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Abstract

We introduce a game-theoretic model for network formation inspired by earlier
stochastic models that mix localized and long-distance connectivity. In this model,
players may purchase edges at distatheg a cost ofd*, and wish to minimize

the sum of their edge purchases and their average distance to other players. In
this model, we show there is a striking “small world” threshold phenomenon: in
two dimensions, ifc < 2 then every Nash equilibrium results in a network of
constantdiameter (independent of network size), and:it- 2 then every Nash
equilibrium results in a network whose diameter grows as a root of the network
size, and thus is unbounded. We contrast our results with those of Kleinberg [8] in
a stochastic model, and empirically investigate the “navigability” of equilibrium
networks. Our theoretical results all generalize to higher dimensions.

1 Introduction

Research over the last decade from fields as diverse as biology, sociology, economics and computer
science has established the frequent empirical appearance of certain structural properties in natu-
rally occurring networks. These properties include small diameter, local clustering of edges, and
heavy-tailed degree distributions [11]. Not content to simply catalog such apparently “universal’
properties, many researchers have proposed stochastic models of decentralized network formation
that can explain their emergence. A typical such model is knowrefsrential attachmen], in

which arriving vertices are probabilistically more likely to form links to existing vertices with high
degree; this generative process is known to form networks with power law degree distributions.

In parallel with these advances, economists and computer scientists have examined models in which
networks are formed due to “rational” or game-theoretic forces rather than probabilistic ones. In
such models networks are formed via the self-interested behavior of individuals who benefit from
participation in the network [7]. Common examples include models in which a vertex or player can
purchase edges, and would like to minimize their average shortest-path distance to all other vertices
in the jointly formed network. A player’s overall utility thus balances the desire to purchase few
edges yet still be “well-connected” in the network. While stochastic models for network formation
define a (possibly complex) distribution over possible networks, the game-theoretic models are typ-
ically equated with their (possibly complex) set of (Nashyilibriumnetworks. It is also common

to analyze the so-calle@rice of Anarchy[9] in such models, which measures how much worse an
equilibrium network can be than some measure of social or centralized optimality [6, 2, 5, 1].

In this paper we introduce and give a rather sharp analysis of a network formation model of the
game-theoretic variety, but which was inspired by a striking result of Kleinberg [8] in a stochastic

model, and thus forms a bridge between these two lines of thought. In Kleinberg’s stochastic model,
the network formation process begins on an underlying substrate network that is highly regular —



for instance, a grid in two dimensions. This regular substrate is viewed as a coarse model of “local”
connectivity, such as one’s geographically close neighbors. The stochastic process then adds “long-
distance” edges to the grid, in an attempt to model connections formed by travel, chance meetings,
and so on. Kleinberg’'s model assumes that the probability that an edge connecting two vertices
whosegrid distance isl is proportional tol /d* for somea > 0 — thus, longer-distance edges are

less likely, but will still appear in significant numbers due to the long tail of the generating distri-
bution. An interesting recent empirical study [4] of the migration patterns of dollar bills provides
evidence for the validity of such a model. In a theoretical examination of the “six degrees of sepa-
ration” or “small world” folklore first popularized by the pioneering empirical work of Travers and
Milgram [10], Kleinberg proved thadnly for o« = 2 will the resulting network be likely to support

the routing of messages on short paths using a natural distributed algorithm. For larger values of
the network simply does not have short paths (small diameter), and for smaller values the diameter is
quite small, but the long-distance edges cannot be exploited effectively from only local topological
information.

Our model and result can be viewed as an “economic” contrast to Kleinberg's. We again begin with
a regular substrate like the grid in two dimensions; these edges are viewed as being provided free of
charge to the players or vertices. A vertexs then free to purchase an edge to a vertat grid
distanced = §(u,v) at a cost oli* for a > 0. Thus, longer-distance edges now have higher cost
rather than lower probability, but again in a power law form. We analyze the networks that are Nash
equilibria of a game in which each player’s payoff is the negative of the sum of their edge purchases
and average distances to the other vertices.

Our main result is a precise analysis of the diameter (longest shortest path between any pair of ver-
tices) of equilibrium networks in this model. In particular, we show a sharp threshold resudhy

a < 2, every Nash equilibrium network has ordgnstantdiameter (that is, diameter independent

of the network sizey); andfor any« > 2, every Nash equilibrium has diameter that grows axoa

of the network siz&hat is, unbounded and growing rapidly wit.

Despite the outward similarity, there are some important differences between our results and Klein-
berg’s. In addition to the proofs being essentially unrelated (since one requires a stochastic and the
other an equilibrium analysis), Kleinberg’s result establishes a “knife’s edge” (fast routing only at
« exactly 2), while ours is a threshold or phase transition — there is a broad rangevalues
yielding constant diameter, which sharply crosses over to polynomial growth-a2. On the other

hand, fora = 2 Kleinberg establishes that in his model not only that there is small (though order
log(n) rather than constant) diameter, but that short paths caavigatedby a naive greedy routing
algorithm (of orderog(n)?). However, simulation results discussed in Section 5 suggest that the
equilibrium networks of our model do support fast routing as well. Like Kleinberg's results, all of
ours generalize to higher dimensions as well, with the threshold occurring-at in »-dimensional
space.

The outline of the paper is as follows. In Section 2 we define our game-theoretic model and introduce
the required equilibrium concepts. In Section 3 we provide the constant diameter upper bound for
r = 2whena < 2, and also even better constants for< 1. Section 4 provides the diameter
lower bound forae > 2, while in Section 5 we explore greedy routing in equilibrium networks via
simulation.

2 Preliminaries

We devote this section to a formal definition of the model. We assume that the players are located on
a grid, so each playeris uniquely identified with a grid poir(z, b), wherel < a,b < \/n; thus the

total number of players is. The action of playev; is a vectors, € {0, 1}" indicating which edges

to other players); has purchased. We let= s; x --- x s, be the joint action of all the players,

v1, ..., V. We also use_; to denote the joint action of all players except playger

The Graph.The joint actions defines an undirected gragh(s) as follows. The nodes aF(s) are
the players/ = {v1,...,v,}. An edge(v;,v;) is bought by playep; if and only if s;(j) = 1. Let
E;(s;) = {(vi,v;) | si(j) = 1} be the set of edges bought by playeand letE(s) = U;cy E;(s;).
The graph induced by is G(s) = (V, E(s)).



Distances and Costd he grid defines a natural distangéeLet v; be the player identified with the
grid point(a, b) andv,, with (a’, b"); then their grid distance i&v;, v;/) = |a — a'| + |b — V'|. Next
we define a natural family of edge cost functions in which the cost of an edge is a function of the
grid distance:
) N O 5(’[)7;,Uj) = ].
c(vi,vj) = { ad(vi,v;)*  otherwise

wherea, o > 0 are parameters of the model. Thus, grid edges are free to the players, and longer
edges have a cost polynomial in their grid distance.

The GameWe are now ready to define the formal network formation game we shall analyze. The
overall cost functiore; of playerwv; is defined as

ci(s) = ci(si,5-i) = Z cle) + Z Ags) (vis v5)

e€E;(s;) Jj=1

where Ag(,)(u, v) is the shortest distance betweerandv in G(s). Thus, in this game player

1 wishes to minimize;(s), which requires balancing edge costs and shortest paths. We empha-
size that players benefit from edge purchases by other players, since shortest paths are measured
with respect to the overall graph formed by all edges purchased. The graph diameter is defined as
max; ; Ag(s)(’l}i, ’Uj).

Equilibrium Concepts.A joint actions = s; x --- X s, is said to be aNash equilibriumif for

every player. and any alternative actiofy € {0,1}", we havec;(s;,s—;) < ¢i(8;,5-;). If sisa

Nash equilibrium we say that its corresponding grégfiis) is an equilibrium graph. A joint action

s =s1 %X+ X 8, is said to bdink stableif for every playeri and any alternative actioh € {0,1}"

that differs froms; in exactly one coordinatg.e. one edge), we havg(s;, s_;) < ¢;(8;, s—;). If sis

link stable we say that its corresponding gr&p(s) is a stable graph. Note that an equilibrium graph
implies a link stable graph. Link stability means that the graph is stable under single-edge unilateral
deviations (as opposed to Nash, which permits arbitrary unilateral deviations), and is a private case
of the pairwise stability given notion given in [7]. The popularity of the link stable notion is due to its
simplicity and due to the fact that it is easily computable, as opposed to computing best responses
which in similar problems is known to be NP-Hard [6]. Note that as the grid edges are free, the
diameter of an equilibrium or link stable graph is bounde@b..

3 Constant Diameter at Equilibrium for « € [0, 2]

In this section we analyze the diameter of equilibrium networks when0, 2]. Our results actually
hold under the more general notion of link stability as well. The following is the first of our two
main theorems.

Theorem 3.1 For any constant > 0, if @ = 2 — ¢, then there exists a constad(x) such that for
anyn, all Nash equilibria or link stable graphs overplayers have diameter at magt).

The proof of this theorem has a number of technical subtleties, so we first provide its intuition, which
is illustrated in Figure 1(B). We analyze an equilibrium (or link stable) graph in stages, and focus on
the distance of vertices to some focal playetn each stage we argue that more grid-distant players
have an incentive to purchase an edge thue to the centrality ofi in the graph.

We start with the following simple fact: for every nodesand w we have that iff(v,w) < d

then Ag () (v, w) < d since all grid edges are free. We would like to show that even a stronger
property holds — namely, that if(v,w) < d* thenAg () (w,v) < d for somea > 1. Since

this property is no longer simply implied by the grid edges, it requires arguing that grid-distant
vertices have an incentive to purchase edges to each other. Suppose there atearatiesuch
thatAg(s)(u,v) > d. We first define a “close” graph neighborhoodfS, = {w|Ag s (u, w) <

d/3}. Note that for everyv € S, we have thai\(, (v, w) > 2d/3. Next we would like to claim

that the cardinality of,, is large — thusu’s neighborhood is densely populated. For this we define
S8 = {2w|6(u,w) < d/3} C S,. Using the grid topology (see Figure 1(A)) we see {4t is of
orderd=.
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Figure 1: (A) The number of nodes at exact distahdg exactly4k, while the number withirk is
orderk?. (B) lllustration of the main argument of Theorem 3.1. Herandv are vertices at grid
distanced, while u and«’ are at grid distance’, whered < d*/® < d’. In the proof we use the
size ofS° to show that benefits by purchasing an edgeitand thus must be distance Litan the
equilibrium graph; this in turn allows us to argue thatvishes to purchase an edgeitas well.

Now consider the benefit te of buying the edge(v,u) (which is not in the graph since
Ag(s)(u,v) > d). Since the distance from to every node inS, is reduced by at least/3 and
the set size is at least ordét, we have that the benefit is of ordét. The fact that this edge was
not bought implies thad (v, u)* = Q(d®). Therefore, we have thakqs)(u,v) > d implies that
§(u,v) = Q(d3/), which is the contrapositive @f(u, v) = O(d*/®) implies Ag s (u,v) < d.

In other words, for “small enough” values af (quantified in the full proof), vertices quite distant
from « in the grid have an incentive to buy an edgeutdy virtue of the dense population 5% .
But this in turn argues that the size §f is even larger thai® ; we then “bootstrap” this argument
to show that yet further vertices have an incentive to connect émd so on. We now proceed with
the formal proof based on this argument.

Lemma 3.2 Let G(s) be an equilibrium or link stable graph and be the grid center. Suppose
that for every nodey such thaté(u,v) < d° (where > 1 andd’ < ,/n/2), we have that
Ag(s)(u,v) < d. Then for everyl, and for every node such thatd(u, v) < 21/(d/3)%", where
3" = 25+1 we have that\g ) (u, v) < d.

Proof: Letv be a node such tha ¢ ,)(u,v) = d and letS, = {w|Ag () (u, w) < d/3}; observe
thatd’ = min,es, Ag(s)(w,v) is at Ieast% and thusv's benefit of buying the edgév, u) is at
Ieast§|5u\. Next we would like to bound the size &f, from below. Using the topology of the
grid, the grid the center node hék nodes (See Figure 1(A)) in exact grid distacgf &k < n/2),

which implies that the center node H&g nodes in grid distance at mast The setS,, contains all
nodes such thah g, (u, w) < d/3 by definition which implies by our assumption that it includes
all nodesw such that(u, w) < (d/3)°. Therefore, the size of, is at leas(d/3)%4. Now since
G(s) is an equilibrium or link stable graph, it means thatould not like to buy the edge:, v) and
thus

o 23 q28+1
Taking thea root, we have that\g () (u,v) > d impliesé(u,v) > 21/“%, which is the
. 2 1)/a . . .
contrapositive 0 (u,v) < 21/0‘% implies Ag ) (u,v) < d, as required. [ |

Equipped with this lemma we can prove rather strong results regarding the casewheére ¢, for

€ > 0. In the previous lemma there are two parts in the change of the radius — one is the exponent,
which grows, and the second is that instead of havirnig the base we have only/3. The next
lemma shows that as long dss large enough we can ignore the fact that the base decreases from

to d/3 — and thus “amplify” the exponeritin the preceding analysis to a larger expon@nte; ) 3.



Figure 2: A graph with diameter of 6.

Lemma 3.3 (Amplification Lemma) Le%(s) be an equilibrium or link stable graph. Let=2—e¢
for somee > 0. Letc(a) be a constant determined by subsequent analysis. Suppose that for every
d > c(a), for every nodev such thatd(u,v) < d” (whereg > 1, d° < /n/2, andu is the
grid center), we have thah () (u,v) < d. Then for everyl > c(«), for every nodes such that

6(u,v) < d°, whered’ = 3(1 + ¢,), we have that\ (s (u, v) < d, wheree, = Tpmrt

14267 142
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Proof: Sete(a) =37 <1 . By Lemma 3.2 we have that for evedy> 3 ~ for every nodes and

v such thab (u, v) < %, wheres = 22t we have that\g(,) (u, v) < d.

(4/3)? (d/3)%5r  qUHa=stl/e g8
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where both inequalities hold fat > ¢(«) i
Now we are ready to prove the main theorem of this section.
Proof: (Theorem 3.1) Let/(«) = 3142?51 , Wheree; = 35-9 and letu be the grid center. For every

nodev such that(u, v) < ¢’(a), we must haved () (u,v) < (), since all grid edges are part
of G(s). Next we prove that all nodes within grid distang®& /2 are within graph distancé(«).
SinceAg(s)(u,v) < 0(u,v), we can apply Lemma 3.3 to obtain that in radiigy) of « in G, are

all nodesv such that(u,v) < ¢/(a)!*<1. We repeat this argument recursively and obtain after the
k-th time, that all nodes such that(u,v) < ¢(a)(+<)" satisfy Aq ) (u,v) < ¢(@). Taking

k =log, ., (v/n/2), this implies that there ane/2 nodes withinc’(«) from u. Now suppose there
exists a node such thatA g, (u,v) > 3c'(a). Then by buying the edg@, u), u's benefit is at
least2¢’ (a)n/2 (we know that there are at least2 nodes within graph distance df{«) from w),
while its cost is bounded by'n” < n (since any node grid distance framis at most,/n). Setting
c(a) = 6¢/(«r), we obtain the theorem.

3.1 Even Smaller Constant Diameter at Equilibrium for o < 1

The constant diameter boum¢ry) in Theorem 3.1 blows up asapproaches 0. In this section we
show that forae < 1, rather small constant bounds hold. Note that whedq 1, the most expensive
edge cost is bounded I2y:/n, wherea is the edge cost constant. We will use this fact to show that
every equilibrium grapldz(s) has a small constant diameter.

Letu,v € V, we letTg () (u,v) be the set of all nodes thatcan reach on a shortest path that

includesv. Formally, T () (u,v) = {w | Ags)(u, w) = Ag(s)(u,v) + Ags) (v, w) }. We start by
providing a technical lemma.

Lemma 3.4 Let G(s) be an equilibrium or link stable graph. Let v € V be an arbitrary pair of

5(u,v)®
players. If(u, v) ¢ E(s) then| Te s (u,v) | < W

Proof: Buying the edggu,v) (at a cost ofé(u,v)*) makes the distance from to everyw €
Te(s)(u,v) shorter byAg s (u,v) — 1. However,s is a Nash equilibrium, thus we know that the



edge(u,v) was not bought. This implies that the ben€i ) (u,v) — 1) - [T () (u, v)| from
buying the edge is bounded byu, v)<.

Lemma 3.5 LetG(s) = (V, E(s)) be an equilibrium graph and let,v € V.
o If o < 1thenAg(y)(u,v) <5.
o If o =1thenAg)(u,v) < 2[a® 4 4]

Proof: We prove for the case that the cost functionsiu, v) and omit the proof for the case where
a < 1 which is similar. Assume for contradiction that there exist a nodach thatA ;) (u, v) >

[a? + 4] + 1, whereu is the grid center node (note that the grid distance fioi bounded by
Vvn). Let Sz = {w|Ag)(u,w) < 2} be the set of nodes at a distance of at mbstom v

(See Figure 3.1) including. We first bound the size of?. For every nodav € S? we have
Ag(s)(u, w) > [a*+4]—1. Buying the edgév, u) makes the distance betweeand everyw € S’

at most3. Thus, the benefit from buying the edgeu) is at leas{ [a? +4] —1-3)|S2| = [a?]|S2].
However, the edgév, u) ¢ E(s) and is not part of the equilibrium graph. Therefore, the benefit
from buying it is at mos® (v, u). This implies thafa?]|S?| < ad(v,u) < ay/n. Now we look on a
shortest paths tree rooteckatThere are at mosyn/[a?] — 2 nodes at a distance &ffrom «. Each

one of them has at most/n descendants by Lemma 3.4. Since the graph is connected, we get that
ay/n/[a?®](ay/n — 2) + ay/n/[a®] > n, which is a contradiction.

3.2 The Casex =2

In this case we obtain neither a constant upper bound nor a polynomial lower bound. We show that

for o = 2 the diameter is bounded (/> /™), which is bounded by/n° for every constant
c (i.e. this bound is very small as well); however it bounds from above any polylogarithmic function.

Theorem 3.6 Let the edge cost be (u, v) = 6(u, v)?, and letG(s) = (V, E(s)) be an equilibrium
or link stable graph . Then the graph diameter is bounde®by/n>’ ¥'").

Proof: We again apply Lemma 3.2 repeatedly, but now with= 2. After applying it for the first
time we have that all nodes which are in grid dista(€g*/* from u the grid center are within graph
distanced. Recall thatS, = {w[Ag ) (u,w) < d/3}. Using the same arguments we construct a

series of distances;, such that if§ (u, v) < 2, thenAg(s)(u, v) < d. We begin withz; as(4)3/2

and now compute:
d d (d*? .
2 had _ 3/2
I2>3|Su3(33/2/3 >
Solving it we obtain that, = gf%. Suppose that after repeating the argument fokthdime we

have thatr;, is at leastd®* /3. Using this bound we derive a lower bound on the siz& paind
obtain the following bound for the + 1 iteration:

2

d d [ do- /3% \?
The > gl =3 ( 3 )
. ap+1/2
Thus we obtain that 1 = g2 577 and
ak+1 = Q. + 1/2
bk+1 = by +ar+ 1/2-

Our next goal is to estimatg, andb,. The estimation ofi, is straight forward and;, = k/2 + 1.
Forby it is enough for our needs to consider an upper bound; since webhave-= b, + k/2+ 3/2,
one can easily verify thdt? /2 is an upper bound fat > 3. Therefore, in order to provide an upper
bound on the distance form the center gridie would like to find an initiakl such that

dk/2

3k such thatm >/n

andd is minimal. This clearly holds fod = n?/V°s" andk = +/logn and can be shown to be
the minimal value for which it holds. Now using similar arguments to previous proofs we show that
every other node cannot be further away from



4 Polynomial Diameter at Equilibrium for « > 2

We now give our second main result, which states thatfor 2 the diameter grows as a root of
and is thus unbounded.

Theorem 4.1 For any«, the diameter of any Nash equilibrium or link stable grapff; n%).

Before giving the proof we note that this bound implies a trivial lower bound of a constamt<og,

and a polynomial forr > 2. For instance, setting = 3 we obtain a lower bound dﬂ(\/ﬁl/4).
We first provide a simple lemma (stated without proof) regarding the influence of one edge on a
connected graph’s diameter.

Lemma 4.2 LetG = (V, E) be a connected graph with diametér and LetG’ = (V, E|J{e}) for
any edge: then the diameter o’ is at leastC'/2.

Proof: (Theorem 4.1) LetD be the diameter of an equilibrium graph, afdbe the grid distance
of (w,v) the most expensive edge bought(f note that the most expensive edge corresponds to
the longest edge in grid distance terms. First we observel?hat2./n/d, as the grid diameter is
2+/n and the fastest way to traverse it is through edges of maximal length whichBg Lemma
4.2 the benefit of buying an edde, v) is at most2D(n — 3), since the diameter before was at
most2D and the distance to your two neighbor and yourself has not been changed. Therefore, have
d(u,v)* = d* <2D(n — 3). Next we use the two simple bounds
d* < 2Dn 1)
2v/n/d < D 2)
Substituting the bound af in Equation 2 into equation 1 we obtain that
(2vn/D)* < 2Dn
(2\/5)0( < DlJrOL
2n -
a—2
(V')

as required. [ |
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5 Simulations

The analysis we have considered so far examine static properties of equilibrium and link stable
graphs, and as such do not shed light on natural dynamics that might lead to them. In this section we
briefly describe dynamical simulations on@) x 100 grid (which hasl0® possible edges). At each
iteration a random vertex is selected. With probability 1/2, an existing edgeuofgrid or long-
distance) is selected at random, and we compute whether (given the current global configuration of
the graph)u would prefemotto purchase this edge, in which case it is deleted. With probability 1/2,

we instead select a second random verteand compute whether (again given the global graph)
would like to purchase the edge, v), in which case it is added. Note that if this dynamic converges,

it is to a link stable graph and not necessarily a Nash equilibrium, since only single-edge deviations
are considered.

The left panel of Figure 3 shows the worst-case diameter as a function of the number of iterations,
and demonstrates the qualitative validity of our theory for this dynamicaferl, 2 the diameter
quickly falls to a rather small value (less than 10). The asymptotes for 3,4 are considerably
higher.

The right panel revisits the question that was the primary interest of Kleinberg’s work [8], namely
the efficiency of “naive” or greedy navigation or routing. If we wish to route a message from the
grid center to a randomly chosen destination, and the message is always forwarded from its current
vertex to the graph neighbor whose grid address is closest to the destination, how long will it take?
Kleinberg was the first to observe and explain the fact that the mere existence of short paths (small
diameter) may not be sufficient for such greedy local routing algorithifisd¢he short paths. In the



right panel of Figure 3 we show that the routing efficiency does in fact seem to echo our theoretical
results — for the aforementioned dynamic, very short paths (only slightly higher than the diameter)
are found for smalty, much longer paths for larger.

Dynamics Greedy routing and dynamics

—a=
— a=
—a=
— a=

rwn e
a

"

©

Average distance
©
8

Average greedy routing distance

Iterations. Y 10° Iterations ©10°

Figure 3: Left panel: graph diameter vs. iterations for a simple dynamic. Right panel: greedy
routing efficiency vs. iterations for the same dynamic.

6 Extensions

We conclude by briefly mentioning generalizations of our theoretical results that we omit detailing.
All of the results carry over higher dimensions, where the threshold phenomenon takes place at
equaling the grid dimension. We can also easily handle the case where the grid wraps around rather
than having boundaries. We can also generalize to the pairwise link stability notion of [7], in which
that the cost of each link is shared between the end points of the edge. Finally, we can construct
networks which are stable.
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