
Tight Policy Regret Bounds for Improving and Decaying Bandits

Hoda Heidari
University of Pennsylvania
hoda@seas.upenn.edu

Michael Kearns
University of Pennsylvania

mkearns@cis.upenn.edu

Aaron Roth
University of Pennsylvania
aaroth@cis.upenn.edu

Abstract
We consider a variant of the well-studied multi-
armed bandit problem in which the reward from
each action evolves monotonically in the number
of times the decision maker chooses to take that
action. We are motivated by settings in which
we must give a series of homogeneous tasks to
a finite set of arms (workers) whose performance
may improve (due to learning) or decay (due to
loss of interest) with repeated trials. We assume
that the arm-dependent rates at which the rewards
change are unknown to the decision maker, and
propose algorithms with provably optimal policy
regret bounds, a much stronger notion than the
often-studied external regret. For the case where
the rewards are increasing and concave, we give an
algorithm whose policy regret is sublinear and has
a (provably necessary) dependence on the time re-
quired to distinguish the optimal arm from the rest.
We illustrate the behavior and performance of this
algorithm via simulations. For the decreasing case,
we present a simple greedy approach and show that
the policy regret of this algorithm is constant and
upper bounded by the number of arms.

1 Introduction
In the well-studied multi-armed bandit setting, a decision
maker is faced with the problem of choosing which arm to
play over a sequence of trials. Each time the decision maker
pulls an arm, he receives a reward, and his goal is to minimize
some notion of regret. The majority of previous studies con-
sider the so-called external regret as the objective. External
regret is the difference between the total reward collected by
an online algorithm and the maximum reward that could have
been collected by pulling a single arm on the same sequence
of rewards as the one generated by the algorithm. Past solu-
tions to this problem can be divided into two main categories:
first, solutions that rely on statistical assumptions about the
underlying reward process (see for instance[Robbins, 1985;
Gittins et al., 2011; Auer et al., 2002]); and second, solutions
for the setting where an adversary, who is capable of reacting
to the choices of the decision maker, determines the sequence
of rewards (see e.g. [Auer et al., 2002]).

Our goal in this work is to minimize a stronger notion of
regret, namely policy regret, in a setting where the reward
from each arm changes monotonically1 every time the de-
cision maker pulls that arm. More precisely, in the model
we propose, there exist n arms, each with a reward curve
that is unknown to the decision maker. Every time the de-
cision maker pulls an arm, the corresponding reward of that
arm monotonically changes according to its underlying re-
ward curve.

Unlike traditional statistical approaches, we do not make
probabilistic assumptions on the behavior of the arms; and
unlike traditional adversarial approaches, we do not assume a
fixed sequence of payoffs against which we measure our re-
gret. In particular, under our assumptions the algorithm itself
is actually generating the sequence of payoffs via its deci-
sions. The right notion of regret is thus not comparing to the
best single arm in hindsight on the sequence generated (exter-
nal regret), but to the best sequence that could have been gen-
erated — that is, to the optimal policy that knows the reward
functions. This stronger notion is what is called policy regret
in the literature [Arora et al., 2012]. The following simple
example further illustrates the difference between policy and
external regret.

Example 1 Consider a setting in which there are two arms
and time horizon T � 10. Arm 1 returns a reward of i

T when
pulled for the ith time, and arm 2 always returns a reward
of 0.1. Consider the algorithm that always pulls arm 2. The
external regret of this algorithm is zero because at every time
step, it pulls the arm that would give it the largest reward on
that time step. But the policy regret of this algorithm grows
linearly with T , as the best policy in hindsight indeed pulls
arm 1 at every time step. 2

We are motivated by settings in which the available actions
correspond to the assignment of a sequence of relatively ho-
mogeneous tasks to one of a finite set of workers, as is often
the case in crowdsourcing systems (see for example [Tran-
Thanh et al., 2014; Heidari and Kearns, 2013]). In such set-
tings, it is reasonable to expect that workers’ performance

1See [Slivkins, 2011] for other motivating examples and a differ-
ent formalization of monotone bandits.

2It is easy to adapt this example to show that specific algorithms
with no external regret, such as EXP3, will indeed fail to have small
policy regret.

may improve or decay with repeated trials, depending on the
nature of the task. For example, tasks that are unfamiliar and
challenging (such as segmenting brain images into individual
neurons [Seung, 2015]) may require a training period dur-
ing which performance gradually improves. In contrast, in a
task primarily requiring only human perception (such as the
transcription of license plates in images [Barowy et al., 2012;
Du et al., 2013]), subjects may immediately be able to per-
form the task at a high level, but its tedious and taxing nature
may lead to performance decay with increased workload. In
both cases, different subjects may have different rates of im-
provement or decay.

The rest of this paper is organized as follows: In Section
2, we introduce the model. In Section 3, we study the case
of increasing and concave reward functions and present an
optimal online algorithm whose policy regret depends on a
parameter we call τ . This parameter quantifies the time re-
quired to distinguish the optimal arm from the others, and we
prove the dependence is necessary. We prove that the policy
regret of this algorithm is sublinear and further illustrate the
range of behaviors of τ and the performance of the algorithm
via simulations. Finally, in Section 4 we investigate the case
of decreasing rewards and present a provably optimal algo-
rithm whose policy regret is constant and upper bounded by
the number of arms.

1.1 Related Work
As discussed in [Arora et al., 2012], the notion of external
regret fails to capture the actual regret of an online algo-
rithm compared to the optimal sequence of actions it could
have taken when the adversary is adaptive. Policy regret is
defined to address this counterfactual setting. The authors
show in [Arora et al., 2012] that if the adaptive adversary has
bounded memory, then a variant of traditional online learning
algorithms can still guarantee no policy regret. In our work,
the rewards depend on all the actions taken so far and as the
result our model is not captured by the bounded memory set-
ting.

While our model is not captured by any of the previous
papers in the bandit literature, the following papers are con-
ceptually related. [Tekin and Liu, 2012] study a setting in
which the reward from each arm is modeled as a finite-state
Markov chain. Authors consider two cases: rested and rest-
less arms. In the rested case, the state of each underlying
Markov chain remains frozen unless the corresponding arm
is played. While in our setting the arms are indeed rested, the
reward process we study cannot be modeled by a finite-state
Markov chain (see also [Neu et al., 2014]). [Gabillon et al.,
2013] studies the problem of picking a subset of arms at each
step in a setting where the reward is a submodular function
of the chosen subset. [Streeter et al., 2009] studies the prob-
lem of assigning items to K positions such that a submodular
utility function is maximized. Finally, our model is somewhat
related to the line of research on best arm identification, how-
ever, previous studies on this topic mainly rely on stochastic
assumptions on the rewards (see for example [Audibert and
Bubeck, 2010],[Chandrasekaran and Karp, 2012]), and they
do not apply to our setting.

There is much work in the psychology literature study-

ing the human learning process on cognitive tasks (see
e.g. [Atkinson et al., 1965; Mangal, 2009]), but to our knowl-
edge ours is the first to model it in a bandits setting. There
are however, a limited number of papers addressing relevant
questions from a heuristic or empirical viewpoint (see [Basu
and Christensen, 2013; Singla et al., 2013]).

2 Model and Preliminaries
The decision maker has access to n arms denoted
{1, 2, ..., n}. At each time step t (t = 1, 2, ..., T) he has to de-
cide which arm to pull. Every time the decision maker pulls
an arm, he collects a reward and his goal is to pull the arms
in such a way that his policy regret (to be formally defined
shortly) is minimized. We assume the decision maker knows
the time horizon T in advance.

We model the reward process of the arms as follows: Each
arm k has a fixed underlying reward function denoted by
fk(.). When the decision maker pulls arm k for the mth time
(m ≥ 1), he receives an instantaneous reward equal to fk(m).
The cumulative reward from pulling arm k for m times is de-
noted by Fk(m) and is equal to fk(1) + fk(2) + ...+ fk(m).
We assume that all the reward functions are bounded from
below by 0 and from above by 13.

A deterministic policy π of length T is a sequence of map-
pings 〈π1, π2, ..., πT 〉 from the histories to the arms. That is,

πt : {1, 2, ..., n}t−1 × [0, 1]t−1 −→ {1, 2, ..., n}

prescribes the arm that must be pulled at step t given the his-
tory of actions and rewards observed so far. Given the reward
functions f1(.), ..., fn(.) and a deterministic policy π, the arm
that the policy picks at each time step t is deterministic and is
denoted by it. Let btk(π) be the instantaneous reward of arm k
under policy π. More precisely, suppose the decision maker
has followed policy π up until time (t − 1). btk(π) denotes
the reward of playing arm k at time t. (As it is usually clear
from the context what policy we are referring to, for simplic-
ity we drop π in our notation.) Note the difference between
fk(t) and btk: unlike fk(t), btk depends on the history of ac-
tions taken so far, in particular, the number of times arm k
has been pulled before time t by policy π. We denote by r(π)

the total reward that a policy π collects, so r(π) =
∑T
t=1 b

t
it

.
Note that the total reward of a policy only depends on the
number of times each arm is pulled and not the order.

Given the reward functions f1(.), ..., fn(.) and T , let OPT
be the policy that maximizes the total reward. In the online
setting, the decision maker does not know the reward func-
tions in advance and seeks to design a (possibly random-
ized) algorithm A so that the total reward he collects is as
close as possible to that of OPT. In other words, the decision
maker’s goal is to minimize his policy regret which is defined
as r(OPT) − Er(A). We say that an online algorithm A has
sublinear policy regret if

lim
T→∞

r(OPT)− Er(A)

T
= 0.

3It is easy to see that without this assumption no algorithm can
guarantee sublinear policy regret.

3 Increasing Reward Functions
3.1 The Offline Setting
We first show that when the reward curves are all increasing,
there exists a single best arm that the optimal policy must re-
peatedly pull. Despite this fact, merely having the guarantee
of no external regret would not be sufficient to guarantee no
policy regret here (see Example 1).

Proposition 1 Suppose for all 1 ≤ k ≤ n, fk(.) is increas-
ing. Then there exists an arm k∗T such that the optimal offline
policy OPT consists of pulling k∗T for all T trials.

Proof Assume OPT pulls arm k, Tk times (so
∑n
i=1 Ti = T).

Suppose there exist arms i, j for which Ti, Tj > 0. We claim
that fi(0) = fj(0) = fi(Ti) = fj(Tj). In other words,
fi, fj are both flat and identical. If this holds, the policy OPT
remains optimal if we replace every occurrence of i in it with
j. Repeating this for any two arms i′, j′ with Ti′ , Tj′ > 0, we
see that OPT consists of pulling a single arm T times.

To prove the above claim, we first note that since all the
fks are increasing, it must be that fi(Ti) ≥ fj(Tj). Oth-
erwise one could collect a reward larger than OPT by never
pulling arm i and instead pulling arm j for Tj + Ti times.
But this is a contradiction with optimality of OPT. Similarly
fi(Ti) ≤ fj(Tj) and therefore, we can conclude fi(Ti) =
fj(Tj). Next we observe that fi(0) ≥ fj(Tj). Otherwise,
given that fi(Ti) ≤ fj(Tj), one could collect a reward larger
than OPT by never pulling arm i and instead pulling arm j for
Ti additional times. Combining this with the previous equal-
ity, we can conclude that fi(Ti) ≥ fi(0) ≥ fj(Tj) = fi(Ti)
and therefore, fi(0) = fi(Ti). Similar argument holds for j
as well. Therefore, fi(Ti) = fi(0) = fj(Tj) = fj(0). This
proves our claim and finishes the proof.

3.2 The Online Setting
In addition to being increasing and bounded, we assume the
learning curves satisfy decreasing marginal returns (see Sec-
tion 5 for a discussion of why this assumption is needed).
More precisely, for any arm k we assume

∀t ≥ 1 : fk(t+ 1)− fk(t) ≤ fk(t)− fk(t− 1)

If we think of the reward curves as continuous functions, the
concavity of fk would give us decreasing marginal returns.
Therefore we slightly abuse the terminology and refer to this
property as “concavity”. We emphasize that the concavity as-
sumption is very natural and common in the context of human
learning (see for example [Son and Sethi, 2006]) and in par-
ticular, concave learning curves have been shown to arise in
various laboratory environments (see for example [Jovanovic
and Nyarko, 1995; Anderson and Schooler, 1991]).

For the case where the reward functions are all increas-
ing, bounded and concave, we introduce an online algorithm
whose policy regret bound, as we shall prove, is sublinear and
optimal. Our algorithm is motivated by the following obser-
vation: Suppose we initially pull arm k, t times and observe
fk(1), fk(2), ..., fk(t). After this, given that fk is increasing,
we can be sure that for any t < s ≤ T , fk(s) ≥ fk(t).
In other words, the additional reward that can be collected
from arm k in the remaining (T − t) steps is minimized if fk

flattens at t. We define the pessimistic estimate of the total
reward from arm k (denoted by qtk(T)) to be equal to the total
reward of a function f ′k that is identical to fk up to t, and then
flattens out4 (see Figure 1 (a)).

In addition to the above lower bound, concavity yields an
upper bound on future payoffs. The additional reward that
can be collected from arm k in the remaining (T − t) steps is
maximized if the function continues to grow linearly with rate
(fk(t)− fk(t− 1)). We define the optimistic estimate of the
total reward from arm k (denoted by ptk(T)) to be equal to the
total reward of a function f ′′k that is identical to fk up to t, and
then continues to grow linearly with rate (fk(t)− fk(t− 1))
until it hits 1 5(See Figure 1 (a)).

Since all the reward curves are increasing, by Proposition 1
we know that there exists a single best arm that is repeatedly
pulled by the optimal policy. Therefore we seek to detect this
arm. Our algorithm operates as follows: it maintains a set of
candidate arms in which the best arm is guaranteed to lie. At
each round, it pulls all the arms in the candidate set exactly
once, and updates both optimistic and pessimistic estimates
of the reward from these arms. If at some round the optimistic
estimate of an arm k is less than or equal to the pessimistic
estimate of another arm in the candidate set, then we are sure
that k can not be the optimal arm, and therefore the algorithm
eliminates it from the candidate set. See algorithm 1 for the
details. We refer to this algorithm by A1.

For the coming theorem, we make use of a quantity that
captures the time required to distinguish the optimal arm from
the others. More precisely, we define τ(T) = maxk τk(T)
where

τk(T) = arg min
t

{
qtk∗T (T) > ptk(T)

}
and k∗T is the optimal arm for the time horizon T . Thus τk(T)
specifies the smallest number of times we need to pull both
arm k and k∗T so that the optimistic estimate of the total re-
ward from arm k falls behind the pessimistic estimate of the
total reward from arm k∗T .

We now prove that the policy regret of A1 is bounded by
nτ(T), and show that this is optimal. Eventually in Theo-
rem 2 we shall prove the regret of A1 is in fact sublinear.
Theorem 1 Suppose for all 1 ≤ k ≤ n, fk(.) is concave,
increasing, bounded from below by 0 and from above by 1.
Then6

r(OPT)− r(A1) ≤ nτ(T).

Furthermore, the policy regret bound of A1 is optimal: there
exists a family of examples consisting of bounded, increasing
and concave reward functions for which no algorithm can be
guaranteed to have a policy regret bound of o(nτ(T)).
Proof Observe that A1 detects the optimal arm after at most
τ(T) phases. This is simply because a suboptimal arm k is

4To be more precise, qtk(T) = Fk(t) + fk(t)(T − t).
5To be more precise, ptk(T) = Fk(t)+

∑T
s=t+1 min{1, fk(t)+

(fk(t)− fk(t− 1)) (s− t)}.
6One can easily see that with the exact same logic as the one in

the proof of Theorem 1, we can get a slightly better upper bound
of

∑n
k=1 τk(T) on the regret, but to simplify the statement of the

theorem and its proof, we work with the worst case upper bound of
nτ(T).

(a) (b)

Figure 1: (a) The optimistic (red) and pessimistic (blue) estimate. (b) The lower bound example.

Algorithm 1 The online algorithm for concave and increasing
reward functions (A1)
t = 0; % t is the index of the current
phase.
S = {1, ..., n}; % S is the set of remaining
candidate arms.
Pull every arm exactly once.
repeat
t = t+ 1; % Start a new phase
for each i ∈ S do

Pull arm i once.
pti(T) = Fi(t) +

∑T
s=t+1 min{1, fi(t) +

(f(t)− f(t− 1)) (s − t)}; % Update the
optimistic estimate.
qti(T) = Fi(t) + fi(t)(T − t); % Update the
pessimistic estimate.

end for
for i 6= j ∈ S do

if qtj(T) > pti(T) % i.e. there exists
an arm whose total reward is
guaranteed to be larger than that
of arm i then
S = S \ {i}.

end if
end for

until only one arm remains in S or time runs out.
For the remaining steps (if any), pull the only arm left in S.

removed from S by phase τk(T). In addition, note that arm
k∗T can never be removed from S due to its optimality. There-
fore, we can conclude that the number of times whenA1 pulls
suboptimals arm is at most nτ(T). Combining this with the
fact that the reward per step is upper-bounded by 1 yields the
desired inequality.

For the lower bound, fix a constant τ < T , and consider
n arms that all have linear reward curves with identical slope
of 1

2(τ−1) , until they reach payoff 0.5 at time (τ − 1). Then
(n− 1) of the curves stay at 0.5 forever, whereas one of them
selected at random continues to 1 (see Figure 1 (b)). It is
easy to see that for any T > τ , τ(T) = τ . Using Yao’s
min-max principle [Yao, 1977], we lower-bound the regret of

any deterministic algorithm on the above randomized setting.
Let us define the number of arms an algorithm verifies to be
equal to the number of arms that it pulls at least τ times (note
that this is well-defined for any deterministic algorithm). It
is easy to see that in this example, no algorithm can find the
optimal arm with high probability by verifying o(n) arms.
To see this, first note that in order to see whether an arm is
optimal, the algorithm has to pull it at least τ times. Assume,
without loss of generality, that the first arm that the algorithm
verifies is arm 1, the second one is arm 2, and so on. Since
the index of the optimal arm is chosen uniformly at random,
the expected number of arms the algorithm must verify before
finding the optimal arm is equal to

∑n−1
i=0

i
n = 1

n
n(n−1)

2 =
(n−1)

2 . Every time the algorithm verifies a sub-optimal arm,
it fails to collect at least 0.5τ units of reward from the optimal
arm, and instead obtains a reward on average equal to 0.25τ .
As a result the policy regret of the algorithm is lower bounded
by τ(n−2)

2 .
Next we show that the policy regret of Algorithm 1 is in

fact sublinear for any choice of bounded, concave and in-
creasing reward functions f1(.), ..., fn(.). The following no-
tation will be useful in our argument: we denote the asymp-
tote of fi(.) by ai, i.e.

ai = lim
t→∞

fi(t).

Note that since fk(.) is increasing and bounded, the asymp-
tote exists and is finite. Also for any arm i limT→∞

Fi(T)
T =

ai. We define a∗ to be max1≤i≤n ai, and

∆i(t) = fi(t)− fi(t− 1).

Theorem 2 For any set of bounded, concave, and increas-
ing reward function f1(.), ..., fn(.), the policy regret of A1 is
sublinear.

Here is the outline of the proof: We start by observing that
for large values of T , the optimal arm must have the largest
asymptote among other arms (note that we don’t assume there
is only one arm with maximum asymptote). Therefore a sub-
optimal arm i can be of one of the following two types:

1. The asymptote of arm i is smaller than that of the opti-
mal arm; For this case, we show that A1 dismisses arm

i from its candidate set within o(T) phases. As a result
the regret from pulling arm i cannot not large.

2. The asymptote of arm i is equal to that of the optimal
arm; For this case, we show that while A1 may fail to
determine the suboptimality of arm i quickly, since the
asymptote of i is as large as the optimal arm, pulling it
does not add much to the policy regret of A1.

Proof Observe that limT→∞ ak∗T = a∗; in other words, if T
is sufficiently large, then k∗T ∈ arg max1≤i≤n ai. Through-
out, we assume T is large enough so that the latter holds.

Let W = arg maxk ak. We start by showing that if i 6∈ W
(i.e. ai < a∗), then A1 removes arm i from its candidate set
within o(T) phases.

Lemma 1 For arm i, if ai < a∗, then limT→∞
τi(T)
T = 0.

Proof Suppose that the statement of the lemma does not hold
and limT→∞

τi(T)
T 6= 0. This means that for any unbounded

and increasing sequence {γT }∞T=1 for which limT→∞
γT
T =

0, there exists an infinite subsequence of T ’s such that
qγTk∗ (T) < pγTi (T). Expanding this, we have7

Fk∗
T

(γ) + (T − γ)fk∗
T

(γ) ≤ Fi(γ) +
∑
s>γ

min{1, fi(γ) + ∆i(s− γ)}

≤ Fi(γ) +
∑
s>γ

fi(γ) + ∆i(s− γ)

The above is equivalent to(
Fk∗
T

(γ)− Fi(γ)

)
+ (T − γ)

(
fk∗
T

(γ)− fi(γ)

)
≤

∑
s>γ

∆i(s− γ)

≤ ∆i
(T − γ + 1)2

2

≤ ∆i
T2

2

Therefore combined we have:

Fk∗
T

(γT)− Fi(γT) + (T − γT)
(
fk∗
T

(γT)− fi(γT)
)
< ∆i(γT)

T 2

2
(1)

Now note that if T (and as a result γT) is large enough,
then Fk∗T (γT) ≥ Fi(γT) and fk∗T (γT)− fi(γT) ≥

ak∗
T
−ai
2 =

a∗−ai
2 . Let C = a∗−ai

2 (recall that due to our assumption
about arm i, C > 0). Therefore from (1) we obtain that
C(T − γT) < ∆i(γT)T

2

2 and as a result

C(T − γ) < ∆i(γ)
T 2

2

⇒ C(T − γ)

T
< ∆i(γ)

T

2

⇒ lim
T→∞

C(T − γ)

T
≤ lim
T→∞

∆i(γ)
T

2

⇒ C ≤ lim
T→∞

∆i(γ)
T

2

where the last inequality follows from the fact that
limT→∞

γT
T = 0. So we have

C ≤ lim
T→∞

∆i(γT)
T

2
(2)

7To simplify the notation in this equation we drop the subscript
T . Also by δi we mean ∆i(γ).

Next, one can easily verify that limT→∞∆i(γT)T = 0.
To see this note that

∞∑
t=1

∆i(t) ≤ 1

⇒
∞∑
t=1

∆i(t)T ≤ T

⇒ lim
t→∞

∆i(t)T = 0

⇒ lim
t→∞

∆i(γT)T = 0

where the last inequality follows from the fact that {γT }∞T=1
is positive, increasing and unbounded. This combined with
(2) yields C ≤ 0, which is a contradiction.
Using Lemma 1, we can conclude that for any arm i 6∈W our
algorithm can distinguish i from k∗ within o(T) phases. In
other words, after a prefix of at most o(T) many phases, A1

eliminates every arm i 6∈W .
Second we show that if i ∈ W (i.e. ai = a∗), while A1

may fail to detect the suboptimality of arm i quickly, pulling
arm i does not add much to the policy regret of A1.
Lemma 2 Let Ti denote the number of times A1 pulls arm
i ∈W . Then

lim
T→∞

Fk∗T (T)−
∑
i∈W Fi(Ti)

T
= 0.

Proof If i ∈W gets eliminated within o(T) phases, it can not
cause the algorithm to suffer from a linear policy regret. Now
consider a subset W ′ of W consisting of any suboptimal arm
i for which it takes Θ(T) steps for the algorithm to eliminate
i.

Given that the arms not in W ′ can all be detected in T ′ =
o(T) time steps, we have that T −

∑
i∈S′ Ti = T ′ = o(T).

Let w ∈ W ′ be the arm for which Fi(Ti)
Ti

is the smallest. We
have

Fk∗
T

(T)−
∑
i∈W ′

Fi(Ti) = Fk∗
T

(T)−
∑
i∈W ′

Ti
Fi(Ti)

Ti

< Fk∗
T

(T)−
∑
i∈W ′

Ti
Fw(Tw)

Tw

= T
Fk∗
T

(T)

T
− (T − T ′)

Fw(Tw)

Tw

= T (
Fk∗
T

(T)

T
−
Fw(Tw)

Tw
) + T

′ Fw(Tw)

Tw

≤ T

Fk∗T (T)

T
−
Fw(Tw)

Tw

 + o(T)

That is,

Fk∗
T

(T)−
∑
i∈W ′

Fi(Ti) ≤ T
(
Fk∗
T

(T)

T
−
Fw(Tw)

Tw

)
+ o(T) (3)

It only remains to show that

T

(
Fk∗
T

(T)

T
−
Fw(Tw)

Tw

)
= o(T) (4)

But this is certainly true as limT→∞
Fk∗
T

(T)

T =

limTw→∞
Fw(Tw)
Tw

= a∗. Combining (3), (4), we have the
desired result.

Combining Lemma 1 and 2 we obtain the sublinearity of the
policy regret for A1.

Finally, we remark that if the decision maker only gets to
observe a corrupted version of the rewards and the corrup-
tion is bounded by some ε > 0, then A1 is guaranteed to
have a total reward at least equal to r(OPT)−nτ ε(T). τ ε(T)
is the corrupted version of τ(T) in which the optimistic and
pessimistic estimate from an arm are computed by taking the
presence of noise into account8.

3.3 Simulations
So far we have established two upper bounds on the regret of
A1: in Theorem 1 we gave an upper bound of nτ(T), and
in Theorem 2 we showed that the regret of is always sub-
linear. In this section we empirically investigate the perfor-
mance of A1 on several illustrative reward curves, and ob-
serve that τ(T) (and the regret of our algorithm) are typically
significantly sublinear in T .

Throughout, for simplicity we set n to 2 and consider two
arms 1, 2 where the asymptote of f1 is 1 and that of f2 is
0.5. In Figure 2, we report the value of regret and τ versus
T = 500, ..., 30000 for three different sets of examples.

In the first column of Figure 2, f1(t) = 1 − t−0.5 and
f2(t) = 0.5− 0.5t−α where α = 0.1, 0.5, 1, 5. Each of these
values corresponds to a different rate of increase for f2. The
larger α is, the faster f2 converges to its asymptote. In this
example for all values of α, τ increases slowly (sub-linearly)
with T and as a result regret consistently decreases with T .
The reason for the slow growth of τ is that f1 converges to
its asymptote very quickly; in addition, the rate with which
f2 increases, approaches 0 fast. This enables the algorithm to
find and dismiss the suboptimal arms early on.

In the second column, f1(t) = min{1, t
30000} and

f2(t) = min{0.5, 0.5(t
30000)α} where α = 0.03, 0.1, 0.4, 1.

The smaller α is, the faster f2 converges to its asymptote.
Here when τ increases linearly or faster with T , the regret in-
creases as well. Note that this does not contradict Theorem 2
as the theorem holds for large enough values of T only. No-
tice that for α = 0.03, 0.1, 0.4, τ spikes at around T = 10000
and then drops. The reason for this behavior is that at that
point, the optimal arm changes from arm 2 to arm 1.

Finally in the third column of Figure 2, f1(t) = 1 − t−0.1

and f2(t) = 0.5 − 0.5t−α where α = 0.1, 0.5, 1, 5. It might
come as a surprise that in this example, at the points when τ
peaks, regret actually drops. Of course this does not contra-
dict Theorem 1. While this theorem guarantees small regret
when τ grows slowly with T , if τ increases linearly or faster,
it does not necessarily imply that Algorithm 1 must suffer a
large regret. For example, when α = 5 and T ≤ 2500, arm
1 is the sub-optimal arm, however, its reward is just slightly
worse than that of the optimal arm (arm 2). Given that the
rate of increase of the sub-optimal arm is sufficiently large,
the algorithm fails to detect the optimal arm and instead keeps

8More precisely, τ ε(T) = maxk τ
ε
k(T) and τ εk(T) =

arg mint{qt,εk∗
T

(T) > pt,εk (T)} where pt,εk (T) = Fk(t) +∑T
s=t+1 min{1, fk(t) + ε + (f(t)− f(t− 1) + 2ε) (s − t)} and

qt,εk (T) = Fk(t) + (fk(t)− ε)(T − t).

pulling the two an equal number of times. However, since the
reward from the sub-optimal arm is getting closer to that of
the optimal arm, the regret decreases. Note that this was not
the case for the example in column 2.

4 Decreasing Reward Functions
4.1 Optimal Offline Policy
When all the reward functions are decreasing, there exists
a simple greedy approach that can compute the optimal of-
fline policy. The proposed policy, A0, works as follows: At
each time, pull the arm that results in the highest instanta-
neous reward. More precisely, if up to time step t, arm i
has been pulled ti times (1 ≤ i ≤ n), then pull an arm in
arg maxi fi(ti + 1).

Proposition 2 Suppose for all 1 ≤ k ≤ n, fk(.) is decreas-
ing. Then r(A0) = r(OPT).

Proof We prove that A0 maximizes the total reward for any
set of reward functions using induction on T . If T = 1, it is
obvious that the optimal action is to pull the arm that results
in the highest instantaneous reward; more precisely, in order
to maximize the reward, one should pull arm k∗ where k∗ ∈
arg maxk fk(1) and this is exactly what A0 does. Suppose
that our claim holds for T ≤ m. Now consider the case of
T = m + 1. Consider the policy OPT of length (m + 1)
that maximizes the total reward for the given set of reward
functions f1, ..., fn. Let k∗ ∈ arg maxk fk(1) be the arm
that A0 initially pulls. We first show that, without loss of
generality, we can assume OPT pulls arm k∗ at least once.
Suppose it does not. Consider the last action that OPT takes.
Suppose it pulls arm k for the T ∗k ’th times. Due to the fact
that fk is decreasing and due to the definition of k∗, we have
fk(Tk) ≤ fk(1) ≤ fk∗(1). In other words if instead of k, in
the last step OPT pulls k∗, the total reward it collects can only
improve. Therefore without loss of generality we can assume
OPT pulls arm k∗ at least once.

Now let gk∗(t) = fk∗(t+ 1). Remove the first occurrence
of k∗ from OPT, and call the remaining policy π. Obviously,
π, which is of lengthm, must maximize the total reward from
arms with reward curves f1, ..., gk∗ , ..., fn, otherwise the to-
tal reward of OPT could be increased and this contradicts
the optimality of OPT. Now applying the induction hypoth-
esis, we know that A0 also maximizes the total reward for
f1, ..., gk∗ , ..., fn. Therefore we can conclude that the total
reward that A0 collects is equal to that of π. This finishes the
proof.

4.2 The Online Setting
As the above theorem shows, in the case of decreasing reward
functions, there does not necessarily exist a single best arm
that an online algorithm should track. Rather, the optimal
algorithm needs to quickly react and switch to another arm
when the reward from the current one drops.

We introduce a greedy online algorithm that can guaran-
tee constant (and therefore sublinear) policy regret when all
the reward curves are decreasing. The algorithm, which we
call A2, does not need to know T in advance and works as
follows: Intuitively, after the initial prefix of n actions, A2

Figure 2: The first row illustrates f1 (black) and f2 (colored); the second and third rows illustrate τ and the regret respectively.

chooses a policy that is identical to the optimal greedy pol-
icy. The only difference is that for each action, it is getting
a reward that is diminished by one additional time unit com-
pared to the offline optimal benchmark. In sum, compared
to the optimal algorithm, it loses at most one unit of reward
from each action. But each instantaneous reward is bounded
in [0, 1], so the loss is at most n. See Algorithm 2 for further
details.

Theorem 3 Suppose for all 1 ≤ k ≤ n, fk(.) is decreasing,
bounded from below by 0 and from above by 1. Then

r(OPT)− r(A2) ≤ n.

Furthermore, the policy regret bound of A2 is optimal: there
exists a family of examples consisting of bounded and de-
creasing reward functions for which no algorithm can be
guaranteed to have a policy regret bound of o(n).

Proof Suppose for all 1 ≤ k ≤ n, OPT pulls arm k, T ∗k times
andA2 pulls it Tk times. First note that for any arm k and any
t ≤ min{T ∗k , Tk}, both OPT andA2 receive an instantaneous

reward equal to fk(t) when they pull arm k for the t’th time.
Thus these two instantaneous rewards cancel each other out
in r(OPT)− r(A2). It only remains to investigate the actions
that A2 and OPT differ on.

Let U be the subset of arms for which Tk > T ∗k and V
be the subset of arms for which T ∗k > Tk. Note that if one
of U or V is non-empty, the other one has to be non-empty
as well. For any arm i ∈ V , let `i be the last instantaneous
reward A2 collects from arm i, i.e. `i = fi(Ti). Let i∗ =
arg maxi∈V `i. Now consider the time when A2 pulls arm
j ∈ U for the tth time where (T ∗j + 1) < t ≤ Tj (if no such
t exists, then T ∗j + 1 = Tj which means A2 pulls arm j just
once more than OPT). Suppose that so far,A2 has pulled arm
i∗, s ≤ Ti∗ times. Given that A2 chooses to pull arm j, we
know that at that timeRj ≥ Ri∗ , or equivalently, fj(t−1) ≥
fi∗(s). Also, given that fk’s are all decreasing, we have that
fi∗(s) ≥ fi∗(Ti∗). Due to the way i∗ has been chosen, we
know that for all i ∈ V , `i∗ ≥ `i, or equivalently, fi∗(Ti∗) ≥
fi(Ti). Given that fk’s are all decreasing, we have that for
all i ∈ V and r ≥ Ti, fi(Ti) ≥ fi(r). Combining the last

Algorithm 2 A no policy regret algorithm for decreasing re-
ward functions (A2)

for 1 ≤ k ≤ n do
Pull arm k once
mk = 1; %mk is the number of times arm
k has been pulled so far
Rk = fk(1); %Rk is the most recent
instantaneous reward collected from
arm k

end for
for n+ 1 ≤ t ≤ T do

Pull arm j where j ∈ arg maxkRk
Rj = fj(mj + 1)
mj = mj + 1

end for

four inequalities, we have that for all i ∈ V and r ≥ Ti,
fj(t − 1) ≥ fi(r). This inequality means that except for at
most 1 step (i.e. the Tj th time A2 pulls arm j ∈ U), those
extra times at which A2 pulls arm j results in a reward larger
than any of the instantaneous rewards that OPT collects and
A2 doesn’t. In other words A2 wastes at most 1 time step on
arm j. Given that the rewards are all upper bounded by 1, we
can conclude that r(OPT)− r(A2) ≤ |U | ≤ n.

For the lower bound, consider n arms, (n − 1) of which
have a reward function equal f(t) = 1[t = 1]; and one of
them (which we call k∗) chosen uniformly at random has a
reward function always equal to 1. Note that in order to verify
whether an arm is the optimal arm, any online algorithm has
to pull it at least twice. If a suboptimal arm is pulled for
the second time, we say the algorithm made a mistake. It is
easy to see that in this example, no online algorithm can be
guaranteed to find the optimal arm by making o(n) mistakes
in expectation. Assume without loss of generality that the
first arm that the algorithm verifies (i.e. pulls for the second
time) is arm 1, the second one is arm 2, and so on. Since
the index of the optimal arm is chosen uniformly at random,
the expected number of mistakes the algorithm makes before
detecting k∗ is equal to

∑n−1
i=0

i
n = (n−1)

2 . This means that
the algorithm makes Θ(n) mistakes in expectation. Given
that every time the algorithm makes a mistake, it loses 1 unit
of reward, the policy regret of the algorithm is lower bounded
by (n−1)

2 . This finishes the proof.
We conclude with a few remarks: First, one can easily see
that if the decision maker only gets to observe a corrupted
version of the rewards and the magnitude of the corruption
is bounded by ε > 0, then A2 is guaranteed to have a total
reward at least equal to r(OPT)− n− εT .

Second, we note that the greedy approach presented here
fails to perform well in the increasing setting, since there the
optimal arm can have the lowest payoff at time 1, and there-
fore never gets pulled by the greedy algorithm.

5 Future Directions
We presented no-policy regret algorithms for two settings:
one in which all the reward functions were concave and in-
creasing, and another where all the rewards were decreasing.

We saw that even this simplified setting leads to non-trivial
questions. We consider our work as a first step towards de-
signing no-regret algorithms in settings where the rewards are
neither stochastic nor fully adversarial.

Here are some interesting open questions raised by the re-
sults presented here.
• Non-concave improving bandits. The concavity as-

sumption allows one to infer upper and lower bounds on
the total reward of each arm with certainty. This is what
our analysis relied on heavily to guarantee no policy re-
gret. The same idea cannot be readily applied to settings
where the rewards are increasing but non-concave. The
existence of a no-policy regret algorithm for such set-
tings remains an interesting open question.
• Bandits that improve initially, then decay. We as-

sumed either all the reward functions are increasing or
they are all decreasing. A natural and interesting ques-
tion is whether it is possible to guarantee no policy regret
in the case where the learning curves are concave and in-
creasing at first, but then start decaying from some point
on. It is easy to see that this is not simply achievable by
naively combining the algorithms presented here.
• Statistical noise. Our algorithms can handle small

amounts of adversarially generated noise. An impor-
tant question is whether a similar regret bound can be
shown to hold if the noise is generated stochastically.
One natural idea to extend our work to this setting is to
estimate the gradient of the reward functions and the cor-
responding confidence intervals using past observations,
then follow a logic similar to what we proposed here.

References
[Anderson and Schooler, 1991] John R Anderson and Lael J

Schooler. Reflections of the environment in memory. Psy-
chological science, 2(6):396–408, 1991.

[Arora et al., 2012] Raman Arora, Ofer Dekel, and Ambuj
Tewari. Online bandit learning against an adaptive adver-
sary: from regret to policy regret. In International Confer-
ence on Machine Learning, 2012.

[Atkinson et al., 1965] Richard C Atkinson, Gordon H
Bower, and Edward J Crothers. Introduction to mathemat-
ical learning theory. Wiley, 1965.

[Audibert and Bubeck, 2010] Jean-Yves Audibert and
Sébastien Bubeck. Best arm identification in multi-armed
bandits. In Conference on Learning Theory, pages 13–p,
2010.

[Auer et al., 2002] Peter Auer, Nicolo Cesa-Bianchi, Yoav
Freund, and Robert E Schapire. The nonstochastic mul-
tiarmed bandit problem. SIAM Journal on Computing,
32(1):48–77, 2002.

[Barowy et al., 2012] Daniel W Barowy, Charlie Curtsinger,
Emery D Berger, and Andrew McGregor. Automan: a
platform for integrating human-based and digital computa-
tion. In Proceedings of the ACM international conference
on Object oriented programming systems languages and
applications, 2012.

[Basu and Christensen, 2013] Sumit Basu and Janara Chris-
tensen. Teaching classification boundaries to humans. In
AAAI, 2013.

[Chandrasekaran and Karp, 2012] Karthekeyan Chan-
drasekaran and Richard Karp. Finding a most biased coin
with fewest flips. arXiv preprint arXiv:1202.3639, 2012.

[Du et al., 2013] Shan Du, Mohammad Ibrahim, Mohamed
Shehata, and Wael Badawy. Automatic license plate
recognition (alpr): A state-of-the-art review. Circuits
and Systems for Video Technology, IEEE Transactions on,
23(2):311–325, 2013.

[Gabillon et al., 2013] Victor Gabillon, Branislav Kveton,
Zheng Wen, Brian Eriksson, and S Muthukrishnan. Adap-
tive submodular maximization in bandit setting. In Ad-
vances in Neural Information Processing Systems, pages
2697–2705, 2013.

[Gittins et al., 2011] John Gittins, Kevin Glazebrook, and
Richard Weber. Multi-armed bandit allocation indices.
John Wiley & Sons, 2011.

[Heidari and Kearns, 2013] Hoda Heidari and Michael
Kearns. Depth-workload tradeoffs for workforce organi-
zation. In AAAI Conference on Human Computation and
Crowdsourcing, 2013.

[Jovanovic and Nyarko, 1995] Boyan Jovanovic and Yaw
Nyarko. A bayesian learning model fitted to a variety of
empirical learning curves. Brookings Papers on Economic
Activity. Microeconomics, 1995:247–305, 1995.

[Mangal, 2009] SK Mangal. An Introduction to Psychology.
Sterling Publishers Pvt. Ltd, 2009.

[Neu et al., 2014] G. Neu, A. Gyorgy, Cs. Szepesvari, , and
A. Antos. Online markov decision processes under bandit
feedback. IEEE Transactions on Automatic Control, 59,
March 2014.

[Robbins, 1985] Herbert Robbins. Some aspects of the se-
quential design of experiments. In Herbert Robbins Se-
lected Papers, pages 169–177. Springer, 1985.

[Seung, 2015] Sebastian Seung. Eyewire: A game to map
the brain. http://blog.eyewire.org/about/, 2015.

[Singla et al., 2013] Adish Singla, Ilija Bogunovic,
G Bartók, A Karbasi, and A Krause. On actively
teaching the crowd to classify. 2013.

[Slivkins, 2011] Aleksandrs Slivkins. Monotone multi-
armed bandit allocations. In Conference on Learning The-
ory, pages 829–834. Citeseer, 2011.

[Son and Sethi, 2006] Lisa K Son and Rajiv Sethi. Metacog-
nitive control and optimal learning. Cognitive Science,
30(4):759–774, 2006.

[Streeter et al., 2009] Matthew Streeter, Daniel Golovin, and
Andreas Krause. Online learning of assignments. In Ad-
vances in Neural Information Processing Systems, pages
1794–1802, 2009.

[Tekin and Liu, 2012] Cem Tekin and Mingyan Liu. Online
learning of rested and restless bandits. Information Theory,
IEEE Transactions on, 58(8):5588–5611, 2012.

[Tran-Thanh et al., 2014] Long Tran-Thanh, Sebastian
Stein, Alex Rogers, and Nicholas R Jennings. Effi-
cient crowdsourcing of unknown experts using bounded
multi-armed bandits. Artificial Intelligence, 214:89–111,
2014.

[Yao, 1977] Andrew Chi-Chin Yao. Probabilistic computa-
tions: Toward a unified measure of complexity. In 18th
Annual Symposium on Foundations of Computer Science,
pages 222–227. IEEE, 1977.

