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Abstract

Recently, a new formal model of learnability was introduced [23]. The model is
applicable to practical learning systems because it requires the learning algorithm to
be feasibly computable, yet at the same time demands only that the algorithm find
an approximation to the unknown rule. We survey recent results in this new area of
theoretical induction, giving both positive (learnability) and negative (non-learnability)
results, as well as outlining useful techniques for proving learnability. Our main focus
is the application of the model to the problem of learning boolean formulae.

1 Introduction

One of the main difficulties in comparing various algorithms which learn from examples is
the lack of a formally specified model by which the algorithms may be evaluated. Typi-
cally, different learning algorithms and theories are given together with examples of their
performance, but without a precise definition of “learnability” it is difficult to characterize
the scope of applicability of an algorithm or analyze the success of different approaches and
techniques.

Although various formal models of inductive learning have been given in the past, they
have not been widely accepted by the machine learning community. One explanation is that
the definitions fail to capture those aspects perceived to be essential for practical learning
systems. Another explanation is that the domains of investigation (e.g. the inductive in-
ference of classes of recursive functions) have been significantly removed from the types of
domains typically of interest, and few results can be transferred.

Recently, in [23], a new formal definition of concept learning from examples was intro-
duced, which we will refer to as the “learnability model.” In this paper we summarize
subsequent work by the authors and others in this new area of induction. The main focus
here will be the learnability of propositional formulae from examples. The learnability model
itself is not restricted, however, to any one knowledge representation or learning mode. After
introducing the learnability model below, we present a simple example of a learning algo-
rithm in section 2. In section 3 we sketch some general tools which are useful for proving that
given algorithms satisty the requirements of the definition, and for determining which types



of formulae are learnable. In sections 4 and 5 we summarize known positive (learnability)
and negative (non-learnability) results, and conclude with extensions and restrictions of the
model in section 6.

There are three important components of the learnability model: convergence, fea-
sibility, and approximation. We motivate these properties by briefly discussing some
previous definitions of learning.

A main problem for defining learning from a never-ending stream of examples is that at
any point in the learning process, the very next datum may contradict the current hypothesis.
Gold [12] (in the context of learning of formal languages) effectively dealt with this issue
by introducing the notion of convergence in the limit to a correct rule for the data. The
learning algorithm is allowed to make many hypotheses, and need not ever know when it is
correct, as long as past some point in its computation it settles on some correct hypothesis.
Subsequent research within Gold’s paradigm has not been applicable to practical learning,
as typically the complexity (run time) of the learning algorithm has been very high.

There are far fewer results if we insist that the convergence occur within a feasible
amount of time, i.e. that the learning algorithm find a correct rule within time polynomial
in the size of the examples seen and of the rule to be learned. The work of [1, 2, 8, 20, 21]
stand as notable exceptions to a number of NP-completeness results which point out that
this type of “exact” learning is too difficult to achieve in polynomial time when the rule may
be any one of a large (exponential) class of possible rules.

To avoid these types of worst case negative results, we consider learning algorithms
which are not required to exactly find some unknown rule, but are allowed instead to find
a rule which is an approximation to the unknown rule. By assuming certain particular
input distributions, many techniques of statistical pattern recognition are capable of finding
such approximate rules [9]. One problem with this approach, however, is that the input
distributions assumed are not necessarily representative of nature. The solution adopted by
the learnability model is to assume that there is some fixed probability distribution on the
input examples, but that this distribution is completely arbitrary and need not be known.
Another problem with previous statistical and other approaches is that they often make
particular and restrictive assumptions about the knowledge representation. The learnability
model avoids this by treating the representation as a parameter.

The Learnability Model

An algorithm is said to learn from examples if it can, in a feasible (polynomial) amount of
time, find (with high likelihood) a rule which is reasonably accurate. “Reasonably accurate”
means that the rule found by the algorithm will be able to predict future events drawn from
the same distribution on which it has learned, with controllable error. No assumption is
made about the input distribution of examples, except that it is time-invariant.

To formally define learnability, we must say what it is that we wish to learn: Imagine a
world with n attributes. For the purposes of this paper, we assume that the attributes are
boolean (0-1) valued, although many of the results have extensions in the case of certain types
of multi-valued attributes [13]. Each object in our world W consists of a vector v of length
n, the i"* position of the vector being either “1” or “0”, indicating that the ¢** attribute is
(respectively is not) present. Thus there are exactly 2" distinct elements of W. (In its full



generality, the model allows vectors to have a “x” indicating that the corresponding attribute
is unspecified. For simplicity, we exclude this possibility from our present discussion). The
model is a hierarchical one, in that there is no requirement that the attributes be primitive
inputs or features; they may in fact be boolean concepts which have been previously learned.
A concept F' is a subset of W. Elements of F' are positive examples of F' and elements of
W — F are negative examples of F. We are not interested in learning concepts, (which are
subsets of vectors), but rather representations of concepts. For example, for any F\ there
are many possible boolean formulae f over the attribute variable space which represent F'in
the following sense: f(¢) =1 (i.e. f evaluates to TRUE when the values of the vector ¢ are
substituted for the variables in f) if and only if ¥ € F. We are interested in representations
for which there are fast (polynomial time) algorithms for testing whether a given example is
a member of the concept or not.

The classes of representations we shall consider here will all be classes of boolean formulae
of n variables. For example, monomials and kDNF are classes of representations of concepts.
A monomial is a formula which is the conjunct of any number of the literals representing
the available attributes or their negations. A KDNF formula is the disjunct of any number
of monomials (also called terms) where each monomial has at most k literals. We shall see
that learnability may depend on the representation chosen, hence learnability is defined with
respect to a given class of representations. If A is a class of representations, then for each
f € A, let size(f) denote the fewest number of symbols needed to write the representation

f.

We assume that the learning algorithm has available a black box which is called EXAMPLES(f),

with two buttons labeled POS and NEG. If POS (NEG) is pushed, a positive (negative) ex-
ample is generated according to some fixed but unknown probability distribution Dt (D).
We assume nothing about the distributions Dt and D™, except that DT (#) = 0 for each
negative example ¥, and D~ (¥) = 0 for each positive example Z. In other words, the proba-
bility is zero that a negative example will be generated by pushing POS, or that a positive
example will be generated by pushing NEG.

Definition 1 Let A be a class of representations. Then A is learnable from examples iff
there exists a polynomial p, and a (possibly randomized) learning algorithm L, such that

(Vn)(Vf € A)VYDY, D7) (Ve > 0),(V6 > 0), L, given only EXAMPLES(f), halts in time

p(n,size(f), 1, %,) and outpuls a representation g € A that with probability at least 1 — &,

has the following properties:
Y DYH@) <e
()=

g 0

and

Z D™ (%) < e

g(#)=1

This definition can be understood as follows. We think of Nature as providing positive
and negative examples of the formula to be learned according to some unknown probabil-
ity distribution for which we can make no assumptions. Since there may be very bizarre
examples of the formula which occur with low probability, it is unreasonable to expect the
learning algorithm to produce a formula which correctly classifies all examples. Hence a
successful formula ¢ is one which approximates the unknown f by agreeing with f on most



of the distribution. That is, the probability that the formula g will disagree with a positive
(negative) example randomly chosen according to DT (D7) is at most ¢ in either case. A sec-
ond source of error is introduced by the possibility that the particular sequence of examples
which were provided by Nature was highly unrepresentative. In this case, it is reasonable
that the formula ¢g be highly inaccurate. We require that this occur with probability at most
6. A further requirement of the definition is that the run time of the algorithm (and hence
the number of examples drawn) be polynomial in the number of attributes n, the size of
the formula to be learned, and in the error parameters % and %. Thus the formula found by
the algorithm cannot be exponentially larger than the unknown formula, and the amount of
time required for increased accuracy or confidence should not be exponential. We refer the
reader to [6, 23, 24, 25] for further discussion and justification of this model.

If there is an algorithm L as above which never asks for any negative (respectively pos-
itive) examples, then we’ll say that A is learnable from positive (negative) examples only.
Throughout the paper, we shall abbreviate “is learnable from examples” by “is learnable”.

A generalization of the above definition allows the formula output by the learning algo-
rithm to be from a different class of representations: the class A is learnable by the class B iff
Definition 1 holds, except that the output formula ¢ is from B. Thus “A is learnable by A”
is equivalent to “A is learnable.” We shall see that algorithms which choose their hypotheses
from a different (possibly larger) class of formulae than that from which the input formula
was taken may be more powerful than algorithms which attempt to find a formula of the
same type as the input formula.

In general, the larger the class A, the harder the learning task, since the unknown formula
may be any one of a more diverse class of possibilities. Note however that for fixed A, the
larger the class B, the easier the learning task, since the learning algorithm may now choose
from a larger class of representations to express its answer. Thus A C B does not necessarily
imply anything about the learnability of A (by A) as compared to the learnability of B (by
B.)

For later reference, we define here the classes of formulae which we shall consider. Let the
collection of attributes be {xy,xq,...,2,}. A literal is either the symbol z; or its negation
7; for some ¢. In the following, let £ be any fixed natural number.

monomials: a monomial is a conjunction of literals (e.g. x125Tsxs.)

DNF: disjunctive normal form formulae: Each formula is a disjunct of terms. A term is a
monomial. (E.g. x125Teas V 12324 V T3 V Tras.)

CNF: conjunctive normal form formulae: Each formula is a conjunct of clauses. Each clause
is a disjunct of literals. (E.g. (x1V a5V Tg V ag) A (21 VsV ay) A (T5) A (T7 V a3).)

internal disjunctive formulae: Here the n attributes are given an arbitrary but fixed
partition P. The class of Cp of internal disjunctive formulae consists of all CNF
formulae C; AC3A- - -ACY, in which each C; contains attributes (or their negations) from
exactly one element of the partition P. For example, if P = {{x1, 22}, {23, 24, 25}}
then (x1 V 22) A (T3 V 25) is a formula in Cp but (21 V T2) A (21 V 24) is not.

EDNF: DNF formulae where each term consists of at most & literals, with no restriction on
the number of terms. (F.g. @125V 2173 V T5 V Traes is a 2DNF formula.)

4



k-term-DNF: DNF formulae of at most & terms, with no restriction on the number of
literals within each term. (E.g. x125T327Ts V @224T527 is a 2-term-DNF formula.)

ECNF: CNF formulae where each clause consists of at most £ literals, with no restriction
on the number of clauses. (E.g. (x1V x5) A (22 V T3) A (27) is a 2CNF formula.)

k-clause-CNF: CNF formulae of at most k£ clauses, with no restriction on the number of
literals within each clause. (F.g. (21 V a5V T3V 27 V@) A (22 V 24 VT5 VT7) is a
2-clause-CNF formula.)

monotone formulae: A monotone formula is one in which no negations occur; each literal
is a positive literal. We may also view monotonicity as an operator, which when applied
to classes of formulae yield corresponding classes which contain only the corresponding
monotone formulae. Thus monotone DNF' is the class of DNF formulae where each
literal is positive.

p-formulae: A p-formula is a formula in which each variable appears at most once. We also
view p as an operator applied to classes of formulae to get corresponding classes where
each variable appears at most once; for example, pDNF is the class of DNF formulae
with at most one occurrence of each variable.

The relevance of the class DNF was discussed in [24], and this class has been used in
many systems as a natural representation for concepts [16]. A major goal of some of this
research has been to determine whether this particular class is learnable. We indicate the
implications of a number of results with respect to this tantalizing open problem in the
following sections.

Finally, we assume that the reader is acquainted with the complexity-theoretic hypothesis
that P # NP. Intuitively, P is the set of problems which have solutions computable by
polynomial time algorithms, and NP are those which can be solved by nondeterministic
polynomial time algorithms. If in fact P = NP, then every reasonable class of concepts
would be learnable, and in addition, hundreds of problems now thought to be intractable
would have efficient solutions. If a problem is NP-hard, then an efficient algorithm for it
would provably imply that P = NP. Hence a proof of NP-hardness is conventionally taken
as evidence that the problem is in fact intractable. For technical reasons, the results of
section 5 rely on the slightly stronger hypothesis that RP # NP, where RP is essentially the
set of problems for which there are polynomial time randomized algorithms which solve the
problem with high probability. It would be just as startling if this stronger hypothesis were
false. The reader is referred to [10] for further details concerning these classes.

2 An Example

In this section, we illustrate how the learnability model works in the very basic case of
monomials. In later sections we discuss larger learnable classes that are better suited to the
real world.

Suppose we are interested in a set of boolean attributes describing the animal kingdom.
For concreteness, we will give the attributes descriptive names, rather than referring to



them with abstract symbols such as z;. The attribute set for animals might include at-
tributes describing the physical appearance of the animals (such as is_large, has_claws,
has_mane, has_four_legs and has_wings); attributes describing various motor skills (such
as can_fly, walks_on_two_legs and can_speak); attributes describing the animal’s habi-
tat (is_wild, lives_in_circus); as well as attributes describing more scientific classifications
(is_mammal), and many others.

We wish to construct a monomial (assuming one exists) to distinguish lions from non-
lions. For the attributes mentioned above, an appropriate conjunction may be

M = is.mammal and is_large and has_claws and has_four_legs

In this example, the probability distribution D* is interpreted as reflecting the natural
world regarding lions. For instance, each of the four attributes appearing in M may be true
(i.e., assigned the value 1) with probability 1 in D¥; if so, this simply reflects the fact that, for
example, all lions are mammals. (Since we are assuming here that lions can be represented
usefully by monomials, it follows that some attributes must be true in D* with probability
1. The informal intuition that no event has probability 1 corresponds here to the fact that
monomials are probably not rich enough to describe the real world). Other attributes are true
in DT with smaller probabilities. We might expect the attribute has_mane to be true with
probability approximately %, if there are equal numbers of male and female lions. Similarly,
we expect the attribute walks_on_two_legs to be true with relatively low probability, and
has_wings to be true with probability 0. Notice that there may be dependencies of arbitrary
complexity between attributes in the distributions. The attribute is_wild may be true with
very high probability in D if most lions live in the wild, but the probability that both
is_wild and lives_in_circus are true is 0. A slightly more subtle dependency might be that
even though few lions can walk on two legs, almost all of those that live in the circus can walk
on two legs. In an analogous manner, the negative distribution D~ is intended to reflect the
examples of non-lions in the animal world, and again there are many dependencies. Animals
with wings may comprise only a small fraction of those animals that are not lions, but the
probability that an animal with wings can fly is very high. Note that for simplicity, we have
chosen an example that is monotone — no attribute appears negated in the monomial M. A
natural example of nonmonotonicity might be a monomial for female lions, where we would
need to include the negation of the attribute has_mane.

Thus, in this domain, a learning algorithm must infer a monomial over the animal at-
tributes that performs well as a classifier of lions and non-lions. Note that the meaning of
“performs well” is intimately related to the distributions D* and D~. In the distributions
described above, it may be that the monomial M is the only good approximation of the
concept, depending on the exact probabilities in the distributions, and the value of the error
parameter €. However, if we considered only animals for which the attribute lives_in_circus
is true, the monomial consisting of the sole attribute has_claws might suffice to distinguish
lions from the other animals in the circus. Note that these conjunctive formulae are not
intended as Platonic descriptions of categories. The only requirement on the monomials is
that they distinguish with sufficient accuracy categories in the real world as specified by D
and D~.

We now describe an algorithm L for learning monomials over n attributes with arbitrary



distributions DT and D~. Although the monomial output by L has error less than e on
both distributions, L needs only examples drawn from DT in order to learn. In fact, one can
argue that L is the only reasonable algorithm for learning monomials from positive examples
alone.

The idea behind the algorithm is the following: suppose that the attribute x; appears in
the monomial M being learned. Then in a randomly drawn positive example, x; is always
assigned the value 1. Thus, if some attribute x; is assigned the value 0 in a positive example,
we are certain that z; does not appear in M. The algorithm L is:

H — 2 TixoTs - 0,70
for ::=1to B do
begin
v «— POS;
for j:=1ton do
if ¥(5) = 0 then
delete x; from H;
else
delete 7 from H;
end
output H.

where ¥(j) denotes the jth bit of v.

How can algorithm L err? Only by failing to delete some attribute x; that does not
appear in M. An exact bound on the value of the loop counter B such that this happens with
probability less than § can be deduced to be 2(In(2n) + In($)) by applying the techniques
described in theorem 8. Here we use In to denote log..

In the case of our lions example, the attributes can_speak, can_fly, and has_wings will
be deleted from the hypothesis immediately, since no lion can speak or has wings (i.e., every
positive example assigns the value 0 to these attributes). With high probability, we would
also expect walks_on_two_legs, lives_in_circus, and has_mane to be deleted, because
each of these attributes is false with some reasonable probability in the positive examples.
Depending on the exact value of € and the precise probabilities in DT, the attribute is_wild
may also be deleted. However, the four attributes appearing in M will certainly not be
deleted, if they are never assigned the value 0 in the positive examples.

In this example, the two sources of error can be exemplified as follows. First, it is
possible that rare midget lions exist but have not occurred in the training set of examples.
In other words, is_large should have been deleted from the hypothesis monomial, but has not
been. This is not serious, since the learned monomial will only misclassify future examples
that are infrequent in Dt. Second, it is possible that the training set contained a very
unrepresentative set of lions, all of which can walk on two legs. In this case the learned
monomial will include this attribute, and hence misclassify many future examples. While
there is no ultimate defense against either of these two kinds of error, the learnability model
allows the probabilities of their occurrence, ¢ and 6, to be controlled.

As mentioned above, algorithm L outputs a hypothesis that is accurate over both DT and
D™, but needs only positive examples to construct this hypothesis. In [15] it is shown that



there is no algorithm for monomials requiring only negative examples. Such an impossibility
result, however, does not preclude the usefulness of negative examples in learning monomials.
In fact, it is shown in [13] that if a short monomial is to be learned, the number of examples
required if both positive and negative examples are available is only logarithmic in n, the
number of attributes. This is significant, since it shows that the problem of selecting the
attributes relevant to a concept (from among a possibly large set of attributes) can be solved
within the learnability model, and does not require the postulation of additional focusing
mechanisms.

3 Some Tools

Substitution and Augmentation

We describe a substitution technique which allows us to obtain learning algorithms for new
classes from existing learning algorithms for related classes. As an example, suppose we had
a learning algorithm for monotone DNF formulae. We could use it to learn arbitrary DNF
formulae as follows: For each variable x; we create a new variable z;. A positive (negative)
example gets transformed to a new positive (negative) example over the expanded variable
set so that z; is equivalent to 7;, and the new example is then fed to the learning algorithm for
monotone DNF. Thus the example vector (@1, x2, 23, 24) = (1,0,0, 1) gets transformed to the
new example (1,22, €3, T4, 21, 22, 23, 22) = (1,0,0,1,0,1,1,0). The monotone DNF formula
learned over the expanded variable set is easily transformed back into a (not necessarily
monotone) DNF formula over the original variables by replacing, for each i, every occurrence
of z; with #;. The following two theorems allow much more general types of substitutions
than the one just described.

Theorem 2 ([15]) Let C be learnable, and let G be a finite collection of boolean formulae
over k (constant) variables. Let C' be the class of all formulae that can be obtained by choos-
ing an f(x1,...,2,) € C, and replacing one or more of the variables x; with any formula
95, 2y, ), where g € G, and each x;, is one of the original n variables (thus, the re-
sulting formula is still over n variables). Then C" is also learnable.

Theorem 3 ([15]) Let C be learnable. Let p(n) be a fized polynomial, and let the description
of the p(n)-tuple (B}, ... ,B;(n)) be polynomial time computable from n, where each B! is a
boolean formula of n inputs. Let f be a formula in C' over n+ p(n) variables. Then the class

C" of formulae of the form
fl@, o2, B (@, ooy, By (2, 20)
is also learnable.

An important corollary of both theorems 2 and 3 is that the monotone learning problem
is always as hard as the general learning problem (for classes that are closed under the
required substitutions). For example, as described above,



Corollary 4 ([15]) If monotone DNF' is learnable, then DNF is learnable.

Corollary 5 ([15]) Let C be a class of formulae. Let nC be the class of those formulae in
C' in which each variable occurs at most once. Then if uC is learnable, then C is learnable.

In particular, if pDNF is learnable, then DNF is learnable.

The proof of corollary 5 follows from theorem 3 by creating new variables which act
as identical copies of the original variable set; if there are enough copies then there is a
p-formula over the new variable set which is identical to the formula to be learned, except
each variable occurs only once. The learned p-formula is transformed back to a formula over
the original variable set by replacing each copy of a variable with the original variable.

Corollary 5 is surprising, in that allowing only one occurrence of each variable is a strong
restriction. The corollary states that the general learning problem is no harder than this
restricted version. One of our results given later is that if A is the class of arbitrary formulae,
then A is not learnable (theorem 18).

Compression

Many of the restricted forms of the classes we consider have the property that any element
of the class can be expressed with a number of bits polynomial in n, the number of variables.
For example, for each number k, any kDNF formula of n variables can be written using at
most (2n)* bits. A polynomial time recognition algorithm [6] for a class of representations
A is an algorithm which, given any collection of examples, can find (in polynomial time)
an element of A which is consistent with all examples in the given collection (assuming one
exists).

Theorem 6 ([6]) Let A be a class of representations such that every element of A can be
expressed in p(n) bits for some polynomial p. Then if there is a polynomial time recognition
algorithm algorithm for A then A is learnable.

As an example, theorem 6 may be used to show that kDNF is learnable. In general how-
ever, theorem 6 may not be applicable because either of the two conditions in the hypothesis
may be unattainable: For DNF there is clearly a polynomial time recognition algorithm —
simply form a disjunction of all of the positive examples in the given sample. However, not
all DNF formulae can be expressed with a polynomial number of bits. On the other hand,
every k-term-DNF formula can be expressed with a polynomial number of bits, but there
is no polynomial recognition algorithm unless P = NP [17]. In either of these cases, the
approach suggested in [6, 7] is that of an “Occam algorithm”, which for the boolean domain
is easier to describe in terms of data compression:

Theorem 7 ([7]) Let a < 1, and ¢ > 1. If A is a class of representations, and there is a
polynomial time algorithm L such that for any number m and any set of examples of total
sizem, L finds an element of A consistent with the examples and of size at most x°m®, where
x is the size of the smallest element of A consistent with the examples, then A is learnable.



The idea is that for a sufficiently large (but still polynomial) set of randomly generated
examples, any consistent hypothesis which is significantly smaller than the examples must
in fact be consistent with most of the unseen examples as well. Thus for learning DNF,
theorem 7 points out that if have an algorithm that can do slightly better than simply
forming a disjunct of all positive examples seen, by instead finding fewer terms than the than
the number of examples seen (where “fewer” means less than linear), then we essentially have
a learning algorithm. Section 5 further discusses the problem of minimizing the number of
terms in a DNF expression consistent with given data.

Learning in a Shallow Hypothesis Space

The following method allows us to prove that certain types of algorithms learn as required
by definition 1 without having to resort to detailed probabilistic arguments for each new
case. Theorem 8 follows from a combination of ideas from [5, 14, 18].

It is easy to show that to be (1 —é) confident that a given hypothesis is (1 — €) accurate,
it suffices to test it against %ln% randomly generated examples. The problem is that in the
course of learning, an algorithm may need to test many different hypotheses, and if each
has a ¢ chance of appearing (1 — €) accurate, when in fact it is not, then by the time % bad
hypotheses are tested, one of them may look good. The way around this problem is to test
each next hypothesis more times. Let
1

€

ENOUGH (1,€,6) = —(¢In2 + 1n(%))

If a hypothesis is tested against ENOUGH (i,¢,6) randomly generated examples, then it
is easy to show that if it does not incorrectly classify any of the test examples, then the
probability that it is not (1 — ¢) accurate is at most §/2°.

Now consider modifying any incremental learning algorithm so that it tests its :"* hypoth-
esis against ENOUGH (i, ¢€,6) examples, and outputs the hypothesis iff it correctly classifies
all of the test examples, otherwise it picks a new hypothesis. One can show that if the algo-
rithm ever outputs any hypothesis, then with probability at least (1 — ¢), the hypothesis is
(1 —¢) accurate. This method essentially tells us when it is safe to keep a particular hypoth-
esis while guaranteeing that the conditions of learnability have been met. This technique
was first used in [3, 5].

Following [14], define a learning algorithm to be

conservative iff it discards the current hypothesis if and only if the hypothesis incorrectly
classifies the next datum.

acyclic iff the algorithm never conjectures any hypothesis more than once.

poly-failure-bounded iff the algorithm never makes more than a polynomial number of
incorrect hypotheses.

Then we have the following

Theorem 8 If L is a conservative, acyclic, poly-failure-bounded learning algorithm which
never takes more than some fived polynomial time between input examples, then L can be
transformed into an algorithm which learns as required by the learnability model.
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The proof is simply the observation that by changing L so that it tests its :"* hypothesis
ENOUGH (¢,¢€,6) times, and noting that L, being conservative, acyclic, and poly-failure-
bounded, must find within a polynomial number of conjectures an hypothesis which passes
all of its tests, in which case it is (1 — €) accurate by the remarks above. From a different
viewpoint, the hypothesis space being searched by L is a shallow (polynomial depth) directed
acyclic graph (DAG). L walks through the DAG testing hypotheses as it goes, and either
reaches the bottom, in which case it must be correct by the fact that it is conservative, or
it got stuck somewhere along the path because an hypothesis tested well, in which case, by
our probabilistic analysis, it is acceptable. If the depth of the search space (the polynomial
failure bound) is known a priori to be some number d, then each hypothesis can be tested
exactly ENOUGH 4(¢,8) = L(Ind + In($)) times, and the same results hold. In this latter
case the total number of examples needed for testing may be significantly less. As a sample
application, note that a monomial learning algorithm such as the one given in section 2, where
each next hypothesis is obtained by crossing off some literals from the previous hypothesis,
satisfies the conditions of theorem 8, and therefore, augmented with the appropriate counters,
it learns the class of monomials.

Boolean Closure

These results provide tools for determining learnability of new classes of formulae. Let A
and B denote classes of representations of boolean concepts. (For example, k-term-DNF,
monomials, etc.)

Theorem 9 ([15]) If A is learnable, and if B is learnable from negative examples only,
then AV B={fiV fa: fi € A, f; € B} is learnable.

Theorem 10 ([15]) If A and B are each learnable from positive examples only, then A N
B=A{fNfy:f1 €A, [, € B} islearnable from positive examples only.

There are natural duals for both theorems 9 and 10 (switch “A” and “V” wherever they
occur, as well as “positive” and “negative”), and together with theorem 16, we have the
following two tables for the learnability of AA B, and AV B, given the learnability of A and
the learnability of B. In the tables, we label the rows and columns according to whether
each of A and B is learnable from positive examples only, negative examples only, or from
both positive and negative examples. We then label the corresponding learning problem
(A V B for the table of Figure 1, A A B for the table of Figure 2) by YES (if we can always
learn in polynomial time) or NO (if the learning problem is NP-hard for some pairs (A, B)).
Note that theorem 9 is optimal in that we cannot relax the constraints on B to allow B to
be learnable from both positive and negative examples.

4 Positive Results

In this section, we survey some positive results — algorithms for learning nontrivial classes in
the distribution-free sense required by the learnability model. We discuss theorems stating
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A learnable
AV B A learnable | A learnable | from POS
from POS from NEG and NEG
B learnable
from POS NO YES NO
B learnable
from NEG YES YES YES
B learnable
from POS NO YES NO
and NEG

Figure 1: Learnability of AV B.

A learnable
AAB A learnable | A learnable | from POS
from POS from NEG and NEG
B learnable
from POS YES YES YES
B learnable
from NEG YES NO NO
B learnable
from POS YES NO NO
and NEG

Figure 2: Learnability of A A B.

the learnability of several classes of boolean formulae, as well as another representation of
boolean concepts called Decision Lists that is quite similar to the cond predicate in LISP.

Since a monomial is simply a 1-CNF formula, the algorithm L in section 1 shows that 1-
CNF is learnable from positive examples only. In fact, algorithm L can be generalized to an
algorithm for learning kCNF, again using only positive examples. This generalized algorithm
relies on the fact that for fixed &, there are only a polynomial number of disjunctive clauses
with k or fewer literals.

Theorem 11 ([23]) For each k > 1, kCNF is learnable from positive examples only.

By duality, we also have that kDNF is learnable from negative examples alone. However, as
in the case of monomials, it is shown in [13] that there is an algorithm using both types of
examples that requires fewer examples than algorithms using only one type, if the formula
being learned is small compared to the number of attributes.

Using the tools described in theorem 9, we have

Theorem 12 ([15]) kDNF V ECNF = {f1 V fo: fi € kDNF, f; € kCNF} is learnable.
Similarly, by theorem 10, kDNF A kCNF is also learnable. Furthermore, since kDNF (re-

spectively, kCNF) cannot be learned from positive (respectively, negative) examples alone,
it follows that any learning algorithm for these classes requires both types of examples.
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While a theorem in section 5 shows that learning k-term-DNF (by k-term-DNF) is prob-
ably intractable, theorem 13 states that there is an algorithm that learns k-term-DNF by
employing a more powerful representation. This point is discussed in more detail in section 5.

Theorem 13 ([17]) For all positive integers k, k-term-DNF is learnable by kCNF.

As final examples of learnable classes, we have theorems 14 and 15. A k-Decision List is
a list of pairs C' = ((mq,b1),---,(m;, b;)) where each m, is a monomial of length at most k,
and each b; is 0 or 1. The value of C' on a boolean vector ¥ can be defined algorithmically:
let ¢ be the smallest integer such that ¢ satisfies m;. Then C(¥) = b; (or 0 if no such ¢ exists).
Decision Lists are powerful representations of boolean functions, since any kDNF (or kCNF)
formula can be represented by a (polynomially) small k-Decision List [Rivest].

Theorem 14 ([19]) The class of k-Decision Lists is learnable.

Theorem 15 ([13]) For each partition P, the class Cp of internal disjunctive formulae is
learnable.

The proofs of the theorems rely on techniques using theorems 6 and 7. In addition to
the positive results for representations of boolean functions presented here, there have also
been learning algorithms given for continuous representations, such as linear separators and
geometric regions in Euclidean space [6].

5 Negative Results

This section summarizes negative results which indicate that certain classes cannot be learned
in the distribution-free sense required by the learnability model. Recall that all negative
results here rely on the complexity-theoretic assumption that RP # NP. It should be noted
that the proofs of these theorems indicate nonlearnability by constructing, for each concept
class in question, a particular distribution for which no learning algorithm can learn, and thus
no algorithm can learn for all distributions as required by the learnability model. Learnability
for natural subclasses of distributions is not necessarily excluded.
While 1-term DNF (the class of monomials) is known to be learnable, we have:

Theorem 16 ([17]) For all integers k > 2, (monotone) k-term-DNF is not learnable by
k-term-DNF.

Thus, even when the unknown formula is the sum of two monotone terms, it is NP-hard
to find a two term (possibly non-monotone) expression for the examples seen. By contrasting
this with theorem 13, we conclude that it is the restricted expressibility of k-term-DNF which
prohibits learning, i.e. although patterns in the data may be observable, the demand that the
learned formula be expressed in k-term-DNF is significant enough of a constraint to render
the task intractable. A richer domain of representation, k-CNF, allows a greater latitude in
expressing the formula learned. Thus the availability to the learner of a variety of knowledge
representations is seen to be valuable for learning. Often a change of representation can
make a difficult learning task easy.
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In light of this result, we are prompted to ask, for each k, what is the minimal value s(k)
such that k-term-DNF is learnable by s(k)-term-DNF. In other words, how much expansion
of the representation space is needed before we can obtain learnability. If we can show that
for some polynomial s, k-term-DNF is learnable by s(k)-term-DNF, then it immediately
follows that the class DNF is learnable. Theorem 7 asserts that we needn’t even do that
well, that the function s may rely also on the number of examples seen. The following
corollary of theorem 16 stands as a first step in determining the minimal possible function
s.

Corollary 17 ([17]) For all integers k > 4, (monotone) k-term-DNF is not learnable by
(2k — 5)-term- DNF.

Thus finding a good formula from examples is hard even if we allow the formula found
to have roughly twice as many disjuncts as the formula to be learned.

Recall that the class of p formulae is the class of boolean formulae (of any form) where
each variable appears at most once. It is surprising that even for this restricted type of
formula, we have the following result.

Theorem 18 ([17]) u-formulae are not learnable.

We are also interested in threshold operators which are not usually concisely representable
as boolean formulae. For example, a common decision rule might be: It’s a lion iff it has
at least 5 of the following 12 attributes: has_mane, is_wild, has_claws, is_large, ... . While
we might also allow weights to be given to each feature reflecting its relative importance, it
turns out that intractability appears already in the {0,1} case. More formally, a boolean
threshold function Thy(Y') of n variables is a subset Y of variables, and a threshold k such
that the set of positive examples are exactly those vectors with at least & of the variables of
Y set to “17.

Theorem 19 ([17]) Boolean threshold functions are not learnable.

In cases where learning a class of representations is thought to be intractable, or when
no learning algorithm exists, we may wonder whether we can learn heuristic rules for the
concept; a rule which accounts for some significant fraction of the positive examples, while
avoiding incorrectly classifying most of the negative examples. For example, since there is
a learning algorithm for monomials, but not for k-term-DNF, and none known for general
DNF, perhaps we can find a single monomial which covers half of the positive examples
while avoiding error on all but 1 — € of the negative examples whenever such a monomial
exists. In [17], the notion of h(n)-heuristic learnability was formalized so that a class is
h(n)-heuristically learnable iff a learning algorithm can produce a hypothesis which correctly
classifies at least the fraction h(n) of the positive examples, while correctly classifying 1 — ¢
of the negative examples.

Theorem 20 ([17]) For any ¢, 0 < ¢ < 1, DNF is not c-heuristically learnable by mono-
mials.
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n

Theorem 21 ([17]) u-formulae of n variables are not e~ e -heuristically learnable, if the

formula produced must avoid misclassifying all negative examples.

Theorem 20 shows that the heuristic of covering as large a fraction of the positive exam-
ples as possible with a single monomial while learning DNF is not feasible.

Theorem 21 shows that even if there is a pg-formula correctly classifying all of the positive
and negative examples, it is NP-hard to find one which correctly classifies an exponentially
vanishing fraction of the positive examples, if we require that it avoid misclassifying any
negative example.

Finally, we point out the results of [11], indicating that, assuming the existence of certain
types of cryptographic functions, there are families of easy to compute functions which must
appear totally random in a very strong sense to any polynomial time learning algorithm.

6 Extensions and Restrictions

In addition to the basic learnability model, there are several realistic variations that have
been proposed to model other natural learning scenarios. For instance, for those classes
for which we (provably) cannot learn from examples only, or for which we cannot find a
learning algorithm, a reasonable question to ask is the following: what information might
allow these classes to be learned? To study this question, learning algorithms are allowed to
access oracles (or teachers) that answer queries about the concept being learned (in addition
to the sources of random examples, POS and NEG). Examples are an oracle that answers
membership queries for the concept being learned (e.g., is the boolean vector ¢ a positive
example of the concept?) and an oracle that answers whether a given boolean formula is
logically equivalent to the formula being learned. An extensive study of various oracles for
concept learning can be found in [5]; see also [3, 23]. In the context of algorithms that
learn in polynomial time, there is the related issue whether the algorithms can be made to
converge even faster by a carefully chosen set of examples [26].

The learnability model as presented assumes a perfect source of examples drawn from
the unknown distributions, and in some practical situations, this assumption may be too
strong. Thus, we are led to consider the case where there is some probability of error in the
source. The two types of errors studied thus far are “random” errors and “malicious” errors.
In the random error model, there is some probability that the source POS will draw from
the distribution D™, yet still report the example as being positive (similarly for the source
NEG). In [4] it is shown that kDNF can be learned in this model even with rather high error
rates. In the malicious model, where there is some probability of an error about which we
can make no assumptions (e.g., it may be chosen by our adversary), [24] gives an algorithm
for kDNF tolerating a lower rate of error.

For classes where learnability is either an unresolved problem or known to be intractable,
it is reasonable to try to find learning algorithms that work for specific natural probability
distributions on the examples. In [15] an algorithm is given for gDNF and k-term-pgDNF
when both DT and D~ are uniform. This contrasts with the fact that learning k-term-uDNF
is NP-hard [15]. It is also shown that monotone DNF is learnable, when both distributions
are uniform, in the more general model of group learning, which appears to be of independent
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interest. In group learning, the learning algorithm needs only to be able to identify large
(polynomial) sets of examples as either all positive or all negative, rather than individual
examples.

Clearly, an important line of research in the learnability model is the investigation of
other types of representations for concepts. As a start in this direction, various representa-
tions of continuous concepts have been studied [6, 13], as well as representations of languages
using finite automata [3]. Also, it has been observed that relations, in the sense of predicate
calculus, can be added to the propositional case in certain very restricted ways while main-
taining learnability [24]. The representation issue, more generally, has been addressed also
in the context of “bias” [13, 22].

The results cited all serve to identify the limits of polynomial time learnability on uni-
versal computers. It is interesting also to ask where the limits lie if we restrict the model
of computation, for example, to neural networks. In [24] some results are given about the
learning capabilities of networks of threshold elements.
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