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Abstract

Stochastic simulation algorithms such as like-
lihood weighting often give fast, accurate
approximations to posterior probabilities in
probabilistic networks, and are the methods
of choice for very large networks. Unfor-
tunately, the special characteristics of dy-
namic probabilistic networks (DPNs), which
are used to represent stochastic temporal pro-
cesses, mean that standard simulation algo-
rithms perform very poorly. In essence, the
simulation trials diverge further and further
from reality as the process is observed over
time. In this paper, we present simulation
algorithms that use the evidence observed at
each time step to push the set of trials back
towards reality. The �rst algorithm, \evi-
dence reversal" (ER) restructures each time
slice of the DPN so that the evidence nodes
for the slice become ancestors of the state
variables. The second algorithm, called \sur-
vival of the �ttest" sampling (SOF), \repop-
ulates" the set of trials at each time step us-
ing a stochastic reproduction rate weighted
by the likelihood of the evidence according
to each trial. We compare the performance
of each algorithm with likelihood weighting
on the original network, and also investigate
the bene�ts of combining the ER and SOF
methods. The ER/SOF combination appears
to maintain bounded error independent of the
number of time steps in the simulation.

1 Introduction

Dynamic probabilistic networks or DPNs (Dean and
Kanazawa, 1989; Nicholson and Brady, 1992; Kjaerul�,
1992) are a species of belief network designed to model
stochastic temporal processes.1 They do so by using
a section of the network called a time slice to repre-

1Alternative terms include dynamic belief networks and
temporal belief networks.

sent a snapshot of the evolving temporal process. The
DPN consists of a sequence of time slices where nodes
within time slice t are connected to nodes in time slice
t+ 1 as well as to other nodes within slice t. Figure 1
shows the coarse structure of a generic DPN. The con-
ditional probability tables (CPTs) for a DPN include
a state evolution model, which describes the transi-
tion probabilities between states, and a sensor model,
which describes the observations that can result from
a given state. Typically, one assumes that the CPTs
in each slice do not vary over time. The same param-
eters therefore will be duplicated in every time slice in
the network.

STATE EVOLUTION MODEL

SENSOR MODEL

Percept.t−2 Percept.t−1 Percept.t Percept.t+1 Percept.t+2

State.t−2 State.t−1 State.t State.t+1 State.t+2

Figure 1: Generic structure of a dynamic probabilistic
network. In an actual network, there may be many state
and sensor variables in each time slice.

DPNs serve a number of purposes. They can be used
for monitoring a partially observable system|for ex-
ample, Nicholson and Brady used a DPN to track mov-
ing robots using light beam sensors. They can be used
to project possible future evolutions of the observed
system by adding slices into the future. When deci-
sion nodes are added, they enable approximately ra-
tional decision-making with a limited horizon (Tatman
and Shachter, 1990). We have used them for freeway
surveillance (Huang et al., 1994) and for controlling an
autonomous vehicle (Forbes et al., 1995). In this pa-
per, we concentrate on the use of DPNs for monitoring,
i.e., maintaining a probability distribution over the
possible current states of the world. Since the correct
decision in any partially observable environment de-
pends on this distribution (Astrom, 1965), monitoring
is also an essential component of embedded decision-
makers.

Exact clustering algorithms for DPNs are described by



Kjaerul� (1992). In our applications, we have found
that the clustering approach is too expensive and that
exact probabilities are not needed. Furthermore, when
continuous variables are included, DPNs seldom con-
form to the structural requirements for CG distribu-
tions (Lauritzen and Wermuth, 1989). Hence, exact
algorithms are not available. We have therefore in-
vestigated the use of stochastic simulation algorithms,
which often provide fast approximations to the re-
quired probabilities and can be used with arbitrary
combinations of discrete and continuous distributions.
In the context of DPNs, stochastic simulation meth-
ods attempt to approximate the joint distribution for
the current state using a collection of \simulated re-
alities," each describing one possible evolution of the
environment.

The simplest simulation algorithm is logic sam-
pling (Henrion, 1988). Logic sampling stochastically
instantiates the network, beginning with the root
nodes and using the appropriate conditional distribu-
tions to extend the instantiation through the network.
Because logic sampling discards trials whenever a vari-
able instantiation conicts with observed evidence, it
is likely to be ine�ective in DPN-based monitoring
where evidence is observed throughout the temporal
sequence.2

Likelihood weighting (LW) (Fung and Chang, 1989;
Shachter and Peot, 1989) attempts to overcome this
general problem with logic sampling. Rather than dis-
carding trials that conict with evidence, each trial
is weighted by the probability it assigns to the ob-
served evidence. Probabilities on variables of interest
can then be calculated by taking a weighted average of
the values generated in the population of trials. It can
be shown that likelihood weighting produces an unbi-
ased estimate of the required probabilities. The LW
algorithm, which we have adapted for the purposes of
maintaining beliefs in a DPN as evidence arrives over
time, is shown in Figure 2. We use the notation Et to
denote the evidence variables for time slice t, and Xt

to denote the state variables for time slice t. N is the
number of samples to be generated, si is the ith sam-
ple, wsi is its weight, and T is the number of time steps
for which the simulation is to be run. Likelihood(Ejs)
denotes the product of the individual conditional prob-
abilities for the evidence in E given the sampled values
for their parents in s. At each time slice, the current
belief for Xt is calculated as the normalized score from
the whole sample set.

The use of likelihood weighting in DPNs reveals some
problems that require special treatment. The di�culty
is that a straightforward application generates simu-
lations that simply ignore the observed evidence and
therefore become increasingly irrelevant. Consider a
simple example: tracking a moving dot on a 2-D sur-

2On the other hand, logic sampling is extremely e�ec-
tive for projection, because no evidence is observed in fu-
ture slices.

procedure Likelihood-Weighting()

loop for i = 1 : : : N

wsi 1.0
loop for t = 0 : : : T

Instantiate Et

loop for i = 1 : : : N

Add sample of Xt to si

wsi wsi � Likelihood(Et j si)
Add wsi to score for sampled values of Xt

Figure 2: The Likelihood Weighting algorithm.

face. Suppose that the state evolution model is fairly
weak|for example, it models the motion as a random
walk|but that the sensor is fairly accurate with a very
smallGaussian error. Figure 3 illustrates the di�culty.
The samples are evolved according to the state evolu-
tion model, spreading out randomly over the surface,
whereas the object moves along some particular trajec-
tory that is unrelated to the sample distribution. The
weighting process will assign extremely low weights to
almost all of the samples because they disagree with
the sensor observations. The estimated distribution
will be dominated by a very small number of sam-
ples that are closest to the true state, so the e�ective
number of samples diminishes rapidly over time. This
results in large estimation errors. All this occurs de-
spite the fact that the sensors can track the object with
almost no error! In the case of tra�c surveillance, we
have discovered that a naive application of likelihood
weighting results in a large number of more or less
imaginary tra�c scenes that bear almost no relation
to what is actually happening on the road.

Figure 3: A simple 2-D monitoring problem. An object
starts in the centre of the disc and follows the path shown
by the solid line. Sensor observations are shown by crosses.
The small circles show a snapshot of the population of sam-
ples generated by a naive application of likelihood weight-
ing. Snapshots for t = 2 and t = 7 are shown.

Clearly, we need algorithms that use the current sen-
sor values to reposition the sample population closer
to reality rather than allowing them to evolve as if
no sensor values were available. Section 2 describes
a simple method (evidence reversal) for restructuring
the DPN so that likelihood weighting has the desired
e�ect. Section 3 describes a related method (survival
of the �ttest) that uses the likelihood weights to prefer-



entially propagate the most likely samples, and shows
how this can be combined with evidence reversal. Sec-
tion 4 describes an experimental comparison of these
techniques with naive LW.

2 Evidence reversal

It has long been known that stochastic simulation al-
gorithms are quite e�ective if the network contains no
evidence (Dagum and Luby, 1993). The same argu-
ment can be used to show that if all the evidence in a
network is at the root nodes, approximating the prob-
abilities in the rest of the network is computationally
tractable. This explains the appeal of logic sampling
for projection, but is not directly applicable to the
monitoring problem (where evidence is obtained for
every time slice). We can force the evidence to be at
the root nodes of any network simply by reversing all
the arcs using Shachter's (1986) transformations, but
doing this to an n-slice DPN results in an exponential
blowup. As a compromise, we can do some judiciously
selected arc reversals as suggested by Fung and Chang.
In the speci�c case of DPNs, we can take advantage
of the fact that each sample, once it instantiates vari-
ables in time slice t�1, d-separates all preceding time
slices from the state at time t. We then simply reverse
the arcs within slice t, so that the evidence at t and
the state at t � 1 become the parents of the state at
time t. This is shown in schematic form in Figure 4.

Percept.t

State.t−1 State.t

Percept.t

State.t−1 State.t

Figure 4: Schematic diagram of the evidence reversal
transformation for DBNs.

The process is then as follows. For each time slice,
we have some number k of fully speci�ed states along
with their weights.

1. Reverse the arcs from evidence to state at time t;
the state variables at time t � 1 are now parents
of the evidence at time t.

2. Use the evidence at time t to adjust the weights of
the samples at time t�1, as in standard likelihood
weighting.

3. Propagate each sample at time t� 1 through the
modi�ed state-evolution model which uses the ev-
idence at time t (as obtained in the arc-reversed
time slice).

In ER, the current evidence is a parent of the current
state; therefore, it can inuence the process of extend-
ing the samples to the state variables at t. In partic-
ular, in the 2-D tracking example shown in Figure 3,
all the samples will stay closely clustered around the

observed position of the object because the accurate
sensor readings will dominate the weak state evolution
model in the conditional distribution for generating
the new samples.

3 Survival of the �ttest

The problem with the naive application of sampling
algorithms can also be viewed as one of resource allo-
cation. The samples are a constrained resource, and
should be allocated in the state space to try to \�t" the
actual joint distribution as well as possible. Samples
that have wandered o� into totally imaginary scenarios
should not be propagated, since they do not contribute
enough to the estimation of the desired probabilities.
The idea of survival-of-the-�ttest (SOF) sampling is to
preferentially propagate forward in time those samples
that have high likelihood for the observed evidence.
The SOF process keeps a �xed number of samples,
but generates the sample population for time slice t by
a weighted random selection from the samples at time
t�1, where the weight is given by the likelihood for the
evidence observed at time t. This idea is closely related
to the use of �tness-related propagation in genetic al-
gorithms and the sample-repositioning method used in
randomized \go with the winners" algorithms (Aldous
and Vazirani, 1994).

The SOF approach can also be understood as a slice-
by-slice likelihood weighting process. Rather than us-
ing the samples to provide an approximation to the
joint probability distribution over the entire (multi-
slice) network, we only use them to propagate the be-
lief state|the joint probability distribution over the
state|from one time slice to the next. More precisely,
the weighted samples at time t� 1 are an approxima-
tion to the belief state at time t� 1. We can then use
that approximate belief state as our starting point for
the sampling at the next time slice. That is, we sample
each state according to its weight, as de�ned by our
current (likelihood weighted) samples. These samples
are in turn weighted using the evidence at time t, and
provide an approximation of the belief state at time t.
Note that the probability of sampling a given state at
time t is given just by the likelihood for the evidence
at time t, and not by the accumulated likelihood for all
evidence up to and including time t (as would be the
case in standard likelihood weighting). This is because
the sample population at time t�1 in SOF already re-
ects the evidence up to time t�1 through the process
of preferential propagation. The algorithm is shown in
Figure 5.

SOF clearly provides some improvement over likeli-
hood weighting in general, but does not take advan-
tage of the sensor values in quite the same way as
ER. In the context of the 2-D tracking problem, SOF
will multiply the samples closest to the actual track
so that almost the entire population consists of \rea-
sonable" samples and will never spread out over the
entire surface. However, the samples will spread out



procedure SOF()

loop for t = 0 : : : T

Instantiate Et

loop for i = 1 : : : N

Add sample of Xt to si

wsi Likelihood(Et j si)
Add wsi to score for sampled values of Xt

Repopulate sample set by randomized
selection weighted by wsi

Figure 5: The Survival-of-the-Fittest algorithm.

by an amount related to the uncertainty in the state
evolution model, regardless of how accurate the sensor
model is. Fortunately, the advantages provided by ER
and SOF can be combined into an ER/SOF hybrid,
simply by applying SOF to the ER sampling process.
That is, rather than propagating all the slice-t�1 sam-
ples at step 3 in the ER algorithm, we use the SOF
technique to focus on the ones that are most likely.
That is, we sample from the distribution obtained in
step 2 of the ER algorithm, and then propagate those
through the modi�ed state-evolution model.

4 Empirical results

In this section, we report on some simple experiments
we carried out to con�rm the intuitive ideas presented
above. The network used in our experiments has the
same topology as the network shown in Figure 1.3 The
aim is to investigate the problem of sample population
divergence over time, and to show that ER and SOF
mitigate the problem. We measure the average ab-
solute error in the marginal probabilities of the state
variables of a time slice as a function of t|that is, the
x{axis measures time in the simulated environment.

Figure 6 shows the error behaviour for LW over 50
time steps for 25, 100, 1000, and 10000 samples, av-
eraged over 50 randomly generated sets of evidence.
The results clearly show that LW fails dramatically
even on this very simple network. The problem is that
as any given sample is propagated over time, sooner
or later it will sample a state value that makes the
observed evidence impossible (for each state value in
our network, one of the four observation values in not
possible). After su�ciently many steps, all the sam-
ples end up with weight 0, at which point we assign an
error of 1.0. Thus, after 39 steps with 25 samples, all
the samples are extinguished in all 50 cases. Multiply-
ing the number of samples only delays the inevitable
by a small number of steps.

Figure 7 shows the corresponding error behaviour for
ER. Note that the scale of the y{axis is increased by
10. Thus, the error remains well within the acceptable

3We are currently working to generate similar experi-
mental data for our tra�c surveillance networks.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

A
vg

 a
bs

ol
ut

e 
er

ro
r

Time step

25 samples
100 samples

1000 samples
10000 samples

Figure 6: Performance of LW: Graph showing the average
absolute error in the marginal probabilities of the state
variables of a time slice as a function of t, averaged over 50
randomly generated evidence cases.

range. It does, however, show a slow increase over
time. It is possible that the error asymptotes as t !
1, but we have not yet run those experiments.
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Figure 7: Performance of ER: Graph showing the average
absolute error in the marginal probabilities of the state
variables of a time slice as a function of t, averaged over 50
randomly generated evidence cases.

Figures 8, 9, and 10 show the performance of SOF and
ER/SOF, compared with ER, for 25, 100, and 1000
samples respectively. The results show that SOF is
an e�ective mechanism for maintaining bounded error
over time. Although SOF on its own shows somewhat
higher error than ER, as one would expect, the com-
bination of ER and SOF shows low error for all time
steps and shows no sign of diverging at all.

Finally, Figure 11 shows the performance of ER, SOF,
and ER/SOF as a function of the number of samples
for the range 50 to 1000 samples. The graph gives
the average absolute error in the marginal probabili-
ties of the state variable at t = 50. The graphs show
that SOF seems to bene�t much less from additional
samples than ER|in fact, the curve is almost at.
Currently, our theoretical analysis of the algorithm is
not su�ciently advanced to explain this phenomenon.
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Figure 8: Performance of ER, SOF, and ER/SOF: Graph
showing the average absolute error in the marginal proba-
bilities of the state variables of a time slice as a function
of t, averaged over 50 randomly generated evidence cases,
for 25 samples.
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Figure 9: Performance of ER, SOF, and ER/SOF: Graph
showing the average absolute error in the marginal proba-
bilities of the state variables of a time slice as a function
of t, averaged over 50 randomly generated evidence cases,
for 100 samples.
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Figure 10: Performance of ER, SOF, and ER/SOF: Graph
showing the average absolute error in the marginal proba-
bilities of the state variables of a time slice as a function
of t, averaged over 50 randomly generated evidence cases,
for 1000 samples.
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Figure 11: Performance of ER, SOF, and ER/SOF as a
function of the number fo samples: Graph showing the av-
erage absolute error in the marginal probabilities of the
state variables for time slice t = 50, averaged over 50 ran-
domly generated evidence cases.

5 Conclusion and further work

We have presented two very simple and intuitive im-
provements that make the likelihood weighting tech-
nique e�ective for dynamic probabilistic networks.
Early experimental results con�rm our intuitions. In
particular, the error for SOF and ER/SOF seems to be
independent of the number of time steps in the simu-
lation. This is an absolute requirement for monitoring
applications such as tra�c surveillance, where infer-
ence continues over many days of real time.

Further work needs to be done to establish the theoret-
ical properties of the algorithms. The most obvious is-
sue is whether these approaches are unbiased: do they
converge to the right answer as the number of samples
grows to in�nity. ER is clearly unbiased, because it
just an application of likelihood weighting to a modi-
�ed network structure. It seems fairly straightforward
to show that SOF (and therefore ER/SOF) converge
to the correct values in the large-sample limit using
standard probabilistic techniques.

We would also like to investigate the expected error
as a function of sample size for LW, ER, SOF, and
ER/SOF. This should be fairly simple for speci�c net-
work structures such as that shown in Figure 1. Under-
standing the algorithms' behaviour for general DPNs
is more di�cult. Intuitively, the improvement of ER
and SOF is more pronounced in those cases where the
evidence gives us a lot of information about the state.
At one extreme, if the sensor model is completely accu-
rate, ER will be completely accurate with only a single
sample. The behavior of SOF in these circumstances
will also depend on the behavior of the state-evolution
model. If this is fairly well-behaved, it appears that
SOF will also do well. At the other extreme, if the
sensor model is just noise, neither approach seems to
provide an advantage over LW. We hope to analyze
the improvement of these algorithms using such quan-
tities as (1) the distance (in terms of relative entropy)



between the belief-state distribution at time t and at
time t+1, and (2) the amount of information (in terms
of entropy) obtained by considering the sensors.

Finally, SOF is a technique that can be applied to arbi-
trary networks, not just DPNs. It would be interesting
to see if it provides consistently better results than LW
for general networks. Since LW is currently the best
algorithm known for very large networks, this would
be a useful development.
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