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we have
4(2eNm=W )W e��

2�m=2 � �:

To see this, �rst note that by rearranging, we get

�2�m=2 �W ln(2eNm=W ) + ln(4=�):

thus it su�ces to show

�2�m=4 �W ln(2eNm=W ) and �2�m=4 � ln(4=�):

The latter inequality is assured by the last term in the formula for m. For the former
inequality, let us take m equal to the �rst term only, i.e.

m =
8W

�2�
ln
16N

�2�
:

Substituting this into the former inequality and simplifying, we get

2 ln
16N

�2�
� ln

�
16eN

�2�
ln
16N

�2�

�
:

This further simpli�es to
16N

�2�
� e ln

16N

�2�
;

which holds, since x � e lnx for any x. Finally, since this inequality holds for the given m,
it is easy to see that it will also hold for larger m. 2
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non-increasing. Di�erent �'s can be used for di�erent units. Let H be all functions from
X into A representable on A by varying the weights and biases. Let � > 0, 0 < � < 1 and

m � 1. Suppose that ~z is generated by m independent random draws from a probability
measure P on Z = X � Y . Then

Pr (9h 2 H : d�(brh;l(~z); rh;l(P )) > �) � 4(2eNm=W )W e��
2�m=2:

This probability is at most � for a sample size m that is

O
�

1

�2�

�
W log

N

��
+ log

1

�

��
:

Proof. Each computation unit in the network with k weights is associated with a class of

f0; 1g-valued functions of the form

f(~x) = sign(�(�1(~x); . . . ; �k(~x)) + � +
kX

j=1

wj�j(~x)))

where �;w1; . . . ; wk are adjustable real-valued parameters and �1, ..., �k, � and � are
�xed functions, the latter monotone. By Theorems 4 and 5 this class of functions has
pseudo dimension at most k + 1. Since the pseudo dimension is the same as the Vapnik

Chervonenkis dimension for classes of indicator functions, this implies that the class has
Vapnik Chervonenkis dimension at most k + 1. Now let d be the sum of all the Vapnik
Chervonenkis dimensions of all the classes of functions associated with the computation

units of the architecture A. It follows that d �W , the total number of weights and biases
in the network.

For each h 2 H let lh be the loss function associated with h for the discrete loss l,
i.e. lh(x; y) = 1 if y 6= h(x), lh(x; y) = 0 if y = h(x). Let F = lH = flh : h 2 Hg. Let

~z = ((x1; y1); . . . ; (xm; ym)) be any �xed sample and ~x = (x1; . . . ; xm). It is easily veri�ed
that jFj~z j = jHj~xj. It is shown in [BH89], Theorem 1, (and is also implied directly from
results in [Cov68]) that for any classH as above, jHj~x j � (Nem=d)d for all ~x = (x1; . . . ; xm),
where d and N are as above. This implies that

jFj~zj � (Nem=d)d � (Nem=W )W

for all samples ~z of length m. Since each lh 2 F is a random variable that is bounded
between 0 and 1, Theorem 3 (second part) shows that

Pr

�
9h 2 F : d�( bE~z(h);E(h)) > �

�
� 4(2eNm=W )W e��

2�m=2:

This gives the �rst bound.
For the second bound, it can be shown that for sample size

m =
4

�2�

�
2W ln

16N

�2�
+ ln

4

�

�
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we must have
d�( bE0

�(~z)(f
�); bE00

�(~z)(f
�)) > �=4:

Thus if N is an �=4-cover for Fj~z with respect to the metric ~d� , then whenever there exists
f 2 F with

d�( bE0

�(~z)(f);
bE00

�(~z)(f)) > �=2;

there exists f� 2 N with

d�( bE0

�(~z)(f
�); bE00

�(~z)(f
�)) > �=4:

For �xed f� and random �, the probability of the latter event is at most 2e��
2�m=8M by

Lemma 11. Hence for any �xed ~z 2 Z2m, if we select a permutation � 2 �2m uniformly at
random,

Pr

�
9f 2 F with d�( bE0

�(~z)(f);
bE00

�(~z)(f)) > �=2
�
� min(2N (�=4;Fj~z ;

~d�)e
��2�m=8M ; 1)):

The remainder of the proof is as above. 2
We need only one more lemma to complete our proof; one that can be used to relate

the ~d� covering numbers to the dL1 covering numbers.

Lemma 14 For any m � 1, ~x; ~y 2 (<+)2m and � > 0, ~d�(~x; ~y) �
2
�
dL1(~x; ~y).

Proof. For any � 2 �2m

d�(�1(~x; �); �1(~y; �)) + d�(�2(~x; �); �2(~y; �))

=
j
Pm

i=1(x�(i) � y�(i))j

�m+
Pm

i=1(x�(i) + y�(i))
+

j
P2m

i=m+1(x�(i) � y�(i))j

�m+
P2m

i=m+1(x�(i) + y�(i))

�

P2m
i=1 jx�(i) � y�(i)j

�m
=

2

�
dL1(~x; ~y):

The result follows. 2
The theorem follows easily from the last two lemmas. 2

10.5 Bounds on sample size for learning in feedforward nets with

sharp thresholds

In this section we give the bounds for uniform convergence of empirical estimates in neural

networks with sharp threshold functions claimed in section 7.

Theorem 13 Let A be a feedforward architecture as de�ned in section 7 with n � 1
inputs, one output, N � 2 computation units and a total of W weights and biases. Let

X = <n, Y = A = f0; 1g, and l be the discrete loss function. Assume that the squashing

function for each computation unit has the form sign � �, where � is non-decreasing or
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Proof. First note that both bounds are trivial if m < 2M=(�2�), so we may assume

m � 2M=(�2�). Hence by Lemma 12,

p(�; �;m) � 2Pr
n
~z 2 Z2m : 9f 2 F with d�( bE0

~z(f);
bE00

~z(f)) > �=2
o
:

Thus it su�ces to obtain bounds for the latter quantity.
We begin with the second bound, for the case when Fj~z is always �nite. For any sample

~z = (z1; . . . ; z2m) 2 Z2m and � 2 �2m, let �(~z) = (z�(1); . . . ; z�(2m)). For any �xed function

f 2 F and �xed ~z 2 Z2m, if we select a permutation � 2 �2m uniformly at random,

Pr

�
d�( bE0

�(~z)(f);
bE00

�(~z)(f)) > �=2
�
� 2e��

2�m=2M (7)

by Lemma 11. Hence for any �xed ~z 2 Z2m, if we select a permutation � 2 �2m uniformly
at random,

Pr

�
9f 2 F with d�( bE0

�(~z)(f);
bE00

�(~z)(f)) > �=2
�
� min(2jFj~zje

��2�m=2M ; 1): (8)

Thus if we draw ~z at random from Z2m and independently select a permutation � 2 �2m

uniformly at random,

Pr

�
9f 2 F with d�( bE0

�(~z)(f);
bE00

�(~z)(f)) > �=2
�
� E(min(2jFj~z je

��2�m=2M ; 1)):

However, since each of the 2m observations in ~z are independent, each of the samples �(~z)
for � 2 �2m are equally likely. Hence

Pr

�
9f 2 F with d�( bE0

�(~z)(f);
bE00

�(~z)(f)) > �=2
�
;

where both ~z and � are chosen at random, is the same as

Pr

�
9f 2 F with d�( bE0

~z(f);
bE00

~z(f)) > �=2
�
;

where only the sample ~z is chosen at random. The second bound follows.
The proof of the �rst bound is similar, except for steps 7 and 8. From Lemma 10, using

the extension ~d� of the metric d� to even-length sequences of reals given in De�nition 12

above, if f; f� 2 F are such that

~d�((f(z1); . . . ; f(z2m)); (f
�(z1); . . . ; f

�(z2m))) � �=4;

then for any � 2 �2m such that

d�( bE0

�(~z)(f);
bE00

�(~z)(f)) > �=2;
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Lemma 12 Let F be a permissible set of functions on Z with 0 � f(z) �M for all f 2 F

and z 2 Z. Assume � > 0, 0 < � < 1 and m � 2M=(�2�). Then

Pr

n
~z 2 Zm : 9f 2 F with d�( bE~z(f);E(f)) > �

o

� 2Pr
n
~z 2 Z2m : 9f 2 F with d�( bE0

~z(f);
bE00

~z(f)) > �=2
o
:

Proof. If Z and F are uncountable, the assumption of permissibility guarantees that these
probabilities are well-de�ned (see section 10.2 and [Pol84]). From Chebyshev's inequality

(see Lemma 9, part (1) in section 10.3), for each individual f 2 F,

Pr

n
~z 2 Zm : d�( bE~z(f);E(f)) > �=2

o
�M=(�2�m):

Since m � 2M=(�2�), this probability is at most 1=2. Now consider any f 2 F and sample

~z0 2 Zm such that d�( bE~z0(f);E(f)) > �. If we draw an independent random sample
~z00 2 Zm, then with probability at least 1=2, d�( bE~z00(f);E(f)) � �=2. Whenever this
happens we have d�( bE~z0(f); bE~z00 (f)) > �=2 by the triangle inequality for d� . Thus

Pr

n
~z 2 Z2m : 9f 2 F with d�( bE0

~z(f);
bE00

~z(f)) > �=2
o

� Pr

n
~z0~z00 2 Z2m : 9f 2 F with d�( bE~z0(f);E(f)) > � and d�( bE~z00(f);E(f)) � �=2

o

�
1

2
Pr

n
~z0 2 Zm : 9f 2 F with d�( bE~z0(f);E(f)) > �

o
:

Again, when Z and F are uncountable, permissibility guarantees that the implied use of

Fubini's theorem in obtaining the above inequalities is justi�ed. 2
We are now in a position to prove the following version of our theorem, using the

extended metric ~d� in place of the L1 metric to measure covering numbers.

Lemma 13 Let F be a permissible set of functions on Z with 0 � f(z) �M for all f 2 F

and z 2 Z. Assume � > 0, 0 < � < 1 and m � 1. Let

p(�; �;m) = Pr

n
~z 2 Zm : 9f 2 F with d�( bE~z(f);E(f)) > �

o
:

Then

p(�; �;m) � 2E(min(2N (�=4;Fj~z ;
~d�)e

��2�m=8M ; 1));

and if in addition Fj~z is �nite for all ~z 2 Z2m then

p(�; �;m) � 2E(min(2jFj~z je
��2�m=2M ; 1));

where the expectations are over ~z drawn randomly from Z2m.
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Proof. For each i, 1 � i � m, let Yi be an independent random variable such that
Yi = xi � xm+i with probability 1=2 and Yi = xm+i � xi with probability 1=2. Note that

for any � 2 �2m,

d�(�1(~x; �); �2(~x; �)) =
j 1
m

Pm
i=1 x�(i) �

1
m

P2m
i=m+1 x�(i)j

� + 1
m

P2m
i=1 x�(i)

=
j
Pm

i=1(x�(i) � x�(m+i))j

�m+
P2m

i=1 xi
:

Hence

Pr (d�(�1(~x; �); �2(~x; �)) > �)

= Pr

 
j
mX
i=1

(x�(i) � x�(m+i))j > �(�m+
2mX
i=1

xi)

!

= Pr

 
j
mX
i=1

Yij > �(�m+
2mX
i=1

xi)

!
;

because each swap in a randomly chosen � 2 �2m is independent. Since E(Yi) = 0 and
�jxi � xm+ij � Yi � jxi � xm+ij, we can apply Hoe�ding's inequality (see e.g. [Pol84]) to
bound the latter probability by

2e��
2(�m+

P
2m

i=1
xi)2=2

Pm

i=1
(xi�xm+i)2:

Let � =
P2m

i=1 xi. Since 0 � xi �M ,

mX
i=1

(xi � xm+i)
2 �

mX
i=1

M jxi � xm+ij � �M:

Hence we have

2e��
2(�m+

P2m

i=1
xi)2=2

Pm

i=1
(xi�xm+i)2 � 2e��

2(�m+�)2=2�M = 2e�
�2

2M ( (�m+�)2

�
):

The expression in parentheses is minimized, and therefore the whole expression is maxi-

mized, by setting � = �m, giving a value of 4�m. Hence

Pr (d�(�1(~x; �); �2(~x; �)) > �) � 2e�2�
2�m=M :

2

For our next lemma we will need some notation to refer to the separate empirical
estimates based on the �rst and second halves of an even length sample.

De�nition 13 For all m � 1 and ~z 2 Z2m, we let bE0

~z(f) = 1
m

Pm
i=1 f(zi) and bE00

~z(f) =
1
m

P2m
i=m+1 f(zi).
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10.4 Proof of Main Theorem on Uniform Convergence of Em-

pirical Estimates

In this section we prove Theorem 3 from section 3. The proof is given in a series of lemmas.

We �rst extend the metric d� to a pseudo-metric on vectors in (<+)2m for m � 1. We will
do so in a somewhat unusual manner that will be useful in what follows. In fact, this
extension can be de�ned for any metric, so we will state it in its general form.

De�nition 12 For each integer m � 1, let �2m denote the set of all permutations � of

f1; . . . ; 2mg such that for all i, 1 � i � m, either �(i) = m + i and �(m + i) = i,

or �(i) = i and �(m + i) = m + i. Thus the permutations in �2m swap selected in-

dices in the �rst half of the sequence f1; . . . ; 2mg with corresponding indices in the second

half. For any ~x = (x1; . . . ; x2m) 2 (<+)2m and � 2 �2m, let �1(~x; �) = 1
m

Pm
i=1 x�(i) and

�2(~x; �) = 1
m

P2m
i=m+1 x�(i). For any metric d on <+ and ~x; ~y 2 (<+)2m, let ~d(~x; ~y) =

maxfd(�1(~x; �); �1(~y; �)) + d(�2(~x; �); �2(~y; �)) : � 2 �2mg.

It is easily veri�ed that ~d is a pseudo-metric on (<+)2m. Symmetry is obvious, and the
triangle inequality follows easily from the triangle inequality for d on <+:

~d(~x; ~y) + ~d(~y; ~z) = maxfd(�1(~x; �); �1(~y; �)) + d(�2(~x; �); �2(~y; �)) : � 2 �2mg

+maxfd(�1(~y; �); �1(~z; �)) + d(�2(~y; �); �2(~z; �)) : � 2 �2mg

� maxfd(�1(~x; �); �1(~y; �)) + d(�2(~x; �); �2(~y; �))

+d(�1(~y; �); �1(~z; �)) + d(�2(~y; �); �2(~z; �)) : � 2 �2mg

� maxfd(�1(~x; �); �1(~z; �)) + d(�2(~x; �); �2(~z; �)) : � 2 �2mg

= ~d(~x; ~z)

We note the following additional property of this extension.

Lemma 10 For all ~x; ~y 2 (<+)2m and � 2 �2m, d(�1(~x; �); �2(~x; �)) � d(�1(~y; �); �2(~y; �))+
~d(~x; ~y).

Proof. We have

d(�1(~x; �); �2(~x; �)) � d(�1(~y; �); �2(~y; �)) + d(�1(~x; �); �1(~y; �)) + d(�2(~x; �); �2(~y; �))

by the triangle inequality on d. The last two terms of this sum combined are at most
~d(~x; ~y) by de�nition. 2

We now restrict ourselves to the case that the metric d is the metric d� for some � > 0.

The following lemma will play a key role in establishing our basic exponential inequality.

Lemma 11 Let ~x = (x1; . . . ; x2m) be a sequence of reals such that 0 � xi � M , 1 � i �

2m. Assume � > 0 and 0 < � < 1. Then if a permutation � 2 �2m is chosen uniformly at

random,

Pr (d�(�1(~x; �); �2(~x; �)) > �) � 2e�2�
2�m=M
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2.

Pr

 
d�(

1

n

nX
i=1

Zi; �) > �

!
� 2e

�18�2�n
(3+�)2M < 2e�

9
8�

2�n=M < 2e��
2�n=M :

Proof. Let Yi = Zi � �, 1 � i � n. Then

Pr

 
d�(

1

n

nX
i=1

Zi; �) > �

!

= Pr

 
j(
Pn

i=1Zi) � �nj

�n+
Pn

i=1 Zi + �n
> �

!

� Pr

 
j
nX
i=1

Yij > �n(� + �)

!
;

since
Pn

i=1Zi � 0.
To obtain the �rst bound, note that by Chebyshev's inequality,

Pr

 
j
nX
i=1

Yij > �n(� + �)

!
� �2=(�n(� + �))2;

where �2 = nVar(Yi). Since 0 � Zi �M , Var(Zi) = Var(Yi) � �(M � �). Hence

Pr

 
j
nX
i=1

Yij > �n(� + �)

!
�

�(M � �)

�2n(� + �)2
:

It is easily veri�ed that the maximum value of this expression occurs at � = (�M)=(2�+M),

and that this gives an upper bound of

M2

4�2�n(M + �)
:

To obtain the second bound, we apply Bernstein's inequality (see e.g. [Pol84], Page
192), which states that

Pr

 
j
nX
i=1

Yij > �

!
� 2e��

2=2(nVar(Yi)+
1
3B�)

for any zero mean i.i.d. random variables Y1; . . . ; Yn bounded in absolute value by B.
Substituting � = �n(� + �) and upper bounds B � M and Var(Yi) � �M , this gives a
bound of

2e��
2n2(�+�)2=2(n�M+ 1

3M�n(�+�)) = 2e
�3�2n(�+�)2

2M(��+(3+�)�) :

Since (� +�)2=(�� +(3+�)�) is minimized at � = 3��
3+��, the latter expression is bounded

by substituting this value of �. This gives the �rst bound of part (2). The second bound

follows from the fact that � < 1. 2
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B(T ) of Borel sets on T is then the restriction to T of the �-algebra B of Borel sets on �T ,
i.e.

B(T ) = fB \ T : B 2 Bg:

Finally, if A is any �-algebra on Z and C is any �-algebra on T then A � C denotes the
smallest � algebra on Z � T that contains fA�C : A 2 A; C 2 Cg. We are now ready for

our main de�nition.

De�nition 11 We say that the class F is permissible if it can be indexed by a set T such

that

1. T is a Borel subspace of a compact metric space �T and

2. the function f : Z � T ! < that indexes F by T is measurable with respect to the

�-algebra A� B(T ).

Most uncountable classes of functions that come up in practice can be indexed by a
�nite number of real parameters (i.e. with T = <n for some n � 1) in such a way that
condition (2) is satis�ed. Condition (1) is satis�ed as well in this case, since we can take
�T to be the one-point compacti�cation of T , obtained by adding a point at in�nity to T

(see e.g. [Sim63]).
Results given in Pollard ([Pol84], Appendix C) imply that the sets used in Lemmas 12

and 13 are measurable when F is permissible. He also shows that the packing numbers
M(�;Fj~z ; dL1) are measurable functions of ~z 2 Zm for anym � 1. Since Theorem 12 relates
these closely to the covering numbers N (�;Fj~z ; dL1), this allows us to further formalize our
usage of random covering numbers. A more formal treatment would either replace the

covering numbers with the packing numbers in our upper bounds, or reword probabilistic
bounds on the covering numbers to use outer measure arguments.

10.3 Measuring the accuracy of empirical estimates with the d
�

metric

In this section we give two bounds on the probability of large deviation of empirical esti-

mates from true means, as measured by the d� metric. One is derived from Chebyshev's
inequality and the other from Bernstein's inequality. The �rst bound is better for estimates
obtained from small samples, the latter for estimates obtained from larger samples.

Lemma 9 Let Z1; . . . ; Zn be i.i.d. random variables with range 0 � Zi �M and E(Zi) =
�, 1 � i � n. Assume � > 0 and 0 < � < 1. Then

1.

Pr

 
d�(

1

n

nX
i=1

Zi; �) > �

!
�

M2

4�2�n(M + �)
<

M

4�2�n
:
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The following inequalities are easily veri�ed (see e.g. [KT61]):

Theorem 12 If T is a totally bounded subset of the (pseudo) metric space (S; �) then for
any � > 0,

M(2�; T; �) � N (�; T; �) �M(�; T; �):

Hence both these measures of boundedness, by covering number and by packing num-
ber, are equivalent to within a factor of 2 of �. Following [KT61] we de�ne the upper metric

dimension of a (pseudo) metric space (S; �) by

dim(S) = limsup
�!0

logN (�; S; �)

log(1=�)
:

The lower metric dimension, denoted by dim, of a (pseudo) metric space (S; �) is de�ned
similarly using liminf. When dim(S) = dim(S), then this quantity is denoted dim(S),

and referred to simply as the metric dimension of (S; �). This quantity has also been
called the fractal dimension [Far82] and the capacity dimension [FOY83]. A very lucid and
intuitive treatment is given in [Man82].

10.2 Permissible classes of functions

In order to obtain the uniform convergence results given in Theorem 2, certain measura-
bility assumptions have to be made concerning the class of functions F when this class is

uncountable. These we have indicated by saying that F must be a permissible class [Pol84].
Here we give a de�nition of permissible that is a special case of that given by Pollard. This
de�nition will be suitable for our purposes; we refer the reader to [Pol84] and [Dud84] for
a more general treatment. See exercise 10, page 39 of [Pol84] for an indication of the kind

of problems that can come up with non-permissible classes.
Throughout the paper we have assumed that F is a class of real-valued functions on a

set Z, and that P is a measure de�ned on some �-algebra A of subsets of Z such that each
function in F is measurable. We will need further conditions on F when it is uncountable.

Let us say that the class F is indexed by the set T if

F = ff(�; t) : t 2 Tg;

where f is a real-valued function on Z � T and f(�; t) denotes the real-valued function on
Z obtained from f by �xing the second parameter to t. We will say that the function f

indexes F by T .

We will need some structure on T as well. If T is contained in a topological space �T
then we will say that T is a Borel subspace if T is a Borel set with respect to the topology
on �T , i.e. if T is in the smallest �-algebra on �T containing the open sets. The �-algebra
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the problem of over�tting, including distribution speci�c bounds on sample complexity
(Theorem 2 is actually distribution speci�c, since the random covering numbers are distri-

bution speci�c, yet we only apply it here in a distribution independent setting), decision
rule spaces with in�nite pseudo and metric dimensions (these include various classes of
\smooth" functions and their relatives, see [Dud84], Chapter 7 and [Qui89]) and non i.i.d.
sources of examples (see [Whi90a,ND90]). Despite these shortcomings, we feel that the

theory we give here provides useful insights into the nature of the problem of over�tting in
learning, and because of its generality will be a useful starting point for further research
in this area.

9 Acknowledgements

I would like to thank Dana Angluin, David Pollard and Phil Long for their careful criticisms
of an earlier draft of this paper, and their numerous suggestions for improvements. I

also thank Naoki Abe, Anselm Blumer, Richard Dudley, and Michael Kearns for helpful
comments on earlier drafts. I would also like to thank Ron Rivest, David Rumelhart,
Andrzej Ehrenfeucht and Nick Littlestone for stimulating discussions on these topics.

10 Appendix

10.1 Metric spaces, covering numbers and metric dimension

A pseudo metric on a set S is a function � from S�S into <+ such that for all x; y; z 2 S,
x = y ) �(x; y) = 0, �(x; y) = �(y; x) (symmetry), and �(x; z) � �(x; y) + �(y; z)

(triangle inequality). If in addition �(x; y) = 0 ) x = y, then � is a metric. (S; �) is a
(pseudo) metric space. (S; �) is complete if every Cauchy sequence of points in S converges
to a point in S; (S; �) is separable if it contains a countable dense subset, i.e. a countable
subset A such that for every x 2 X and � > 0 there exists a 2 A with �(x; a) < �. If

�(x; y) = 1 , x 6= y then � is called the discrete metric.
The diameter of a set T � S is supf�(x; y) : x; y 2 Tg. If the diameter of T is �nite

the we say that T is bounded. For any � > 0, an �-cover for T is a �nite set N � S (not

necessarily contained in T ) such that for all x 2 T there is a y 2 N with �(x; y) � �. If T
has a (�nite) �-cover for all � > 0 then T is totally bounded. (Note that this implies that
(T; �) is separable and bounded.) In this case the function N (�; T; �) denotes the size of
the smallest �-cover for T (w.r.t. the space S and the (pseudo) metric �). We refer to

N (�; T; �) as a covering number. A set R � T is �-separated if for all distinct x; y 2 R,
�(x; y) > �. We denote by M(�; T; �) the size of the largest �-separated subset of T . We
refer toM(�; T; �) as a packing number. The third argument to N andM will be omitted
when the metric � is clear from the context.
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similar to that obtained in [BH89].
Since W appears to be the dominant factor in these bounds, apart from the accuracy

parameters � and �, these bounds support the conventional wisdom that the training set
size should be primarily related to the number of adjustable parameters in the net. They
also support the notion that this relationship between appropriate training size and the
number of parameters is nearly linear, at least in the worst case. Further work is needed

to sharpen these relationships (see e.g. the lower bounds obtained in [BH89]).

8 Conclusion

We have extended the PAC learning model to a more general decision theoretic framework
so that it addresses many of the concerns raised by machine learning practitioners, and
also introduced a number of new theoretical tools. Here we concentrate on applications of
the extended model to the problem of obtaining upper bounds on su�cient training sample

size. Further work will be required to obtain lower bounds on sample size needed, and
to determine the computational complexity of �nding decision rules with near minimal
empirical risk. Some promising results along these lines are given in [KS90]. However,

even granting that such results can be obtained, the extended model still has a number
of shortcomings in its present form. Some of these can be easily remedied, others may be
more problematic.

First, we de�ne the model only for a �xed decision rule space H. The model should be

extended to learning problems on a sequence of decision rule spaces fH
n
: n � 1g, where

Hn is a decision rule space on an n-attribute domain Xn (e.g. [0; 1]n), and to families of
decision rule spaces of di�erent \complexities" on a �xed domain [KLPV87] [BEHW89]
[HKLW91], so that tradeo�s between decision rule complexity and empirical risk can be

addressed. The former extension is easy, the latter more involved. One approach to the
latter problem is via Vapnik's principle of structural risk minimization [Vap89] (see also
[Dev88]). Other approaches include the MDL (see e.g. [BC90]), regularization (see e.g.
[PG89]), and more general Bayesian methods (see e.g. [Ber85]).

Second, the constants in the upper bounds are still too large to give sample size esti-
mates that are useful in practice. It may be di�cult to improve them to the point where
the results are directly usable in applied work. Thus even with matching asymptotic lower

bounds, practitioners may still need to rely at least in part on empirically derived sample
size bounds. It is possible that the Bayesian viewpoint may yield better tools for calcu-
lating sample complexities. Support for this belief is given in [CB90,CB,HKS91,OH91a].
However, necessary sample size estimates for decision rule spaces as general as those stud-

ied from the minimax perspective using uniform convergence have not yet been tackled
from the Bayesian perspective.

Finally, many other issues would need to be considered in a complete treatment of
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Despite the uncertainty about the need for the Lipschitz bounds, the result does give
some indication of the maximum training sample size that will be needed for many popular

network con�gurations. For example, if the squashing function is chosen as �(x) = 1=(1+
e�x=T ) for some temperature T > 0 then it can be shown that the Lipschitz bound s for � is
1=4T . When the modi�er � � 0, then r = 0. Thus in this case the term d log(s(�Wmax+r))
in the bound of Corollary 3 becomes d log(�Wmax=T ). If the maximum weight �, the

temperature T and the depth d are constants, along with c2 � c1, M , and cl, then the
asymptotic bound of the theorem becomes

O
�

1

�2�

�
W log

Wmax

��
+ log

1

�

��
;

which is similar to the bound obtained in [BH89].
It should also be noted that Corollary 3 does have the feature that no Lipschitz bounds

are required on the computation units at depth one. Thus if all computation units are at

depth one, i.e. there are no hidden units, then no Lipschitz units are required at all. If
the architecture has only one layer of hidden units at depth one and a single output unit
at depth two, as is quite common, then Lipschitz bounds are required only on the output
unit. This means that the weights and biases associated with the hidden units do not need

to be bounded in order to get the rates of uniform convergence given by Corollary 3, as
they would, for example, if the methods given in [Whi90a] were used to obtain a result of
this type.

For an example of the above, consider networks that implement generalized radial

basis14 functions, as described in [PG89]. These networks have one layer of hidden units at
depth 1 and one output unit at depth 2. The structure of the hidden units is as described in
the example above: the input transformers are identity functions, the modi�er is

Pn
i=1 x

2

i

and the squashing function is usually a smooth decreasing function. The output unit

simply computes a weighted sum, so for this unit the modi�er is the 0 function and the
squashing function is the identity. Since this is the only unit at depth 2 and above, we
require a Lipschitz bound only for this unit. If � is a bound on the maximum weight

coming into the output unit, andWmax is the number of units in the hidden layer, then the
term d log(s(�Wmax+r)) in the above bound becomes log(�Wmax). Again, �xing �; c2�c1,
M , and cl gives the same sample size bound,

O
�

1

�2�

�
W log

Wmax

��
+ log

1

�

��
;

14The computation units in the network of radial basis functions described here are quite primitive in that
they have no adjustable multiplicative parameter included in their basic radial distance calculation. Such
parameters would be needed to do any reasonable type of kernel based density estimation (see e.g. [DH73]).
These parameters can be simulated by inserting another layer of computation units between the inputs and
the layer described here. Alternately, the analysis can also be done directly for adjustable kernel units. This
cleaner approach is detailed in [Pol86].
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transformers are identity functions, the global modi�er has Lipschitz bound at most
r, and the squashing function has Lipschitz bound at most s, where s(�Wmax+r) � 1.

Then for any 0 < � < 1, the probability in (1.) is less than � for sample size

m = O

 
M

�2�

 
W

 
log

cl(c2 � c1)

��
+ d log(s(�Wmax + r))

!
+ log

1

�

!!
:

Proof. Let � = ��=8 � c2 � c1. It can be veri�ed that lH is permissible for the decision
rule space H. Hence, using Theorem 9 and Theorem 11,

Pr (9f 2 H : d�(brf;l(~z); rf;l(P )) > �) � 4C(��=8;H; �l)e
��2�m=8M

� 4C(��=8cl;H; dL1 )e��
2�m=8M

� 4

 
cl16e(c2 � c1)d

Qd
l=2 bl

��

!2W

e��
2�m=8M :

For the second bound, it is readily veri�ed that the L1 Lipschitz bound for a linear func-

tion de�ned by Wmax weights and a bias is no more than Wmax times the largest absolute
value of any weight. Furthermore, the Lipschitz bound for the sum of two functions is no
more than the sum of the Lipschitz bounds on the individual functions, and the Lipschitz
bound for the composition of two functions is no more than the product of the Lipschitz

bounds on the individual functions. Thus if the input transformers are identity functions,
the global modi�er and squashing function have Lipschitz bounds r and s respectively and
no weight is allowed to have absolute value greater than �, then the Lipschitz bound for a

computation unit is at most s(�Wmax+ r). If this holds for all units at depth 2 and above,
may take bj = s(�Wmax + r) for all j � 2 in the �rst bound. Solving for m, this gives the
order-of-magnitude estimate of the second bound. 2

We give the constants in the upper bound of part (1.) the above theorem only to show

that they are not outlandishly large. We do not mean to suggest that the bound is tight. At
present we cannot even verify that the asymptotic bound of part (2.) is tight. In particular,
we cannot show that the dependence on the Lipschitz bounds is necessary. Evidence that
it may not be necessary comes from the analysis of the case where the squashing function �

is a sharp threshold function, i.e. �(x) = sign(x). Corollary 3 does not apply in this case,
because the jump in � prevents us from obtaining a Lipschitz bound on the computation
units. As we let a smooth � approach the sign function, its slope increases without limit,
and thus the bound given in Corollary 3 degenerates. Nevertheless, using the techniques

in [BH89] it can be shown that results similar to Corollary 3 hold in this case, except that
no Lipschitz bounds are required, and a bound on the sample size is

O
�

1

�2�

�
W log

N

��
+ log

1

�

��
;

where N is the total number of computation units in the net. Details are given in Theo-
rem 13 in the Appendix.
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dimensional vector space of real-valued functions, summed with a �xed modi�er and then
composed with a non-increasing or non-decreasing squashing function. In the latter case,

the dimension N of this vector space is the number of free parameters associated with the
corresponding computation unit, i.e. the number of weights plus one (for the adjustable
bias). Hence by Theorems 4 and 5 in section 4, the pseudo dimension dimP(F) � N .
Thus by Theorem 10 above,

C(�j ;F ; dL1) � 2

 
2e(c2 � c1)

�j
ln

2e(c2 � c1)

�j

!N
�

 
2e(c2 � c1)

�j

!2N
;

since 2 lnx < x and N � 1. Since the capacity of a class with only one function is 1, it

follows from Lemma 7 part (1) that

C(�j ;Hj ; �j+1) �

 
2e(c2 � c1)

�j

!2Wj

;

where Wj is the total number of weights and biases of all computation nodes at depth j.
Multiplying these bounds over all j, it follows that

C(�;H; dL1) �

dY
j=1

 
2e(c2 � c1)

�j

!2Wj

=
dY

j=1

 
2e(c2 � c1)d

Qd
l=j+1 bl

�

!2Wj

�

 
2e(c2 � c1)d

Qd
l=2 bl

�

!2W
:

2

Corollary 3 Let n, k, H, W , d and b2; . . . ; bd be as in the previous theorem. Let X be the

instance space [c1; c2]n, A be the decision space [c1; c2]k, and Y be any outcome space. Let

l : Y � A ! [0;M ] be a loss function and cl be a constant such that �l(~a;~b) � cldL1(~a;~b)

for all ~a;~b 2 A. Let m � 1, 0 < � � 8(c2 � c1), 0 < � < 1, and P be any probability

distribution on Z = X � Y . Let ~z be generated by m independent random draws from Z

according to P .

1. Then

Pr (9f 2 H : d�(brf;l(~z); rf;l(P )) > �) � 4

 
cl16e(c2 � c1)d

Qd
l=2 bl

��

!2W
e��

2�m=8M :

2. Assume that for each computation unit at depth 2 and above the number of weights is

at most Wmax, no weight is allowed to have absolute value greater than �, the input
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biases in A. Assume bj � 1 for 2 � j � d, and let H be all functions from [c0; c1]n into

[c0; c1]k representable on A by setting the adjustable weights and biases such that for all j,

2 � j � d, the average of the Lipschitz bounds of the functions computed by computation

units at depth j is at most bj. Then for all 0 < � � c2 � c1,

C(�;H; dL1) �

 
2e(c2 � c1)d

Qd
l=2 bl

�

!2W
:

2

Proof. For each j, 0 � j � d, let nj be the number of units at depth j in the architecture
A. For each j, 0 � j � d�1, let lj =

Pj
i=0 nj, and let ld = nd = k. For each j, 1 � j � d+1,

let Xj = [c1; c2]lj�1. Then for each j, 1 � j � d, we can de�ne the family Hj of functions
from Xj into Xj+1 in the following manner.

First assume j < d. Let u1; . . . ; unj be an enumeration of the computation units at
depth j and f1; . . . ; fnj be functions such that fi can be represented by ui, 1 � i � nj,

and the average Lipschitz bound on the fis is at most bj. Let hj be the free product of
f1; . . . ; fnj and lj�1 copies of the identity function on [c1; c2]. Thus hj : Xj ! Xj+1. The
function hj represents a mapping from the sequence of all activations of units at depth

at most j � 1 to the sequence of all activations of units at depth at most j, where the
activations at depth at most j � 1 are unaltered, and the new activations, i.e. those at
depth j, are calculated by f1; . . . ; fnj . The family Hj consists of all functions hj obtained
in this manner, by varying the weights and biases in the units u1; . . . ; unj at depth j in

such a manner that the Lipschitz constraint is satis�ed.
When j = d, no subsequent calculations will be performed so we no longer need to pre-

serve the activations of shallower units. Hence, we omit the identity function components
in each hd 2 Hd. Otherwise the de�nition of Hd is the same as that for Hj, where j < d.

It is clear that the class H in the statement of the theorem can be represented as the
class of compositions of functions from classes H1; . . . ;Hd. Since the identity function has
Lipshitz bound 1 � bj , the average Lipschitz bound on the components of each function
hj 2 Hj is at most bj . It is easily veri�ed that a free product function is Lipschitz bounded

by the average of the Lipschitz bounds on its component functions. Hence by assumption,
bj is a uniform Lipschitz bound on Hj, 2 � j � d. For each j, 1 � j � d, let aj =

Qd
l=j+1 bl

and �j =
�
daj

. Since � < c2 � c1 and aj � 1, �j � c2 � c1. Let �j be the dL1 metric on Xj,

1 � j � d+ 1. Then by Lemma 8, part (1),

C(�;H; dL1 ) �
dY

j=1

C(�j ;Hj ; �j+1):

For each j, Hj is contained in the free product of lj function classes. Each class F in
this product is either the trivial class containing only the identity function, or is a �nite
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computed by a given computation unit with n incoming edges has Lipschitz bound b if for
any ~x; ~y 2 [c0; c1]n, jf(~x)� f(~y)j � bdL1(~x; ~y).

We give a few examples to illustrate the 
exibility of this model at the level of the indi-
vidual computation unit. First assume that k = n, i.e. the number of input transformers
is the same as the number of inputs, and that each input transformer simply extracts a
component of the input, i.e. �j(~x) = xj , 1 � j � n. In this case, which is the standard

case for most neural net research, the overall input transformation is just the identity map
and can be ignored. In this standard case, if the global modi�er � = 0 we get what is
known as a quasi-linear unit [RM86]:

f(~x) = �

0
@� +

kX
j=1

wjxj

1
A :

In the standard case, if �(~x) =
Pn

j=1 x
2
j we get a unit that computes a function of the

form

f(~x) = �

0
@�0 +

nX
j=1

(xj � aj)
2

1
A ;

where aj = �wj=2 and �0 = � �
Pn

j=1 a
2
j . This is similar to what is called a radial basis

unit in the neural net literature [PG89,MD89].

Now assume that k = n but the input transformers take logs of the components of the
inputs, i.e. �j(~x) = logxj . (Here we assume c0 > 0.) Let � = 0 and change the squashing
function � to �0, where �0(x) = �(ex). Then

f(~x) = �0

0
@� +

nX
j=1

wj logxj

1
A = �

0
@e�

nY
j=1

x
wj

j

1
A ;

giving what is commonly known as a product unit [DR89].

We de�ne a feedforward architecture as a feedforward net with unspeci�ed weights and
biases, i.e. each computation unit has a �xed global modi�er, a �xed squashing function
and �xed input transformers, but it has variable weights and a variable bias. We say a
unit is at depth j in an architecture if the longest (directed) path from an input unit to

that unit has j edges. Thus all input units are at depth 0, all computation units that
have incoming edges only from input units are at depth 1, all computation units that have
incoming edges only from input units and computation units at depth 1 are at depth 2,

etc. The depth of the architecture is the depth of the deepest unit in it.
We can bound the capacity of the decision rule space represented by a feedforward

architecture as follows.

Theorem 11 Let A be a feedforward architecture as above with n � 1 input units, k � 1
output units, and depth d � 1. Let W be the total number of adjustable weights and
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2. dim(H) � dimP(H):

Proof. Let P be any probability measure on X. Then by Theorems 12 and 6 in sec-

tions 10.1 and 4,

N (�;H; dL1(P )) �M(�;H; dL1(P )) < 2
�
2eM

�
ln

2eM

�

�d
:

(Theorem 6 is applied with Z = X and F = H.) This gives (1.), and (2.) follows easily
from (1.). 2

In the general case, where A � <k for k > 1, we can apply the methods from the
previous section, in addition to the pseudo dimension methods from section 4, to obtain

bounds on C(�;H; dL1 ). We illustrate this for the case when H is the class of decision rules
represented by a feedforward neural network.

A feedforward neural network is de�ned as a directed acyclic graph in which the in-
coming edges to each node (or unit) are ordered and each incoming edge can carry a real

number representing the activation on that edge. We will assume that all activations are
restricted to the interval [c0; c1] for some constants c0 < c1. The units are divided into
input units, which have no incoming edges from other units and serve as input ports for
the network (their activations are determined by these external inputs), and computation

units, which have incoming edges from other units and compute an activation based on the
activations on these incoming edges. After an activation has been determined, this activa-
tion is placed on the outgoing edges of the unit. Computation units with no outgoing edges

are called output units and serve as output ports for the network. Computation units that
are not output units are called hidden units. The network as a whole computes a function
that maps from vectors of activation values in its input units to vectors of activation values
in its output units by composing the functions computed by its computation units in the

obvious way.
The action of a computation unit with n incoming edges can be speci�ed by a function

f from [c0; c1]n into [c0; c1], where f(~x) is the resulting activation of the unit when the
activations of its incoming edges are given be the vector ~x 2 [c0; c1]n. In the nets we

consider, the function f is de�ned by

f(~x) = �

0
@�(�1(~x); . . . ; �k(~x)) + � +

kX
j=1

wj�j(~x)

1
A ;

where the wj's are adjustable real weights, � is an adjustable real bias, �1; . . . ; �k are

�xed real-valued functions which we call the input transformers, � : <k ! < is a �xed
function which we call the global modi�er, and � : < ! [c0; c1] is a �xed non-increasing
or non-decreasing function which we call the squashing function. Di�erent units can have
di�erent modi�ers, transformers and squashing functions. We say that the function f
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Note that the above trick does not apply to the mean squared loss l(~y;~a) = 1

k

Pk
i=1(yi�

ai)2 since this loss does not satisfy the triangle inequality. However, in this case it is easy
to show by direct calculation that if the outcome space Y is bounded, e.g. Y � [0;M ]k,

then �l(~a;~b) � 2MdL1(~a;~b), and hence we may take cl = 2M .
For our �nal example, consider the case when Y = f0; 1gk, A � [0; 1]k and l is the cross

entropy loss

l(~y;~a) = �
kX

i=1

(yi ln ai + (1 � yi) ln(1 � ai)) :

As discussed in section 1.1.3, this is the log likelihood loss for the regression problem in
which the action ~a represents a vector of probabilities for independent Bernoulli variables,

and the outcome ~y gives the observed values of these variables. This loss is bounded if we
restrict the probabilities in ~a to be between B and 1 � B for some 0 < B � 1=2. In this
case

�l(~a;~b) = sup~y2Y

�����
kX

i=1

 
yi ln

bi
ai

+ (1 � yi) ln
(1� bi)

(1 � ai)

!�����
�

kX
i=1

j ln
bi
ai
j+

kX
i=1

j ln
(1� bi)

(1 � ai)
j

�
2

B

kX
i=1

jai � bij:

The latter inequality follows from the fact that for x; y > 0,

j ln
x

y
j = ln

max(x; y)

min(x; y)
�

max(x; y)

min(x; y)
� 1 =

jx � yj

min(x; y)
:

Thus in this case we may take cl = 2k=B.
We now turn to the task of obtaining an upper bound on the capacity C(�;H; dL1 )

when the decision rules in H map into a decision space A � <k, and in particular, when

these decision rules are represented by neural networks. When k = 1, i.e. the neural net
has only one output, the decision rule space H is a family of real valued functions and
dL1(a; b) = ja � bj for a; b 2 A. In this case we can apply the methods and results of
section 4. We must �rst �nd an upper bound on dimP(H), the pseudo dimension of H.

Then, when A is bounded, from the bound on dimP(H) we get a bound on the capacity
C(�;H; dL1 ) using Theorem 6. This also gives a bound on the metric dimension of H.

Theorem 10 Let H be a family of functions from X into A = [0;M ]. Assume dimP(H) =
d for some 1 � d <1.

1. For all 0 < � �M ,

C(�;H; dL1 ) < 2
�
2eM

�
ln

2eM

�

�d

:
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=
kX

j=1

limsup�!0

 
log(C(�=kaj ;Hj ; �j+1))

log(1=�)

!

=
kX

j=1

limsup�j!0

 
log(C(�j ;Hj; �j+1))

log(1=�j) + log(1=kaj)

!

=
kX

j=1

limsup�j!0

 
log(C(�j ;Hj; �j+1))

log(1=�j)

!

=
kX

j=1

dim(Hj):

2

7 Sample size bounds for learning with multi-layer

neural nets

We now present some applications of the results of the previous section to learning with
feedforward neural nets (see e.g. [RM86,PG89]). The decision rule space H represented by
a feedforward neural net consists of a family of functions from an instance space X � <n

into a decision space A � <k for some k; n � 1. To apply Theorem 9 of the previous

section, we will need to obtain an upper bound on the capacity C(�;H; �l) of such decision
rule spaces for various loss functions l.

For many loss functions, the metric �l on A � <k can be bounded in terms of the dL1

metric, i.e. we can �nd a constant cl such that for all ~a = (a1; . . . ; ak) and ~b = (b1; . . . ; bk)

in A, �l(~a;~b) � cldL1(~a;~b) = cl
k

Pk
i=1 jai � bij. In this case it is clear that C(�;H; �l) �

C(�=cl;H; dL1). Thus our problem is reduced to obtaining an upper bound on the capacity
C(�=cl;H; dL1).

We now give a few examples to illustrate this reduction. First consider the common
case in which the outcome space Y is also contained in <k, e.g. we receive explicit feedback
on each coordinate of our action ~a 2 A � <k. This occurs when each coordinate ai of the
action ~a is a prediction of the corresponding coordinate of the outcome ~y. Here the loss

function l may itself be a metric on <k which measures the distance between the predicted
vector and the actual outcome vector. When l is a metric, we have for any actions ~a;~b 2 A

�l(~a;~b) = sup
~y2Y

jl(~y;~a)� l(~y;~b)j � l(~a;~b)

by the triangle inequality for l. Thus if the metric l is bounded with respect to dL1 metric,
i.e. l(~a;~b) � cldL1(~a;~b) for all ~a;~b 2 A, then we have �l(~a;~b) � cldL1(~a;~b). For example, if

l(~y;~a) = dL2(~y;~a) = 1

k

�Pk
i=1(yi � ai)2

�1=2
then we may take cl = 1, and similarly for the

other dLq metrics, for q > 1.
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� f2 2 Uf1 such that dL1(Pf1 ;�3)
(f2; g2) � �2, ..., and

� fk 2 Uf1;...;fk�1 such that dL1(Pfk�1�fk�2�����f1 ;�k+1)(fk; gk) � �k.

Let f = fk � fk�1 � � � � � f1 2 V . It su�ces to show that dL1(P;�k+1)(f; g) � �. We prove that

for all h, 1 � h � k,

dL1(P;�h+1)(fh � � � � � f1; gh � � � � � g1) �
hX

j=1

0
@ hY

l=j+1

bl

1
A �j:

Since

� =
kX

j=1

0
@ kY

l=j+1

bl

1
A �j;

part (1) of the result follows.
If h = 1 then the result follows directly from our de�nition of f . Otherwise

dL1(P;�h+1)(fh � � � � � f1; gh � � � � � g1)

=
Z
X1

�h+1(fh � � � � � f1(x); gh � � � � � g1(x))dP (x)

�
Z
X1

�h+1(gh � fh�1 � � � � � f1(x); gh � gh�1 � � � � � g1(x))dP (x)

+
Z
X1

�h+1(fh � fh�1 � � � � � f1(x); gh � fh�1 � � � � � f1(x))dP (x)

� bh

Z
X1

�h(fh�1 � � � � � f1(x); gh�1 � � � � � g1(x))dP (x)

+
Z
Xh

�h+1(fh(y); gh(y))dPfh�1;...;f1(y) (by Lip: assump:)

� bh
h�1X
j=1

0
@ h�1Y

l=j+1

bl

1
A �j + �h (by i:h: and def: of fh)

=
hX

j=1

0
@ hY
l=j+1

bl

1
A �j :

To prove part (2), let aj =
Qk

l=j+1 bl and set �j = �

kaj
for 1 � j � k. By part (1),

C(�;H; �k+1) �
Qk

j=1 C(�j ;Hj ; �j+1): Thus

dim(H) = limsup�!0

 
log(C(�;H; �k+1))

log(1=�)

!

� limsup�!0

 
log(

Qk
j=1 C(�=kaj ;Hj; �j+1))

log(1=�)

!
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De�nition 10 Let f be a function from a metric space (X;�) into a metric space (Y; �).
A Lipschitz bound on f is a real number b > 0 such that for all x; y 2 X, �(f(x); f(y)) �
b �(x; y). The Lipschitz bound on f is the smallest such b. If F is a class of functions from

(X;�) into (Y; �) then b is a uniform Lipschitz bound on F if b is a Lipschitz bound on f

for all f 2 F .

Lemma 8 Let (X1; �1); . . . ; (Xk+1; �k+1) be metric spaces, where (Xj ; �j) is bounded, 2 �
j � k, and Hj be a class of functions with f : Xj ! Xj+1 for all f 2 Hj, 1 � j � k. Let

bj be a uniform Lipschitz bound on Hj for all 2 � j � k. Let H denote the class of all

functions from X1 into Xk+1 de�ned by compositions of functions in the Hj 's, i.e.

H = ffk � fk�1 � � � � � f1 : fj 2 Hj ; 1 � j � kg:

1. For any �; �1; . . . ; �k > 0 such that

� =
kX

j=1

0
@ kY

l=j+1

bl

1
A �j

we have

C(�;H; �k+1) �
kY

j=1

C(�j ;Hj; �j+1):

2. dim(H) �
Pk

j=1 dim(Hj); and similarly for dim and dim, when the latter is de�ned.

Proof. Fix a probability measure P on X1. We de�ne a tree-structured family of covers
for the Hj's by induction as follows. For the basis case, let U be a minimum-sized �1-cover
for H1 w.r.t. the measure P on X1, i.e. jU j = N (�1;H1; dL1(P;�2)) and every function in H1

is L1(P; �2)-approximated to within �1 by some function in U . Now for each j, 2 � j � k,

and for each sequence of functions f1; . . . ; fj�1 where f1 2 U , f2 2 Uf1, f3 2 Uf1;f2 , ...,
fj�1 2 Uf1;...;fj�2, let Uf1;...;fj�1 be a minimum-sized �j cover for Hj w.r.t. the L1 metric for
the measure Pfj�1�fj�2�����f1 on Xj and the metric �j+1 on Xj+1.

Next we de�ne a cover V for H by composing functions in the covers for the Hj's. If
k = 1 then V = U . Otherwise

V = ffk � fk�1 � � � � � f1 : f1 2 U; f2 2 Uf1 ; f3 2 Uf1;f2; � � � ; and fk 2 Uf1;...;fk�1g:

SinceN (�j ;Hj; dL1(Pfj�1�fj�2�����f1 ;�j+1)) � C(�j ;Hj; �j+1) for all 1 � j � k and all f1; . . . ; fj�1,

it is clear that jV j �
Qk

j=1 C(�j ;Hj; �j+1): Hence it remains to show that V is an �-cover
for H.

Suppose that g = gk � gk�1 � � � � � g1 2 H. Find

� f1 2 U such that dL1(P;�2)(f1; g1) � �1,
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Proof. We begin with the second inequality of (1). For each 1 � j � k let Uj be an
�-cover for Hj. Let

U =
kY

j=1

Uj = f(f1; . . . ; fk) : fj 2 Uj; 1 � j � kg:

It su�ces to show that U is an �-cover for H. Let g = (g1; . . . ; gk) be any function in H.
For each j, 1 � j � k, �nd fj 2 Uj such that dL1(P;�j)(fj ; gj) � �. Let f = (f1; . . . ; fk).

Then

dL1(P;�)(f; g) =
Z
X

1

k

kX
j=1

�j(fj(x); gj(x))dP (x)

=
1

k

kX
j=1

Z
X
�j(fj(x); gj(x))dP (x)

=
1

k

kX
j=1

dL1(P;�j)(fj ; gj)

� �:

Hence U is an �-cover for H.

The �rst inequality of (1) is veri�ed similarly. For each 1 � j � k let Vj be an k�-
separated subset of Hj. Let V =

Qk
j=1 Vj: Let f = (f1; . . . ; fk) and g = (g1; . . . ; gk) be

distinct functions in V . Then

dL1(P;�)(f; g) =
1

k

kX
j=1

dL1(P;�j)(fj ; gj) > �:

Hence V is an �-separated subset ofH. It follows that
Qk
j=1M(k�;Hj; dL1(P;�j)) �M(�;H; dL1(P;�)).

The �rst inequality of (1) then follows using Theorem 12.
From (1) we have

kY
j=1

C(2k�;Hj ; �j) � C(�;H; �) �
kY

j=1

C(�;Hj ; �j):

Part (2) follows easily from this. 2

De�nition 9 Let P be a probability measure on X and f be a measurable function from

X into Y . Then Pf denotes the probability measure on Y induced by f , i.e.

Pf (S) = P (f�1(S)) for all measurable S � Y:
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Theorem 9 Assume that the decision rule space H and the loss function l are such that

lH is permissible. Let P be any probability distribution on Z = X � Y . Assume m � 1,

� > 0 and 0 < � < 1. Let ~z be generated by m independent draws from Z according to P .

Then

Pr (9h 2 H : d�(brh;l(~z); rh;l(P )) > �) � 4C(��=8;H; �l)e
��2�m=8M :

Proof. Let F = lH. For any sequence ~z of points in Z there is a trivial isometry between

(Fj~z ; dL1) and (F; dL1(P~z)), where P~z is the empirical measure induced by ~z, in which each
set has measure equal to the fraction of the points in ~z it contains. Thus by Lemma 6
above, we have

N (�;Fj~z ; dL1) = N (�;F; dL1(P~z)) � N (�;H; dL1(P~z jX
;�l)) � C(�;H; �l)

for all ~z 2 Z2m. Hence, setting � = ��=8, the given probability is at most 4C(��=8;H; �l)e��
2�m=8M

by Theorem 3. 2

In order to apply the above theorem, we need tools for bounding the capacity of various
decision rule spaces. Along these lines, we close this section by proving two basic lemmas,
one about the capacity of the free product of a set of function classes, and the other about
the capacity of compositions of functions classes.

De�nition 8 Let (A1; �1); . . . ; (Ak ; �k) be bounded metric spaces. Let A = A1 � � � � �Ak

and � be the metric on A de�ned by

�(~u;~v) =
1

k

kX
j=1

�j(uj ; vj)

for any ~u = (u1; . . . ; uk) and ~v = (v1; . . . ; vk) 2 A. For each j, 1 � j � k, let Hj be a

family of functions from X into Aj. The free product of H1 through Hk is the class of

functions

H = f(f1; . . . ; fk) : fj 2 Hj ; 1 � j � kg;

where (f1; . . . ; fk) : X ! A is the function de�ned by

(f1; . . . ; fk)(x) = (f1(x); . . . ; fk(x)):

Lemma 7 If H;H1; . . . ;Hk are de�ned as above then

1. for any probability measure P on X and � > 0,

kY
j=1

N (2k�;Hj; dL1(P;�j)) � N (�;H; dL1(P;�)) �
kY

j=1

N (�;Hj ; dL1(P;�j));

2. dim(H) =
Pk

j=1 dim(Hj); and similarly for dim and dim, when the latter is de�ned.
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If N (�;H; dL1(P;�)) is in�nite for some measure P , or if the set in this supremum is un-

bounded, then C(�;H; �) =1. We call 13 C(�;H; �) the capacity of H. In analogy with the

de�nition of metric dimension, we de�ne the upper metric dimension of H by

dim(H) = limsup�!0

log C(�;H; �)

log(1=�)
;

and the lower metric dimension, denoted by dim(H), is de�ned similarly using liminf.

When dim(H) = dim(H), then this quantity is denoted dim(H), and referred to simply

as the metric dimension of H. If C(�;H; �) =1 for some � > 0 then dim(H) =1.

We now show how bounds on the capacity ofH lead to distribution-independent bounds
on the rate of uniform convergence of empirical risk estimates for functions in H with

respect to the loss function l. As before, let Z = X � Y , P be a probability distribution
on Z, and lH be the family of functions on Z de�ned by lH = flh : h 2 Hg, where
lh(x; y) = l(y; h(x)). Let PjX be the marginal on X of the joint distribution P on X � Y

(see section 1.5).

Lemma 6 For all � > 0,

N (�; lH; dL1(P )) � N (�;H; dL1(PjX
;�l)):

Proof. For every h 2 H let  (h) = lh. Hence  maps from H onto lH. It su�ces to show
that  is a contraction, i.e. that

8 f; g 2 H; dL1(P )( (f);  (g)) � dL1(Pj
X
;�l)(f; g):

Let f and g be any two functions in H. Then

dL1(P )( (f);  (g)) =
Z
Z
jl(y; f(x)) � l(y; g(x))jdP (x; y)

�
Z
Z
�l(f(x); g(x))dP (x; y)

=
Z
X
�l(f(x); g(x))dPjX (x)

= dL1(Pj
X
;�l)(f; g):

2

This gives the following theorem about distribution-independent uniform convergence
of risk estimates for learning.

13The term metric entropy is often used for the quantities logN (�;H; dL1(P;�)) and log C(�;H; �)
[Dud87,Qui89]. It is also used for an analogous, but fundamentally distinct, concept in the dynamical
systems literature (e.g. [Far82]). The term capacity has also been used with many other related meanings
[Man82,Vap82,KT61,FOY83,BH89]. Our usage here is taken from [Dud84].
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6 Capacity and Metric Dimension of Function Classes

In sections 4 and 5 we showed how the pseudo dimension can be used to obtain distribution
independent bounds on the random covering numbers needed for Theorem 2, thereby

obtaining bounds on the sample size needed for uniform convergence and learning results.
In this section we develop an alternate way of obtaining distribution independent bounds
on random covering numbers. This method can sometimes be used in conjunction with
the method given in the previous sections to extend that method to cover cases where the

decision space A is not contained in <. We will demonstrate this in our analysis of the
sample size needed for learning in feedforward neural networks in the following section.

The key idea is to introduce a pseudo metric (see section 10.1) on the decision space
A. The distance between two actions is the maximum di�erence in loss for these actions,

over all possible outcomes.

De�nition 6 For every loss function l : Y � A ! [0;M ], by �l we denote the pseudo

metric on A de�ned by �l(a; b) = supy2Y jl(y; a) � l(y; b)j for all a; b 2 A.

Note that (A; �l) is a bounded pseudo metric space: no two actions in A are more than M

apart.
Since decision rules in H map from the instance space X into A, the pseudo metric �l

on A can be used to induce a pseudo metric on H in which two decision rules di�er only to

the extent that the actions that they proscribe di�er with respect to �l. There are several
ways to do this. The easiest is to use an L1 function distance on H, de�ning the distance
between decision rules f and g as the supremum of �l(f(x); g(x)) over all x 2 X. This
works, and is a useful method of obtaining uniform convergence and learning results (see

related techniques used in [Whi90a]). However, as we will see, the crucial issue is the size
of the smallest �-cover of the resulting pseudo metric space H. In some cases we can get
smaller covers, and hence better results, by using an L1 function distance instead. Since
the L1 distance is never more than the L1 distance, the results are never worse. Thus we

present this more powerful method here.

De�nition 7 Let H be a family of functions from a set X into a bounded pseudo metric

space (A; �). Let P be a probability measure on X. Then dL1(P;�) is the pseudo metric on

H de�ned by

dL1(P;�)(f; g) = E(�(f(x); g(x))) =
Z
X
�(f(x); g(x))dP (x)

for all f; g 2 H. For every � > 0 let

C(�;H; �) = supfN (�;H; dL1(P;�))g over all probability measures P on X:
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We now give several examples to illustrate the use of this theorem. First, consider
the standard PAC model in which the outcome space Y and the decision space A are

both f0; 1g. In this case any loss function such that l(0; 1) 6= l(0; 0) and l(1; 1) 6= l(1; 0)
is monotone over A, and in particular, the standard discrete loss function, l(y; a) = 1 if
y = a, else l(y; a) = 0, is monotone. Clearly M = 1 in this case. Thus from equation (6)
above we get a sample complexity bound of

O
�
1

�

�
dimP(H) log

1

�
+ log

1

�

��
:

As mentioned in the previous section, dimP(H) is the same as the Vapnik-Chervonenkis
dimension of H in this case, hence this bound is, up to constants, the same as that given
in Theorem 2.1 of [BEHW89]. A number of applications of this result are outlined in
[BEHW89]. Further applications, speci�cally for learning problems that have been studied

recently in the mainstream arti�cial intelligence work, are given in [Hau88,Hau89].
For our second example, consider the case that the outcome space Y is f0; 1g but the

decision space A is [0; 1]. Assume that the loss function is l(y; a) = ja�yjq for some q > 0.
This case was examined in [KS90] with q = 2 by Kearns and Schapire in their investigation

into the learnability of p-concepts. They showed that dimP(lH) = dimP(H) in this case.
Since the loss l is monotone in A for all q > 0, Lemma 5 shows that this result holds for
other values of q as well. Hence the conditions of Theorem 8 are met. Some applications

are given in [KS90]. (It should be noted that it is important that A = [0; 1] in this case.
The result does not hold in general for larger A.)

For our third example, consider the problem of logistic regression, as described in
section 1.1.3. In the simplest case the outcome space again has only two values, denoted

y1 and y2, where y1 indicates that some event has taken place and y2 indicates that it has
not, and an action a represents an estimate of the log odds ratio ln(P (y1)=P (y2)), where
the probability P is conditioned on the observed instance x. Here A = < and the log
likelihood loss function is the logistic loss function, de�ned by l(y1; a) = ln(1 + ea) � a

and l(y2; a) = ln(1 + ea). Again, it is easily veri�ed that l is monotone in A. In logistic
regression the standard assumption is that the instance space X is contained in <n for
some n � 1 and H is contained in the family of all linear functions on X (see e.g. [MN89]).
In this case, dimP(H) � n + 1 by Theorem 4. By restricting A to a bounded range, we

can then apply Theorem 8 to obtain sample complexity bounds that are linear in n.
As a last example, consider the problem of density estimation, as described in sec-

tion 1.1.4. Here there is only one outcome in Y , A � <+, and l(y; a) = l(a) = � log a.
Thus clearly l is monotone in A. Thus we can apply Theorem 8 to the problem of denisity

estimation as well, whenever the family of densities H is uniformly bounded (away from
zero) and has �nite pseudo dimension.
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notation brh;l(~z) and rh;l(P ) introduced in section 2 for the empirical risk estimate and true
risk of a decision rule h, respectively.

Theorem 8 Assume the decision space A � <, the loss function l is monotone over A

and bounded between 0 and M , the decision rule space H is such that lH is permissible,

and 1 � d = dimP(H) < 1. Assume m � 1, 0 < � < 8M and 0 < � < 1. Let P be any

probability distribution on Z. Let ~z be generated by m independent draws from Z according

to P . Then

Pr (9h 2 H : d�(brh;l(~z); rh;l(P )) > �) � 8
�
16eM

��
ln

16eM

��

�d

e��
2�m=8M :

Moreover, for m � 8M
�2�

�
2d ln 8eM

��
+ ln 8

�

�
this probability is at most �.

Proof. By Lemma 5, dimP(lH) = dimP(H) in this case. Thus, since brh;l(~z) = bE~z(lh) and
rh;l(P ) = E(lh), the result follows directly from Theorem 7. 2

When its conditions are satis�ed, this theorem, combined with Lemma 1 from sec-

tion 2.5, gives us a means of bounding in terms of dimP(H) the sample complexity
m(�; �; �) of any algorithm that solves the basic learning problem by returning (with high
probability) a decision rule with near minimal empirical risk on the training sample. The
resulting bound is

m(�; �; �) = O
�
M

�2�

�
dimP(H) log

M

��
+ log

1

�

��
: (5)

This is similar to the sample complexity

m(�; �; �) = O
�
M

�2�

�
log jHj+ log

1

�

��

that can be obtained by using Theorem 1, when H (and hence lH) is �nite. The term
dimP(H) log

M
��

replaces the term log jHj. In particular, for the \PAC settings" � = 1=2
and � = � we get the sample complexity

m(�; �) = O
�
M

�

�
dimP(H) log

M

�
+ log

1

�

��
; (6)

in place of the sample complexity

m(�; �) = O
�
M

�

�
log jHj+ log

1

�

��

derived from Theorem 1. Moreover, these bounds are distribution-independent, so P can
be taken to be the class of all probability distributions on Z.
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De�nition 5 Let l : Y � A ! < be a loss function, where A � < and Y is an arbitrary

set. For each y 2 Y de�ne the function fy : A ! < by letting fy(a) = l(y; a) for each

a 2 A, i.e. fy is the restriction of l obtained by �xing its �rst argument to y. We say

that l is monotone over A if for every y 2 Y , either fy is strictly increasing on A, or fy
is strictly decreasing on A. Thus fy may be increasing for some y 2 Y and decreasing for

others.

Lemma 5 If A � < and l is a loss function on A � Y that is monotone over A, then

dimP(lH) = dimP(H).

Proof. Suppose that ~x = (x1; . . . ; xd) is shattered by H, where xi 2 X, 1 � i � d. Then
there is some real vector ~r = (r1; . . . ; rd) such that Hj~x � ~r intersects all 2d orthants of <d.

Hence for every Boolean vector~b 2 f0; 1gd there exists a function h~b 2 H such that for every

i, 1 � i � d, we have h~b(xi) > ri if and only if the ith bit of~b is 1. Fix an outcome y 2 Y . Let

~z = (z1; . . . ; zd), where zi = (xi; y) for all i, 1 � i � d. Note that if fy is strictly increasing,
then for any h 2 H and 1 � i � d, h(xi) > ri , lh(zi) = l(y; h(xi)) = fy(h(xi)) > fy(ri).

Hence, for every Boolean vector ~b 2 f0; 1gd there exists a function h~b 2 H such that

for every i, 1 � i � d, we have lh~b(zi) > fy(ri) if and only if the ith bit of ~b is 1. A
similar result holds if fy is strictly decreasing. Thus ~z is shattered by lH. It follows that

dimP(lH) � dimP(H).
For the other direction, assume ~z = (z1; . . . ; zd) is shattered by lH, where zi = (xi; yi)

for all i, 1 � i � d. We will show that ~x = (x1; . . . ; xd) is shattered by H. Since ~z is
shattered by lH, there is some real vector ~r = (r1; . . . ; rd) such that for every Boolean

vector ~b 2 f0; 1gd there exists a function h~b 2 H such that for every i, 1 � i � d, we have

lh~b(zi) > ri if and only if the ith bit of ~b is 1. Let A0 = fh~b(xi) : 1 � i � d and ~b 2 f0; 1gdg.
For each outcome y 2 Y de�ne the function gy : < ! A0 as follows. If fy is increasing

then gy(r) = maxfa 2 A0 : fy(a) � rg and if fy is decreasing then gy(r) = maxfa 2 A0 :
fy(a) > rg. Then for each i, 1 � i � d, we either have

1. for all h 2 H, lh(zi) = fyi(h(xi)) > ri , h(xi) > gyi(ri) or

2. for all h 2 H, lh(zi) = fyi(h(xi)) > ri , h(xi) � gyi(ri)

Hence, for every Boolean vector ~b 2 f0; 1gd there exists a function h0~b 2 H such that for

every i, 1 � i � d, we have h0~b(xi) > gyi(ri) if and only if the ith bit of ~b is 1. (To see this,

let ~c be the Boolean vector derived from ~b by complementing the bit in each position i for
which fyi is decreasing, and then let h0~b = h~c.) Thus ~x = (x1; . . . ; xd) is shattered by H.
It follows that dimP(H) � dimP(lH), and combined with the above inequality, this gives
the result. 2

Combined with Theorem 7, this gives the following result on the uniform convergence
of empirical risk estimates for the basic learning problem. Here and below we use the
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for all ~z 2 Z2m. Hence the given probability is at most

8
�
2eM

�
ln

2eM

�

�d
e��

2�m=8M = 8
�
16eM

��
ln

16eM

��

�d
e��

2�m=8M

by Theorem 3.
For the second result, setting the bound above equal to � and solving for m gives

m �
8M

�2�

�
d ln

�
16eM

��
ln

16eM

��

�
+ ln

8

�

�
:

It is easily veri�ed that ln(a ln a) < 2 ln(a=2) when a � 5, and from this the bound given

in the second result follows. 2

Corollary 2 Under the same assumptions as above, for all 0 < � �M ,

Pr
�
9f 2 F : j bE~z(f) �E(f)j > �

�
� 8

�
32eM

�
ln

32eM

�

�d
e��

2m=64M2

:

Moreover, for m � 64M2

�2

�
2d ln 16eM

�
+ ln 8

�

�
this probability is at most �.

Proof. This follows directly from the above result by setting � = 2M , � = �=4M , and
using property (3) of the d� metric, as in the proof of Corollary 1 in section 3.2. 2

5 Some Applications of Pseudo Dimension in Learn-

ing

We now look at how the theoretical results obtained in the previous two sections can
be applied to certain types of learning problems. Suppose that we have a basic learning
problem de�ned by X, Y , A, H, P, and L, where L is the family of L�;� regret functions
for an underlying loss function l, as in section 2. As before, let Z = X�Y , lh : Z ! [0;M ]

be de�ned by lh(x; y) = l(y; h(x)) for all h 2 H, and lH = flh : h 2 Hg. In this section we
will show how to obtain sample complexity bounds on algorithms for this basic learning
problem using Theorem 7 above.

To obtain these bounds, we will need bounds on dimP(lH). In this section we will look
at some useful tricks for computing dimP(lH) in the important case A � <, i.e. when each
decision is represented by a real number. In the following section we discuss more general
decision spaces.

When A � <, the functions in H are themselves real-valued, so we can talk about
the pseudo dimension of H itself, without reference to any particular loss function. What
makes this useful is that in many important cases the pseudo dimension of H is the same
as the pseudo dimension of lH. Thus we can factor out the e�ects of the loss function in

deriving our sample size bounds, and concentrate on the pseudo dimension of the decision
rule space H.
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Since this holds for every distinct f and g in G, combining this with the inequality above,
we have

E(jsign(Fj~z � ~r)j) � jGj(1� jGje��m=M ):

Since jGj =M(�;F; dL1(P )), this gives the result. 2

Proof of Theorem 6. Since dimP(F) = d, it follows from Sauer's lemma that
jsign(Fj~z � ~r)j � (em=d)d for all m � d, ~z 2 Zm and ~r 2 [0;M ]m. Hence the above lemma
implies that

(em=d)d �M(�;F; dL1(P ))
�
1�M(�;F; dL1(P ))e

��m=M
�

(4)

for all probability measures P on Z and m � d. It is easily veri�ed that if

M

�
ln(2M(�;F; dL1(P ))) < d

then the upper bound given in Theorem 6 follows trivially using the fact that � �M . Thus
we may assume that M

�
ln(2M(�;F; dL1(P ))) � d. Hence, if m � M

�
ln(2M(�;F; dL1(P )));

then m � d and
(1�M(�;F; dL1(P ))e

��m=M ) � 1=2:

Thus from (4) we obtain 
eM ln(2M(�;F; dL1(P )))

�d

!d
�

1

2
M(�;F; dL1(P )):

With some simple calculations, this gives the bound of Theorem 6. 2
Using our results on uniform convergence from sections 3.2 and 10.4, we can now show

the following.

Theorem 7 Let F be a permissible family of functions from a set Z into [0;M ] with

dimP(F) = d for some 1 � d <1. Assume m � 1, 0 < � � 8M and 0 < � < 1. Let ~z be

generated by m independent draws according to any distribution on Z. Then

Pr

�
9f 2 F : d�( bE~z(f);E(f)) > �

�
� 8

�
16eM

��
ln

16eM

��

�d
e��

2�m=8M :

Moreover, for m � 8M
�2�

�
2d ln 8eM

��
+ ln 8

�

�
this probability is at most �.

Proof. Let � = ��=8. Since � < 1 and � � 8M , � � M . For any sequence ~z of points in
Z there is a trivial isometry between (Fj~z ; dL1) and (F; dL1(P~z)), where P~z is the empirical
measure induced by ~z, in which each set has measure equal to the fraction of the points in

~z it contains. Thus by Theorem 12 of section 10.1 and Theorem 6, we have

N (�;Fj~z ; dL1) �M(�;Fj~z ; dL1) � 2
�
2eM

�
ln

2eM

�

�d
;
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Fj~z = f0; 1gd. Then 12

jFj �
dX
i=0

 
m

i

!
� (em=d)d

where e is the base of the natural logarithm. 2

In the next lemma we bound the packing numbers of (F; dL1(P )) in terms of the expected

number of orthants intersected by a random translation of a random restriction of F. This
is the key lemma of the proof.

Lemma 4 Let F be a family of functions from a set Z into [0;M ] and let P be a probability

measure on Z. Let ~r = (r1; . . . ; rm) be a random vector in [0;M ]m where each ri is drawn

independently at random from the uniform distribution on [0;M ]. Let ~z = (z1; . . . ; zm) be

a random vector in Zm where each zi is drawn independently at random from P . Then for

all � > 0

E(jsign(Fj~z � ~r)j) �M(�;F; dL1(P ))
�
1�M(�;F; dL1(P ))e

��m=M
�
:

Proof. For all f 2 F we will denote (f(z1); . . . ; f(zm)) by fj~z . Choose � > 0. Let G be an
�-separated subset of F (w.r.t. dL1(P )), with jGj =M(�;F; dL1(P )). Then

E(jsign(Fj~z � ~r)j) � E(jsign(Gj~z � ~r)j)

� E(jff 2 G : sign(fj~z � ~r) 6= sign(gj~z � ~r) for all g 2 G; g 6= fgj)

=
X
f2G

Pr

�
sign(fj~z � ~r) 6= sign(gj~z � ~r) for all g 2 G; g 6= f

�

=
X
f2G

�
1�Pr

�
9g 2 G; g 6= f : sign(fj~z � ~r) = sign(gj~z � ~r)

��

�
X
f2G

�
1� jGj max

g2G;g 6=fPr

�
sign(fj~z � ~r) = sign(gj~z � ~r)

��
:

Let f and g be distinct functions in G. Since G is �-separated,Z
Z
jf(z) � g(z)jdP (z) > �:

In addition, the range of f and g is [0;M ]. Hence if zi is drawn at random from P and ri
drawn at random from the uniform distribution on [0;M ], then the probability that ri lies

between f(zi) and g(zi) is at least �=M . And sign(fj~z � ~r) = sign(gj~z � ~r) only if this fails
to occur for each i, 1 � i � m. Thus

Pr

�
sign(fj~z � ~r) = sign(gj~z � ~r)

�
�
�
1�

�

M

�m
� e��m=M :

12See e.g. [Dud84], Prop. 2.2.9, or [BEHW89], Appendix, for a proof of the second inequality. Note also
that [VC71] actually contains a slightly weaker result.
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the absolute value of their di�erence, i.e. the L1 distance, relative to the given measure.
To make this work, we need to make some assumptions about the integrability of the

functions in F under the given measure. Since we will be concerned only with families of
functions taking values in a bounded range in this paper, this will cause no problems for
us. For convenience, we choose this range to be [0;M ]. For a more general treatment, see
[Pol84][Dud84].

De�nition 4 Let F be a class of functions from Z into [0;M ], where M > 0, and P be a
probability measure on Z. Then dL1(P ) is the pseudo metric on F de�ned by

dL1(P )(f; g) = E(jf � gj) =
Z
Z

jf(z) � g(z)jdP (z) for all f; g 2 F:

The notions of �-cover and metric dimension used in the previous section can be gen-
eralized to arbitrary pseudo metric spaces. This generalization is given in section 10.1 of

the appendix. In the remainder of the paper we will use the concepts and notation given
there without further special reference.

Using techniques that go back to Dudley [Dud78], Pollard has obtained a beautiful
theorem bounding the metric dimension of (F; dL1(P )) by dimP(F) for any probability

measure P on Z. Actually this result is much stronger in that it gives explicit bounds on
the packing numbers for F using dL1(P ) balls of radius �. Since packing numbers are closely
related to covering numbers (Theorem 12 in section 10.1), these bounds can then be used
with Theorem 2 to obtain uniform convergence results for empirical estimates of functions

in F. We now state and prove a version of Pollard's result ([Pol84], Lemma 25, p. 27)
for the special case when F is a class of functions taking values in the interval [0;M ] with
somewhat better bounds on the packing numbers.

Theorem 6 (Pollard) Let F be a family of functions from a set Z into [0;M ], where
dimP(F) = d for some 1 � d < 1. Let P be a probability measure on Z. Then for all
0 < � �M ,

M(�;F; dL1(P )) < 2
�
2eM

�
ln

2eM

�

�d
:

The proof we give uses essentially the same techniques as Pollard's, with some minor
modi�cations. It relies on a few lemmas, which we give now. The �rst, which we give
without proof, was discovered independently by a number of people (see [Ass83]), including
Vapnik and Chervonenkis [VC71], but is most often attributed to Sauer [Sau72] in the

computer science literature.

Lemma 3 (Sauer) Let F be a class of functions from S = f1; 2; . . . ;mg into f0; 1g with

jFj > 1 and let d be the length of the longest sequence of points ~z from S such that

31



On the other hand, if F is a d-dimensional vector space of real-valued functions on Z,
then there exists a sequence ~z of d points in Z such that Fj~z = <d. Hence ~z is shattered,

implying that dimP(F) � d. 2
There are many other ways that the VC dimension can be generalized to real-valued

functions [Nat89b] [Nat89a] [Pol84] [Vap89] [Dud87]. Dudley [Dud87] compares several
such generalizations, albeit in a di�erent context. The generalization we have proposed

here, the pseudo dimension, is a minor variant of the notion used by Pollard in [Pol84] to
de�ne classes of real-valued functions of polynomial discrimination, called VC-subgraph
classes in [Dud87]. The pseudo dimensionwill be used in the form de�ned above in Pollard's

new book [Pol90].
The pseudo dimension has a few invariance properties that are useful (see [Pol90] for

further results of this type).

Theorem 5 Let F be a family of functions from Z into <. Fix any function g from Z

into < and let G = fg + f : f 2 Fg. Let I be a real interval (possibly all of <) such that
every function in F takes values only in I. Fix any nondecreasing (resp. nonincreasing)
function h : I ! < and let H = fh � f : f 2 Fg, where � indicates function composition.

Then

1. ([WD81]) dimP(G) = dimP(F) and

2. ([NP87,Dud87]) dimP(H) � dimP(F), with equality if h is continuous and strictly
increasing (resp. continuous and strictly decreasing).

Proof. Part (1) follows directly from the fact that the notion of a set of points being full is
invariant under translation. For part (2) it su�ces to prove the results for h nondecreasing

and h continuous and strictly increasing. Let ~z = (z1; . . . ; zd) be such that Hj~z is full, i.e.
such that Hj~z � ~x intersects all 2d orthants of <d for some vector ~x = (x1; . . . ; xd) in <d.

Then for every Boolean vector ~b 2 f0; 1gd there exists a function f~b 2 F such that for every

i, 1 � i � d, we have h � f~b(zi) > xi if and only if the ith bit of ~b is 1. For each i, 1 � i � d,
let

ui = minff~b(zi) : the ith bit of ~b is 1g

and

li = maxff~b(zi) : the ith bit of ~b is 0g:

Since h is nondecreasing, we have ui > li for each i. Let ri = (ui + li)=2 for each i and

~r = (r1; . . . ; rd). Let T = ff~b :
~b 2 f0; 1gdg. Then clearly T � ~r intersects every orthant of

<d, so T is full. Since T � F, this implies that Fj~z is full, and hence dimP(H) � dimP(F).
Equality follows when h is continuous and strictly increasing since we obtain the class F
from H by composing with h�1. 2

By putting a probability measure on Z, we can view a class F of real-valued functions
on Z as a pseudo metric space. The distance between two functions is the integral of
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Proof. Let T be a hyperplane in <d. Choose a vector ~x 2 <d as follows. If T includes the
origin, then let ~x be any vector that is orthogonal to T and has at least one strictly negative

coordinate. (For any nonzero orthogonal vector ~x, if ~x doesn't have a negative coordinate
then �~x does.) Otherwise let ~x be the (nonzero) vector in T on the line perpendicular
to T that passes through the origin. To complete the proof, we show that for all ~y 2 T ,
sign(~y) 6= ~1� sign(~x), where ~1 denotes the all 1's vector.

Suppose to the contrary that sign(~y) = ~1� sign(~x) for some ~y 2 T . This implies that
the inner product

P
d

i=1 xiyi is non positive, and is in fact strictly negative if either ~x or ~y
contain a strictly negative coordinate. However, by our choice of ~x, either ~x is orthogonal

to ~y and contains a strictly negative coordinate, giving an immediate contradiction, or ~x
is non-zero and ~x is orthogonal to ~y � ~x. In this last case,

dX
i=1

xiyi =
dX

i=1

x2
i
;

which is again a contradiction, since the left side is non-positive while the right side is
strictly positive. 2

It follows from this lemma that if T is contained in a hyperplane of <d then T is not
full.

De�nition 3 Let F be a family of functions from a set Z into <. For any sequence
~z = (z1; . . . ; zd) of points in Z, let Fj~z = f(f(z1); . . . ; f(zd)) : f 2 Fg. If Fj~z is full then we
say that ~z is shattered by F. The pseudo dimension of F, denoted dimP(F), is the largest
d such that there exists a sequence of d points in Z that is shattered by F. If arbitrarily

long �nite sequences are shattered, then dimP(F) is in�nite.

It is clear that when F is a set of f0; 1g-valued functions then for any sequence ~z

of d points in Z, Fj~z is full if and only if Fj~z = f0; 1gd. Thus in this case dimP(F) is

the length d of the longest sequence of points ~z such that Fj~z = f0; 1gd. This is the
de�nition of the Vapnik-Chervonenkis dimension of a class F of f0; 1g-valued functions
[Vap82][HW87][BEHW89]. Thus the pseudo dimension generalizes the Vapnik-Chervonenkis
dimension to arbitrary classes of real-valued functions.

The pseudo dimension also generalizes the algebraic notion of the dimension of a vector
space of real-valued functions [Dud78].

Theorem 4 (Dudley) Let F be a d-dimensional vector space of functions from a set Z
into <. Then dimP(F) = d.

Proof. Fix any sequence ~z = (z1; . . . ; zd+1) of points in Z. For any f 2 F let 	(f) =
(f(z1); . . . ; f(zd+1)). Then 	 is a linear mapping from F into <d+1, and the image of 	 is
Fj~z . Since F is a vector space of dimension d, this implies that Fj~z is a subspace of <d+1

of dimension at most d. Hence by Lemma 2, Fj~z is not full. This implies dimP(F) � d.

29



Theorem 3 Let F be a permissible set of functions on Z with 0 � f(z) �M for all f 2 F
and z 2 Z. Assume � > 0, 0 < � < 1 and m � 1. Suppose that ~z is generated by m

independent random draws according to any probability measure on Z. Let

p(�; �;m) = Pr

n
~z 2 Zm : 9f 2 F with d�( bE~z(f);E(f)) > �

o
:

Then

p(�; �;m) � 2E(min(2N (��=8;Fj~z ; dL1)e
��2�m=8M ; 1));

where the expectation is over ~z drawn randomly from Z2m. If in addition Fj~z is �nite for

all ~z 2 Z2m then

p(�; �;m) � 2E(min(2jFj~z je
��2�m=2M ; 1)):

Theorem 2 is obtained as a corollary of this result by substituting m=2 for m and not
taking the minimum with 1 in the left hand side of the �rst bound for p(�; �;m). We will
use Theorem 3 to obtain slightly better constants in some of the results in the sequel.

4 Pseudo dimension of classes of real-valued functions

In this section we will look at one way that bounds on the covering numbers appearing in
Theorem 2 can be obtained. This technique, due to Pollard [Pol84], who extended methods
from [Dud78], is based on certain intuitions from combinatorial geometry. It generalizes

the techniques based on the Vapnik-Chervonenkis dimension used in [BEHW89], which
apply only to f0; 1g-valued functions. We begin by establishing some basic notation.

De�nition 2 For x 2 <, let sign(x) = 1 if x > 0 else sign(x) = 0. For ~x = (x1; . . . ; xd) 2
<d, let sign(~x) = (sign(x1); . . . ; sign(xd)) and for T � <d let sign(T ) = fsign(~x) : ~x 2
Tg. For any Boolean vector ~b = (b1; . . . ; bd), f~x 2 <d : sign(~x) = ~bg is called the ~b-
orthant of <d, where we have, somewhat arbitrarily, included points with value zero for

a particular coordinate in the associated lower orthant. Thus sign(T ) denotes the set of

orthants intersected by T . For any T � <d, and ~x 2 <d, let T + ~x = f~y + ~x : ~y 2 Tg,
i.e. the translation of T obtained by adding the vector ~x. We say that T is full if there

exists ~x 2 <d such that sign(T + ~x) = f0; 1gd, i.e. if there exists some translation of T

that intersects all 2d orthants of <d.

The following result is well known and can be proved in a variety of ways. For ex-

ample, it follows easily from well known bounds on the number of cells in arrangements
of hyperplanes (see e.g. [Ede87]). We give an elementary proof using a technique from
[Dud78].

Lemma 2 No hyperplane in <d intersects all orthants of <d.
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jr� sj � � whenever d�(r; s) � � for all 0 � r; s �M when this setting of � and � is used.
2

The constants in these results are only crude estimates. No serious attempt has been
made to minimize them. (See the recent results of Talagrand [Tal91] for much better
constants for Corollary 1).

The bound in this latter result depends critically on the relative magnitudes of the

negative exponent in e��
2m=128M2

and the exponent in the expectation of the covering
number N (�=16;Fj~z), which re
ects the extent to which Fj~z \�lls up" the m-cube [0;M ]m.
For example, if Fj~z has metric dimension at most n for all m and all ~z, then there is a

constant c0 such that for any � > 0, N (�=16;Fj~z ) � (c0M=�)n+� for suitably small �. In this
case the negative exponential term eventually dominates the expected covering number,
and beyond a critical sample size

m0 = O

 
nM2

�2
log

M

�

!
;

the bound goes to zero exponentially fast. We will see examples of this in the following
section, where we give bounds on the metric dimension of Fj~z in terms of a combinato-
rial parameter called the pseudo dimension of F. The theorem actually shows that this

exponential drop o� occurs even if this metric dimension bound holds only for \most" ~z.
On the other hand, if with high probability Fj~z \�lls up" the m-cube [0;M ]m to the

extent that N (�=16;Fj~z) � (c0=�)m, which is as large as possible, then the covering number
dominates, and the bound is trivial. Results in [Vap82] (Theorem A.2, page 220) indicate

that uniform convergence does not take place in this case. Similar remarks apply to the
bound given in Theorem 2, which uses the d� metric.

The proof of Theorem 2 follows the proof of Pollard's Theorem 24 ([Pol84], p. 25) in
general outline. However, the use of the d� metric necessitates a number of substantial

modi�cations. The approach taken here is di�erent from that taken (independently, but
prior to this work) by Pollard in [Pol86]. Still di�erent, and more involved, techniques are
used in the more general theory of weighted empirical processes developed by Alexander

[Ale85,Ale87]. While the proof of Theorem 2 we give is simpler, it is still somewhat lengthy,
so it is given in Appendix 10.4.

Actually, we can prove a slightly stronger result than Theorem 2. This result is obtained
by bounding the probability of uniform convergence on a sample of length m in terms of

the expected covering numbers associated with a sample of length 2m, and by expanding
the expectation to include the negative exponential term with a \truncation" at 1. It turns
out that this saves us a factor of 1/2 in the negative exponential term. We also include
special bounds for the case that Fj~z is always �nite. This case comes up, for example,

when F = lH and we use the discrete loss function l, as in the PAC learning model.
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Following [KT61] we de�ne the upper metric dimension of the set T of points by

dim(T ) = limsup�!0

logN (�; T )

log(1=�)
:

The lower metric dimension, denoted by dim, is de�ned similarly using liminf. When
dim(T ) = dim(T ), then this quantity is denoted dim(T ), and referred to simply as the
metric dimension of T . Note that if N (�; T ) = (g(�)=�)n, where g(�) is polylogarithmic in
1=�, then dim(T ) = n. Hence the metric dimension essentially picks out the exponent in

the rate of growth of the covering number as a function of 1=�.
Assume all functions in F map from Z into [0;M ]. For any sample ~z = (z1; . . . ; zm),

with zi 2 Z, let

Fj~z = f(f(z1); . . . ; f(zm)) : f 2 Fg:

We will call Fj~z the restriction of F to ~z. Note that Fj~z is a set of points in the m-

cube [0;M ]m. We can consider the size of the covering number N (�;Fj~z ) as giving some
indication of the \richness at scale � �" of the class F of functions, restricted to the domain
z1; . . . ; zm. The metric dimension of Fj~z gives some indication of the \number of essential

degrees of freedom" in this restriction of F.
When z1; . . . ; zm are drawn independently at random from Z, the random covering

number E(N (�;Fj~z )) gives some indication of the \richness" of F on a \typical" set of m
points in the domain Z. Note that for �nite F, we have N (�;Fj~z) � jFj for all � and all

samples ~z, and hence the random covering number E(N (�;Fj~z )) � jFj for all �, all sample
sizes m, and all distributions on Z. The main result about uniform empirical estimates
for in�nite classes of functions is similar to Theorem 1 except that the random covering
numbers are used in place of jFj.

Theorem 2 ([Pol86]) Let F be a permissible11 set of functions on Z with 0 � f(z) �M

for all f 2 F and z 2 Z. Let ~z = (z1; . . . ; zm) be a sequence of m examples drawn
independently from Z according to any distribution on Z. Then for any � > 0 and 0 <

� < 1,

Pr
�
9f 2 F : d�( bE~z(f);E(f)) > �

�
� 4E

�
N (��=8;Fj~z)

�
e��

2�m=16M : 2

Corollary 1 ([Pol84]) Under the same assumptions as above, for all � > 0,

Pr
�
9f 2 F : j bE~z(f) �E(f)j > �

�
� 4E

�
N (�=16;Fj~z )

�
e��

2m=128M2

:

Proof of corollary. This follows directly from the above result by setting � = 2M , and

� = �=4M . To see this, note that property (3) of the d� metric (section 2.2) implies that

11This is a measurability condition de�ned in [Pol84] which need not concern us in practice. Further
details are given in section 10.2 of the appendix.
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In the latter case we get a sample complexity

m(�; �; �) = O
�
M

�2�

�
log jlHj+ log

1

�

��
: (2)

As shown in the previous section, a generalization of the PAC learning model can be

obtained by using either the L� or L�;� regret functions, in the latter case by setting � = 1=2
and � = �. Note that plugging this latter setting into (2) gives a sample complexity

m(�; �) = O
�
M

�

�
log jlHj+ log

1

�

��
; (3)

a signi�cant improvement over (1), which is quadratic in M=�. Thus the generalization of
the PAC model using the d� metric to measure distance from optimality, and the resulting
L�;� family of regret functions, o�ers new insight in this regard. (Vapnik's use of the

relative di�erence between empirical estimates and true expectations [Vap82] also has this
advantage; see [AST90] also the appendix of [BEHW89].)

3.2 The general case

The main task of this section is to generalize Theorem 1 to in�nite collections of uniformly
bounded functions. The basic idea is simple: we replace the in�nite class F of functions
with a �nite class F0 that \approximates" it, in the sense that each function in F is close

to some function in F0, and argue that some type of uniform convergence of empirical esti-
mates for F0 implies uniform convergence for F. In the simplest version of this technique,
the choice of F0 depends only on F and the distribution P , as in the \direct method"
discussed in section II.2 of [Pol84] (see also [Vap82] section 6.6, [Dud84] chapter 6, [BI88],

[Whi90a]). However, more general results (apart from certain measurability constraints)
are obtained by allowing F0 to depend on the particular random sample ~z (e.g. [Pol84],
chapter 2). Here F0 is called a \random cover", and its size is called a \random covering
number". It is this type of result that we derive here.

We will need a few preliminary de�nitions to introduce the notion of �-covers and metric
dimension. A more general treatment of these ideas is given in the appendix, section 10.1.
This more general treatment will be used later, but the following de�nitions su�ce for this
section.

For any real vectors ~x = (x1; . . . ; xm) and ~y = (y1; . . . ; ym) in <m, let dL1(~x; ~y) =
1

m

Pm
i=1 jxi � yij. Thus dL1 is the L1 distance metric. Let T be a set of points that lie in

a bounded region of <m. For any � > 0, an �-cover for T is a �nite set N � <m (not

necessarily contained in T ) such that for all ~x 2 T there is a ~y 2 N with dL1(~x; ~y) � �.
The function N (�; T ) denotes the size of the smallest �-cover for T . We refer to N (�; T )
as a covering number.
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Theorem 1 Let F be a �nite set of functions on Z with 0 � f(z) � M for all f 2 F

and z 2 Z. Let ~z = (z1; . . . ; zm) be a sequence of m examples drawn independently from Z

according to any distribution on Z, and let � > 0. Then

Pr

�
9f 2 F : j bE~z(f) �E(f)j > �

�
� 2jFje�2�

2m=M2

:

For 0 < � � 1 and sample size

m �
M2

2�2

�
ln jFj+ ln

2

�

�
this probability is at most �. Further, for any � > 0 and 0 < � < 1,

Pr

�
9f 2 F : d�( bE~z(f);E(f)) > �

�
� 2jFje��

2�m=M :

For 0 < � � 1 and sample size

m �
M

�2�

�
ln jFj+ ln

2

�

�
this probability is at most �. 2

Proof. For the second part of the theorem, using Bernstein's inequality (see e.g. [Pol84])
it is easy to show that for any single function f with 0 � f �M ,

Pr

�
d�( bE~z(f);E(f)) > �

�
< 2e��

2�m=M :

Details are given in Lemma 9, part (2) in the Appendix. It follows that the probability
that there is any f 2 F with d�( bE~z(f);E(f)) > � is at most 2jFje��

2�m=M : Setting this
bound to � and solving for m gives the result on the sample size. The proof of the �rst
part of the lemma is similar, except we use Hoe�ding's inequality (see e.g. [Pol84]), which

implies that for any single f ,

Pr

�
j bE~z(f) �E(f)j > �

�
� 2e�2�

2m=M2

:

2

By letting F = lH, this theorem can be used in conjunction with Lemma 1 from the
previous section to obtain bounds on the sample complexity of learning algorithms that
minimize empirical risk. Here we can use either the L� or L�;� family of regret functions.
In the former case we get a sample complexity

m(�; �) = O

 
M2

�2

�
log jlHj+ log

1

�

�!
: (1)
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size needed so that
Pr

�
9f 2 F : j bE~z(f) �E(f)j > �

�
< �

for �; � > 0 [Pol84] [Dud84] [Vap82]. Vapnik also obtains better bounds in some important
cases by considering the relative deviation of empirical estimates from true expectations.
He looks at bounds on the sample size needed so that

Pr

 
9f 2 F :

E(f) � bE~z(f)

E(f)
> �

!
< �

and also bounds on the sample size needed so that

Pr

0@9f 2 F :
E(f) � bE~z(f)q

E(f)
> �

1A < �:

(Anthony and Shawe-Taylor also obtain bounds of the latter form [AST90].) Note that
these are one-sided bounds, in that they only bound the probability that the empirical

mean is signi�cantly smaller than the true mean. While extremely useful, as we mentioned
in the previous section, these measures of deviation su�er from a discontinuity at E(f) = 0,
and lack of convenient metric properties. As in [Pol86], we will give bounds on the sample

size needed so that

Pr

�
9f 2 F : d�( bE~z(f);E(f)) > �

�
= Pr

 
9f 2 F :

j bE~z(f) �E(f)j

� + bE~z(f) +E(f)
> �

!
< �;

i.e. the deviation measured using the d� metric10. By setting � and � appropriately, we
obtain results similar to those of [Pol84] and [Vap82] as special cases of our main theorem.

However, our results are restricted to the case that all functions in F are positive and
uniformly bounded.

3.1 The case of �nite F

Before considering the general case, it is useful to see what bounds we can get in the case
that F is a �nite set of functions. Here we can easily prove the following.

10In [Pol86], Pollard also gives results that can be used to bound the sample size needed so that

Pr

0@9f 2 F :
jbE~z(f) � E(f)j

� +

qbE~z(f) +
p
E(f)

> �

1A < �;

in analogy with the second type of bound given by Vapnik, except that these bounds are two-sided. We do
not pursue these further here.
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3 Uniformly good empirical estimates of means

In this section we concentrate on the problem of bounding the number of random examples
needed to get good empirical estimates of the risk of each of the decision rules in a decision

rule space H. For each decision rule h 2 H and example z = (x; y) 2 Z, let lh(z) =
l(y; h(x)). As in the previous section, we assume that l is a non-negative bounded loss
function taking values in the interval [0;M ], thus for each decision rule h, lh de�nes a
random variable taking values in [0;M ]. The value of lh on an example (x; y) is the loss

incured when you use h to determine the action to take for instance x, and the outcome
is y. The risk of h is just the expectation of lh, i.e.

rh(P ) = E(lh) =
Z
Z

lh(z)dP (z):

Furthermore, if ~z = (z1; . . . ; zm) is a sequence of examples from Z, then the empirical risk
of h on ~z is the empirical estimate of the mean of lh based on the sample ~z, which we

denote by b
E~z(lh), i.e.

brh(~z) = bE~z(lh) =
1

m

mX
i=1

lh(zi):

Let lH = flh : h 2 Hg. We need to draw enough random examples to get a uniformly good
empirical estimate of the expectation of every random variable in lH.

The general problem of obtaining a uniformly good estimate of the expectation of
every function in a class F of real-valued functions has been widely studied (see e.g.
[Vap82,Pol84,Dud84] and their references). If no assumptions at all are made about the

functions in F, we immediately run into the problem that some functions in F could take
on arbitrarily large values with arbitrarily small probabilities, making it impossible to ob-
tain uniformly good empirical estimates of all expectations with any �nite sample size.
This problem can be avoided by making assumptions about the moments of the functions

in F, as in [Vap82], or by assuming that there exists a single non-negative function with a
�nite expectation (called an envelope) that lies above the absolute value of every function
in F, as in [Pol84;Dud84]. In our case, when the loss takes only values in [0;M ], then the
constant function M serves as an envelope. This case is especially nice since this same

envelope works for all distributions on the domain Z of the functions in F.
The usual measure of deviation of empirical estimates from true means is simply the

absolute value of the di�erence. Thus we would say that the empirical estimates for the
expectations of the functions in F converge uniformly to the true expectations if as the

size of the random sample ~z grows,

Pr

�
9f 2 F : j bE~z(f) �E(f)j > �

�
goes to zero for any � > 0. (This is called (uniform) convergence in probability, see e.g.
[Bil86]). Vapnik, Dudley, Pollard and others have obtained general bounds on the sample
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the empirical risk estimates of decision rules in H converge uniformly to the true risk if
for all � and � > 0 there exists a sample size m such that when the zi 2 ~z, 1 � i � m, are

drawn independently at random from Z according to the distribution P , with probability
at least 1 � �, we have �(brh(~z); rh(P )) � � for all h 2 H. Here � is some metric on <+,
e.g. either the absolute di�erence or the d� metric.

The following result shows that uniform convergence of the empirical risk estimates,

along with a learning method A that gives a randomized solution to the optimization
problem on the estimates, gives a solution to the basic learning problem. We state it for
the d� metric, but the same argument works also for the absolute di�erence metric.

Lemma 1 Let � > 0 and 0 < �; � < 1. Suppose the sample size m = m(�; �; �) is such
that for all probability distributions P 2 P

Pr(9h 2 H : d�(brh(~z); rh(P )) > �=3) � �=2;

where the zi 2 ~z, 1 � i � m, are drawn independently at random from Z according to the
distribution P . Suppose also that the algorithm A is such that for all P 2 P

Pr(d�(brA(~z)(~z); br�(~z)) > �=3) � �=2;

where ~z is drawn randomly by P as above. Then for all P 2 P

Pr(d�(rA(~z)(P ); r
�(P )) > �) � �;

i.e. A solves the basic learning problem for the family of L�;� regret functions and has
sample complexity at most m(�; �; �).

Proof. By the triangle inequality for d� , if

1. d�(rA(~z)(P ); brA(~z)(~z)) � �=3,

2. d�(brA(~z)(~z); br�(~z)) � �=3, and

3. d�(br�(~z); r�(P )) � �=3,

then

d�(rA(~z)(P ); r
�(P )) � �:

The second assumption of the lemma states that (2) holds with probability at least 1��=2.
The �rst assumption implies that both (1) and (3) hold with probability at least 1� �=2.

(If (3) fails then we can �nd a decision rule h 2 H such that d�(brh(~z); rh(P )) > �=3. Here
we use the compatibility of d� with the ordering on the reals.) Hence with probability at
least 1� � all of (1) - (3) hold. The result follows. 2

In statistics, this type of result is called a consistency theorem about the \statistic" (i.e.

the decision rule) computed by the learning method A. This use of the term \consistency"
di�ers sharply from that common in PAC learning research.
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for L = L� and L = L�;�. When L = L�, this condition means that given m random
training examples drawn according to P , with probability at least 1 � �, the decision rule

ĥ produced by the algorithm A satis�es

rĥ;l(P ) � r
�

l (P ) + �;

i.e. the risk of ĥ is at most � greater than that of the optimal decision rule in H. When
L = L�;�, this condition is the same, except that we require

rĥ;l(P ) �
1 + �

1� �
r
�

l (P ) +
��

1 � �
:

Thus in the former case, the sample complexity is de�ned in terms of small additive
deviations from optimality, and in the latter, we allow both additive and multiplicative
deviations. These deviations are controlled by the parameters � and �.

For example, when r�l (P ) = 0 as in the standard PAC model, then setting � = 1=2 and

� = � makes the L� and L�;� conditions equivalent; each reduces to the PAC condition

rĥ;l(P ) � �:

When r
�
l (P ) > 0, then L�;� condition approximates the L� condition when � is small and

� � �=�. In particular, since we are assuming that the underlying loss function l is bounded
between 0 and M , we have 0 � r

ĥ;l
(P ); r�l (P ) �M and property (3) of the d� metric shows

that the L�;� condition with � = 2M and � = �=4M implies the L� condition. This shows

how the two parameter L�;� condition is generally more 
exible than the single parameter
L� condition.

2.5 Relation between learning and optimization

Let us assume that the underlying loss function l is �xed, and we are using either the L�

or L�;� regret functions derived from l. In order to solve a basic learning problem, we
must �nd, with high probability, a decision rule ĥ with risk close to optimal. As the true

distribution P is unknown, to do this we must rely on estimates of rh(P ) for the various
h 2 H which are derived from the given random training sample. For a given h 2 H and
training sample ~z = (z1; . . . ; zm), where zi = (xi; yi) 2 Z, let brh(~z) denote the empirical

risk on ~z, i.e. brh(~z) = 1
m

Pm
i=1 l(yi; h(xi)): Let br�(~z) = inffbrh(~z) : h 2 Hg: We can then

de�ne a natural optimization problem associated with the basic learning problem: given
the training sample ~z, �nd a decision rule ĥ 2 H such that br

ĥ
(~z) is close to br�(~z), i.e. a

decision rule whose empirical risk on the training sample is close to minimal.

Solving the optimization problem does not automatically solve the learning problem.
We need to have good empirical risk estimates as well. Since l is bounded, for every
h 2 H, as the sample size m ! 1, brh(~z) ! rh(P ) with probability 1. We will say that
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ble states of nature P in P, or do we want to assume a prior distribution on possi-
ble distributions in P, so that we can de�ne a notion of \average case" big `L' risk to

be minimized. The former goal is know as minimax optimality, and has been used in
the PAC model. The later is the Bayesian notion of optimality [Ber85,Kie87], and has
been used in several approaches to learning in neural nets based on statistical mechanics
[DSW+87,TLS89,GT90,STS90,OH91a,OH91b]. Unfortunately this last question has no

clear cut answer, and leads us directly into a longstanding unresolved debate in statistics
(see e.g. [Lin90] and following discussion.). Since we have set out to generalize the PAC
model, and since our results are best illustrated in the minimax setting, we will formalize

the notion of a basic learning problem using the minimax criterion. In subsequent work we
hope to further explore this Bayesian setting. (For recent work in Bayesian approaches to
neural network learning see [Mac92,BW91], and for Bayesian versions of the PAC model
see [HKS91,Bun90].)

We can now de�ne exactly what we mean by a basic learning problem, and what it
means for a learning method to solve this problem in this minimax setting.

De�nition 1 A basic learning problem is de�ned by six components X, Y , A, H, P, and
L, where the �rst �ve components are as de�ned in section 2.1, and the last component,
L, is a family of regret functions as de�ned in section 2.3 (e.g. L = fL�;� : � > 0 and 0 <
� < 1g, or L = fL� : � > 0g for some loss function l). Let A be a learning method as

de�ned in section 2.3. We say that A solves the basic learning problem if for all L 2 L
and all 0 < � < 1 there exists a �nite sample size m =m(L; �) such that

for all P 2 P; RL;A;m(P ) � �:

The sample complexity of the learning method A is the smallest such integer valued function
m(L; �). When L = fL�;� : � > 0 and 0 < � < 1g we will denote m(L�;�; �) by m(�; �; �)

and when L = fL� : � > 0g we will denote m(L�; �) by m(�; �).

As discussed above, this de�nition generalizes the PAC criterion, and several others as

well. In fact, this de�nition is quite generous, in that sample size needed to get the big `L'
risk less than � is only required to be �nite for each � > 0. In particular, using property
(3) of the d� metric from section 2.2, when the underlying loss function l is bounded, as
we assume here, any algorithm A solves the basic learning problem using the L�;� class

of regret functions if and only if it solves it using the L� class. Thus it doesn't matter
which of these two classes of regret functions we use. However, in practice it is the sample
complexity of A that is critical, and this will depend on which class of regret functions are

used.
The nature of this dependence is seen more clearly when we expand the condition

RL;A;m(P ) � �
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Hence demanding big `L' risk at most � gives the usual PAC criterion that the risk (or
\error") of the decision rule (or \hypothesis") produced by A be greater than � with

probability at most �.
The regret function L can also be de�ned similarly, but using the d� metric to mea-

sure distance from optimality, instead of the absolute di�erence. Speci�cally, for every
� > 0 and 0 < � < 1, we can de�ne the regret function L�;� by letting L�;�(P; h) = 1

if d�(rh;l(P ); r�l (P )) > �, and L�;�(P; h) = 0 otherwise. In this case the big `L' risk
RL�;� ;A;m(P ) measures the probability that the risk of the decision rule produced by the
algorithm A has distance more than � from optimal in the d� metric, when the algorithm

is givenm random training examples drawn according to P . We will see in sections 2.4 and
3.1 why this sometimes gives a more useful and 
exible de�nition of regret. In fact, in this
paper, we will give our main results in terms of the family fL�;� : � > 0 and 0 < � < 1g
of regret functions, and show how corresponding results may be derived as corollaries for

the family fL� : � > 0g of regret functions.
Other regret functions are also possible and lead to di�erent learning criteria. For

example, another, perhaps simpler, way to de�ne regret is to let L(P; h) = rh;l(P )�r�l (P ).
When r�l (P ) = 0, as it does in the standard noise-free PAC model, this de�nition makes the

regret L equal to the risk rl(P ), i.e. the expectation of the underlying loss l. In this case
the big `L' risk RL;A;m(P ) measures the expectation of the loss incurred by the learning
algorithm A when it is given m random training examples drawn according to P , forms a
decision rule h, and then uses h to determine the action on one further independent random

example drawn according to P . This gives a generalization of the learning criterion studied
in [HLW90]. When r�l (P ) 6= 0, then the big `L' risk gives the expectation of the amount of
such loss above and beyond the expected loss that would be su�ered if the optimal decision
rule were used. In particular, in density estimation, where P and h are both densities on

the instance space X, if P 2 H then de�ning the regret by L(P; h) = rh;l(P ) � r
�
l (P )

makes it equal to the Kullback-Leibler divergence from P to h. Hence the big `L' risk is
the expected Kullback-Leibler divergence of the decision rule h returned by the algorithm

from the true density (see sections 1.1.3 and 1.1.4).
It is also possible to de�ne the regret function L directly, without using an underlying

loss function l. For example, in density estimation it is possible to use other measures
of the distance between two densities, e.g. the Hellinger distance or the total variational

distance, as in [BC90,Yam90]. The criterion from [KS90] for inferring a good model of

probability can also be de�ned using an appropriate regret function, without de�ning an
underlying loss l.

2.4 Full formalization of the basic learning problem

Having de�ned the regret function, and thereby the big `L' risk function, we still face
one last issue: do we want to minimize big `L' risk in the worst case over all possi-

18



2.3 The regret function L and the big `L' risk R

Once we have speci�ed how we measure closeness to optimality, we still need to specify our
criteria for a successful learning algorithm. Do we need to have the risk of the decision rule
found close to the optimum r

�
l (P ) with high probability, or should its average distance from

r
�
l (P ) be small? Do we measure success in terms of the performance of the algorithm on

the worst case distribution in P, or do we use some average case analysis over distributions
in P? These questions lead us right back to decision theory again, but this time at a higher
level in the analysis of learning.

To see this, consider the structure of a learning algorithm A. For any sample size m,

the algorithm A may be given a sample ~z = ((x1; y1); . . . ; (xm; ym)) drawn at random from
Zm according an unknown product distribution Pm, where P 2 P. For any such ~z it will
choose a decision rule A(~z) 2 H. Thus abstractly, the algorithm de�nes a function A from
the set of all samples over Z into H, i.e. A :

S
m�1 Z

m ! H. Since we are not requiring

computability here, we will call such A a learning method. When P 2 P is the actual
\state of nature" governing the generation of examples, and the algorithm produces the
decision rule h 2 H, let us say that we su�er a nonnegative real-valued regret L(P; h).

Thus, formally L : P � H ! <+. In our treatment here, the regret function L will be
derived from the loss function l, and will measure the extent to which we have failed to
produce a near optimal decision rule, assuming P is the true state of nature (i.e. the
amount of \regret" we feel for not having produced the optimal decision rule). Finally,

for each possible state of nature P , the average regret su�ered by the algorithm, over all
possible training samples ~z 2 Zm, is the big `L' risk of that algorithm under P for sample
size m. This big `L' risk is de�ned formally by

RL;A;m(P ) =
Z
~z2Zm

L(P;A(~z))dPm(~z):

The goal of learning is to minimize big `L' risk.
We illustrate these de�nitions with a few examples. First suppose we want to capture

the notion of successful learning that is used in the PAC model. Then one possibility is
to introduce an accuracy parameter � > 0 and de�ne the regret function L = L� by letting
L�(P; h) = 1 if rh;l(P ) � r

�
l (P ) > �, and L�(P; h) = 0 otherwise. This we su�er regret only

when the decision rule h produced by the learning algorithm has risk that is more than
� from optimal, measured by the absolute di�erence metric. For this de�nition of regret,
the big `L' risk RL�;A;m(P ) measures the probability that the decision rule produced by A
has risk more than � from optimal, when A is given m random training examples drawn

according to P . We then demand that this big `L' risk be small, i.e. smaller than some
given con�dence parameter � > 0.

In the PAC model it is commonly assumed that the examples given to the algorithm
A are noise-free examples of some underlying target function f 2 H. In this case the risk

r
�(P ) of the optimal decision rule in H is zero, and hence L�(P; h) = 1 , rh;l(P ) > �.
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according to P . It is de�ned by

rh;l(P ) = rh(P ) = E(l(y; h(x))) =
Z
Z
l(y; h(x))dP (x; y)

(the subscript l will be omitted when the loss function is clear from the context.) Since l is

bounded this expectation is �nite for every distribution P . In decision theory the expected
loss rh(P ) is called the risk of h when P is the true underlying distribution. This quantity
generalizes the notion of the error of h used in computational learning theory.

In section 1.1 we stated the goal of learning quite informally: Given examples chosen

independently at random from some unknown probability distribution P 2 P, �nd a
decision rule ĥ in H that comes \close to" minimizing the risk rh(P ) over all h 2 H. Let
r
�
l (P ) (or r

�(P ) when l is clear from the context) denote the in�mum of rh(P ) over all h

in the decision rule space H. To formalize our notion of a basic learning problem, we �rst
need to say what we mean that rĥ(P ) is \close to" r

�(P ).
Let r = rĥ(P ) and s = r

�(P ). One natural interpretation is to demand that jr� sj � �

for some small � > 0. However, we will see in section 3.1 that sometimes it is better to use

a relative measure of distance. For any real � > 0, let d� be the function de�ned by

d�(r; s) =
jr � sj

� + r + s

for any non-negative reals r and s. It is straightforward but tedious to verify that d� is a
metric on <+. The d� metric is similar to the standard function

jr � sj

s

used to measure the di�erence between the quality r of a given solution and the quality s of
an optimal solution in combinatorial optimization. However, our measure has been modi-
�ed to be well-behaved when one or both of its arguments are zero, and to be symmetric
in its arguments (so that it is a metric). Three other properties of d� are also useful.

1. For all non-negative reals r and s, 0 � d�(r; s) < 1.

2. For all non-negative r � s � t, d�(r; s) � d�(r; t) and d�(s; t) � d�(r; t).

3. For 0 � r; s �M , jr�sj
�+2M

� d�(r; s) �
jr�sj
�

.

We will refer to the second property by saying that d� is compatible with the ordering on

the reals.

16



The �fth component, P, is a family of joint probability distributions on X � Y . These
represent the possible \states of nature" that might be governing the generation of exam-

ples. The set Z = X � Y will be called the sample space. We assume that examples are
drawn independently at random according to some probability distribution P 2 P on the
sample space Z. A sequence of examples will be called a sample. In what follows8 we will
usually assume that P includes all probability distributions on Z. Hence our results will

be distribution independent.
The last component, the loss function l, is a mapping from Y � A into <. In this

paper we will assume that l is bounded and nonnegative, i.e. 0 � l � M for some real

M . When Y and A are �nite it is always possible to enforce this condition by simply
adding a constant to l, which doesn't change the learning problem in any essential way.
When either Y or A is in�nite, the learning problem sometimes needs to be restricted to
meet this condition. For example, in regression9 we might restrict the possible parameter

vectors in A and/or the possible outcomes in Y such that for every y 2 Y and a 2 A,
bP (y; a) � b for some constant b. We can then take M = � log b. In density estimation,
the same thing can be accomplished by restricting the instance space X to a bounded
subset of <n on which all densities in H have values uniformly greater than b and less

than B for constants 0 < b < B. We can then add logB to the loss function to make
it positive. The same method works for estimating distributions on discrete spaces: we
restrict ourselves to a �nite instance space X and demand that for all x 2 X and all
probability distributions h 2 H, h(x) � b > 0 (see e.g. [AW90,Yam90]). These restrictions

are often reasonable in practice, e.g. most measurements naturally have bounded ranges,
but they can be annoying (see [Vap89], [Pol84], and [Pol90] for alternative approaches for
unbounded loss functions).

2.2 Measuring distance from optimality with the d� metric

For a given decision rule h 2 H and distribution P on the sample space Z, the expected
loss of h is the average value of l(y; h(x)), when the example (x; y) is drawn at random

8It is, however, possible and in fact common to assume that P is a very speci�c class of probability
distributions on Z. For example, let X = <n. Then if we are doing classi�cation learning and Y is discrete
we may assume that y is selected according to an arbitrary distribution on Y , and for each y, P (xjy) is a
multi-variate Gaussian distribution on X [DH73]. On the other hand, if we are doing linear regression, then
Y is real-valued and we might assume that x is selected according to an arbitrary distribution on X, and y

is a linear function of x with additive Gaussian noise. In PAC learning theory we have a discrete analog of
the latter case. Here we usually have X = f0; 1gn, Y = f0; 1g, and y a Boolean function of x of a particular
type (e.g. de�ned by a small disjunctive normal form formula), possibly plus random noise.

9Note that to get bounded loss in linear regression, X must a bounded subset of <n as well, since we
can't bound Y without bounding X. The coe�cients of the functions in H must also be bounded.
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X,Y ,A,H and l sections 1.1 and 2.1
P section 2.1
rh;l(P ), rh(P ) (true risk) section 2.2

r�l (P ), r�(P ) (optimal risk) section 2.2
brh(~z) (empirical risk) section 2.2
br
�(~z) (optimal empirical risk) section 2.2
d� section 2.2

L, L�, L�;� (regret functions) section 2.3
R (big `L' risk) section 2.3
m(�; �), m(�; �; �) (sample complexity) section 2.4

N (covering number) sections 10.1 and 3.2
M (packing number) section 10.1
dim (metric dimension) section 10.1
dimP (pseudo dimension) section 4

C (capacity) section 6
�l section 6
lH section 3
Fj~z section 3
bE (empirical expectation) section 3

dL1 (L1 distance for vectors) section 3.2
dL1(P ) (L

1 distance for functions) section 4
dL1(P;�) (L

1 distance for functions) section 6

2 Learning and optimization

We now further formalize the basic problem of learning, as introduced in section 1.1.
We will introduce a formal notion of a learning algorithm, and a higher level loss function,

which we will call a regret function, that measures how well the learning algorithm performs.
The regret function will be de�ned in terms of the low level loss function l discussed in the
previous section. Finally, we will show how an algorithm can solve the learning problem
by solving a related optimization problem.

2.1 The basic components X;Y;A;H;P and l

We �rst review and further formalize the six components of the basic learning problem

introduced in the previous section: X, Y , A, H, P and l. The �rst four components are
the instance, outcome, decision and decision rule spaces, respectively. The �rst three of
these are arbitrary sets, and the fourth, H is a family of functions from X into A. These
have been discussed extensively in the previous section.
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1.5 Notational conventions

We denote the real numbers by < and the non-negative real numbers by <+. By log and
ln we denote the logarithm base 2 and the natural logarithm, respectively. We use E(�)
to denote the expectation of a random variable, and Var(�) to denote the variance of a
random variable. When the probability space is de�ned implicitly from the context, we use

Pr(�) to denote the probability of a set. However, usually the measure on the underlying
probability space will be de�ned explicitly using the symbol P .

Here, P will usually denote a probability measure on some appropriate6 �-algebra over
the set Z = X�Y , where X is the instance space and Y is the outcome space. We use Pm

to denote the m-fold product measure on Zm. Functions on Z and subsets of Z mentioned
in what follows will be assumed to be measurable without explicit reference. Alternately,
we will also view X and Y as random variables on some other, unspeci�ed, probability
space, e.g. when they are viewed as real valued measurements. In this case P is viewed as

a joint distribution on X and Y . In either case, the probability of a set T � Z is de�ned
by

P (T ) =
Z
T
dP (z)

(where z = (x; y) with x 2 X and y 2 Y ) and the expectation of function f on Z is
denoted by

E(f) =
Z
Z
f(z)dP (z):

When Z is countable we will, with some abuse of notation, also use P for the probability
mass function, i.e. for z 2 Z, P (z) denotes P (fzg). Hence P (T ) =

P
z2T P (z) and

E(f) =
P
z2Z f(z)P (z) in this case. When Z is continuous, a density associated with P (if

it exists) is denoted by p.
When Z is countable we use P (yjx) to denote the probability that Y = y given that

X = x (viewing X and Y as random variables) and similarly for P (xjy). Hence P (�jx)
denotes the conditional distribution on Y , given X = x. The marginal distribution in

X is de�ned by7 PjX (x) =
P

y2Y P (x; y). Here and elsewhere, we abbreviate P ((x; y)) by
P (x; y).

Finally, we list some other notation that is used several places in the text, indicating
which section it is de�ned in.

6If Z is countable then we assume this �-algebra contains all subsets of Z, otherwise we assume that Z is
a complete, separable metric space (see section 10.1) and that this �-algebra is the smallest �-algebra that
contains the open sets of Z (i.e. the �-algebra of Borel sets).

7When Z is uncountable, the marginal and conditional distributions are de�ned so that

Z
Z

f(x; y)dP (x; y) =

Z
X

�Z
Y

f(x; y)dP (yjx)

�
dPjX (x)

for every bounded measurable function f .
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is not only fascinating from a purely mathematical standpoint, but also potentially very
useful in machine learning and other applied �elds.

1.4 Organization of the paper

The remainder of the paper is organized as follows. The learning framework we have
described above in section 1.1 is de�ned more formally in section 2. There we also look at

the question of evaluating the performance of learning algorithms in terms of the number
of training examples they use. This question is also formalized from a decision theory
perspective. We then provide a lemma (Lemma 1) that can be used to evaluate the

performance of learning algorithms that work by minimizing empirical loss. To use this
lemma, we need bounds on the rate of uniform convergence of empirical loss estimates to
true expected losses. These are given in section 3. The key bound is given in Theorem 2
in section 3, and in a more general version in Theorem 3.

To use the bound from Theorem 2 we need bounds on the \random covering numbers"
associated with the decision rule spaceH, the loss function l and the distribution P . These
are related to the idea of an �-cover described above. In section 4 we introduce Pollard's
notion of the pseudo dimension as a means of bounding the random covering numbers.

Applications of this method to several learning problems are described in section 5.
The techniques of sections 4 and 5 only apply to the case when the action set A is

real-valued. Tools for bounding the random covering numbers that apply in more general
cases are developed in section 6. Here we introduce the notion of the capacity of the

decision rule space H (for a particular loss function l), and the related notion of the metric
dimension of H. In section 7 we use these notions to obtain bounds on the performance (in
terms of the number of training examples used) of learning algorithms that use multilayer

feedforward neural networks, and work by minimizing empirical loss (Corollary 3). Finally,
some further discussion of our results is given in the conclusion, section 8.

Many of the more technical proofs and de�nitions have been moved into the appendix
to make the paper more readable. The appendix has several sections. Section 10.1 contains

a brief overview of the theory of metric spaces, �-covers and metric dimension. Notation
from this section is used in several places in the paper. Section 10.2 deals with certain
technical measurability requirements. Section 10.3 gives an analogue of Cherno� and
Hoe�ding bounds using the d� metric. Section 10.4 contains the proof of Theorem 2.

Finally, Section 10.5 contains a result on feedforward neural networks of linear threshold
functions that is similar to that given in [BH89], and provides a counterpart to Corollary 3
in section 7.
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(MDL) approaches [BC90,Ris86], try to �nd a decision rule that minimizes some function
of empirical loss and decision rule complexity. These can also achieve expected loss ap-

proaching that of Bayes optimal decision rule in the limit, and may be more e�ective in
practice. Although uniform convergence results such as those we develop here are also
used in the analysis of such methods [Vap82] (and in the analysis of cross-validation meth-
ods [NP87]), the full treatment of such approaches is beyond the scope of the present

paper. It should also be noted that Bayesian methods and structural risk minimization
can be applied even when the decision rule space includes only neural networks of a �xed
size. An example is the recent work using weight penalty functions in neural net train-

ing [WHR90,LDS90,NH91,Mac92,BW91]. Such approaches may signi�cantly reduce the
training sample size needed to avoid over�tting in practice.

1.3 Overview of methods used

We now brie
y discuss the methodology and previous work used in obtaining our results.
Our work builds directly on the work of Vapnik and Chervonenkis, Pollard, and Dudley on

the uniform convergence of empirical estimates [Vap82][Pol84][Dud84] and its application
to pattern recognition [Vap82,Vap89] [Dev88]. It also builds on the work of Benedek and
Itai on PAC learnability with respect to speci�c probability distributions [BI88], and is
related to the work of Natarajan and Tadepalli on extensions of the VC dimension to

multi-valued functions [NT88] [Nat89b] and PAC learnability with respect to classes of
probability distributions [Nat88] [Nat89a]. In addition, Quiroz and Kulkarni have each
independently generalized the PAC model in a related manner [Qui89,Kul89].

One of the key ideas we use is the notion of an �-cover of a metric space [Dud84]

[Pol84] [BI88] [Nat89a] [Qui89] and the associated idea of metric dimension [KT61] (also
called the fractal dimension [Far82]). This notion of dimension has played an important
role in the now very active study of fractals in nature [Man82], especially in connection
with chaos in dynamical systems [Far82][FOY83]. Here we build further on the beautiful

results of Vapnik and Chervonenkis [Vap82], Dudley [Dud78] and Pollard [Pol84], which
relate a type of generalized VC dimension for a decision rule space to the number of
balls of radius � required to cover the space, with respect to certain metrics. The sizes

of the smallest such covers determine the metric dimension of the space. Our treatment
closely parallels the approach given in [Pol90]. It is interesting to note that related results
connecting �-covers with the VC dimension have also been independently developed in
[BI88] and in recent computational geometry work [Wel88]5. This work seems to lead to

a potentially rich area of investigation that combines elements of combinatorics, topology
and geometry, and probability and measure in a novel framework. We feel that this area

5Speci�cally, Lemma 7.13 of [Dud78] is nearly equivalent to Lemma 4.1 of [Wel88] (using the primal space
instead of the dual). This result also gives a stronger version of Theorem 4, part(3) of [BI88]. We give a still
stronger version of this result in Theorem 6 below.
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to avoid over�tting when learning with the decision rule space of feedforward neural
nets [RM86], extending previous work in [BH89] and [Whi90a] (see also related work in

[AST90]). These are the nets most widely used in current neural net learning research.
Our model for feedforward neural nets is quite general in that it allows many types of units
in the nets, including quasi-linear units [RM86], radial basis units [PG89], and product
units [DR89].

In our general setting, successful learning means �nding a decision rule with average
loss close to minimal over all decision rules in the given decision rule space, rather than loss
close to zero as in the PAC model. In addition to using an additive model as in [LMR88],

we also de�ne \close to" using a measure of relative di�erence (the d� metric) similar to
the standard multiplicative measure of approximation used in combinatorial optimization.
This allows us to state the relevant uniform convergence bounds as generalized \Cherno�-
style" [AV79] bounds, as in [Pol86],[BFOS84] (chapter 12), rather than \Hoe�ding-style"

bounds (as in Pollard's results [Pol84]), giving better bounds on su�cient training sample
size in some important cases. These two types of bounds are analogous to the two types
of bounds that Vapnik gives in his book [Vap82] in that one uses a measure of absolute
di�erence and the other a measure of relative di�erence. However, both of our bounds are

\two-sided", i.e. they bound deviations both above and below the mean.
We give these upper bounds on required sample size only to give some indication

of the order-of-magnitude dependence of sample size on certain critical parameters of the
learning problem, and to illustrate the theory. They are still too crude to be used directly in

practice, e.g. as explicit formulae for choosing an appropriate sample size. Cross validation
techniques, in which some of the training examples are held in reserve and used instead to
test the performance of the decision rules produced by the learning algorithm, are likely
to perform better for this task in practice (see e.g. [Whi90a,WK91]). Nevertheless, cross

validation is only a means of estimating the amount of over�tting in the learning method
in particular cases, i.e. it is only an engineering trick and provides no scienti�c explanation
of the phenomenon. Our goal is to understand and explain over�tting in general decision

rule spaces, from a scienti�c rather than an engineering viewpoint.
Finally, we should note that in practice, many learning algorithms do more than just

search for a decision rule in a �xed decision rule space that minimizes empirical loss. For
example, it is common to let the decision rule space depend on the number of training

examples available, using richer and richer decision rule spaces as more examples become
available (see e.g. [Whi90a,BEHW89]). This can allow the learning algorithm to produce
a sequence of decision rules with expected losses that approach the loss of Bayes opti-
mal decision rule in the limit of in�nite training sample size for a large class of possible

joint distributions. The results given here can be used to estimate the appropriate rate
at which the decision rule space should grow relative to the sample size to avoid over�t-
ting. Other approaches, e.g. the method of structural risk minimization introduced by
Vapnik [Vap82], and the Bayesian [Ber85,Mac92,BW91] and minimum description length
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outcome spaces are used. In pattern recognition and statistics, the instance space X is
usually a �nite dimensional real vector space, i.e. each instance consists of a vector of real

valued measurements of some attributes. In density estimation, a decision rule represents
a density on X, and many choices are possible. One common choice is a mixture of
Gaussian densities (e.g. [DH73][Now90]). In standard regression, the outcome and decision
spaces Y and A are identical and real valued, and linear functions are most often used as

decision rules. For more complex outcome spaces such as those in the medical diagnosis
example given above, the decision rule space for regression is usually de�ned using a
generalized linear model [MN89]. Similarly, in binary classi�cation, where there are only

two possible outcomes in Y as in the PAC model, linear threshold functions are most often
used as decision rules, and there are straightforward generalizations for the case of k-ary
classi�cation (see e.g. [DH73]). This \linear bias" in pattern recognition and statistics is in
contrast to that in the PAC model and other AI areas, including work in neural networks, in

which a rich variety of decision rule spaces are used (see e.g. [Tou89,Tou90,Hau88,Hau89]).
Our main goal here is to develop analytic tools to help understand the problem of over�tting
in these more complex decision rule spaces.

In order to focus on the problem of over�tting, we take a simpli�ed view of learning, in

which the learner chooses a decision rule space H, and then tries to �nd a decision rule in
H with near minimal expected loss. To do this, the learner looks for a decision rule that
minimizes the observed average loss on the training examples, which is called empirical

loss or empirical risk. For example, in standard linear regression4 the learning algorithm is

the method of least squares, i.e. we �nd the linear function h that minimizes the average
of l(y; h(x)) = (h(x)�y)2 over all examples (x; y) in our training set. It is well known that
if we have too few training examples, then we tend to over�t them, and the function we
�nd does not come close to minimizing the actual expected quadratic loss, which would

be obtained by integrating over all possible (mostly unseen) examples with respect to the
unknown joint distribution on them. This same situation occurs with all nontrivial decision
rule spaces, including the nonlinear regression models de�ned by feedforward neural nets.

Using certain measures of the \dimension" or \capacity" of the decision rule space H
and classes derived from H (see below), we obtain general upper bounds on the num-
ber of random training examples needed so that with high probability, any decision rule
in H that has small empirical loss on the training examples will have small actual ex-

pected loss, i.e. we get uniform convergence results for empirical estimates like those in
[Vap82][Dud84][Pol84,Pol90]. We show how these give upper bounds on su�cient training
sample size like those derived in [BEHW89] and elsewhere using the notion of the VC
dimension, and generalize those results.

As an application, we give speci�c bounds on the number of training examples needed

4For general regression with the negative log likelihood loss function, the principle of minimizing empirical
loss is the same as the principle of maximum likelihood [Ber85,Kie87].
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drawn randomly from some density p(x) on X. Let the decision set A be the positive real
numbers and each decision rule h in H be a density on X. Then, as above, information

theoretic considerations suggest the the loss function l(y; a) = l(a) = � log a. Again, as
above, the expected loss of h is minimized when h is the true density p. Further, if p is not
a member of H, then the best decision rule in H, in terms of minimizing the expected loss,
is the one with the smallest Kullback-Leibler divergence from the true density p [Kul59].

When the instance space X is discrete, we are not estimating a density on X but
rather a probability distribution. The same ideas as above carry over, except that we
let the decision space A = (0; 1) and each decision rule h in H represent a probability

distribution on X. Here we can also use the same loss function, and it has the same
properties.

These examples illustrate the diversity of the learning problems that can be cast in the
proposed decision theoretic framework, even under the restrictive assumptions we make

here, i.e. that the outcome y does not depend on the action a, and that the learner always
observes both the outcome and the loss. By weakening these assumptions, we can model
other types of learning as well, including associative reinforcement learning [BA85,Gul90]
and the theory of learning automata (with static environment) [NT89]. However, we will

not pursue this here.

1.2 Summary and discussion of the results presented here

There are three major practical issues in this decision theoretic view of learning. The �rst

is the number of random examples needed in order to be able to produce a good decision
rule in the decision rule space H, i.e. a decision rule whose expected loss is near the
minimum of all decision rules in H. If too few examples are used, we run into the problem

of over�tting, where the decision rule produced performs well on the training data, but
not on further random examples drawn from the same joint distribution that generated
this training data. The second is the adequacy of the decision rule space H. If H does not
contain any decision rule with expected loss close to that of Bayes optimal decision rule

for the particular joint distribution we are dealing with, then we can never hope to achieve
near optimal performance using this decision rule space. Choosing the right decision rule
space often requires considerable insight into the particular problem domain. Finally, the
third practical problem is the computational complexity of the method we use to produce

our decision rule from the training examples. This issue has been addressed extensively
in the PAC literature, and is also addressed in [KS90,AW90]. Of these three important
issues, here we examine only the �rst. This issue is referred to as the problem of estimating
the \sample complexity" of the learning problem in the PAC literature [EHKV89].

The number of random training examples needed to avoid over�tting depends critically
on the nature of the decision rule space used. Di�erent kinds of decision rule spaces are
used in di�erent areas of learning research, partly because di�erent kinds of instance and
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and the log likehood loss is

l(y; a) = �
kX

i=1

(yi log ai + (1 � yi) log(1 � ai)) ;

which we will call the cross entropy loss.

In the medical diagnosis example, the outcome space Y is discrete. However, in most
uses of regression Y is real valued, e.g. the outcome y is the measurement of some real
valued quantity, and the instance x represents the experimental conditions under which
this quantity was measured. In this case regression is usually de�ned as estimating the

conditional expectation of Y given the instance x. Thus A � <, and the action a 2 A for a
given instance x consists of an estimate of the mean of the various outcomes y that would
typically be observed for that instance x. It is easy to show that by using the quadratic

loss function l(y; a) = (a�y)2, the expected loss is minimized when a is the true mean, and
hence this version of regression also �ts naturally3 into the decision theoretic framework.
An alternate approach is to use the L1 loss function l(y; a) = ja � yj, in which case the
expected loss is minimized when a is the median of the conditional distribution Y given

the instance x. (See e.g. [Whi90b], [Hau90].)

1.1.4 Density and parameter estimation

Finally, the problems of parameter estimation and density estimation can also be viewed
as special cases of this decision theoretic framework. For parameter estimation, note that
when the instance space X has only one element then the particular instance x can be
ignored entirely. Thus the regression problem reduces to the problem of estimating the

parameters of a single distribution on the outcome space Y from a sample of random
outcomes y from Y , i.e. to the simpler problem of parameter estimation. Here the decision
rule is not a function but merely a single vector of parameters, and the decision rule space
H is the same as the decision space A.

For density estimation, we can consider the dual case in which the outcome space Y

has only one element, and hence can be ignored. Thus examples are unlabeled instances x

3In fact, the standard version of regression, de�ned as estimating the conditional mean of Y given instance
x using the quadratic loss function, is actually a special case of the general version of regression de�ned above,
where for continuous outcome spaces Y , the object is to estimate the parameters specifying the conditional
density of Y given instance x, using the log likelihood loss function. To see this, assume that we represent
the conditional density on Y with a Gaussian density p̂(y;�; �) = (2��2)�1=2e�(��y)2=2�2 , where � is the
mean and �2 the variance. Let the variance be �xed, independent of x, so that the estimate p̂(y;�; �), of the
conditional density on Y given x is completely determined by the mean �. Thus the decision space A � <,
and each action a in A is interpreted as specifying the mean of a Gaussian density. Substituting � = a and
evaluating � log p̂(y;�; �), the log likelihood loss is seen to be l(y; a) = 1

2�2
(a� y)2 + 1

2
log(2��2). For �xed

variance �2, this is equivalent, for learning, to the quadratic loss (a � y)2, since additive and multiplicative
constants in the de�nition of l only rescale it without changing the value of a that minimizes its expectation.
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theoretic interpretation2: it is the Kullback-Leibler divergence [Kul59] (or information gain

[Ren70]) from the actual conditional probability distribution P to the estimated conditional

distribution bP , plus the entropy of P .
For a given x, the entropy of the true conditional distribution P is a constant, inde-

pendent of the action a. Thus choosing the action a for each instance x that minimizes
the expected log likelihood loss is equivalent to choosing the action a that gives the closest

estimate bP to the true conditional distribution P over possible outcomes in Y as mea-
sured by the Kullback-Leibler divergence, given that instance x. It is well known that the
Kullback-Leibler divergence is minimized when bP = P . This is Bayes optimal decision

rule in regression.
In the regression version of our medical diagnosis situation, the de�nition of the log

likelihood loss function depends on the interpretation of the components of the parameter
vector a. If there are k possible diseases and the patient can have at most one of these,

then we might have k + 1 possible mutually exclusive disease states y1; . . . ; yk+1, where
yk+1 means healthy. Hence Y = fy1; . . . ; yk+1g. Then we might specify that an action a

takes the form
a = (a1; . . . ; ak+1);

where ai = bP (yi; a), the estimated probability of disease state yi. Here the components of
the vector a must be positive and sum to one. In this case the log likelihood loss would be
l(yi; a) = � log ai = � log bP (yi; a).

Often the constraints on the components of a are a nuisance, so other interpretations

of a are used, e.g. that ai = log bP (yi; a) � log bP (yk+1; a) for each i, 1 � i � k + 1. In this
case the a1; . . . ; ak are arbitrary real numbers and ak+1 = 0, and hence can be ignored.
Since bP (yi; a) = eai=

Pk+1
j=1 e

aj , the log likelihood loss is l(yi; a) = �ai+log
Pk+1

j=1 e
aj = �ai+

log(1 +
Pk

j=1 e
aj). This is known as the logistic loss [MN89,Bar89]. A third interpretation

would be to allow the possibility that the patient may have more than one disease, and
assume, for the purposes of estimation, that diseases occur independently. Then the disease
state y might be de�ned as a binary vector of length k, where the ith bit yi is 1 if and

only if the ith disease is present. Hence Y = f0; 1gk. Similarly, the vector a would be a
vector of independent probabilities (a1; . . . ; ak), where ai is the estimated probability of
the patient having the ith disease. In this case

bP (y; a) =
kY

i=1

ayii (1 � ai)
(1�yi)

2The Kullback-Leibler divergence from P to bP , denoted I(P jj bP), is de�ned as
P

y2Y P (y) log P (y)bP (y;a)

for countable Y . The entropy of P , denoted H(P ), is �
P

y2Y P (y) logP (y). Thus I(P jj bP) + H(P ) =

�
P

y2Y P (y) log bP (y; a), which is the expectation of the (negative) log likelihood loss. Analogous results

hold for densities when the relevant quantities are �nite [Kul59].
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prediction of the outcome y. Hence, a decision rule h maps from the instance space X

into the outcome space Y , just as the target function does. In much of AI, and in PAC

learning in particular, it is common to refer to h as a hypothesis in this case, and to H as
the hypothesis space.

This same setup, where the outcome y is a function of the instance x, can be applied
to any function learning problem by letting X and Y be arbitrary sets. In the general

function learning problem, the loss function l(y; a) usually measures the distance between
the prediction a and the actual value y in some metric. In the PAC model, l is the discrete
metric: l(y; a) = 0 if a = y, else l(y; a) = 1. Thus the expected loss of the decision rule (or

hypothesis) is just the probability that it predicts incorrectly, the usual PAC notion of the
error of the hypothesis. In general, Y may be a set of strings, graphs, real vectors, etc.,
in which case other distance metrics or more general kinds of loss functions may be more
appropriate.

1.1.3 Regression

The general problem of regression has a di�erent character from that of classi�cation
learning, but can also be addressed in the decision theoretic learning framework. To
illustrate this, as a third example consider a variant of the medical diagnosis situation

in which the doctor provides an estimate of the probability that the patient has each of
several diseases, rather than predicting that he has one speci�c disease or asserting that
he is healthy. (Here we assume that the actual disease state includes at most one disease.)
For example, the doctor may say \Given these test results x, I would say you have disease 1

with probability 55%, disease 2 with probability 5%, and no disease at all with probability
40%." Here the doctor is actually trying to estimate the conditional distribution on disease
states Y given the test results x. Her action a entails providing a vector of parameters
that determine that estimated distribution, e.g. (0:55; 0:05; 0:4). The decision space A is

the set of all such parameter vectors.
Now let Y be an arbitrary discrete outcome space. Keeping the instance x �xed, for

each parameter vector a in A and outcome y in Y let bP (y; a) denote the probability of
outcome y with respect to the distribution on Y de�ned by the parameter vector a. Thus

when we take action a on instance x, we are asserting that, given the instance x, we
estimate the conditional probability of outcome y to be bP (y; a) for each outcome y in Y .
Let P (y) denote the actual conditional probability of outcome y, given the instance x, with

respect to the unknown joint distribution on X � Y . (The distributions P and bP can be
replaced by densities when Y is continuous.) Let us de�ne1 the loss function l by setting
l(y; a) = � log bP (y; a). This is called the (negative) log likelihood loss function. If we de�ne
loss in this way, then the expected loss resulting from action a has a natural information

1We assume bP (y; a) > 0 for all y in Y .
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1.1.1 Betting example

For our �rst example, consider the problem of learning to maximize pro�t (or minimize
loss!) at the horse races. Here an instance x in X is a race, an action a in A consists of
placing or not placing a certain bet, and an outcome y in Y is determined by the winner
and the second and third place �nishers. The loss l(y; a) is the amount of money lost

when bet a is placed and the outcome of the race is y. A negative loss is interpreted
as gain. The joint distribution on X � Y represents the probability of various races and
outcomes. This joint distribution is unknown to the learner; he only has random examples
(x1; y1); . . . ; (xm; ym), each consisting of a race/outcome pair generated from this distribu-

tion. From these examples, the learner develops a deterministic betting strategy (decision
rule). The best decision rule h is one that speci�es a bet a for each race x that minimizes
the expectation of the loss l(y; a), when y is chosen randomly from the unknown condi-
tional distribution on Y given x, which is determined by the underlying joint distribution

on X � Y . This (not necessarily unique) best decision rule minimizes the expected loss
on a random example (x; y). It is known as Bayes optimal decision rule. The learner
tries to approximate Bayes optimal decision rule as best he can using decision rules from a

given decision rule space H (e.g. \simple" or \easy to compute" decision rules, or perhaps
decision rules that can be represented by a particular kind of neural network).

1.1.2 Classi�cation

As a second example, consider the problem of medical diagnosis. Here an instance x is
a vector of measurements from medical tests conducted on the patient, an action a is a

diagnosis of the patient's disease state, and an outcome y may be de�ned as the actual
disease state of the patient. Here A = Y , i.e. the possible diagnoses are the same as
the possible disease states. To specify the loss function l, we may stipulate that there is

zero loss for the correct diagnosis a = y, but for each pair (y; a) with diagnosis a di�ering
from disease state y there is some positive real loss l(y; a), depending on the severity
of the consequences of that particular misdiagnosis. Here a decision rule is a diagnostic
method, and Bayes optimal decision rule is the one that minimizes the expected loss

from misdiagnosis when examples (x; y) of test results and associated disease states occur
randomly according to some unknown \natural" joint distribution.

This medical diagnosis situation is a typical example of a classi�cation learning problem
in the �eld of pattern recognition (see e.g. [DH73]). The problem of learning a Boolean

function from noise-free examples, as investigated in the PAC model, is a special case of
classi�cation learning. Here the outcome space Y is f0; 1g and only the instance x in an
example (x; y) is drawn at random. The outcome y is f(x) for some unknown Boolean
target function f , rather than being determined stochastically. As above, the decision

space A is the same as the outcome space Y , and the action a can be interpreted as a
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1.1 Overview of the proposed framework

To extend the PAC model, we propose a more general framework based on statistical
decision theory (see e.g. Ferguson [Fer67], Kiefer [Kie87] or Berger [Ber85]). In this general
framework we assume the learner receives randomly drawn training examples, each example
consisting of an instance x 2 X and an outcome y 2 Y , where X and Y are arbitrary sets

called instance and outcome spaces, respectively. These examples are generated according
to a joint distribution on X � Y , unknown to the learner. This distribution comes from a
(known) class P of joint distributions on X � Y , representing possible \states of nature."
After training, the learner will receive further random examples drawn from this same

joint distribution. For each example (x; y), the learner will be shown only the instance
x. Then he will be asked to choose an action a from a set of possible actions A, called
the decision space. Following this, the outcome y will be revealed to the learner. In the
case that we examine here, the outcome y depends only on the instance x and not on the

action a chosen by the learner. For each action a and outcome y, the learner will su�er a
loss, which is measured by a �xed real-valued loss function l on Y �A. We assume that
the loss function is known to the learner. The learner tries to choose his actions so as to

minimize his loss.
Here we look at the case in which, based on the training examples, the learner develops

a deterministic strategy that speci�es what he believes is the appropriate action a for each
instance x in X. He then uses this strategy on all future examples. Thus we look at

\batch" learning rather than \incremental" or \on-line" learning [Lit88]. The learner's
strategy, which is a function from the instance space X into the decision space A, will be
called a decision rule. We assume that the decision rule is chosen from a �xed decision

rule space H of functions from X into A. For example, instances in X may be encoded

as inputs to a neural network, and outputs of the network may be interpreted as actions
in A. In this case the network represents a decision rule, and the decision rule space H
may be all functions represented by networks obtained by varing the parameters of a �xed
underlying network. The goal of learning is to �nd a decision rule in H that minimizes the

expected loss, when examples are drawn at random from the unknown joint distribution
on X � Y .

This learning framework can be applied in a variety of situations. We now give several

illustrations. For further discussion, we refer the reader to the excellent surveys of White
[Whi90b], Barron [Bar89], Devroye [Dev88], and Vapnik [Vap89], to which we are greatly
indebted. We also recommend the text by Kiefer [Kie87] for a general introduction to
statistical inference and decision theory.
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1 Introduction

The introduction of the Probably Approximately Correct (PAC) model [Val84] [Ang88]
of learning from examples has done an admirable job of drawing together practitioners of

machine learning with theoretically oriented computer scientists in the pursuit of a solid
and useful mathematical foundation for applied machine learning work. These practitioners
include both those in mainstream arti�cial intelligence and in neural net research. However,
in attempting to address the issues that are relevant to this applied work in machine

learning, a number of shortcomings of the model have cropped up repeatedly. Among
these are the following:

1. The model is de�ned only for f0; 1g-valued functions. Practitioners would like to
learn functions on an instance space X that take values in an arbitrary set Y , e.g.
multi-valued discrete functions, real-valued functions and vector-valued functions.

2. Some practitioners are wary of the assumption that the examples are generated from
an underlying \target function", and are not satis�ed with the noise models that have
been proposed to weaken this assumption (e.g. [AL88] [Slo88] [SV88]). They would

like to see more general regression models investigated in which the y component in
a training example (x; y) 2 X � Y is randomly speci�ed according to a conditional
distribution on Y , given x. Here the general goal is to approximate this conditional

distribution for each instance x 2 X. In the computational learning theory literature,
a model of this type is investigated in [KS90], with Y = f0; 1g, and in a more general
case in [Yam90].

3. Many learning problems are unsupervised, i.e. the learner has access only to ran-
domly drawn, unlabeled examples from an instance space X. Here learning can often
be viewed as some form of approximation of the distribution that is generating these

examples. This is usually called density estimation when the instance space X is
continuous and no speci�c parametric form for the underlying distribution on X is
assumed. It is often called parameter estimation when speci�c parametric probability
models are used. One example of this in the computational learning theory literature

is the recent investigation of Abe and Warmuth into the complexity of learning the
parameters in a hidden Markov model [AW90].

Our purpose here is twofold. First, we propose an extension of the PACmodel, based on the
work of Vapnik and Chervonenkis [Vap89] and Pollard [Pol84,Pol90], that addresses these
and other issues. Second, we use this extension to obtain distribution-independent upper

bounds on the size of the training set needed for learning with various kinds of feedforward
neural networks. [RM86] [PG89], a popular learning method that is not covered by the
basic PAC model.
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Abstract: We describe a generalization of the PAC learning model that is based on
statistical decision theory. In this model the learner receives randomly drawn examples,
each example consisting of an instance x 2 X and an outcome y 2 Y , and tries to �nd

a decision rule h : X ! A, where h 2 H, that speci�es the appropriate action a 2 A

to take for each instance x, in order to minimize the expectation of a loss l(y; a). Here
X, Y , and A are arbitrary sets, l is a real-valued function, and examples are generated
according to an arbitrary joint distribution on X � Y . Special cases include the problem

of learning a function from X into Y , the problem of learning the conditional probability
distribution on Y given X (regression), and the problem of learning a distribution on X

(density estimation).
We give theorems on the uniform convergence of empirical loss estimates to true ex-

pected loss rates for certain decision rule spaces H, and show how this implies learnability
with bounded sample size, disregarding computational complexity. As an application, we
give distribution-independent upper bounds on the sample size needed for learning with

feedforward neural networks. Our theorems use a generalized notion of VC dimension that
applies to classes of real-valued functions, adapted from Vapnik and Pollard's work, and a
notion of capacity and metric dimension for classes of functions that map into a bounded
metric space.
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