z ∈ RT×k be a random matrix such

that PZ
[
Z ∈ [−b, b]T×k

]
≥ 1− β for some b ∈ [0, 13 ], and let L̂ = L+ Z. Then

1. PZ
[
ρ(Afixed(L̂), L,Ffixed) >

√
2 log k
T + 2b

]
≤ β

2. PZ
[
ρ(Aswap(L̂), L,Fswap) > k

√
2 log k
T + 2b

]
≤ β

3.2 Laplacian Noise

Having handled the case of general noise, we will now prove a tighter bound on the additional regret
in the case where the entries of Z are iid samples from a Laplace distribution.

LEMMA 3 (Regret Bounds for Laplace Noise). Let L ∈ [13 ,
2
3 ]T×k be any loss matrix. Let Z = (zjt ) ∈

RT×k be a random matrix formed by taking each entry to be an independent sample from Lap(σ),
and let L̂ = L+ Z. Let A be an algorithm. Let F be any family of functions. Then for any η ≤ σ.

P
Z

[
ρ(A(L̂), L,F)− ρ(A(L̂), L̂,F) > η

]
≤ 2|F|e−η2T/24σ2

.

PROOF. Let (π0, . . . , πT ) be any sequence of distributions and let f : {1, 2, . . . , k} → {1, 2, . . . , k}
be any function. Recall by (2),

ρ(π0, . . . , πT , L, f)− ρ(π0, . . . , πT , L̂, f) =

 1
T

T∑
t=1

k∑
j=1

πjt z
j
t

+

 1
T

T∑
t=1

k∑
j=1

(f ◦πt)jzjt

 . (3)
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We wish to place a high probability bound on the quantities:

Yπ0,...,πT =
1

T

T∑
t=1

k∑
j=1

πjt z
j
t .

Changing the order of summation,

Yπ0,...,πT =
∑

a1,...,aT∈A

(
T∏
t=1

πatt

)(
1

T

T∑
t=1

zatt

)
,

the equality follows by considering the following two ways of sampling elements zjt . The first ex-
pression represents the expected value of zjt if t is chosen uniformly from {1, 2, . . . , T} and then j
is chosen according to πt. The second expression represents the expected value of zjt if (a1, . . . , aT )
are chosen independently from the product distribution π1 × π2 × · · · × πT and then at is chosen
uniformly from (a1, . . . , aT ). These two sampling procedures induce the same distribution, and thus
have the same expectation. Thus we can write:

P
Z

[Yπ0,...,πT > η] ≤ max
a1,...,aT∈A

P
Z

[
1

T

T∑
t=1

zatt > η

]
≤ P

Z

[
1

T

T∑
t=1

z1t > η

]
.

where the second inequality follows from the fact that the variables zjt are identically distributed.
Applying Theorem 3, we have that for any η < σ,

P
Z

[Yπ0,...,πT > η] ≤ e−η2T/6σ2
. (4)

Let (π0, . . . , πT ) = A(L̂). By Equation (3) we have

P
Z

[
ρ(A(L̂), L, f)− ρ(A(L̂), L̂, f) > η

]
≤ P

Z

 1

T

T∑
t=1

k∑
j=1

πjt z
j
t > η/2

+ P
Z

 1

T

T∑
t=1

k∑
j=1

(f ◦πt)jzjt > η/2

 ,
≤ 2e−η

2T/24σ2
,

where the last inequality follows from applying (4) to the sequences (π0, . . . , πT ) and (f◦π0, . . . , f◦
πT ). The Lemma now follows by taking a union bound over F .

Finally, we obtain a tighter counterpart of Corollary 1 when the noise is independent Laplacian
noise.

COROLLARY 2. Let L ∈ [13 ,
2
3 ]T×k be any loss matrix and let Z ∈ RT×k be a random matrix

formed by taking each entry to be an independent sample from Lap(σ) for σ < 1
6 log(4KT/β) and let

L̂ = L+ Z. Then

1. PZ
[
ρ(Afixed(L̂), L,Ffixed) >

√
2 log k
T + σ

√
24 log(4k/β)

T

]
≤ β,

2. PZ
[
ρ(Aswap(L̂), L,Fswap) > k

√
2 log k
T + σ

√
24k log(4k/β)

T

]
≤ β.
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4 Private Equilibrium Computation

Having demonstrated the noise tolerance of no-regret algorithms, we now argue that for appropriately
chosen noise, the output of the algorithm constitutes a jointly-differentially private mechanism, in the
sense of Definition 5. We prove two results of this type. First, in Section 4.1 we consider games with
‘few’ actions per player. While our algorithm for this case is conceptually more straightforward, it
will not be sufficient in certain cases of interest. For example, in the routing games we described
in the introduction, the set of actions available to a player consists of all routes between her starting
point and her destination. Even if the graph (road network) is small, the number of feasible routes
can be extremely large (exponential in the number of edges (roads)). However, in such games, the
set of types (utility functions) is small (i.e. the set of all source-destination pairs). Motivated by this
observation, in Section 4.2 we consider games with large action spaces, but bounded type spaces.

4.1 Games with Few Actions

To orient the reader at a high-level, our proof has two main steps. First, we construct a ‘wrapper’
NRLAPLACEA which takes as input the parameters of the game, the reported tuple of utilities, and
any no-regret algorithm A. This wrapper runs the no-regret algorithm A in every period for each
player on noisy losses, i.e. instead of reporting the true loss toA, it reports the loss plus appropriately
chosen Laplacian noise. In Theorem 6 we show that this constitutes a jointly differentially private
mechanism. Then, in Theorem 7 and Corollary 3, we show that this wrapper converges to an ap-
proximate coarse correlated equilibrium when the input algorithm is Afixed, and to an approximate
correlated equilibrium when the input algorithm is Aswap.

4.1.1 Noisy No-Regret Algorithms are Differentially Private

NRLAPLACEA(ui, . . . un)

PARAMS: ε, δ, γ ∈ (0, 1], n, k, T ∈ N
LET: π1,1, . . . , πn,1 each be the uniform distribution over {1, 2, . . . , k}.

LET: σ =
γ
√

8nkT ln(1/δ)

ε
FOR: t = 1, 2, . . . , T

LET: lji,t = 1− Eπ−i,t [ui(j, a−i)] for every player i, action j.
LET: zji,t be an i.i.d. draw from Lap(σ) for every player i, action j.

LET: l̂ji,t = lji,t + zji,t for every player i, action j.

LET: πi,t+1 = A(πi,t, l̂i,t) for every player i.
END FOR

OUTPUT: (πi,1, . . . , πi,T ) to player i, for every i.

THEOREM 6 (Privacy of NRLAPLACEA). For any A, the algorithm NRLAPLACEA satisfies (ε, δ)-
joint differential privacy.

We now sketch the proof. We’ll fix a player i and utility functions u−i and argue that the output
to all other players is DP with respect to ui. It will be easier to analyze a modified mechanism that
outputs (l̂−i,1, . . . , l̂−i,T ). This output is sufficient to compute (π−i,1, . . . , π−i,T ) just by running A,
so it is sufficient to prove that this output is DP.
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Our goal will be to show that each element of the output, li′,t can be viewed as a γ-sensitive query
on ui. Since l̂i′,t is li′,t plus Laplacian noise, it will satisfy differential privacy (for some suitable
parameters). Notice that li′,t depends on the utility function ui in two ways. The first is explicitly,
through the action of player i. This can vary arbitrarily with ui, but the loss is only γ-sensitive to
this action. The second is indirect, in that player i’s utility function affects the other players’ losses,
which will in turn affect the query we make. However, once we fix the noisy losses for the first t− 1
rounds, we can compute player i’s actions in each round, and then only have to worry about the first
effect. Thus, we can view the output of our mechanism as T rounds of (possibly adaptively-chosen)
low-sensitivity queries on ui, and apply standard composition arguments in that setting.

PROOF. Fix any player i, any pair of utility functions for i, ui, u′i, and a tuple of utility functions u−i
for everyone else. To show differential privacy, we need to analyze the change in the distribution of
the joint output for all players other than i, (π−i,1, . . . , π−i,T ) when the input is (ui, u−i) as opposed
to (u′i, u−i).

It will be easier to analyze the privacy of a modified mechanism that outputs (l̂−i,1, . . . , l̂−i,T ).
Observe that this output is sufficient to compute (π−i,1, . . . , π−i,T ) just by running A. Thus, if we
can show the modified output satisfies differential privacy, then same must be true for the mechanism
as written.

For every player i′ 6= i, action j ∈ {1, 2, . . . , k}, and t ≤ T , we define the query Qji′,t(· |
l̂−i,1, . . . , l̂−i,t−1) on the utility functions ui, as well as u−i the output of the mechanism in rounds
1, . . . , t− 1.

Query Qji′,t(ui, u−i | l̂−i,1, . . . , l̂−i,t−1)

Using u−i, ui and l̂−i,1, . . . , l̂−i,t−1, compute lji′,t. Observe that this can be done in the following
steps:

1. Using l̂−i,1, . . . , l̂−i,t−1, A, and u−i, compute π−i,1, . . . , π−i,t−1.

2. Using π−i,1, . . . , π−i,t−1, A, and ui, compute πi,1, . . . , πi,t−1.

3. Using πt−1 = (πi,t−1, π−i,t−1), A, and ui, compute lji′,t.

Observe that the only step of the query computation that directly involves ui is the second. Chang-
ing player i’s utility function from ui to u′i can (potentially) affect πi,t−1, and can (potentially) alter
it to an arbitrary state πi,t−1. However, observe that

Qji′,t(ui | u−i, l̂−i,1, . . . , l̂−i,t−1) = 1− E
π−i′,t

[ui′(j, a−i′)]

= 1− E
π−(i,i′),t

[
E
πi,t

[
ui′(j, ai, a−(i′,i))

]]
≤

1− E
π−(i′,i),t

[
E
πi,t

[
ui′(j, ai, a−(i′,i)) + γ

]]
=

Qji′,t(u
′
i, | u−i, l̂−i,1, . . . , l̂−i,t−1) + γ,
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where the inequality comes from the fact that ui′ is assumed to be γ-sensitive in the action of player
i (Definition 1), and by linearity of expectation. A similar argument shows:

Qji′,t(ui | u−i l̂−i,1, . . . , l̂−i,t−1) ≥ Q
j
i′,t(u

′
i | u−i l̂−i,1, . . . , l̂−i,t−1)− γ.

Note two facts about these queries: (1) The answer to Qji′,t is exactly lji′,t, thus the noisy output to
these queries (i.e. answer plus Lap(σ)) is indeed equal to the output of the (modified) algorithm NR-
LAPLACEA. (2) The noisy losses l̂−i,1, . . . , l̂−i,t−1 have already been computed when the mechanism
reaches round t, thus the mechanism fits the definition of adaptive composition.

Thus, we have rephrased the output (l̂i′,1, . . . , l̂i′,T ) as computing the answers to nkT (adaptively
chosen) queries on (u1, . . . , un), each of which is γ-sensitive to the input ui. Thus the Theorem
follows from our choice of σ = γε−1

√
8nkT log(1/δ) and Theorems 1 and 2.

4.1.2 Noisy No-Regret Algorithms Compute Approximate Equilibria

Therefore we have shown how that the this ‘wrapper’ algorithm is jointly differentially private in the
sense of Definition 5. We now proceed to show that using this algorithm with Afixed will result in an
approximate coarse correlated equilibrium (Theorem 7), and that using it with Aswap will result in an
approximate correlated equilibrium (Corollary 3).

THEOREM 7 (Computing CCE). Let A = Afixed. Fix the environment, i.e. the number of players n,
the number of actions k, the sensitivity of the game γ, the degree of privacy desired, (ε, δ), and the
failure probability β. One can then select the number of rounds the algorithm must run, T , satisfying:

γε−1
√

8nkT log(1/δ) ≤ 1

6 log(4nkT/β)
, (5)

such that with probability at least 1− β, the algorithm NRLAPLACEAfixed , returns an α-approximate
CCE for:9

α = Õ
(
γε−1

√
nk log(1/δ) log(1/β)

)
. (6)

Before we proceed to the proof, some discussion is appropriate. It is already well known that
no-regret alogrithms converge ‘quickly’ to approximate equilibria– recall Theorems 4 and 5. In the
previous section, we showed that adding noise still leads to low regret (and therefore to approximate
equilibrium). The tradeoff therefore is this. To get a more ‘exact’ equilibrium, the algorithm has to be
run for more rounds. By the arguments in Theorem 6, this will result in a less private outcome. The
current theorem makes precise the tradeoff between the two. Fixing the various parameters, (5) tells
us the number of rounds T the algorithm must run for. Then, (6) tell us that fixing the desired privacy
and failure probability, one can compute an α-approximate CCE for α = Õ(γ

√
nk).

This is a strongly positive result– in several large games of interest, e.g. anonymous matching
games, γ = O(n−1). Therefore, for games of this sort α = Õ(

√
k/
√
n). If k is fixed, but n is large,

therefore, a relatively exact equilibrium of the underlying game can be implemented, while still being
jointly differentially private to the desired degree.

PROOF OF THEOREM 7. By our choice of the parameter σ, in the algorithm NRLAPLACEAall , which
is

σ = γε−1
√

8nkT log(1/δ),

9Here Õ hides (lower order) poly(logn, log k, log T, log(1/γ), log(1/ε), log log(1/β), log log(1/δ)) factors.
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and by assumption of the theorem, (5), we have σ ≤ 1/6 log(4nkT/β). Applying Theorem 2 we
obtain:

P
Z

[
ρ(πi,1, . . . , πi,T , Li,Ffixed) >

√
2 log k

T
+ σ

√
24 log(4nk/β)

T

]
≤ β

n

for any player i, where Li is the loss matrix derived from the given utility functions ui and the
distributions {πi,t}i∈[n],t∈[T ]. Now we can take a union bound over all players i, yielding:

P
Z

[
max
i
ρ(πi,1, . . . , πi,T , Li,Ffixed) >

√
2 log k

T
+ σ

√
24 log(4nk/β)

T

]
≤ β,

=⇒ P
Z

[
ρmax(π, L,Ffixed) >

√
2 log k

T
+ σ

√
24 log(4nk/β)

T

]
≤ β.

By Theorem 5, therefore, the empirical distribution of play is a
√

2 log k
T + σ

√
24 log(4nk/β)

T -
approximate coarse correlated equlibrium.

To finish, substitute σ = γε−1
√

8nkT log(1/δ) into the expression above. Therefore, with prob-
ability at least 1− β, no player has regret larger than

α =

√
2 log k

T
+
γ
√

192nk log(1/δ) log(4nk/β)

ε

Since T is a parameter of the algorithm, we can choose T to minimize α. Since α is monotonically
decreasing in T , we would like to choose T as large as possible. However, our argument requires
(5), which (roughly) requires

√
T . 1/γ

√
nk, where we have suppressed dependence on some of the

parameters. By choosing T so that
√
T ∼ 1/γ

√
nk we can make the first term of the error ∼ γ

√
nk,

which would make it be of a similar order to the second term. It is easy to verify that we can choose
T is such a way that T satisfies the assumption and the resulting value of α satisfies the conclusion of
the theorem.

By considering Aswap instead of Afixed, we easily get similar results for approximate correlated
equilibrium rather than coarse correlated equilibrium.

COROLLARY 3 (Computing CE). Let A = Aswap. Fix the environment, i.e. the number of players n,
the number of actions k, the sensitivity of the game γ, and the degree of privacy desired, (ε, δ). One
can then select the number of rounds the algorithm must run T , and two numbers α, β satisfying:

γε−1
√

8nkT log(1/δ) ≤ 1

6 log(4nkT/β)
, (7)

such that probability at least 1 − β, the algorithm NRLAPLACEAswap , returns an α-approximate
correlated equilibrium for:10

α = Õ

(
γk3/2

√
n log(1/δ) log(1/β)

ε

)
10Again Õ hides lower order poly(logN, logK, log T, log(1/∆), log(1/ε), log log(1/β), log log(1/δ)) factors.
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PROOF. Following the same steps as the Proof of Theorem 7, but noting that we are using regret
with respect to Fswap rather than Ffixed, we find that NRLAPLACEAswap will return, with probability
at least 1− β, an α-approximate correlated equlibrium where

α = k

√
2 log k

T
+

∆k
√

384n log(1/δ) log(4kn/β)

ε
.

As in Theorem 7, we will choose T ∼ 1/γ
√
nk to complete the proof.

4.2 Upper bounds for Games with Bounded Type Spaces

Recall that in the previous section, we showed that a private equilibrium can be computed with a
O(
√
k/
√
n) approximate equilibrium. While these results are positive for some settings (e.g. anony-

mous matching games for large populations), they have no bite in settings where the number of actions
is as large (or larger) than the number of players. The problem is roughly this– with large numbers of
actions, the no-regret algorithm will have to be run ‘many’ times. This would require that we either
sacrifice privacy, or introduce even more noise to ensure privacy, which in turn would give make the
computed equilibrium a worse approximation.

4.2.1 The Median Mechanism

In order to get a better bound on the accuracy as a function of the number of queries, we will need a
mechanism that is capable of answering a large number of queries accurately. One such mechanism
is the so-called Median Mechanism of Roth and Roughgarden [39], paired with the privacy analysis
of Hardt and Rothblum [24].11

THEOREM 8 (Median Mechanism For General Queries [39, 24]). Consider the following R-round
experiment between a mechanismMM , who holds a tuple u1, . . . , uN ∈ U , and a adaptive querier
B. For every round r = 1, 2, . . . , R:

1. B(Q1, a1, . . . , Qr−1, ar−1) = Qr, where Qr is a γ-sensitive query.

2. ar ←R MM (u1, . . . , un;Qr).

For every ε, δ, γ, β ∈ (0, 1], N,R,U ∈ N, there is a mechanismMM such that for every B

1. The transcript (Q1, a1, . . . , QR, aR) satisfies (ε, δ)-differential privacy.

2. With probability 1− β (over the randomizations ofMM ), |ar −Qr(u1, . . . , uN )| ≤ αMM
for

every r = 1, 2, . . . , R and for

αMM
= 16ε−1γ

√
N logU log(2R/β) log(4/δ).

11Originally, the median mechanism of [39] was only defined and analyzed for the case of linear queries. A ‘folk’ result,
first observed by Hardt and Rothblum [23] is that the Median Mechanism (when instantiated with a net of all possible size n
datasets) can be applied to arbitrary γ-sensitive queries, which immediately yields Theorem 8 when paired with the privacy
analysis of [24]. The simple proof can be found in [12].
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4.2.2 Noisy No-Regret via the Median Mechanism

We now define our algorithm for computing equilibria in games with exponentially many actions.
To keep notation straight, we will use u = (u1, . . . , uN ) to denote the utility functions specified

by each of the n players, and v ∈ U to denote a utility function considered within the mechanism.
Let U = |U|, the size of the set of possible utility functions for any player.

First we sketch some intuition for how the mechanism works. In particular, why we cannot simply
substitute the Median Mechanism for the Laplace mechanism and get a better error bound. Recall
the queries we used in analyzing the Laplace-based algorithm Qji,t(· | u−i, l̂−i,1, . . . , l̂−i,T ) in our
previous analysis. We were able to argue that fixing u−i and the previous noisy losses, the query was
low-sensitivity as a function of its input ui. This argument relied on the fact that we were effectively
running independent copies of the Laplace mechanism, which guarantees that the answers given to
each query do not explicitly depend on the previous queries that were asked (although the queries
themselves may be correlated). However, in the mechanism we are about to define, the queries are all
answered using a single instantiation of the Median mechanism. The Median mechanism correlates
its answers across queries, and thus the answers to one query may depend on the previous queries
that were made. This fact will be problematic, because the description of the queriesQji,t contains the
utility functions u−i. Thus, the queries we made to construct the output for players other than i will
actually contain information about u−i, and we cannot guarantee that this information does not leak
into the answers given to other sets of players.

We address this problem by asking a larger set of queries whose description does not depend on
any particular player’s utility function. We will make the set of queries large enough that they will
actually contain every query that we might possibly have asked in the Laplace-based algorithm, and
each player can select from the larger set of answers only those which she needs to compute her
losses. Since the queries do not depend on any utility function, we do not have to worry about leaking
the description of the queries.

In order to specify the mechanism it will be easier to define the following family of queries first.
Let i be any player, j any action, t any round of the algorithm, and v any utility function. The queries
will be specified by these parameters and a sequence Λ1, . . . ,Λt−1 where Λt′ ∈ Rn×k×U for every
1 ≤ t′ ≤ t− 1. Intuitively, the query is given a description of the “state” of the mechanism in all pre-
vious rounds. Each state variable Λt encodes the losses that would be experienced by every possible
player i and every action j and every utility function v, given that the previous t − 1 rounds of the
mechanism were played using the real utility functions. We will think of the variables Λ1, . . . ,Λt−1
as having been previously sanitized, and thus we do not have to worry about the fact that these state
variables encode information about the real utility functions.

Qji,t,v(u1, . . . , uN | Λ1, . . . ,Λt−1)

Using u1, . . . , uN | Λ1, . . . ,Λt−1, compute lji,t,v = 1 − Eπ−i,t [ui(j, a−i)]. This computation can
be done in the following steps:

1. For every i′ 6= i, use Λji′,1,ui′
, . . . ,Λji′,t−1,ui′

, A, and ui′ to compute πi′,1, . . . , πi′,t−1.

2. Using π−i,t−1, compute lji,t,v.

Observe that Qji,t,v is γ-sensitive for every player i, step t, action j, and utility function v. To see
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why, consider what happens when a specific player i′ switches her input from ui′ to u′i′ . In that case
that i = i′, this has no effect on the query answer, because player i’s utility is never used in computing
Qit,j,v. In the case that i′ 6= i then the utility function of player i′ can (potentially) affect the com-
putation of πi′,t−1, and can (potentially) change it to an arbitrary state πi′,t−1. But then γ-sensitivity
follows from the γ-sensitivity of ui, the definition of lji,t,v, and linearity of expectation. Notice that
ui′ does not, however, affect the state of any other players, who will use the losses Λ1, . . . ,Λt−1 to
generate their states, not the actual states of the other players.

Now that we have this family of queries in places, we can describe the algorithm. Our mechanism
uses two steps. At a high level, there is an inner mechanism, NRMEDIAN-SHARED, that will use
the Median Mechanism to answer each query Qji,t,v

(
· | Λ̂1, . . . , Λ̂t−1

)
, and will output a set of noisy

losses Λ̂1, . . . , Λ̂T . The properties of the Median Mechanism will guarantee that these losses satisfy
(ε, δ)-differential privacy (in the standard sense of Definition 4).

There is also an outer mechanism that takes these losses and, for each player, uses the losses
corresponding to her utility function to run a no-regret algorithm. This is NRMEDIAN which takes
the sequence Λ̂1, . . . , Λ̂T and using the utility function ui will compute the equilibrium strategy for
player i. Since each player’s output can be determined only from her own utility function and a set of
losses that is (ε, δ)-differentially private with respect to every utility function, the entire mechanism
will satisfy (ε, δ)-joint differential privacy.

NRMEDIAN-SHAREDA(u1, . . . uN )

PARAMS: ε, δ, γ ∈ (0, 1], n, k, T ∈ N
FOR: t = 1, 2, . . . , T

LET: l̂ji,t,v =MM

(
u1, . . . , uN ;Qji,t,v(· | Λ̂1, . . . , Λ̂t−1)

)
for every i, j, v.

LET: Λ̂j(i, t, v) = l̂ji,t,v for every i, j, v.
END FOR

OUTPUT: (Λ̂1, . . . , Λ̂T ).

NRMEDIANA(u1, . . . uN )

PARAMS: ε, δ,∆ ∈ (0, 1], n, k, T ∈ N
LET: (Λ̂1, . . . , Λ̂T ) = NRMEDIAN-SHAREDA(u1, . . . , uN ).
FOR: i = 1, . . . , N
LET: πi,1 be the uniform distribution over {1, 2, . . . , k}.

FOR: t = 1, . . . , T

LET: πi,t = A
(
πi,t−1, Λ̂i,t−1,ui

)
END FOR

OUTPUT TO PLAYER i: (πi,1, . . . , πi,T ).
END FOR

THEOREM 9 (Privacy of NRMEDIAN). The algorithm NRMEDIAN satisfies (ε, δ)-joint differential
privacy.

PROOF. Observe that NRMEDIAN can be written as h(u) = (f1(g(u)), . . . , fN (g(u))) where fi
depends only on ui for every player i. (Here, g is NRMEDIAN-SHARED and fi is the i-th iteration of
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the main loop in NRMEDIAN). The privacy of the Median Mechanism (Theorem 8) directly implies
that g is (ε, δ)-differentially private (in the standard sense).

Consider a player i and two profiles u,u′ that differ only in the input of player i, and consider the
output (f−i(g(u))). Let S ⊆ Range(f−i) and let R(u) =

{
o ∈ Range(g) | f−i(o) ∈ S

}
. Notice

that f is deterministic, so R is well-defined. Also notice that R depends only on S and u−i (in
particular, not on ui). Then we have

P
h(u)

[
h−i(u) ∈ S

]
= P

g(u)

[
g(u) ∈ R(u) = R(u′)

]
≤ eε P

g(u′)

[
g(u′) ∈ R(u) = R(u′)

]
+ δ

≤ eε P
h(u)

[
h−i(u′) ∈ S

]
+ δ

where the first inequality follows from the (standard) (ε, δ)-differential privacy of g. Thus, NRME-
DIAN satisfies (ε, δ)-joint differential privacy.

4.2.3 Computing Approximate Equilibria

THEOREM 10 (Computing CCE). Let A be Afixed. Fix the environment, i.e the number of players n,
the number of actions k, number of possible utility functions U , sensitivity of the game γ and desired
privacy (ε, δ). Suppose β and T are such that:

16ε−1γ
√
n logU log(2nkTU/β) log(4/δ) ≤ 1

6 (8)

Then with probability at least 1− β the algorithm NRMEDIANAfixed returns an α-approximate CCE
for:12

α = Õ

(
γ
√
N log3/2 U log(k/β) log(1/δ)

ε

)
.

Again, considering ‘low sensitivity’ games where γ is O(1/n), the theorem says that fixing the

desired degree of privacy, we can compute an α-approximate equilibrium for α = Õ

(
(logU)

3
2 log k√
N

)
.

The tradeoff to the old results is in dependence on the number of actions. The results in the previous
section had a

√
k dependence on the number of actions k. This would have no bite if k grew even

linearly in n. We show that positive results still exist if the number of possible private types is is
bounded - the dependence on the number of actions and the number of types is now logarithmic.
However this comes with two costs. First, we can only consider situations where the number of types
any player could have is bounded, and grows sub-exponentially in n. Second, we lose computational
tractability– the running time of the median mechanism is exponential in the number of players in the
game.

PROOF. By the accuracy guarantees of the Median Mechanism:

P
MM

[
∃i, t, j, v s.t. |l̂ji,t,v − l

j
i,t,v| > AMM

]
≤ β

12Here, Õ hides lower order poly(logn, log log k, log T, log logU log(1/γ), log(1/ε), log log(1/β), log log(1/δ))
terms.
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where
αMM

= 16γε−1
√
n logU log(2nkTU/β) log(4/δ)

By (8), αMM
≤ 1/6. Therefore,

P
MM

[
∃i, j, t, v s.t. |l̂ji,t,v − l

j
i,t,v| >

1
6

]
≤ β

Applying Theorem 1 and substituting AMM
, we obtain:

P
Z

[
∃i s.t. ρ(πi,1, . . . , πi,T , L,Ffixed) >

√
2 log k

T
+ 2αMM

]
≤ β

Now we can choose
√
T = (γ

√
n)−1 to conclude the proof.

COROLLARY 4 (Computing CE). Let A be Aswap. Fix the environment, i.e the number of players n,
the number of actions k, number of possible utility functions U , sensitivity of the game γ, the desired
privacy (ε, δ), and the failure probability β. Suppose T is such that:

16ε−1γ
√
n logU log(2nkTU/β) log(4/δ) ≤ 1

6 (9)

Then with probability at least 1− β the algorithm NRMEDIANAswap returns an α-approximate CCE
for:13

α = Õ

(
γ
√
n log3/2 U log(k/β) log(1/δ)

ε

)
PROOF. By the accuracy guarantees of the Median Mechanism:

P
MM

[
∃i, t, j, v s.t. |l̂ji,t,v − l

j
i,t,v| > AMM

]
≤ β

where
αMM

= 16γε−1
√
n logU log(2nkTU/β) log(4/δ)

By (9), αMM
≤ 1/6. Therefore,

P
MM

[
∃i, j, t, v s.t. |l̂ji,t,v − l

j
i,t,v| >

1
6

]
≤ β

Applying Theorem 1 and substituting αMM
, we obtain:

P
Z

[
∃i s.t. ρ(πi,1, . . . , πi,T , L,Ffixed) >

√
2 log k

T
+ 2αMM

]
≤ β

Now we can choose
√
T = k(γ

√
n)−1 to conclude the proof.

13Here Õ hides lower order poly(logn, log log k, log T, log logU log(1/γ), log(1/ε), log log(1/β), log log(1/δ))
terms.
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4.3 A Lower Bound

In the case where γ = O(1/n) and k = O(1), both of our algorithms from the previous Section
compute a differentially private, α-approximate equilibrium for α ∼ 1/

√
n (ignoring all other pa-

rameters). It is natural to ask whether or not we can achieve significantly smaller values of α using
some other algorithm. In this section we prove a lower bound showing that this is not the case. Specif-
ically, we show that there is no algorithm that privately computes an α-approximate equilibrium of
an arbitrary n-player 2-action game, for α � 1/

√
n log n. In other words, there cannot exist an

algorithm that privately computes a ‘signficantly’ more exact equilibrium.
Our proof is by a reduction to the problem of differentially private subset-sum query release,

for which strong information theoretic lower bounds are known [7, 14]. The problem is as follows:
Consider a database D ∈ {0, 1}n, which we denote (d1, . . . , dn). A subset-sum query q ⊆ [n] is
defined by a subset of the n database entries and asks “What fraction of the entries inD are contained
in q and are set to 1?” Formally, we define the query q as q(D) = 1

n

∑
i∈q di. Given a set of

subset-sum queries Q = {q1, . . . , qm}, we say that an algorithmM(D) releases Q to accuracy α if
M(D) = (a1, . . . , am) such that |aj = qj(D)| ≤ α for every j ∈ [m].

Dinur and Nissim [7], showed that any differentially private algorithm that releases sufficiently
many subset-sum queries must add a significant amount of noise. A quantitative improvement of
their result is given by Dwork and Yekhanin [14]. They constructed a family QDY of size m = O(n)
such that there is no differentially private algorithm that releases QDY to accuracy o(1/

√
n). Thus, a

natural approach to proving a lower bound is to show that an algorithm for computing approximate
equilibrium in arbitrary games could also be used to release arbitrary sets of subset-sum queries accu-
rately. The following theorem shows that a differentially private mechanism to compute approxmiate
equilibrium implies a differentially private algorithm to compute subset-sums.

THEOREM 11. For any α > 0, if there is an (ε, δ)-jointly differentially private mechanism M
that computes an α-approximate coarse correlated equilibria in (n + m log n)-player, 2-action,
1/n-sensitive games, then there is an (ε, δ)-differentially private mechanismM′ that releases 36α-
approximate answers to any m subset-sum queries on a database of size n.

Applying the results of Dwork and Yekhanin [14], a lower bound on equilibrium computation
follows easily.

COROLLARY 5. Any (ε = O(1), δ = o(1))-differentially private mechanism M that computes an
α-approximate coarse correlated equilibria in n-player 2-action games with O(1/n)-sensitive utility
functions must satisfy α = Ω( 1√

n logn
).

Here, we provide a sketch of the proof of Theorem 11. Let D ∈ {0, 1}n be an n-bit database
and Q = {q1, . . . , qm} be a set of m subset-sum queries. For the sketch, assume that we have an
algorithm that computes exact equilibria. We will split the (n+m) players into n “data players” and
m “query players.” Roughly speaking, the data players will have utility functions that force them to
play “0” or “1”, so that their actions actually represent the database D. Each of the query players
will represent a subset-sum query q, and we will try to set up their utility function in such a way
that it forces them to take an action that corresponds to an approximate answer to q(D). In order to
do this, first assume there are n + 1 possible actions, denoted

{
0, 1n ,

2
n , . . . , 1

}
. We can set up the

utility function so that for each action a, he receives a payoff that is maximized when an a fraction
of the data players in q are playing 1. That is, when playing action a, his payoff is maximized when
q(D) = a. Conversely, he will play the action a that is closest to the true answer q(D). Thus, we can
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read off the answer to q from his equilibrium action. Using each of the m query players to answer a
different query, we can compute answers to m queries. Finally, notice that joint differential privacy
says that all of the actions of the query players will satisfy (standard) differential privacy with respect
to the inputs of the data players, thus the answers we read off will be differentially private (in the
standard sense) with respect to the database.

This sketch does not address two important issues. The first is that we do not assume that the
algorithm computes an exact equilibrium, only that it computes an approximate equilibrium. This
relaxation means that the data players do not have to play the correct bit with probability 1, and the
query players do not have to choose the answer that exactly maximizes their utility. In the proof
we show that the error in the answers we read off is only a small factor larger than the error in the
equilibrium computed.

The second is that we do not want to assume that the (query) players have n+ 1 available actions.
Instead, we use log n players per query, and use each to compute roughly one bit of the answer, rather
than the whole answer. However, if the query players’ utility actually depends on a specific bit of the
answer, then a single data player changing his action might result in a large change in utility. In the
proof, we show how to compute bits of the answer using 1/n-sensitive utility functions.

REMARK 12. We remark that we used O(n) linear queries in proving our lower bound, for
which a lower bound of Ω(1/

√
n) is known for (ε, δ)-differentially private algorithms. Thus, our

Ω(1/
√
n log n) lower bound also applies to games with linear utility functions. However, stronger

lower bounds of Ω(1) are known for answering O(n) low sensitivity nonlinear queries on a binary
valued database [6] while preserving (ε, 0)-differential privacy. We could equally well use the queries
from the lower bound argument of [6] in our construction, to show that no (ε, 0)-jointly differentially
private algorithm can compute an α-approximate CCE to an n-player, 2-action, sensitivity 1/n game
for any α < c, where c is some fixed universal constant. This proves a strong separation between
(ε, δ)-private equilibrium computation for δ > 0, and (ε, 0)-private equilibrium computation. In
particular, with (ε, 0)-privacy, it is not possible to compute an approximate equilibrium where the
approximation factor tends to 0 with the number of players, and therefore not possible to get the
“strategyproofness in the large” results that we are able to obtain when δ > 0.

4.4 Incentive Properties

One of the things touched upon in our introduction was the incentive properties of our proposed
mechanism. It is well understood that differentially private mechanisms are also approximately strat-
egy proof (This point was initially made in McSherry and Talwar [32]). This will give us the desired
incentive properties in our setting as well. The basic idea is as follows: Fix some player i considering
changing his report. Joint differential privacy implies that fixing the reports of the other players, for
any report of player i, the distribution over actions suggested to players −i cannot change ‘much’.
Therefore player i’s gain from misreporting must also be small. Formally, we have the following
theorem:

THEOREM 13. Consider a (ε, δ)-jointly differentially private mechanism M which computes a α-
correlated equilibrium of the full information game induced by players’ reports. Then:

1. If all players must follow their recommended actions, then it is a (eε − 1) + δ-approximate
dominant strategy for each player to report their type truthfully.

24



2. It is a (eε − 1) + δ + α-approximate Nash Equilibrium for players to each play the following
strategy– “truthfully report your type to the mechanism, then follow the suggested action”.

Part 1 follows easily from the definition of joint differential privacy and the fact that payoffs are
bounded between 0 and 1. Part 2 follows since the mechanism suggests an α-approximate correlated
equilibrium to the players.

It is easy to select ε, δ and α so that the incentive properties are also ‘good’ for large games. In
particular recall that α is O(

√
log(1/δ)/ε

√
n) (Corollary 3). Selecting e.g. ε of O(n−1/4), and δ

of O(1/n), we have α is Õ(n−1/4). Therefore for large n, the loss from privacy and approximation
of equilibrium computed by this mechanism will asymptote to 0. Further it will be an almost exact
equilibrium for all players to truthfully report their type and then follow the suggested action– the
approximation is ε+ α+ δ = Õ(n−1/4).
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A Proofs

A.1 Proofs from Section 3

PROOF OF COROLLARY 1. We will prove only item 1, the proof for 2 is analogous. First, by the
assumption of the theorem, we will have L̂ ∈ [0, 1]T×k except with probability at most β. Therefore,
by Theorem 4,

P
Z

[
ρ(Afixed(L̂), L̂,Ffixed) >

√
2 log k

T

]
≤ β

Further, by Lemma 2, we know that L̂ ∈ [0, 1]T×k implies

ρ(Afixed(L̂), L,F) ≤ ρ(Afixed(L̂), L̂,F) + 2b.

Combining, we have the desired result, i.e.

P
Z

[
ρ(Afixed(L̂), L,Ffixed) >

√
2 log k

T
+ 2b

]
≤ β.

PROOF OF COROLLARY 2. First, we demonstrate that L̂ ∈ [0, 1]T×k except with probability at most
β, which will be necessary to apply the regret bounds of Theorem 4. Specifically:

P
Z

[
∃zjt s.t. |zjt | >

1

3

]
≤ Tk P

Z

[
|z11 | >

1

3

]
≤ 2Tke−1/6σ ≤ β/2, (10)

where the first inequality follows from the union bound, the second from the definition of Laplacian
r.v.’s and the last inequality follows from the assumption that σ ≤ 1/6 log(4Tk/β).

The Theorem now follows by conditoning on the event L̂ ∈ [0, 1]T×k and combining the regret
bounds of Theorem 4 with the guarantees of Lemma 3. For parsimony, we will only demonstate
the first inequality, the second is analogous. Recall again by Theorem 4, we have that whenever
l̂ ∈ [0, 1]T×k:

ρ(Afixed(L̂), L̂,Ffixed) ≤
√

2 log k

T
.

Further, by Lemma 3, we know that:

P
Z

[
ρ(Afixed(L̂), L,Ffixed)− ρ(Afixed(L̂), L̂,Ffixed) > η

]
≤ 2|Ffixed|e−η

2T/24σ2

= 2ke−η
2T/24σ2

.
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Substituting η = σ

√
24 log(4k/β)

T , we get:

P
Z

[
ρ(Afixed(L̂), L,Ffixed)− ρ(Afixed(L̂), L̂,Ffixed) > η

]
≤ β/2. (11)

The result follows by combining (10) and (11).

A.2 Proofs from Section 4

A.3 Proof of Theorem 11

Given a database D ∈ {0, 1}n, D = (d1, . . . , dn) and m queries Q = {q1, . . . , qm}, we will
construct the following (N = n + m log n)-player 2-action game. We denote the set of actions
for each player by A = {0, 1}. We also use {(j, h)}j∈[m],h∈[logn] to denote the m log n players
{n+ 1, . . . , n+m log n}. For intuition, think of player (j, h) as computing the h-th bit of qj(D).

Each player i ∈ [n] has the utility function

ui(a) =

{
1 if ai = di

0 otherwise

That is, player i receives utility 1 if they play the action matching the i-th entry in D, and utility 0
otherwise. Clearly, these are 0-sensitive utility functions.

The specification of the utility functions for the query players (j, h) is somewhat more compli-
cated. First, we define the functions fh, gh : [0, 1]→ [0, 1] as

fh(x) = 1− min
r∈{0,...,2h−1−1}

∣∣∣x− (2−(h+1) + r2−(h−1))
∣∣∣

gh(x) = 1− min
r∈{0,...,2h−1−1}

∣∣∣x− (2−h + 2−(h+1) + r2−(h−1))
∣∣∣

Each player (j, h) will have the utility function

u(j,h)(a−(j,h), 0) = fh(qj(a1, . . . , an))

u(j,h)(a−(j,h), 1) = gh(qj(a1, . . . , an))

Since q(a1, . . . , an) is defined to be 1/n-sensitive in the actions a1, . . . , an, and fh, gh are 1-Lipschitz
in x, u(j,h) is also 1/n-sensitive.

Also notice that since Q is part of the definition of the game, we can simply define the set of
feasible utility functions to be all those we have given to the players. For the data players we only
used 2 distinct utility functions, and each of the m log n query players may have a distinct utility
function. Thus we only need the set U to be a particular set of utility functions of size m log n+ 2 in
order to implement the reduction.

Now we can analyze the structure of α-approximate equilibrium in this game, and show how,
given any equilibrium set of strategies for the query players, we can compute a set of O(α)-
approximate answers to the set of queries Q.

We start by claiming that in any α-approximate CCE, every data player players the action di in
most rounds. Specifically,
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CLAIM 1. Let π be any distribution over AN that constitutes an α-approximate CCE of the game
described above. Then for every data player i,

P
π

[ai 6= di] ≤ α.

PROOF.

P
π

[ai 6= di] = 1− E
π

[ui(ai, a−i)]

≤ 1−
(
E
π

[ui(di, a−i)]− α
)

(Definition of α-approximate CCE)

= 1− (1− α) = α (Definition of ui)

The next claim asserts that if we view the actions of the data players, a1, . . . , an, as a database,
then q(a1, . . . , an) is close to q(d1, . . . , dn) on average.

CLAIM 2. Let π be any distribution over AN that constitutes an α-approximate CCE of the game
described above. Let q ⊆ [n] be any subset-sum query. Then

E
π

[|q(d1, . . . , dn)− q(a1, . . . , an)|] ≤ α.

PROOF.

E
π

[|q(d1, . . . , dn)− q(a1, . . . , an)|] = E
π

 1

n

∑
i∈q

(di − ai)


≤ 1

n

∑
i∈q

E
π

[|di − ai|] =
1

n

∑
i∈q

P
π

[ai 6= di]

≤ 1

n

∑
i∈q

α ≤ α (Claim 1, q ⊆ [n])

We now prove a useful lemma that relates the expected utility of an action (under any distribution)
to the expected difference between qj(a1, . . . , an) and qj(D).

CLAIM 3. Let µ be any distribution over AN . Then for any query player (j, h),∣∣∣∣Eµ [u(j,h)(0, a−(j,h))]− fh(qj(D))

∣∣∣∣ ≤ E
µ

[|qj(a1, . . . , an)− qj(D)|] , and∣∣∣∣Eµ [u(j,h)(1, a−(j,h))]− gh(qj(D))

∣∣∣∣ ≤ E
µ

[|qj(a1, . . . , an)− qj(D)|] .

PROOF. We prove the first assertion, the proof of the second is identical.∣∣∣∣Eµ [u(j,h)(0, a−i)]− fh(qj(D))

∣∣∣∣
=

∣∣∣∣Eµ [fh(qj(a1, . . . , an))− fh(qj(D))]

∣∣∣∣
≤ E

π
[|qj(a1, . . . , an)− qj(D)|] (fh is 1-Lipschitz)
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The next claim, which establishes a lower bound on the expected utility player (j, h) will obtain
for playing a fixed action, is an easy consequence of Claims 2 and 3.

CLAIM 4. Let π be any distribution over AN that constitutes an α-approximate CCE of the game
described above. Then for every query player (j, h),∣∣∣E

π

[
u(j,h)(0, a−i)

]
− fh(qj(D))

∣∣∣ ≤ α, and∣∣∣E
π

[
u(j,h)(1, a−i)

]
− gh(qj(D))

∣∣∣ ≤ α.
Now we state a simple fact about the functions fh and gh. Informally, this asserts that we can find

alternating intervals of width nearly 2−h, that nearly partition [0, 1], in which fh(x) is significantly
larger than gh(x) or vice versa.

OBSERVATION 1. Let β ≤ 2−(h+1). If

x ∈
⋃

r∈{0,1,...,2h−1−1}

(
r2−h + β, (r + 1)2−h − β

)

then fh(x) > gh(x) + β. We denote this region Fh,β . Similarly, if

x ∈
⋃

r∈{0,1,...,2h−1−1}

(
(r + 1)2−h + β, (r + 2)2−h − β

)

then gh(x) > fh(x) + β. We denote this region Gh,β

For example, when h = 3, F3,β = [0, 18 − β] ∪ [28 + β, 38 − β] ∪ [48 + β, 58 − β] ∪ [68 + β, 78 − β].
By combining this fact, with Claim 4, we can show that if qj(D) falls in the region Fh,α, then in

an α-approximate CCE, player (j, h) must be playing action 0 ‘often’.

CLAIM 5. Let π be any distribution over AN that constitutes an α-approximate CCE of the game
described above. Let j ∈ [m] and 2−h ≥ 10α. Then, if qj(D) ∈ Fh,9α, Pπ [ai = 0] ≥ 2/3. Similarly,
if qj(D) ∈ Gh,9α, then Pπ [ai = 1] ≥ 2/3.

PROOF. We prove the first assertion. The proof of the second is identical. If player (j, h) plays the
fixed action 0, then, by Claim 4,

E
π

[
u(j,h)(0, a−(j,h))

]
≥ fh(qj(D))− α.

Thus, if π is an α-approximate CCE, player (j, h) must receive at least fh(qj(D)) − 2α under π.
Assume towards a contradiction that P

[
a(j,h) = 0

]
< 2/3. We can bound player (j, h)’s expected
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utility as follows:

E
a←Rπ

[
u(j,h)(a)

]
= P

[
a(j,h) = 0

]
E
π

[
u(j,h)(0, a−(j,h)) | a(j,h) = 0

]
+ P

[
a(j,h) = 1

]
E
π

[
u(j,h)(1, a−(j,h)) | a(j,h) = 1

]
≤ P

[
a(j,h) = 0

](
fh(qj(D)) + E

a←Rπ

[
|qj(a1, . . . , an)− qj(D)| | a(j,h) = 0

])
+ P

[
a(j,h) = 1

](
gh(qj(D)) + E

a←Rπ

[
|qj(a1, . . . , an)− qj(D)| | a(j,h) = 1

])
(12)

= fh(qj(D)) + E
a←Rπ

[|qj(a1, . . . , an)− qj(D)|]− P
[
a(j,h) = 1

]
(fh(qj(D))− gh(qj(D)))

≤ fh(qj(D)) + α− 9αP
[
a(j,h) = 1

]
(13)

< fh(qj(D))− 2α (14)

Line (12) follows from the Claim 3 (applied to the distributions π | a(j,h) = 0 and π | a(j,h) = 1).
Line (13) follows from Claim 2 (applied to the expectation in the second term) and the fact that
qj(D) ∈ Fh,9α (applied to the difference in the final term). Line (14) follows from the assumption that
P
[
a(j,h) = 0

]
< 2/3. Thus we have established a contradiction to the fact that π is an α-approximate

CCE.

Given the previous claim, the rest of the proof is fairly straightforward. For each query j, we will
start at h = 1 and consider two cases: If player (j, 1) plays 0 and 1 with roughly equal probability,
then we must have that qj(D) 6∈ F1,9α ∪ G1,9α. It is easy to see that this will confine qj(D) to an
interval of width 18α, and we can stop. If player (j, 1) does play one action, say 0, a significant
majority of the time, then we will know that qj(D) ∈ F1,9α, which is an interval of width 1/2− 9α.
However, now we can consider h = 2 and repeat the case analysis: Either (j, 2) does not significantly
favor one action, in which case we know that qj(D) 6∈ F2,9α ∪ G2,9α, which confines qj(D) to the
union of two intervals, each of width 18α. However, only one of these intervals will be contained in
F1,9α, which we know contains qj(D). Thus, if we are in this case, we have learned qj(D) to within
18α and can stop. Otherwise, if player (j, 2) plays, say, 0 a significant majority of the time, then we
know that qj(D) ∈ F1,9α ∩F2,9α, which is an interval of width 1/4− 9α. It is not too difficult to see
that we can repeat this process as long as 2−h ≥ 18α, and we will terminate with an interval of width
at most 36α that contains qj(D).
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