
A Sparse Sampling Algorithm for Near-Optimal
Planning in Large Markov Decision Processes

Michael Kearns
AT&T Labs

mkearns@research.att.com

Yishay Mansour
AT&T Labs and Tel-Aviv University

mansour@research.att.com

Andrew Y. Ng
UC Berkeley

ang@research.att.com

Abstract

An issue that is critical for the application of
Markov decision processes (MDPs) to realis-
tic problems is how the complexity of planning
scales with the size of the MDP. In stochas-
tic environments with very large or even in�-
nite state spaces, traditional planning and rein-
forcement learning algorithms are often inappli-
cable, since their running time typically scales
linearly with the state space size in the worst
case. In this paper we present a new algorithm
that, given only a generative model (simulator)
for an arbitrary MDP, performs near-optimal
planning with a running time that has no de-
pendence on the number of states. Although
the running time is exponential in the horizon
time (which depends only on the discount fac-
tor and the desired degree of approximation
to the optimal policy), our results establish for
the �rst time that there are no theoretical bar-
riers to computing near-optimal policies in ar-
bitrarily large, unstructured MDPs.

1 Introduction

In the past decade, Markov decision processes (MDPs)
and reinforcement learning have become a standard
framework for planning and learning under uncertainty
within the arti�cial intelligence literature. The desire
to attack problems of increasing complexity with this
formalism has recently led researchers to focus particu-
lar attention on the case of (exponentially or even in-
�nitely) large state spaces. A number of interesting
algorithmic and representational suggestions have been
made for coping with such large MDPs. Function ap-
proximation [SB98] is a well-studied approach to learn-
ing value functions in large state spaces, and many au-
thors have recently begun to study the properties of
large MDPs that enjoy compact representations, such as
MDPs in which the state transition probabilities factor
into a small number of components [MHK+98].
In this paper, we are interested in the problem of com-

puting a near-optimal policy in a large or in�nite MDP
that is given | that is, we are interested in planning .

It should be clear that as an MDP becomes very large,
the classical planning assumption that the MDP is given
explicitly by tables of rewards and transition probabili-
ties becomes infeasible. One approach to this di�culty
is to assume that the MDP has some special structure
that permits compact representation (such as the fac-
tored transition probabilities mentioned above), and to
design special-purpose planning algorithms that exploit
this structure.

Here we take a rather di�erent approach. We consider
a setting in which our planning algorithm is given access
to a generative model , or simulator, of the MDP. Infor-
mally, this is a \black box" to which we can give any
state-action pair (s; a), and receive in return a randomly
sampled next state and reward from the distributions
associated with (s; a). Generative models are a natu-
ral way in which a large MDP might be speci�ed, and
are more general than most structured representations,
in the sense that structured representations usually pro-
vide an e�cient way of implementing a generative model.
Note also that since a generative model provides less in-
formation than explicit tables of probabilities, but more
information than a single continuous trajectory of ex-
perience generated according to some exploration pol-
icy, results obtained via a generative model blur the dis-
tinction between what is typically called \planning" and
\learning" in MDPs.

Our main result is a new algorithm that accesses the
given generative model to perform near-optimal planning
in an \on-line" fashion. From any given state s, the al-
gorithm samples the generative model for many di�erent
state-action pairs, and uses these samples to compute a
near-optimal action from s. The amount of time required
to compute a near-optimal action from any particular
state s has no dependence on the number of states in
the MDP, even though the next-state distributions from
s may of course be spread over the entire state space.
The key to our analysis is in showing that appropriate
sparse sampling su�ces to construct enough information
about the environment near s to compute a near-optimal
action. The analysis relies on a combination of Bell-
man equation calculations, which are standard in rein-
forcement learning, and uniform convergence arguments,
which are standard in supervised learning; this combina-

tion of techniques was �rst applied in [KS99]. As men-
tioned, the running time required at each state does have
an exponential dependence on the horizon time (which
can be shown to be unavoidable without further assump-
tions).
Note that this learning algorithm is itself simply a

(stochastic) policy that happens to use a generative
model as a subroutine. In this sense, if we view the
generative model as providing a \compact" representa-
tion of the MDP, our algorithm provides a correspond-
ingly \compact" representation of a near-optimal policy.
We view our result as complimentary to work that pro-
poses and exploits particular compact representations of
MDPs [MHK+98], with both lines of work beginning
to demonstrate the potential feasibility of planning and
learning in very large environments.

2 Preliminaries
We begin with the de�nition of a Markov decision pro-
cess on a set of N = jSj states, explicitly allowing the
possibility of the number of states being (countably or
uncountably) in�nite.

De�nition 1 A Markov decision process M on a
set of states S and with actions fa1; : : : ; akg consists
of:

� Transition Probabilities: For each state-action
pair (s; a), a next-state distribution Psa(s0) that
speci�es the probability of transition to each state
s0 upon execution of action a from state s.

� Reward Distributions: For each state-action pair
(s; a), a distribution Rsa on real-valued rewards for
executing action a from state s. We assume rewards
are bounded in absolute value by Rmax.

For simplicity, we shall assume in this paper that all
rewards are in fact deterministic. However, all of our
results have easy generalizations for the case of stochastic
rewards, with an appropriate and necessary dependence
on the variance of the reward distributions.

De�nition 2 A generative model for a Markov deci-
sion process M is a randomized algorithm that, on input
of a state-action pair (s; a), outputs Rsa and a state s0,
where s0 is randomly drawn according to the transition
probabilities Psa(�).

Following standard terminology in reinforcement
learning, we de�ne a (stochastic) policy to be any map-
ping � : S 7! fa1; : : : ; akg. Thus �(s) may be a random
variable, but depends only on the current state s. We
will be primarily concerned with discounted reinforce-
ment learning 1, so we assume we are given a number
0 � < 1 called the discount factor, with which we
then de�ne the value function V � for any policy �:

V �(s) = E

"
1X
i=1

i�1ri

����� s; �
#

(1)

1However, most of our results have straightforward gen-
eralizations to the undiscounted �nite-horizon case for any
�xed horizon H.

where ri is the reward received on the ith step of exe-
cuting the policy � from state s, and the expectation is
over the transition probabilities and any randomization
in �. Note that for any s and any �, jV �(s)j � Vmax ,
where we de�ne Vmax = Rmax=(1�).
We also de�ne the Q-function for a given policy � as

Q�(s; a) = Rsa + Es0�Psa(�) [V
�(s0)] (2)

(where the notation s0 � Psa(�) means that s0 is drawn
according to the distribution Psa(�)). We will later de-
scribe an algorithmA that takes as input any state s and
(stochastically) outputs an action a, and which there-
fore implements a policy. When we have such an al-
gorithm, we will also write V A and QA to denote the
value function and Q-function of the policy implemented
by A. Finally, we de�ne the optimal value function
and the optimal Q-function as V �(s) = sup� V

�(s) and
Q�(s; a) = sup� Q

�(s; a), and the optimal policy ��,
��(s) = argmaxaQ�(s; a) for all s 2 S.

3 Planning in Large or In�nite MDPs

Usually one considers the planning problem in MDPs
to be that of computing a near-optimal policy, given as
input the transition probabilities Psa(�) and the rewards
Rsa (for instance, by solving the MDP for the optimal
policy). Thus, the input is a complete and exact model,
and the output is a total mapping from states to actions.
Without additional assumptions about the structure of
the MDP, such an approach is clearly infeasible in very
large state spaces, where even reading all of the input
can take N2 time, and even specifying a general policy
requires space on the order of N . In such MDPs, a more
fruitful way of thinking about planning might be an on-
line view, in which we examine the per-state complexity
of planning. Thus, the input to a planning algorithm
would be a single state, and the output would be which
single action to take from that state. In this on-line view,
a planning algorithm is itself simply a policy (but one
that may need to perform some nontrivial computation
at each state).
Our main result is the description and analysis of an

algorithmA that, given access to a generative model for
an arbitrary MDPM , takes any state ofM as input and
produces an action as output, and meets the following
performance criteria:

� The policy implemented by A is near-optimal inM ;

� The running time of A (that is, the time required to
compute an action at any state) has no dependence
on the number of states of M .

This result is obtained under the assumption that the
input state to A requires only O(1) space, a standard
assumption known as the uniform cost model [AHU74],
that is typically adopted to allow analysis of algorithms
that operate on real numbers (such as we require to allow
in�nite state spaces). If one is unhappy with this model,
then algorithmA will su�er a dependence on the number
of states only equal to the space required to name the
states (at worst log(N) for N states).

3.1 A Sparse Sampling Planner

Here is our main result:

Theorem 1 There is a randomized algorithm A that,
given access to a generative model for any MDPM , takes
as input any state s 2 S and any value " > 0, outputs
an action, and satis�es the following two conditions:

� (E�ciency) The running time of A is O((kC)H),
where

H =
�
log(�=Vmax)

�
;

C =
Vmax

2

�2

�
2H log

kHVmax
2

�2
+ log

Rmax

�

�
;

� = (�(1�)2)=4; Vmax = Rmax=(1�):

In particular, the running time depends only on
Rmax, , and ", and does not depend on N = jSj. If
we view Rmax as a constant, this can also be written�

k

"(1�)

�O� 1
1� log

�
1

"(1�)

��
: (3)

� (Near-Optimality) The value function of the
stochastic policy implemented by A satis�es

jV A(s) � V �(s)j � " (4)

simultaneously for all states s 2 S.

As we have already suggested, it will be helpful to
think of algorithm A in two di�erent ways. On the one
hand, A is an algorithm that takes a state as input and
has access to a generative model, and as such we shall
be interested in its resource complexity | its running
time, and the number of calls it needs to make to the
generative model (both per state input). On the other
hand, A produces an action as output in response to each
state given as input, and thus implements a (possibly
stochastic) policy.
While a sketch of the proof of Theorem 1 is given in

Appendix A, and detailed pseudo-code for the algorithm
is provided in Figure 1, we now give some high-level in-
tuition for the algorithm and its analysis.
For the sake of simplicity, let us consider only the two-

action case here, with actions a1 and a2. Recall that the
optimal policy at s is given by ��(s) = argmaxaQ�(s; a),
and therefore is completely determined by, and easily
calculated from, Q�(s; �). Estimating the Q-values is a
common way of planning in MDPs, and the basic idea of
our algorithm is to �nd good estimates of Q�(s; a) for all
actions a by looking only within a small neighborhood
of s. In particular, for our algorithm to run in time
that does not depend on N = jSj, it is critical that the
size of this neighborhood does not depend on N , even
though, for example, s may have very di�use transition
probabilities, so that it is possible to reach any other
state in S from s.
From the standard duality between Q-functions and

value functions, the task of estimating Q-functions is
very similar to that of estimating value functions. So
while the algorithm uses the Q-function, we will, purely

for expository purposes, actually describe here how we
estimate V �(s).
There are two parts to the approximation we use.

First, rather than estimating V �, we will actually es-
timate, for a value of H to be speci�ed later, the H-step
expected discounted reward

V �
h (s) = E

"
hX
i=1

i�1ri

����� s; ��
#

(6)

where ri is the reward received on the ith time step upon
executing the optimal policy �� from s. Note the \0-
step" expected discounted reward is easy to estimate:
Since V �

0 (s) = 0, we may simply pick our 0-step esti-

mates to be V̂ �
0 (s) = 0. Moreover, we see that the V �

h (s),
for h � 1, are recursively given by

V �
h (s) = Rsa� + Es0�Psa� (�)[V

�
h�1(s

0)]

� max
a
fRsa + Es0�Psa(�)[V

�
h�1(s

0)]g (7)

where a� is the action taken by the optimal policy from
state s. The quality of the approximation in Equa-
tion (7) becomes better for larger values of h, and is
controllably tight for the largest value h = H we even-
tually choose. One of the main e�orts in the proof is
establishing that the error incurred by the recursive ap-
plication of this approximation can be made controllably
small by choosing H su�ciently large.
Thus, if we are able to obtain an estimate V̂ �

h�1(s
0) of

V �
h�1(s

0) for any s0, we can inductively de�ne an algo-

rithm for �nding an estimate V̂ �
h (s) of V

�
h (s) by making

use of Equation (7). Our algorithm will approximate the
expectation in Equation (7) by a sample of C random
next states from the generative model, where C is a pa-
rameter to be determined (and which, for reasons that
will become clear later, we call the \width"). Recur-

sively, given a way of �nding the estimator V̂ �
h�1(s

0) for

any s0, we �nd our estimate V̂ �
h (s) of V

�
h (s) as follows:

1. For each action a, use the generative model to get
Rsa and to sample a set Sa of C independently sam-
pled states from the next-state distribution Psa(�).

2. Use our procedure for �nding V̂ �
h�1 to estimate

V̂ �
h�1(s

0) for each state s0 in any of the sets Sa.

3. Following Equation (7), our estimate of V �
h (s) is

then given by

V̂ �
h (s) = max

a

(
Rsa +

1

C

X
s02Sa

V̂ �
h�1(s

0)

)
: (8)

We have described our algorithm \bottom up," but it
is also informative to view it \top down." Our algorithm
is essentially building a sparse look-ahead tree. Figure 2
shows a conceptual picture of this tree for a run of the
algorithm from an input state s0, for C = 3. (C will typ-
ically be much larger.) From the root s0, we try action
a1 three times and action a2 three times. From each of

Function: EstimateQ(h;C; ;G; s)
Input: depth h, width C, discount , A generative model G, state s.
Output: A list (Q̂�

h(s; a1); Q̂
�
h(s; a2); : : : ; Q̂

�
h(s; ak)), of estimates of the Q

�(s;ai).

1. If n = 0, return (0; : : : ; 0).

2. For each a 2 A, use G to generate C samples from the next-state distribution Psa(�). Let
Sa be a set containing these C next-states.

3. For each a 2 A and let our estimate of Q�(s; a) be

Q̂
�
h(s;a) = R(s; a) +

1

C

X
s02Sa

EstimateV(h � 1; C; ;G; s0): (5)

4. Return (Q̂�
h(s; a1); Q̂

�
h(s; a2); : : : ; Q̂

�
h(s;ak)).

Function: EstimateV(h; C; ;G; s)
Input: depth h, width C, discount , generative model G, state s.
Output: A number V̂ �

h (s) that is an estimate of V �
h (s).

1. Let (Q̂�
h(s; a1); Q̂

�
h(s; a2); : : : ; Q̂

�
h(s; ak)) := EstimateQ(h;C; ;G; s).

2. Return maxa2fa1;:::;akgfQ̂
�
h(s; a)g.

Function: Algorithm A(�; ;Rmax ;G; s0)
Input: tolerance �, discount , max reward Rmax , generative model G, state s0.
Output: An action a.

1. Let the required horizon H and width C parameters be calculated as given as functions of
�, and Rmax in Theorem1.

2. Let (Q̂�
H(s; a1); Q̂

�
H(s; a2); : : : ; Q̂

�
H(s; ak)) := EstimateQ(H;C; ;G; s0).

3. Return argmaxa2fa1;:::;akgfQ̂
�
H(s; a)g.

Figure 1: Algorithm A for planning in large or in�nite state spaces. EstimateV �nds the V̂ �
h described in the text, and

EstimateQ �nds analogously de�ned Q̂�
h. Algorithm A implements the policy.

the resulting states, we also try each action C times, and
so on down to depth H in the tree. Zero values assigned
to the leaves then correspond to our estimates of V̂ �

0 ,

which are \backed-up" to �nd estimates of V̂ �
1 for their

parents, which are in turn backed-up to their parents,
and so on, up to the root to �nd an estimate of V̂ �

H (s0).
To complete the description of the algorithm, all that

remains is to choose the depth H, depth, and C, which
controls the width of the tree. Bounding the required
depth H is the easy and standard part. It is not hard
to see that if we choose depth H = log �(1 �)=Rmax
(the so-called �-horizon time), then the discounted sum
of the rewards that is obtained by considering rewards
beyond this horizon is bounded by �.
However, such a tree may still be as large as M itself,

depending on the choice of C. For instance, if the next-
state distribution from s is uniform or nearly uniform
over all the states inM , then it would naively seem that,
in order to approximate the next-state distributions well,
we would need to take at least C = O(N) samples, if only
to make sure we see most of possible next-states at least
once in our samples.
The central claim we establish about C is that it can

be chosen independent of the number of states inM , yet
still result in choosing near-optimal actions at the root.

The key to the argument is that even though small sam-
ples may give very poor approximations to the next-state
distribution at each state in the tree, they will, never-
theless, give good estimates of the expectation terms of
Equation (7), and that is really all we need. For this
we apply a careful combination of uniform convergence
methods and inductive arguments on the tree depth.
Again, the technical details of the proof of Theorem 1
are sketched in Appendix A.

The resulting tree thus represents only a vanishing
fraction of all of the H-step paths starting from s0
that have non-zero probability in the MDP | that is,
the sparse look-ahead tree covers only a vanishing part
of the full look-ahead tree. In this sense, our algo-
rithm is clearly related to and inspired by classical look-
ahead search techniques [RN95] our main contribution
is in showing that in very large stochastic environments,
clever random sampling su�ces to reconstruct nearly all
of the information available in the (exponentially or in-
�nitely) large full look-ahead tree. Note that in the case
of deterministic environments, where from each state-
action pair we can reach only a single next state, the
sparse and full trees coincide (assuming a memoization
trick described below), and our algorithm reduces to
classical deterministic look-ahead search.

 a2a1 a2a1 a2a1 a1 a2

a1 a2

a1 a1 a2a2

a1 a2

 H
Depth

... ...

...

 s0

Figure 2: Sparse look-ahead tree of states constructed by
the algorithm. (Shown with C = 3, actions a1, a2.)

3.2 Practical Issues and Lower Bounds

Even though the running time of algorithm A does not
depend on the size of the MDP, it still runs in time ex-
ponential in the �-horizon time H, and therefore expo-
nential in 1=(1 �). It would seem that the algorithm
would be practical only if is not too close to 1. Never-
theless, there are a couple of simple tricks that may help
to reduce the running time in certain cases.
The �rst idea is simply to use memoization in our sub-

routines for calculating the V̂ �
h (s)'s. In Figure 2, this

means that whenever there are two nodes at the same
level of the tree that correspond to the same state, we
collapse them into one node (keeping just one of their
subtrees). While it is straightforward to show the cor-
rectness of such memoization procedures for determin-
istic procedures, one should be careful when addressing
randomized procedures; we can show that the properties
of the algorithm are maintained under this optimization
(details are deferred to the full version of the paper).
In implementing the algorithm, one may also wish not

to specify � in advance, but rather just try to do as well
as is possible with the computational resources available,
in which case an \iterative-deepening" approach may be
taken. In our case, this would entail simultaneously in-
creasing C and H by decreasing the target �. Also, as
studied in Davies et. al. [DNM98], if we have access to
an initial estimate of the value function, we can replace
our estimates V̂ �

0 (s) = 0 at the leaves with the estimated
value function at those states. Though we shall not do so
here, it is again easy to make formal performance guar-
antees depending on C, H and the supremum error of
the value function estimate we are using.
Unfortunately, despite these tricks, it is not di�cult to

prove a lower bound that shows that any planning algo-
rithm with access only to a generative model, and which
implements a policy that is �-close to optimal in a gen-
eral MDP, must have running time at least exponential
in the �-horizon time.

4 Summary and Related Work

We have described an algorithm for near-optimal plan-
ning from a generative model, that has a per-state run-
ning time that does not depend on the size of the state

space, but which is still exponential in the �-horizon
time. Two interesting directions for improvement are
to allow partially observable MDPs, and to �nd more
e�cient algorithms that do not have exponential de-
pendence on the horizon time. As a �rst step towards
both of these goals, in a separate paper we investigate
a framework in which the goal is to use a generative
model to �nd a near-best strategy within a restricted
class of strategies for a POMDP. Typical examples of
such restricted strategy classes include limited-memory
strategies in POMDPs, or policies in large MDPs that
implement a linear mapping from state vectors to ac-
tions. Our main result in this framework says that as
long as the restricted class of strategies is not too \com-
plex" (where this is formalized using appropriate gener-
alizations of standard notions like VC dimension from
supervised learning), then it is possible to �nd a near-
best strategy from within the class, in time that again
has no dependence on the size of the state space. If the
restricted class of strategies is smoothly parameterized,
then this further leads to a number of fast, practical
algorithms for doing gradient descent to �nd the near-
best strategy within the class, where the running time
of each gradient descent step now has only linear rather
than exponential dependence on the horizon time.

References
[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The

Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[DNM98] Scott Davies, Andrew Y. Ng, and Andrew Moore.
Applying online-search to reinforcement learn-
ing. In Proceedings of AAAI-98, pages 753{760.
AAAI Press, 1998.

[KS99] Michael Kearns and Satinder Singh. Finite-
sample convergence rates for Q-learning and indi-
rect algorithms. In Neural Information Process-

ing Systems 12. MIT Press, (to appear), 1999.

[MHK+98] N. Meuleau, M. Hauskrecht, K-E. Kim,
L. Peshkin, L.P. Kaelbling, T. Dean, and
C. Boutilier. Solving very large weakly coupled
Markov decision processes. In Proceedings of

AAAI, pages 165{172, 1998.

[RN95] S. Russell and P. Norvig. Arti�cial Intelligence
| A Modern Approach. Prentice Hall, 1995.

[SB98] Richard S. Sutton and Andrew G. Barto. Rein-
forcement Learning. MIT Press, 1998.

[SY94] Satinder Singh and Richard Yee. An upper
bound on the loss from approximate optimal-
value functions. Machine Learning, 16:227{233,
1994.

Appendix A: Proof Sketch of Theorem 1

In this appendix, we sketch the proof of Theorem 1.
Throughout the analysis we will rely on the pseudo-code
provided for algorithm A given in Figure 1.
The claim on the running time is immediate from the

de�nition of algorithmA. Each call to EstimateQ gen-
erates kC calls to EstimateV, C calls for each action.

Each recursive call also reduces the depth parameter h by
one, so the depth of the recursion is at most H. There-
fore the running time is O((kC)H).
The main e�ort is in showing that the values of Esti-

mateQ are indeed good estimates of Q� for the chosen
values of C and H. There are two sources of inaccuracy
in these estimates. The �rst is that we use only a �nite
sample to approximate an expectation | we draw only
C states from the next-state distributions. The second
source of inaccuracy is that in computing EstimateQ,
we are not actually using the values of V �(�) but rather
values returned by EstimateV, which are themselves
only estimates. The crucial step in the proof is to show
that as h increases, the overall inaccuracy decreases.
Let us �rst de�ne an intermediate random variable

that will capture the inaccuracy due to the limited sam-
pling. De�ne U�(s; a) as follows:

U�(s; a) = Rsa +
1

C

CX
i=1

V �(si) (9)

where the si are drawn according to Psa(�). Note that
U�(s; a) is averaging values of V �(�), the unknown value
function. Since U�(s; a) is used only for the proof and
not in the algorithm, there is no problem in de�ning it
this way. The next lemma (proof omitted) shows that
with high probability, the di�erence between U�(s; a)
and Q�(s; a) is at most �.

Lemma 2 For any state s and action a, with probability

at least 1� e��
2C=Vmax

2
we have

jQ�(s; a) � U�(s; a)j

=

�����Es�Psa(�)[V �(s)] �
1

C

X
i

V �(si)

����� � �;

where the probability is taken over the draw of the si from
Psa(�).

Now that we have quanti�ed the error due to �nite
sampling, we can bound the error from our using values
returned by EstimateV rather than V �(�). We bound
this error as the di�erence between U�(s; a) and Esti-
mateV. In order to make our notation simpler, let V n(s)
be the value returned by EstimateV(n;C; ;G; s),
and let Qn(s; a) be the component in the output of
EstimateQ(n;C; ;G; s) that corresponds to action a.
Using this notation, our algorithm computes

Qn(s; a) = Rsa +
1

C

CX
i=1

V n�1(si) (10)

where V n�1(s) = maxafQn�1(s; a)g, and Q0(s; a) = 0
for every state s and action a.
We now de�ne a parameter �n that will eventually

bound the di�erence between Q�(s; a) and Qn(s; a). We
de�ne �n recursively:

�n+1 = (� + �n) (11)

where �0 = Vmax . Solving for �H we obtain

�H =

HX
i=1

i�

!
+ HVmax �

�

1�
+ HVmax : (12)

The next lemma (proof omitted) bounds the error in
the estimation, at level n, by �n. Intuitively, the error
due to �nite sampling contributes �, while the errors in
estimation contribute �n. The combined error is �+�n,
but since we are discounting, the e�ective error is only
(� + �n), which by de�nition is �n+1.

Lemma 3 With probability at least

1� (kC)ne��
2C=Vmax

2

we have that

jQ�(s; a) �Qn(s; a)j � �n: (13)

From �H � HVmax + �=(1 �), we also see
that for H = log(�=Vmax), with probability 1 �

(kC)He��
2C=Vmax

2

all the �nal estimates QH(s0; a) are
within 2�=(1 �) from the true Q-values. The
next step is to choose C such that � = �=Rmax �

(kC)He��
2C=Vmax

2
will bound the probability of a bad

estimate during the entire computation. Speci�cally,

C =
Vmax

2

�2

�
2H log

kHVmax
2

�2
+ log

1

�

�
(14)

is su�cient to ensure that with probability 1� � all the
estimates are accurate.
At this point we have shown that with high probabil-

ity, algorithm A computes a good estimate of Q�(s0; a)
for all a, where s0 is the input state. To complete the
proof, we need to relate this to the expected value of a
stochastic policy. We give a fairly general result about
MDPs, which does not depend on our speci�c algorithm.
(A similar result appears in [SY94].)

Lemma 4 Assume that � is a stochastic policy, so that
�(s) is a random variable. If for each state s, the proba-
bility that Q�(s; ��(s))�Q�(s; �(s)) < � is at least 1��,
then the discounted in�nite horizon return of � is at most
(�+2�Vmax)=(1�) from the optimal return, that is, for
any state s V �(s) � V �(s) � (� + 2�Vmax)=(1�).

Now we can combine all the lemmas to prove our main
theorem.
Proof of Theorem 1: As discussed before, the run-
ning time is immediate from the algorithm, and the main
work is showing that we compute a near-optimal policy.
By Lemma 3 we have that the error in the estimation of
Q� is at most �H , with probability 1�(kC)H . Using the
values we chose for C and H we have that with proba-
bility 1� � the error is at most 2�=(1�). By Lemma 4
this implies that such a policy � has the property that
from every state s,

V �(s) � V �(s) �
2�

(1�)2
+

2�Vmax
1�

: (15)

Substituting back the values of � = �=Rmax and � =
�(1�)2=4 that we had chosen, it follows that

V �(s) � V �(s) �
4�

(1�)2
= �: (16)

2

