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Abstract

We study fairness in infinite linear bandit problems.
Starting from the notion of meritocratic fairness intro-
duced in Joseph et al. [9], we expand their notion of fair-
ness for infinite action spaces and provide an algorithm
that obtains a sublinear but instance-dependent regret
guarantee. We then show that this instance depen-
dence is a necessary cost of our fairness definition with a
matching lower bound. This provides a strong contrast
with the traditional non-fair setting, where instance-
independent regret bounds are achievable. Finally, we
exhibit an action space in which fair algorithms cannot
even obtain nontrivial instance-dependent bounds.

1 Introduction

The problem of repeatedly making choices and learning
from choice feedback arises in a variety of settings, in-
cluding granting loans, serving ads, and hiring. Encod-
ing these problems in a bandit setting enables one to take
advantage of a rich body of existing bandit algorithms.
UCB-style algorithms, for example, are guaranteed to
yield no-regret policies for these problems.

Joseph et al. [9], however, raises the concern that these
no-regret policies may be unfair : in some rounds, they
will choose options with lower expected rewards over op-
tions with higher expected rewards, for example choos-
ing less qualified job applicants over more qualified ones.
Joseph et al. [9] remedy this with no-regret algorithms
which minimize mistreatment and are fair in the follow-
ing sense: their algorithms (with high probability) never
at any round place higher selection probability on a less
qualified applicant than on a more qualified applicant.
Our companion paper generalizes the problem setting
and guarantees obtained, but still obtains results that
scale polynomially in k, the number of bandits. This
may be undesirable for large k, thus motivating the in-
vestigation of fair algorithms for the infinite bandit set-
ting (the online linear optimization with bandit feedback
problem [6]).

∗The full technical version of this paper is available at
https://arxiv.org/abs/1610.09559.

In Section 3 we provide such an algorithm. We then
prove, subject to certain assumptions, a regret upper
bound that depends on ∆gap, an instance-dependent pa-
rameter based on the distance between the best and
second-best extreme points in a given choice set. In
Section 4 we show that this instance dependence is al-
most tight by exhibiting an infinite choice set satisfying
our assumptions for which any fair algorithm must in-
cur regret dependent polynomially on ∆gap, separating
this setting from the online linear optimization setting
absent a fairness constraint. Finally, we justify our as-
sumptions on the choice set by in Section 5 exhibiting a
choice set that both violates our assumptions and admits
no fair algorithm with nontrivial regret guarantees.

1.1 Related Work and Discussion of Our
Fairness Definition

Fairness in machine learning has seen substantial recent
growth as a subject of study, and many different def-
initions of fairness exist. We provide a brief overview
here; see e.g. Berk et al. [1] and Corbett-Davies et al. [3]
for detailed descriptions and comparisons of these defi-
nitions.

Many extant fairness notions are predicated on the
existence of groups, and aim to guarantee that certain
groups are not unequally favored or mistreated. In this
vein, Hardt et al. [8] introduced the notion of equality of
opportunity, which requires that a classifier’s predicted
outcome should be independent of a protected attribute
(such as race) conditioned on the true outcome, and
they and Woodworth et al. [11] have studied the fea-
sibility and possible relaxations thereof. Similarly, Za-
far et al. [12] analyzed an equivalent concurrent notion
of (un)fairness they call disparate mistreatment. Sepa-
rately, Kleinberg et al. [10] and Chouldechova [2] showed
that different notions of group fairness may (and some-
times must) conflict with one another.

This paper, like Joseph et al. [9], departs from the
work above in a number of ways. We attempt to cap-
ture a particular notion of individual and weakly merito-
cratic fairness that holds throughout the learning process.
This was inspired by Dwork et al. [5], who suggest fair
treatment equates to treating “similar” people similarly,
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where similarity is defined with respect to an assumed
pre-specified task-specific metric. Taking the fairness
formulation of Joseph et al. [9] as our starting point,
our definition of fairness does not promise to correct for
past inequities or inaccurate or biased data. Instead, it
assumes the existence of an accurate mapping from fea-
tures to true quality for the task at hand1 and promises
fairness while learning and using this mapping in the
following sense: any individual who is currently more
qualified (for a job, loan, or college acceptance) than
another individual will always have at least as good a
chance of selection as the less qualified individual.

The one-sided nature of this guarantee, as well as its
formulation in terms of quality, leads to the name weakly
meritocratic fairness. Weakly meritocratic fairness may
then be interpreted as a minimal guarantee of fairness:
an algorithm satisfying our fairness definition cannot fa-
vor a worse option but is not required to favor a better
option. In this sense our fairness requirement encodes
a necessary variant of fairness rather than a completely
sufficient one.

We additionally note that our fairness guarantees re-
quire fairness at every step of the learning process. We
view this as an important point, especially for algorithms
whose learning processes may be long or continuous.
Furthermore, while it may seem reasonable to relax this
requirement to allow a small fraction of unfair steps, it
is unclear how to do so without enabling discrimination
against a correspondingly small population.

2 Model

Fix some β ∈ [−1, 1]d, the underlying linear coefficients
of our learning problem, and T the number of rounds.
For each t ∈ [T ], let Ct be a convex body denoting the
set of available choices in round t. An algorithm A,
facing choices Ct, picks a single xt ∈ Ct, and observes
reward yt such that E [yt] = 〈β, xt〉, and the distribution
of the noise ηt = yt − 〈β, xt〉 is sub-Gaussian, i.e. has
tails dominated by those of a Gaussian distribution. Let
Xt = [X1; . . . ;Xt],Yt = [Y1; . . . ;Yt] refer to the design
and observation matrices at round t.

Regret The notion of regret we will consider is
that of pseudo-regret. Facing a sequence of choice
sets C1, . . . , CT , suppose A chooses points x1, . . . , xT .2

Then, the expected reward of A on this sequence is

Rew(A) = E
[∑

t∈[T ] yt

]
.

1 Friedler et al. [7] provide evidence that providing fairness from
bias-corrupted data is quite difficult.

2If these are randomized choices, the randomness of A is incor-
porated into the expected value calculations.

Refer to the sequence of feasible choices which max-
imizes expected reward as x∗1, . . . , x

∗
T , defined with full

knowledge of β.
Then, the pseudo-regret of A on any sequence is

defined as

Rew(x∗1, . . . , x
∗
T )− Rew(A) = R(T ).

The pseudo-regret of A refers to the maximum
pseudo-regret A incurs on any sequence of choice sets
and any β ∈ [−1, 1]d. If R(T ) = o(T ), then A is said to
be no-regret. If, for any input parameter δ > 0, R(T )
upper-bounds the expectation of the rewards of the se-
quence chosen by A with probability 1− δ, then we call
this a high-probability regret bound for A.

Fairness Consider an algorithm A, which chooses a
sequence of probability distributions π1, π2, . . . , πT over
feasible sets to pick, πt ∈ ∆(2Ct). Note that distribution
πt depends upon C1, . . . , Ct, the choices P1, . . . , Pt−1,
and Y1, . . . , Yt−1.

We adapt our fairness definition from Joseph et al. [9],
generalizing from discrete distributions over finite action
sets to mixture distributions over possibly infinite action
sets. Given an action space D, and an algorithm A, let
πt ∈ ∆(D) be the distribution on actions by A at time
t.

Definition 1 (Weakly Meritocratic Fairness). We say
that an algorithm A is weakly meritocratic if, for any
input δ ∈ (0, 1] and for any θ, with probability at least
1− δ, at every round t one of the following three condi-
tions is satisfied, depending on the nature of πt:

• If πt is a discrete distribution: For gti(x) = πti(x)
(the probability mass function), for all x, y such that
〈θ, x〉 ≥ 〈θ, y〉,

gti(x) ≥ gti(y).

• If πt is a continuous distribution: For gti(x) = fti(x)
(the probability density function), for all x, y such
that 〈θ, x〉 ≥ 〈θ, y〉,

gti(x) ≥ gti(y).

• If πt can be written as a mixture distribution:∑
i αiπti,

∑
i αi = 1, such that each constituent dis-

tribution πti ∈ ∆(D) is either discrete or continuous
and satisfies one of the above two conditions.

For brevity, since we do not consider other fairness no-
tions in this paper, we will often refer to weakly merito-
cratic algorithms simply as “fair”. We say A is round-
fair at time t if πt satisfies the above conditions.
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This generalization allows for mixtures over distribu-
tions, some of which may be continuous and others dis-
crete. This in particular allows an algorithm which is
round-fair in round t to randomly choose between play-
ing one of two fair distributions. For example, it would
satisfy Definition 1 to play the uniquely best action in
D with probability 1

2 , and with probability 1
2 choose an

action uniformly at random from D.

3 Fair algorithms for convex action
sets

In this section we analyze linear bandits with infinite
choice sets in the familiar 1-bandit setting.3 We provide
a fair algorithm with an instance-dependent sublinear
regret bound for infinite choice sets – specifically convex
bodies – below. In Section 4 we match this with lower
bounds showing that instance dependence is an unavoid-
able cost for fair algorithms in an infinite setting.

A naive adaptation of RidgeFair to an infinite set-
ting requires maintenance of infinitely many confidence
intervals and is thus impractical. We instead assume
that our choice sets are convex bodies and exploit the
resulting geometry: since our underlying function is lin-
ear, it is maximized at an extremal point. This simplifies
the problem, since we need only reason about the rela-
tive quality of extremal points. The relevant quantity is
∆gap, a notion adapted from Dani et al. [4] that denotes
the difference in reward between the best and second-
best extremal points in the choice set. When ∆gap is
large it is easier to confidently identify the optimal choice
and select it deterministically without violating fairness.
When ∆gap is small, it is more difficult to determine
which of the top two points is best – and since deter-
ministically selecting the wrong one violates fairness for
any points infinitesimally close to the true best point,
we must play randomly from the entire choice set.

Our resulting fair algorithm, FairGap, proceeds as
follows: in each round it uses its current estimate of β
to construct confidence intervals around the two choices
with highest estimated reward and selects the higher one
if these intervals do not overlap; otherwise, it selects uni-
formly at random from the entire convex body. We prove
fairness and bound regret by analyzing the rate at which
random exploration shrinks our confidence intervals and
relating it to the frequency of exploitation, a function of
∆gap. We begin by formally defining ∆gap below.

3Note that no-regret guarantees are in general impossible for
infinite choice sets in m-bandit and k-bandit settings, since the
continuity of the infinite choice sets we consider makes selecting
multiple choices while satisfying fairness impossible without choos-
ing uniformly at random from the entire set.

Definition 2 (Gap, adapted from Dani et al. [4]). Given
sequence of action sets C = (C1, . . . , CT ), define Ωt to be
the set of extremal points of Ct, i.e. the points in Ct that
cannot be expressed as a proper convex combination of
other points in Ct, and let x∗t = maxx∈Ct〈β, x〉. The gap
of Ct is

∆gap = min
1≤t≤T

(
inf

xt∈Ωt,xt 6=x∗t
〈β, x∗t − xt〉

)
.

∆gap is a lower bound on difference in payoff between
the optimal action and any other extremal action in any
Ct. When ∆gap > 0, this implies the existence of a
unique optimal action in each Ct. Our algorithm (im-
plicitly) and our analysis (explicitly) exploits this quan-
tity: a larger gap enables us to confidently identify the
optimal action more quickly.

We now present the regret and fairness guarantees for
FairGap.

Theorem 1. Given sequence of action sets C =
(C1, . . . , CT ) where each Ct has nonzero Lebesgue mea-
sure and is contained in a ball of radius r and feed-
back with R-sub-Gaussian noise, FairGap is fair and
achieves

Regret (T ) = O

(
r6R2 ln(2T/δ)

κ2λ2∆2
gap

)

where κ = 1 − r

√
2 ln( 2dT

δ )
Tλ and λ =

min1≤t≤T
[
λmin(Ext∼UARCt [xt

Txt])
]

We sketch the proof of Theorem 3 here: we first bound
the influence of noise on the confidence intervals we con-
struct (via matrix Chernoff bounds) and prove that,
with high probability, FairGap constructs correct confi-
dence intervals. This requires reasoning about the spec-
trum of the covariance matrix of each choice set, which
is governed by λ, a quantity which, informally, measures
how quickly we learn from uniformly random actions.
4. With correct confidence intervals in hand, fairness
follows almost immediately, and to bound regret we an-
alyze the rate at which these confidence intervals shrink.

The analysis above implies identical regret and fair-
ness guarantees when each Ct is finite. For compar-
ison, the results of our companion paper guarantee
Regret (T ) = O(dk

√
T ). This result, in comparison,

enjoys a regret independent of k which may prove espe-
cially useful for cases involving large k.

Finally, our analysis so far has elided any computa-
tional efficiency issues arising from sampling randomly

4λ can be computed directly for finite Ct or approximated by
any positive lower bound for infinite Ct and substituted directly
into our results.
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from C. We note that it is possible to circumvent this is-
sue by relaxing our definition of fairness to approximate
fairness and obtain similar regret bounds for an efficient
implementation. We achieve this using results from the
broad literature on sampling and estimating volume in
convex bodies, as well as recent work on finding “2nd
best” extremal solutions to linear programs.

4 Instance-dependent Lower Bound
for Fair Algorithms

We now present a lower bound instance for which any
fair algorithm must suffer gap-dependent regret. More
formally, we show that when each choice set is a square,
i.e. Ct = [0, 1]2 for all t, for any fair algorithm
Regret (T ) = Ω̃(1/∆gap) with probability at least 1−δ.
This also implies the weaker result that no fair algorithm
enjoys an instance-independent sub-linear regret bound
o(T ) holding uniformly over all β. We therefore obtain
a clear separation between fair learning and the uncon-
strained case [4], and show that an instance-dependent
upper bound like the one in Section 3 is unavoidable.
Our arguments establish fundamental constraints on fair
learning with large choice sets and quantify through the
∆gap parameter how choice set geometry can affect the
performance of fair algorithms. The lower bound em-
ploys a Bayesian argument resembling that in [9] but
with a novel “chaining” argument suited to infinite ac-
tion sets. We present the result for d = 2 for simplicity;
the proof technique holds in any dimension d ≥ 2.

Theorem 2. For all t let Ct = [−1, 1]d, β ∈ [−1, 1]d,
and yt = 〈xt, β〉 + ηt, where ηt ∼ U [−1, 1]. Let A be
any fair algorithm. Then for every gap ∆gap, there is a
distribution over instances with gap Ω(∆gap) such that
any fair algorithm has regret Regret (T ) = Ω̃(1/∆gap)
with probability 1− δ.

We again sketch of the central ideas in the proof. We
start with the fact that any fair algorithm A is required
to be fair for any value β of the linear parameter. Thus
if we draw β ∼ τ , A must be round-fair for all t ≥ 1
with probability at least 1 − δ, where the probability
includes the random draw β ∼ τ . Then Bayes’ rule
implies that the procedure that draws β ∼ τ and then
plays according to A is identical to the procedure which
at each step t re-draws β from its posterior distribution
given the past τ |ht .

Next, given the prior τ , A’s round fairness at step t
requires that (with high probability) if A plays action x
with higher probability than action y, we must have

Pβ∼τ |ht [〈β, x〉 > 〈β, y〉] > 3

4
. (1)

This enables us to reason about the fairness and regret
of the algorithm via a specific analysis of the posterior
distribution τ |ht . This Bayesian trick, first applied in [9],
is a general technique useful for proving fairness lower
bounds.

We then show that for a choice of prior specific to our
choice set C, that two things hold: (i) whenever τ |ht = τ ,
Equation 1 forces A to play uniformly from C, and (ii)
with high probability τ = τ |ht until t > Ω̃(1/ε), where ε
is a parameter of the prior that acts as a proxy for ∆gap.
Playing an action uniformly from C incurs Ω(1) regret
per round, so these two facts combine to show that with
high probability Regret (T ) = Ω̃(1/ε).

Finally we consider Regret (T ) conditional on the
event that ∆gap(β) > δ · ε, which by our construction
of τ happens with probability 1− δ, and show that this

with high probability implies Regret (T ) = Ω

(
1

ε

)
.

We then show that when β ∼ τgap, ∆gap(β) ≥ δ ·ε. Thus,
when β ∼ τgap, with high probability, Regret (T ) =
Ω̃(1/ε) = Ω̃(1/∆gap), as desired.

The proof uses the fact that when τ = τ |ht , Equa-
tion 1 forces A to play uniformly at random. This hap-
pens by transitivity: if Equation 1 forces A to play x
equiprobably with y and y equiprobably with z, then x
must be played equiprobably with z. Finally, we note
that this impossibility result only holds for d ≥ 2. When
d = 1, the problem reduces to estimating the sign of β,
which takes O(1/β2) observations of random play and
accumulates O(

√
T ) regret.

5 Zero Gap: Impossibility Result

Section 3 presents an algorithm for which the sublinear
regret bound has dependence 1/∆2

gap on the instance

gap. Section 4 exhibits an choice set C with a Ω̃(1/∆gap)
dependence on the gap parameter. We now exhibit a
choice set C for which ∆gap = 0 for every β, and for
which no fair algorithm can obtain non-trivial regret for
any value of β. This precludes even instance-dependent
fair regret bounds on this action space, in sharp contrast
with the unconstrained bandit setting.

Theorem 3. For all t let Ct = S1, the unit circle, and
ηt ∼ Unif(−1, 1). Then for any fair algorithm A, ∀β ∈
S1,∀T ≥ 1, we have

Eβ[Regret (T )] = Ω(T ).

S1 makes fair learning difficult for the following rea-
sons: since S1 has no extremal points, there is no finite
set of points which for any β contains the uniquely opti-
mal action, and for any point in S1, and any finite set of
observations, there is another point in S1 for which the
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algorithm cannot confidently determine relative reward.
Since this property holds for every point, the fairness
constraint transitively requires that the algorithm play
every point uniformly at random, at every round.
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