
PERSPECTIVE OPEN ACCESS

AI model disgorgement: Methods and choices
Alessandro Achillea, Michael Kearnsa,b,1, Carson Klingenberga ID , and Stefano Soattoa,c

Edited by Jeffrey Ullman, Stanford University (Retired), Stanford, CA; received July 12, 2023; accepted March 15, 2024

Over the past few years, machine learning models have
significantly increased in size and complexity, especially
in the area of generative AI such as large language
models. These models require massive amounts of data
and compute capacity to train, to the extent that concerns
over the training data (such as protected or private
content) cannot be practically addressed by retraining the
model “from scratch” with the questionable data removed
or altered. Furthermore, despite significant efforts and
controls dedicated to ensuring that training corpora are
properly curated and composed, the sheer volume re-
quired makes it infeasible to manually inspect each datum
comprising a training corpus. One potential approach to
training corpus data defects is model disgorgement, by
which we broadly mean the elimination or reduction of
not only any improperly used data, but also the effects
of improperly used data on any component of an ML
model. Model disgorgement techniques can be used to
address a wide range of issues, such as reducing bias or
toxicity, increasing fidelity, and ensuring responsible use
of intellectual property. In this paper, we survey the land-
scape of model disgorgement methods and introduce a
taxonomy of disgorgement techniques that are applicable
to modern ML systems. In particular, we investigate the
various meanings of “removing the effects” of data on the
trained model in a way that does not require retraining
from scratch.

machine learning | artificial intelligence | model disgorgement |
machine unlearning | generative AI

Responsible use of data is an indispensable part of any
machine learning (ML) implementation. ML developers must
carefully collect and curate their datasets, and document
their provenance. They must also make sure to respect
intellectual property rights, preserve individual privacy, and
use data in an ethical way. Consider in particular the
following concerns related to the training of ML models—
especially generative AI models such as large language
models (LLMs) or diffusion models—on private, protected,
or otherwise sensitive data:

• Personal data. The training data contains identifying in-
formation about individuals, such as physical addresses,
workplace, or social media activity. Even if such data was
posted on the open Internet or other public forums, for
privacy reasons we (or the affected individuals) would
prefer that it not be produced verbatim in the output of
a model, either inadvertently or as the result of targeted
model inputs (prompts).

• Proprietary data. The training data contains material
that is subject to copyright or other intellectual property
protections. While globally there are a wide variety of

protections for the usage of copyrighted material for
machine learning use cases (for example, “fair use” in the
United States and the “text and data mining” justification in
the European Union), model developers still may uncover
data defects related to intellectual property issues.

• Toxic data. The training data contains material that could
be viewed as toxic, offensive, or otherwise inappropriate.
A primary concern is that such data could influence model
outputs to exhibit similarly undesirable behaviors.

• Low quality data. The training data may contain content
that is badly annotated, noisy, or otherwise not useful or
damaging for the model. We want to be able to remove
such data when discovered to improve the model quality.

In each of the scenarios above, the underlying concerns are
distinct, but in all of them, we desire to mitigate or eradicate
the effects of the data mentioned on model outputs and
behavior. However, due to significant increase in size and
complexity over the past years, current ML models require
a very large amount of data and compute capacity to train, to
the extent that training corpus defects such as those listed
above cannot be trivially remedied by retraining the model
from scratch. Despite sophisticated controls on training data
and a significant amount of effort dedicated to ensuring that
training corpora are properly composed, the sheer volume
of data required for the models makes it challenging to
manually inspect each datum comprising a training corpus.

Thus one potentially more practical solution for training
corpus data defects is model disgorgement*, by which
informally we mean the reduction or elimination of the
effects of improperly used data on any component of an ML
model with minimal degradation in the model performance
(utility). In this paper, we introduce a taxonomy of possi-
ble disgorgement methods that are applicable to modern
ML systems. In particular, we investigate the meaning of
“removing the effects” of data in the trained model in a way

Author affiliations: aAmazon Web Services Artificial Intelligence (AWS AI), Pasadena, CA
91125; bComputer and Information Science, University of Pennsylvania, Philadelphia, PA
19130; and cComputer Science, University of California, Los Angeles, CA 90095

Author contributions: A.A., M.K., C.K., and S.S. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS. This open access article is distributed
under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC
BY-NC-ND).
1To whom correspondence may be addressed. Email: mkearns@cis.upenn.edu.

Published April 19, 2024.

*The term “disgorgement” has specific meanings in legal contexts (1), as well as more
recent usage in algorithmic and regulatory settings (2). Our use of the term “model
disgorgement” is more closely related to the algorithmic context, and refers specifically to
the disgorgement or mitigation of the effects of training data on machine learning models.

PNAS 2024 Vol. 121 No. 18 e2307304121 https://doi.org/10.1073/pnas.2307304121 1 of 9

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 M
ic

ha
el

 K
ea

rn
s

on
 A

pr
il

23
, 2

02
4

fr
om

 I
P

ad
dr

es
s

16
5.

12
3.

23
1.

29
.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2307304121&domain=pdf&date_stamp=2024-04-18
https://orcid.org/0009-0001-5386-0958
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mkearns@cis.upenn.edu

that does not require retraining from scratch. We shall not
attempt to provide a precise and formal definition of model
disgorgement, since there are a number of distinct and
somewhat incomparable approaches and different fields
have not yet converged to a single approach. Instead, we
aim to informally cover the core established ideas and refer
the reader to works for possible rigorous formalization.

Model disgorgement techniques (“MD” hereafter) can be
used to address a wide range of issues, such as reducing
bias or toxicity, increasing fidelity, and ensuring respon-
sible usage of intellectual property. Developers of large
models should understand their options for implementing
model disgorgement, and novel methods to perform model
disgorgement should be developed to help ensure the
responsible usage of data.

This paper presents both novel and known technical
approaches to MD. These approaches are distinguished
along three dimensions:

1. Disgorgement guarantee. We must consider what it
means to “remove the effects” of particular data on a
model. Here, we draw a technical distinction between
deterministic processes (where we can say that particular
data has categorically not affected a model) versus proba-
bilistic processes (where we can say that the effect of par-
ticular data on a model is effectively zero or de minimis
in a statistical sense). While probabilistic guarantees are
formalistically weaker, they may allow better utility of
the disgorged model and, if properly implemented, can
approximate the effectiveness of deterministic methods.

2. Disgorgement type. Here we make a distinction between
methods for disgorgement that are structural and those
that are behavioral. By structural we mean methods
that alter the ML workflow structure in a way that
enforces disgorgement, or facilitates later disgorgement.
An example of the latter would be a model architecture
that averages many smaller submodels, each trained
on different partitions of the data; disgorgement of any
particular portion of data is then achieved by dropping
its corresponding submodel from the average. By be-
havioral we mean methods that modify the parameters
or the training of the model to achieve approximate
disgorgement, and for which the guarantees do not come
from the structure of the method itself, but might require
empirical measurement, or numerical quantification of
the degree of disgorgement. Such methods include var-
ious “forgetting” or “unlearning” approaches as well as
differential privacy.

3. Disgorgement temporal application. We also distinguish
approaches based on when those techniques must be
applied as part of the model construction process.
We present approaches that can be applied reactively
(applied post hoc to a fully trained model), proactively
(where the possibility of later disgorgement must be
explicitly anticipated as part of the training process),
or preemptively (where the very nature of the training
process minimizes the effects of any sufficiently small
fraction of training data on the resulting model, thus
obviating later explicit disgorgement actions).

The following table summarizes the techniques we will
discuss, and their attributes in our proposed taxonomy. It

should also be noted that the different methods are not
mutually exclusive and may be used in combinations for
example using both compartmentalization and differential
privacy together (3).

Disgorgement method Guarantee Type Time

Retraining Deterministic Structural Reactive
Forgetting/unlearning Probabilistic Empirical Reactive
Compartmentalization Deterministic Structural Proactive
Differential privacy Probabilistic Empirical Preemptive
Dataset emulation Deterministic Structural Preemptive

Organization and Contributions

The rest of the paper is structured as follows. In Sections 1, 2
and 3 we introduce, respectively, reactive, proactive and
preemptive disgorgement methods, highlighting some pro-
totypical examples from the literature. Previous literature
in machine unlearning frequently casts under the same
umbrella forgetting and compartmentalization methods,
which however have different scopes; Sections 1 and 2
attempt to clarify the differences and explore the different
trade-offs they allow. Similarly, practitioners sometimes
improperly see differential privacy (Section 3) as a uniform
protection for all data concerns. As we explore in Section 4,
this is not the case and the full taxonomy of disgorge-
ment should be used to offer proper solutions to each
problem. Section 3 proposes dataset emulation, a relatively
unexplored route to handle preemptive disgorgement in a
deterministic fashion.

1. Reactive Disgorgement

Reactive disgorgement consists of all techniques that can
be applied to a model after it has already been trained, in
order to eliminate or reduce the effect of one or multiple
samples. While the exact formalization of the objective
varies, all methods attempt to modify the parameters
(weights) of the model in order to selectively remove any
information related to those samples, thus making the
model indistinguishable from one trained without seeing
that data to start with. Techniques for reactive disgorgement
fall into two categories: retraining and selective forgetting.

1.1. Retraining. The conceptually simplest approach to re-
alize reactive disgorgement is to completely discard the
parameters of the model “contaminated” by the samples
to disgorge, and train a new model from scratch on
the remaining data. This however poses several practical
challenges. First, current state-of-the-art neural networks
have hundreds of billions of parameters, and retraining
such a model requires a large resource investment. Hence,
retraining the model in response to each MD request may
not a viable approach, particularly if the system should be
designed to handle a possible stream of small but frequent
disgorgement requests. Checkpointing of the intermediate
training stages of a model can reduce the retraining cost
(4, 5), since retraining can start from the last checkpoint
before the sample was seen. This is especially useful
if samples more likely to require disgorgement can be

2 of 9 https://doi.org/10.1073/pnas.2307304121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 M
ic

ha
el

 K
ea

rn
s

on
 A

pr
il

23
, 2

02
4

fr
om

 I
P

ad
dr

es
s

16
5.

12
3.

23
1.

29
.

First time the example
is seen during training

Model trained
with the sample

Model trained
without the sample

Initialization

Forgetting
perturbationTraining path

Fig. 1. Selective forgetting. The aim of disgorgement is to recover a model indistinguishable from one trained without some examples. Rather than training a
new model from scratch, selective forgetting methods analyze the effect of the sample on the training dynamics of the model and apply a perturbation to the
weights that remove the influence.

scheduled toward the end of the training. However, such
prior information is often not available, and the worst-case
cost of a forgetting request remains prohibitively large.

Apart from cost considerations, retraining poses chal-
lenging problems to end-users when the ML model is used
as part of a workflow in a larger system. In particular,
the behavior of the retrained model may generally be
significantly different from the behavior of the original
model (6, 7). In fact, slight perturbations of the training
process, even if retraining the same model on the same data,
can yield models whose behavior is sufficiently different to
disrupt downstream workflows (8, 9). Thus, naive MD based
on frequent retraining would render most large-scale ML
systems essentially unusable.

1.2. Selective Forgetting/Machine Unlearning. Often the co-
hort of data that triggers the need for MD is a small
fraction of the overall training set. In such cases, we expect
its influence on the training model to be generally small
and it may be possible to remove the influence by simply
modifying the existing weights, rather than having to retrain
from scratch. This approach is referred to in the literature as
selective forgetting (10–12) or machine unlearning (13–18).
See Fig. 1 for an illustration.†

Many forgetting algorithms are based on the notion
of influence functions (19): Intuitively, being exposed to a
sample during training slightly perturbs the training path
taken by the model in parameter space (Section 1). If such
perturbation is small, it may be possible to approximate
it efficiently and directly predict what the weights would
have been if the model had not seen the sample, without
having to retrain the model. This procedure can be carried
out exactly for simple models, such as ridge regression.
However, exactly estimating the influence of a sample is
highly challenging for complex models such as large-scale
deep networks, due to the complexity of the training process
and the highly nonconvex nature of the loss function (20).

Incorrect estimation of the influence potentially leads to
information remaining in the weights of the model after
forgetting. To account for this methods often add a low
amount of noise to the weights of the network (10–12, 18),
in order to erase potential remaining information. Due to

†“Machine unlearning” is however also often used to refer to other disgorgement methods
that fall under compartmentalization (see Section 2). We use “selective forgetting” instead
to keep the distinction clear.

the stochastic nature of the process, such methods cannot
deterministically guarantee that no information is present
in the weights, as was the case with retraining. Rather, they
provide stochastic guarantees stating that, with high prob-
ability, the amount of information remaining in the system
is less than a certain value that depends on the model, for-
getting algorithm, and amount of noise added. For simpler
models, such as models with a convex loss function, one can
analytically compute the expected information remaining
(11, 18) and thus offer strong guarantees. For more complex
models, one must empirically measure the success of the
forgetting procedure on a validation set (10, 12).

The addition of noise also highlights a fundamental trade-
off between the cost of forgetting and utility of the model
that is common to all disgorgement methods, whether
stochastic or deterministic: Using a fast approximation of
the influence of the sample reduces the computational cost
of the forgetting procedure. However, more noise needs to
be added to account for the expected error in estimating the
sample influence. This noise in turn reduces the accuracy
(utility) of the model. Retraining, on the other hand, is
the most expensive disgorgement technique but results in
the best utility. Practitioners should consider the trade-offs
offered by the various methods and pick the best one for
their application.

Measuring the success of the forgetting procedure—that
is, the amount of remaining information—is also challenging
(see Section 4 for more discussion). Some methods measure
the difference between the parameters of the “scrubbed”
model and the parameters of a golden reference model
trained without the disgorged sample. This quantity, how-
ever, is difficult to convert to actionable user-facing met-
rics. Instead of comparing the parameters, other methods
(10–12) measure the difference in behavior of the scrubbed
and reference model, through readout functions such as the
time that it takes to overfit the model on the disgorged data,
or the confidence of the model (entropy of the predictions).
On this note, it is important to note that forgetting a sample
is not the same as having poor accuracy on that sample. For
example, a model trained to distinguish “cats” and “dogs”
should not necessarily misclassify a training image of a
particular dog as a cat after forgetting it. Rather, it should
output the same label as a model that was trained without
that image. For this reason, methods that perform “selective
degradation” (21–23)—that is, modify the model to perform

PNAS 2024 Vol. 121 No. 18 e2307304121 https://doi.org/10.1073/pnas.2307304121 3 of 9

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 M
ic

ha
el

 K
ea

rn
s

on
 A

pr
il

23
, 2

02
4

fr
om

 I
P

ad
dr

es
s

16
5.

12
3.

23
1.

29
.

worse or have less confidence on some examples—are not
in general valid selective forgetting algorithms, although
they may bring other benefits. In particular, practitioners
have to be mindful of the Streisand effect (12): forcefully
modifying the behavior of the model on a subset of samples
may make them more visible and expose them to attacks.

Finally, we note that measuring the influence of samples
is easier if those samples have been seen by the model only
toward the end of the training. If possible then, one may
want to initially train the model only on a safe subset of
the data that is known to never require disgorgement (11),
for instance, synthetic data generated ab ovo. This relates
to proactive methods for disgorgement, which we discuss
next.

2. Proactive Disgorgement

Given that even the tightest standards of data curation can
be imperfect at the scale of the datasets in use today, it may
be worthwhile to train ML models in preparation for possible
MD. That is, the ML models could be trained in such a way
that MD can be later performed with minimal impact on the
overall trained model. We call this proactive disgorgement.

A conceptually simple and popular approach to proactive
disgorgement is compartmentalization through a mixture of
experts. Compartmentalization methods (4, 24–27) split the
training dataset into multiple disjoint subsets (or shards)
and train separate submodels (experts) in isolation on each
shard. The submodels are then ensembled at inference
time to obtain the final mixture of expert model. As a
result, information (and influence) from different samples
is separated into different submodels (hence the name
“compartmentalization”), and disgorgement requests can
be handled by eliminating or retraining only the compo-
nents of the model that have been exposed to the cohort of
data in question.

Compartmentalization brings multiple benefits. First, it
lowers the computation cost of disgorgement, since only a
subset of the parameters have to be retrained or disgorged.
In fact, disgorgement can be accomplished without retrain-
ing, by simply deleting the affected submodels from the en-
semble. Second, compartmentalization increases stability:
since only a small subset of the components of the ensemble
are modified, the behavior of the disgorged model will be
close to the behavior of the original model, thus decreasing
the risk of disrupting downstream workflows (Section 1).
Third, inference-time algorithms can be designed that use
the compartmentalized structure to remove the influence of
individual samples from the model predictions, even when
such influence is still present in the model parameters (28).

Splitting the data in increasing smaller shards leads to
better disgorgement, since every disgorgement request will
affect a smaller fraction of the total number of submodels.
Moreover, the time to retrain each component depends on
the size of its shard and will thus be lowered. On the other
hand, using a finer sharding also has several downsides: 1)
increased latency: the input needs to be forwarded through
each model in the ensemble; 2) increased storage cost; 3)
reduced utility: ensembling smaller models trained on small
subsets of the data may lead to worse accuracy compared
to a monolithic model trained on all the available data.

The main design choices for compartmentalized models
thus concern how to split the training data, what architec-
ture to use for the submodels, and how to ensemble them.
These in turn affect three aspects of the trained ML system:
expected forgetting cost, model utility, and inference time
latency. Practitioners need to choose the desired trade-
off between expected forgetting cost, accuracy and latency
along a Pareto curve (Fig. 2).

Better model disgorgement design can lead to better
Pareto curves or better trade-offs in the desired use cases.
For example, ref. 4 proposes a baseline compartmental-
ization method that randomly splits the data into uniform
shards and trains a separate copy of a standard network on
each. On the other hand, ref. 24 starts with a network pre-
trained on a core dataset deemed safe from disgorgement
requirements,‡ and constructs simple linear adapters on
the data by computing the average embedding. This leads
to lower accuracy, but enables instant forgetting, where
individual samples can be disgorged without any retraining.
Combination of multiple strategies is also possible; for
example, ref. 3 obtains uniformly better trade-off by a)
optimizing the shard composition to improve the submod-
els’ performance; b) using a similar mechanism to that of
ref. 24 to ensure good accuracy for extremely low retraining
time, and c) using expressive but fast adapters (29) as
submodels, which allows training and running inference
in parallel on thousands of shards with a significantly
reduced computational cost. In a complementary fashion,
(25) focuses on improving the ensembling procedure by
making it instance-dependent.

Fig. 2. Example of Pareto curves for different compartmentalization algo-
rithms (reproduced from ref. 3). Based on the number of shards used to
split the training data, compartmentalization algorithm implicitly makes a
trade-off between the reduction in retraining time after a disgorgement
request (x-axis) and the utility of the model (increase in test error relative
to the paragon model, y-axis). Here, we report prototypical curves for
three compartmentalization methods (3, 4, 24) averaging results over 7
different fine-grained visual classification tasks. Lower curves are better.
Compartmentalization allows significant reduction in the cost to satisfy a
forgetting request (up to only 0.3% of the baseline retraining from scratch).
This, however, comes at the cost of increased error with respect to a reference
model trained without compartmentalization (Rightmost point). Users can
select the best trade-off for their applications, but better methods can
improve the trade-off.

‡In general, often different samples of data sources often come with different safety
requirements. Compartmentalization methods generally benefit from having a large core
shard that is deemed safe, meaning that disgorgement requests are unlikely. Often, this
is used to initial base network using the standard training method on top of whichunsafe
data can be added through forgetting or compartmentalization techniques.

4 of 9 https://doi.org/10.1073/pnas.2307304121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 M
ic

ha
el

 K
ea

rn
s

on
 A

pr
il

23
, 2

02
4

fr
om

 I
P

ad
dr

es
s

16
5.

12
3.

23
1.

29
.

A further advantage of compartmentalization-based ap-
proaches is that disgorgement of data of an entire shard (or
multiple shards)—as opposed to disgorgement of individual
samples—can be performed at essentially zero cost. Hence,
if one expects that all samples from a data source may need
to be disgorged at the same time, it may be beneficial to
group all data from that source into a single shard, which
may then easily be dropped. This, however, may be difficult
to realize if the source does not exhibit sufficient variety
to enable training strong submodels. For example, if shards
were organized by application domain, each model built on a
homogeneous shard would overfit to that domain, resulting
in a collection of biased models. Combining such models
would likely lead to a severe performance degradation com-
pared to an unconstrained model trained on a monolithic
dataset.

Compartmentalization provides deterministic and struc-
tural guarantees, as it ensures by construction that the
disgorged data will have zero influence on the disgorged
model. However, it may be difficult to predict the cost of dis-
gorgement and the reduction in utility after disgorgement,
as they depend on a complex interaction between the model
architecture, the sharding structure, and the distribution of
samples to disgorge. Moreover, in the limit where the data
to be disgorged touches all shards, this method requires
retraining from scratch. In the next section, we discuss
the alternative approach, which is to make the cost of
disgorgement zero, by preempting the need to disgorge,
in exchange for a probabilistic guarantee on the influence
of the cohort of data in question.

3. Preemptive Disgorgement

Preemptive disgorgement refers to modifications of the
training process that, by design, ensure that the influence
of “unique information” (30) contained in any cohort of
samples in the training data is bounded by a small value
selected by the system designer. Since no substantial
information about any training sample is present in the
model, in principle nothing needs to be done to satisfy
an individual disgorgement request. However, as we will
discuss in Section 4, disgorgement of larger groups of data
still presents a challenge to preemptive methods, as do high
dimensional training data such as images whose variability
can almost entirely be ascribed to nuisance factors. Based
on this, we make recommendations to combine compart-
mentalization and differential privacy to address the most
challenging cases. We also introduce dataset emulation,
a new framework for preemptive disgorgement. We also
use the method to highlight the challenges in defining and
measuring the influence of a training sample in complex
real-world data distributions.

3.1. Differential Privacy. In many ways, differential privacy
(abbreviated DP in the sequel) (31) can be considered the
“gold standard” of model disgorgement, in that it proactively
trains a model in a way that provides a mathematical proof
that no particular piece of training data had more than a
negligible effect on the model or the output it generates. The
technical details of the definition of DP are beyond the scope
of this document, but its force is captured in the following

thought experiment. Imagine the original training dataset
D, and consider the dataset D′ that results from removing
any small fraction of D (say, all the works of a particular
artist). Then under DP, a model trained on D is (provably)
statistically indistinguishable from one trained on D′ even
to an observer who knows both D and D′. In the generative
setting, this means the distribution over output content for a
given input prompt is also indistinguishable. In other words,
a DP model effectively already disgorges any (small) amount
of training data by minimizing its effects a priori.

DP models are achieved by deliberately adding noise
to the training process (32–34) in a way that attempts to
eradicate the impact of any small piece of the data while still
having the desired aggregate effects (in generative models,
high-quality outputs). In general, one expects that adding
more noise provides stronger disgorgement and privacy
properties but will also degrade output quality. This trade-
off is determined by a privacy parameter that must be tuned
and chosen.

The practice of DP model training remains in its infancy,
and its effectiveness is untested on the scale of the hundreds
of billions of parameters common in modern generative
models. We should expect there to be challenges to the
adoption of DP as a disgorgement solution, but it is a worth-
while standard for comparison for other approaches, and
may eventually be a feasible solution. Moreover, DP can
be combined with other methods, such as compartmental-
ization, and leverage a “safe set” to yield a more favorable
privacy/performance trade-off (34).

3.2. Dataset Emulation. Differential privacy modifies the
training algorithm to ensure little unique information about
any individual training sample is contained in the final
parameters. However, as mentioned, applying such training
procedure to large models may still be challenging. Another
factor to consider is that DP does not differentiate which
unique information may be permissible to use. In partic-
ular, some disgorgement requests arise in the context of
generative AI, where the concern is that the ML model may
generate data that is “similar to” or “in the style of” data used
for training. Practitioners may therefore want to prevent
these characteristic elements of the training data to affect
the model, but still use the remaining information to capture
the general distribution of the data.

Dataset emulation aims to provide a different approach
to preemptive disgorgement which allows practitioners
more flexibility in deciding which information should be
preemptively disgorged without requiring changes to the
training pipeline. This is achieved by replacing the original
training data D with an “emulated” synthetic dataset Dem
which is constructed to capture the general distributional
properties of the original training set D while deliber-
ately maximizing the geometric, perceptual, or conceptual
distance from D, as defined below. Schematically, the
dataset emulation pipeline may be represented as shown in
Fig. 3.

While a synthetic dataset Dem generated based on D has
a computational relationship with the latter, the generation
pipeline can be designed to only capture general distribu-
tional properties while exercising maximum care to avoid

PNAS 2024 Vol. 121 No. 18 e2307304121 https://doi.org/10.1073/pnas.2307304121 5 of 9

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 M
ic

ha
el

 K
ea

rn
s

on
 A

pr
il

23
, 2

02
4

fr
om

 I
P

ad
dr

es
s

16
5.

12
3.

23
1.

29
.

Fig. 3. Schematic workflow of dataset emulation.

generating samples close to D. Once such a guarantee is
provided, the data Dem may be usable in downstream tasks
without using the protectable elements of D. In particular,
the resulting data can be used to train a model, now
without constraints, that can be used to discriminate or
generate new outputs Dgen. In the latter case, the emulated
dataset Dem acts as a clean room or firewall to separate the
downstream generative model generating Dgen from the
training dataset D, which not only has never been seen by
the model that produces Dgen, but which has samples that
are, by design, as different as possible from it. If so desired,
users can manually inspect Dem to ensure that transferred
elements are not contained in it, or that it is sufficiently
different, before the final model is trained (Fig. 4).

The complexity of preemptive disgorgement is now
shifted to the generation of Dem. On the one hand, we want
to ensure no sensitive information leaks toDem, while on the
other we want to ensure that Dem is as similar as possible
to D in any other aspect, in order to reduce the sim-to-real
gap (37, 38) and ensure that emulated data will be as useful
as the original for the downstream tasks.

In some cases, the attributes of the training data D may
be relatively simple and it may be possible to hard-code an
algorithm that removes that information from the samples
of D to generate new realistic synthetic data (e.g., replacing

all phone numbers in a training sample with randomly
generated ones). Another option is for Dem to be generated
in a different modality than D and to consist of restricted
abstract descriptions of the training images, for instance,
textual descriptions or embedding vectors. In this case,
the absence of protectable elements in the generated data
is enforced structurally by ensuring that those elements
cannot be captured by the restricted descriptions. However,
such description may not be expressive enough and may not
include all task-relevant information.

In other cases, however, hand-designed generators or
descriptions are not possible and a more general learned
model has to be trained to generate emulated samples
that differ as much as possible from the original along the
dimensions we want to protect. In these cases, we assume
a distance function d(x, x′) is given to measure similarity
among the chosen dimensions. Such a distance can be
used either at training time to force the model to generate
sufficiently different data, or at inference time to reject
samples that are too close to the original. As shown in Fig. 4
this method is effective at generating emulated datasets for
human evaluation, but is not yet viable as a substitute for the
original dataset to train a generative or discriminative model
due to the above-mentioned sim-to-real gap. However, we
believe that steady progress in the area of unsupervised

Fig. 4. Example of dataset emulation. We show samples of an emulated dataset of Oxford Flowers (35), which captures the original distribution while
maintaining high CLIP distance (36) from the original data. We note that Dem captures the concepts but is composed of substantially novel images that do
not imitate the original training data. However, while Dem has good visual quality, due to the sim-to-real gap training a model on it for a downstream flower
classification task leads to a low 52% classification accuracy, catastrophically lower than what achieved training directly on D (96%).

6 of 9 https://doi.org/10.1073/pnas.2307304121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 M
ic

ha
el

 K
ea

rn
s

on
 A

pr
il

23
, 2

02
4

fr
om

 I
P

ad
dr

es
s

16
5.

12
3.

23
1.

29
.

domain adaptation may make the technique viable in the
near future.

Defining a distance that is able to encode perceived simi-
larity between samples is also challenging. For symbolic data
such as text (represented either in raw form or as a vector
embedding x), there are objective (“geometric”) distances
dg (x1, x2) = ‖x2 − x1‖ that approximate perceived similarity
well. However, for signal data such as images, any datum x1
has a large number of samples that are far from x1 according
to dg , yet are perceptually indistinguishable. This can occur
both for subtle changes (39) or for macroscopic ones (40).
Indeed, one can significantly change the value of every pixel
in an image without triggering a perceptible change. To
capture perceptual, rather than geometric, similarity, one
can compare low-level statistics designed to mimic the early
stages of human cortical processing, designed so that data
points that have small distance are effectively (with high
probability) indistinguishable by humans (41). One could
also imagine training distance metrics capturing human
perceptions about content similarity (e.g., text passages
viewed as “in the style” of a particular author).

The choice of distance d(x, x′) and a threshold d(x, x′) ≤ r
is critical as it implicitly defines what outputs x′ should be
considered a “reproduction” of the data x. For example, say
a vendor who owns D is interested in licensing it for training
to a service provider who already has a model trained on the
datasetDem. The vendor may require that all data generated
be farther than some r > 0 from D according to a chosen
distance d. Clearly, if the images already generated by the
service fall within a distance r, despite having been obtained
without any knowledge of D, then the owner of D would be
attempting to control the usage of data that does not belong
to them. Hence, the distance and threshold require careful
calibration and testing to avoid under- or overreach. Even so,
a distance could be fooled into misclassifying data as being
sufficiently distant by applying imperceptible perturbations
(42), although distances can be devised that are robust to
such perturbations (43, 44).

4. Discussion

The methods we have surveyed vary in their applicability
and value, depending on the intended application and the
need to disgorge data. Below we discuss some important
considerations:

4.1. Preemptive Differential Privacy and Group Forgetting.
Consider the case where a group of related data points
needs to be disgorged from a model. While DP ensures
that the influence about any individual sample is negligible,
the bound on the influence can quickly become vacuous
as the size of the group increases. However, how this
should be interpreted depends on the composition of
the group. Depending on the size of the group and the
initially selected privacy level, it may not be possible to
guarantee negligible influence via DP as measured at the
data group level. Notions such as user-level DP aim to
address this problem, by grouping data of the same entity
during training. However they require a priori knowledge
during training of which samples are grouped, and what the
composition of those groups is. For large-scale data usage,
being able to group images along each possible grouping

dimension may not be realistic, and no single grouping
may be correct. This suggests using preemptive methods
together with proactive methods (see next paragraph): The
first minimizes the number of retrainings, the latter allows
retraining on only smaller portions of the models.

4.2. Compartmentalization and Group Forgetting. Compart-
mentalization methods are particularly well-suited to sce-
narios where a significant portion of data needs to be
disgorged together. For example, the terms of a limited data
license may require an entire dataset to be disgorged after
a period of time, where each of the many data points in
the cohort has some shared information, for instance, a
watermark. If the entire cohort was compartmentalized in
a single shard, then disgorgement is trivially accomplished
by removing that shard and every submodel that used
it during the training process. Provided that the model
was originally trained with a sufficiently large “safe core”
set of data, the impact on performance should remain
limited. The key issue in disgorgement is how to shard
the data. There is a vast design space that affects the
potential cost of disgorgement and impact on the model
performance. In addition to performance, model bias is
also a concern, especially if shards are segregated by class
or domain, for the resulting models would overfit, and
simplistic ensembling of submodel activations is not likely
to be sufficient to correct such biases. For this reason,
shards should be sufficiently diverse to ensure the quality
of submodels trained on them. We note however that,
while better sharding may decrease the cost of forgetting
and improve model performance, compartmentalization
provides guaranteed deterministic forgetting regardless of
the sharding used.

4.3. Interpretation of Negligible Influence. Both probabilistic
unlearning and preemptive DP rely on bounds on the re-
maining influence of samples. For example, (�, �)-DP bounds
the influence of individual samples through two tunable
parameters � and � (the discussion for probabilistic unlearn-
ing and forgetting is similar). Smaller (�, �) correspond to
less influence, but it may not always be straightforward
to translate this into user-facing measures. One strong
guarantee is that, if D and D′ are two datasets differing by a
single example, an observer who knows both cannot design
a statistical test at significance level � with power greater
than e��+� (i.e., as mentioned above, one cannot determine
with confidence if a sample was used to train the model or
not) (45). Another important user-facing metric is how much
the output of a model trained with or without a sample
would differ. Smaller (�, �) ensure that a model trained
with a sample will produce a similar output to a model
trained without the sample. However, exact quantification
of similarity is difficult since human conceptual perception
of similarity (especially in images) does not relate directly
to metric similarity (e.g., difference in pixel values or log-
likelihood of the output). In particular, exceedingly small
values of � may be needed to ensure that the outputs are
conceptually similar.

4.4. Interpretation of Forgetting and Model Outputs. Yet an-
other consideration is the mismatch between what it means
to forget a sample and what the user may expect from

PNAS 2024 Vol. 121 No. 18 e2307304121 https://doi.org/10.1073/pnas.2307304121 7 of 9

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 M
ic

ha
el

 K
ea

rn
s

on
 A

pr
il

23
, 2

02
4

fr
om

 I
P

ad
dr

es
s

16
5.

12
3.

23
1.

29
.

the resulting model. A disgorged model may still produce
outputs that are similar (or conceptually similar) to the
disgorged data. This is not a bug: for example, a string of text
may be the likely answer to a prompt regardless of whether
it was observed during training. One could consider, how-
ever, being more proactive and avoiding outputs too similar
to disgorged data (even if this would, paradoxically, make
the model less private with respect to that data). Dataset
emulation follows a similar approach.

4.5. Preemptive Methods, Model Performance, Long Tails, and
Fairness. By design, preemptive methods reduce influence
of any samples. This has some unavoidable consequences
on the performance of the model on long-tailed and
undersampled data. On large-scale data, many (or most)
tasks and domains may be represented by few (important)
datapoints. During normal training, those datapoints are
highly influential for the behavior of the model on their sub-
population. However, this is not acceptable for DP training,
leading to these datapoints being effectively discounted.
This may reduce accuracy of the model on long-tail tasks
(a main selling point of foundational models) and on un-
derrepresented populations (thus creating a fairness risk).
In fact, some have advanced the notion that memorization
of the long-tails (the opposite of DP) is essential for good
performance of ML models (46), in some cases provably
so (47).

4.6. Inference with Compartmentalized Models. Aside from
facilitating disgorgement, compartmentalization also en-
ables inference time protection. For example, ref. 48 trains a
collection of generative models on sharded data. A sample
is then generated by sampling from the “intersection” of
the output probability of each model. Since no model has
seen all training data, under their modeling assumptions
this ensures that no training sample can have excessive
influence on the generated output, thus reducing the risk
of reproducing training data. We note however that while
this realizes a form of differential privacy for the model’s
outputs, information about the training samples will still be
contained in the weights of the model.

Ultimately, Model Disgorgement is only a small portion
of a comprehensive process of ensuring that AI Models
are trained responsibly. Careful data collection, curation,
documentation, and provenance verification are always the
starting points. Model Disgorgement is not intended as a
substitute for those, but rather an additional option if the
need or desire to eliminate a cohort of data and their effects
becomes manifest.

Data, Materials, and Software Availability. There are no data
underlying this work.

ACKNOWLEDGMENTS. The authors warmly acknowledge helpful conversations
with Aaron Roth.

1. W. article, Disgorgement (2024). https://en.wikipedia.org/wiki/Disgorgement.
2. J. A. Goland, Algorithmic disgorgement: Destruction of artificial intelligence models as the FTC’s newest enforcement tool for bad data. Richm. J. Law Technol. XXIX (2023).
3. Y. Dukler et al., Safe: Machine unlearning with shard graphs. arXiv [Preprint] (2023). https://arxiv.org/abs/2304.13169 (Accessed 31 December 2023).
4. L. Bourtoule et al., “Machine unlearning” in 2021 IEEE Symposium on Security and Privacy (SP) (2021), pp. 141–159.
5. Y. Wu, E. Dobriban, S. Davidson, “Deltagrad: Rapid retraining of machine learning models” in International Conference on Machine Learning (PMLR, 2020), pp. 10355–10366.
6. Y. Shen, Y. Xiong, W. Xia, S. Soatto, “Towards backward-compatible representation learning” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 6368–6377.
7. M. Srivastava, B. Nushi, E. Kamar, S. Shah, E. Horvitz, “An empirical analysis of backward compatibility in machine learning systems” in Proceedings of the 26th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining (2020), pp. 3272–3280.
8. G. Bansal et al., “Updates in human-ai teams: Understanding and addressing the performance/compatibility tradeoff” in Proceedings of the AAAI Conference on Artificial Intelligence, (2019), vol. 33,

pp. 2429–2437.
9. S. Yan et al., “Positive-congruent training: Towards regression-free model updates” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 14299–14308.
10. A. Golatkar, A. Achille, S. Soatto, “Eternal sunshine of the spotless net: Selective forgetting in deep networks” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020).
11. A. Golatkar, A. Achille, A. Ravichandran, M. Polito, S. Soatto, “Mixed-privacy forgetting in deep networks” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021),

pp. 792–801.
12. A. Golatkar, A. Achille, S. Soatto, “Forgetting outside the box: Scrubbing deep networks of information accessible from input-output observations” in European Conference on Computer Vision (Springer, 2020),

pp. 383–398.
13. Y. Cao, J. Yang, “Towards making systems forget with machine unlearning” in 2015 IEEE Symposium on Security and Privacy (2015), pp. 463–480.
14. A. Ginart, M. Guan, G. Valiant, J. Y. Zou, Making ai forget you: Data deletion in machine learning. Adv. Neural Inf. Process. Syst. 32 (2019).
15. T. B. Shaik et al., Exploring the landscape of machine unlearning: A comprehensive survey and taxonomy. arXiv [Preprint] (2023). https://arxiv.org/abs/2305.06360 (Accessed 31 December 2023).
16. S. Neel, A. Roth, S. Sharifi-Malvajerdi, “Descent-to-delete: Gradient-based methods for machine unlearning” in Algorithmic Learning Theory (PMLR, 2021), pp. 931–962.
17. V. Gupta et al., Adaptive machine unlearning. Adv. Neural Inf. Process. Syst. 34, 16319–16330 (2021).
18. C. Guo, T. Goldstein, A. Hannun, L. Van Der Maaten, Certified data removal from machine learning models. arXiv [Preprint] (2019). http://arxiv.org/abs/1911.03030 (Accessed 31 December 2023).
19. P. W. Koh, P. Liang, “Understanding black-box predictions via influence functions” in International Conference on Machine Learning (PMLR, 2017), pp. 1885–1894.
20. S. Basu, P. Pope, S. Feizi, Influence functions in deep learning are fragile. arXiv [Preprint] (2020). http://arxiv.org/abs/2006.14651 (Accessed 31 December 2023).
21. M. Pawelczyk, S. Neel, H. Lakkaraju, In-context unlearning: Language models as few shot unlearners. arXiv [Preprint] (2023). http://arxiv.org/abs/2310.07579 (Accessed 31 December 2023).
22. J. Jang et al., Knowledge unlearning for mitigating privacy risks in language models. arXiv [Preprint] (2022). http://arxiv.org/abs/2210.01504 (Accessed 31 December 2023).
23. D. Yoon, J. Jang, S. Kim, M. Seo, Gradient ascent post-training enhances language model generalization. arXiv [Preprint] (2023). http://arxiv.org/abs/2306.07052 (Accessed 31 December 2023).
24. H. Yan et al., “Arcane: An efficient architecture for exact machine unlearning” in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, L. D. Raedt, Ed. (2022),

pp. 4006–4013. Main Track.
25. X. Zhu et al., Exploring user historical semantic and sentiment preference for microblog sentiment classification. Neurocomputing 464, 141–150 (2021).
26. K. Koch , M. Soll , “No matter how you slice it: Machine unlearning with sisa comes at the expense of minority classes” in First IEEE Conference on Secure and Trustworthy Machine Learning (2022).
27. V. B. Kumar, R. Gangadharaiah, D. Roth, Privacy adhering machine un-learning in NLP. arXiv [Preprint] (2022). http://arxiv.org/abs/2212.09573 (Accessed 31 December 2023).
28. N. Vyas, S. Kakade, B. Barak, Provable copyright protection for generative models. arXiv [Preprint] (2023). http://arxiv.org/abs/2302.10870 (Accessed 31 December 2023).
29. Y. Dukler et al., Introspective cross-attention probing for lightweight transfer of pre-trained models. arXiv [Preprint] (2023). http://arxiv.org/abs/2303.04105 (Accessed 31 December 2023).
30. H. Harutyunyan et al., Estimating informativeness of samples with smooth unique information. arXiv [Preprint] (2021). http://arxiv.org/abs/2101.06640 (Accessed 31 December 2023).
31. C. Dwork, A. Roth, The algorithmic foundations of differential privacy. Found. Trend. Theor. Comput. Sci. 9, 211–407 (2014).
32. M. Abadi et al., “Deep learning with differential privacy” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (2016), pp. 308–318.
33. Z. Bu, Y. X. Wang, S. Zha, G. Karypis, Differentially private optimization on large model at small cost. arXiv [Preprint] (2022). http://arxiv.org/abs/2210.00038 (Accessed 31 December 2023).
34. A. Golatkar et al., “Mixed differential privacy in computer vision” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022), pp. 8376–8386.
35. M. E. Nilsback, A. Zisserman, “A visual vocabulary for flower classification” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006) (IEEE, 2006), vol. 2, pp. 1447–1454.
36. A. Radford et al., “Learning transferable visual models from natural language supervision” in International Conference on Machine Learning (PMLR, 2021), pp. 8748–8763.
37. W. Zhao, J. P. Queralta, T. Westerlund, “Sim-to-real transfer in deep reinforcement learning for robotics: A survey” in 2020 IEEE Symposium Series on Computational Intelligence (SSCI) (IEEE, 2020), pp. 737–744.
38. Q. Xie, Z. Dai, E. Hovy, T. Luong, Q. Le, Unsupervised data augmentation for consistency training. Adv. Neural Inf. Process. Syst. 33, 6256–6268 (2020).
39. Y. Wu, W. Ji, J. Wu, “Unsupervised deep learning for just noticeable difference estimation” in 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) (2020), pp. 1–6.
40. R. A. Rensink, “Change blindness: Implications for the nature of visual attention” in Vision and Attention (2001), pp. 169–188.
41. Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004).

8 of 9 https://doi.org/10.1073/pnas.2307304121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 M
ic

ha
el

 K
ea

rn
s

on
 A

pr
il

23
, 2

02
4

fr
om

 I
P

ad
dr

es
s

16
5.

12
3.

23
1.

29
.

https://en.wikipedia.org/wiki/Disgorgement
https://arxiv.org/abs/2304.13169
https://arxiv.org/abs/2305.06360
http://arxiv.org/abs/1911.03030
http://arxiv.org/abs/2006.14651
http://arxiv.org/abs/2310.07579
http://arxiv.org/abs/2210.01504
http://arxiv.org/abs/2306.07052
http://arxiv.org/abs/2212.09573
http://arxiv.org/abs/2302.10870
http://arxiv.org/abs/2303.04105
http://arxiv.org/abs/2101.06640
http://arxiv.org/abs/2210.00038

42. S. M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, “Universal adversarial perturbations” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 1765–1773.
43. Y. Zeng et al., “Towards robustness certification against universal perturbations” in The Eleventh International Conference on Learning Representations (2023).
44. S. Shan et al., Glaze: Protecting artists from style mimicry by text-to-image models. arXiv [Preprint] (2023). http://arxiv.org/abs/2302.04222 (Accessed 31 December 2023).
45. J. Dong, A. Roth, W. J. Su, Gaussian differential privacy. J. R. Stat. Soc. Ser. B: Stat. Methodol. 84, 3–37 (2022).
46. V. Feldman, “Does learning require memorization? A short tale about a long tail” in Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (2020), pp. 954–959.
47. G. Brown, M. Bun, V. Feldman, A. Smith, K. Talwar, “When is memorization of irrelevant training data necessary for high-accuracy learning?” in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of

Computing (2021), pp. 123–132.
48. N. Vyas, S. Kakade, B. Barak, “Provable copyright protection for generative models” in Proceedings International Conference for Machine Learning (2023).

PNAS 2024 Vol. 121 No. 18 e2307304121 https://doi.org/10.1073/pnas.2307304121 9 of 9

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 M
ic

ha
el

 K
ea

rn
s

on
 A

pr
il

23
, 2

02
4

fr
om

 I
P

ad
dr

es
s

16
5.

12
3.

23
1.

29
.

http://arxiv.org/abs/2302.04222

	Reactive Disgorgement
	Proactive Disgorgement
	Preemptive Disgorgement
	Discussion

