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Abstract� We present a performance analysis technique for
distributed real-time systems in a setting where certain com-
ponents are modeled in a purely functional manner, while
the remaining components require additional modeling of state
information. The functional models can be ef�ciently analyzed
but have restricted expressiveness. On the other hand, state-based
models are more expressive and offer a richer set of analyzable
properties but are computationally more expensive to analyze.
We show that by appropriately composing these two classes of
models it is possible to leverage on their respective advantages.
To this end, we propose an interface between components that
are modeled using Real-Time Calculus [Chakraborty, Künzli and
Thiele, DATE 2003] and those that are modeled using Event
Count Automata [Chakraborty, Phan and Thiagarajan, RTSS
2005]. The resulting modeling technique is as expressive as Event
Count Automata, but is amenable to more ef�cient analysis. We
illustrate these advantages using a number of examples and a
detailed case study.

I. INTRODUCTION
Modern real-time systems are increasingly becoming dis-

tributed and heterogeneous in their architecture. They con-
sist of multiple processing elements, hardware accelerators,
memory units and communication subsystems. Each of these
components run different tasks that have very diverse execu-
tion/communication requirements and timing constraints. They
support different scheduling and resource arbitration policies
and often interact with the physical world (via sensors and
as actuators). As a result, timing and performance analysis of
such systems is a challenging problem.

To address this problem, there has been previous efforts
to use multiple languages and formalisms for specifying such
heterogeneous real-time and embedded systems (e.g. see [20]).
However, the issue of composing different analysis techniques
has not been suf�ciently explored so far. Recently, there has
been some progress on this front. For example, [10] outlined
a scheme where some of the components of a system were
analyzed using purely simulation-oriented techniques (based
on SystemC models), while the remaining components were
modeled and analyzed using a set of algebraic equations
based on the formalism called Real-Time Calculus (RTC)
[4]. The main contribution of [10] was an interface between
these two classes of components at the analysis level. While
the RTC-based analysis represented the arrival patterns of
data and event streams in an abstract fashion, the SystemC-
based models required concrete input traces to trigger the
simulation. To compose the two analysis techniques, deriving
abstract representations of arrival patterns from concrete traces
(or families of them) is relatively straightforward (e.g. by

representing such traces using one of the standard event
models like periodic with jitter). However, a transformation in
the other direction (i.e. deriving a small set of representative
traces from an abstract event model) is a challenging problem
(details of which may be found in [10]). A similar approach
was also presented in [16], where certain system components
were modeled and analyzed using SDF graphs [9], [11] and the
remaining were subjected to classical real-time schedulability
analysis techniques.

A. Contributions of this paper
Following this line of work, in this paper we propose an

interfacing technique to compose purely functional analysis
schemes with state-based modeling and analysis methods.
While the former are based on solving a set of algebraic
equations, the latter rely on reachability analysis on the state
space of an automata-theoretic model [7]. The systems we
analyze are made up of a number of different components that
communicate via unidirectional data or event streams which
might be buffered. Each of these components is either a pro-
cessing or a communication element. They support concurrent
tasks which might have variable execution demands process
one or more incoming event/data streams.

Suppose a speci�cation of such a system is given in terms
of its architecture, the tasks mapped onto each of the com-
ponents, their execution demands and the scheduling policies
used. Further, suppose the timing properties of each incoming
stream have also been speci�ed. The goal then is to compute
performance metrics such as the maximum end-to-end delay
suffered by the stream, minimum buffer requirements and the
utilization of the different components. The Real-Time Cal-
culus (RTC) framework was proposed earlier to analyze such
setups in [4], which was further extended in subsequent papers
(e.g. see [5], [18]). The key feature of this framework is that it
allows a very general modeling of event streams and resource
availability beyond the classical event models such as periodic,
sporadic, periodic with jitter, etc. Another important feature �
which is particularly relevant for performance analysis � is
that, rather than recording the precise arrival times of events,
RTC uses a count-based abstraction which speci�es upper and
lower bounds on the possible number of events that can arrive
(or can get processed) within any pre-speci�ed time interval
length. This count-based abstraction captures in a very natural
way, bursty arrival patterns of events/data, variable execution
demands and irregular resource availability.
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Fig. 1. Overview of the proposed scheme.

RTC-based models use upper and lower bounds on the
number of events that arrive at a component (processing or
communication element) to get processed within any time
interval of a speci�ed length. Such bounds are represented
as functions and are used to estimate the workload to be
supported by the component. Similar functions are also used
to represent the service offered by the component. While such
functional modeling allows for ef�cient analysis, the main
drawback of this approach is that it can not model any state-
based information. For example, a common feature such as
�the processor stalls when the output buffer is full� cannot be
modeled since the service offered by the processor in this case
depends on the state (�ll level) of the buffer.

To get around this problem, but at the same time retain
the count-based abstraction, in [6] we proposed an automata-
theoretic model called Event-Count Automata (ECA). ECAs
are syntactically similar to timed-automata [1] but have very
different semantics. ECA models represent families of arrival
patterns of data/event streams as an automaton whose language
is the set of integer sequences representing all possible per-
missible arrival traces. The service offered by a component
is also captured in a similar fashion using an automaton.
Performance/timing analysis questions related to this model
can be formulated as standard model checking problems
[3], [8]. This model easily and transparently overcomes the
limitations of the RTC framework in terms of expressiveness
and the set of analyzable properties. However, as is the case
with most state-based modeling techniques, it suffers from the
crippling state explosion problem.

In this paper we propose to combine the advantages of
RTC and ECA-based modeling. The idea is to subject the
components that do not require state-based information to
RTC-based modeling analysis and the remaining to ECA-
based modeling and analysis. The main contribution of this
paper is a combined system-level analysis method derived by
creating interfaces between these two types of models.

To bring out the basic ideas underlying our method, consider
the architecture shown in Figure 1. Suppose the processing
element P1 has been modeled as an ECA, perhaps due to the
fact the number of items it processes in unit time depends
on the �ll level of its output buffer B2. Suppose further, the
arrival pattern of the data stream being buffered in B1 as well

as the pattern of service available at the processing element
for this task have been modeled in the RTC framework as the
arrival curve α and the service curve β respectively (de�nitions
of which are outlined later in the paper). Finally, assume that
items arriving in B2 are further processed by the processor
P2 which has been modeled as an RTC component whose
semantics is captured by the function fP2.

We �rst use an RTC-ECA interface to convert α (β) into
ECAα (ECAβ). We then analyze the performance of the
small network of ECAs consisting of ECAP1, ECAα and
ECAβ . We note that there is no buffering between ECAβ and
ECAP1 and in fact, these two automata will be collapsed into
a single ECA in the performance model. Next we use an ECA-
RTC interface to convert the event stream being buffered at
B2 by the ECA network to produce the arrival curve α′. This
is then combined with fP2 to perform an RTC-level analysis
at the next stage.

In this way, we switch between ECA-based and RTC-based
modeling and analysis to obtain a system-level performance
analysis method. In a heterogeneous distributed system where
there is a good mix of RTC and ECA components, our
method will avoid the state explosion that would be caused by
converting the whole system into a large network of ECAs. At
the same time, it would avoid the accuracy penalty incurred
if the system were to be modeled as large network of RTC
components. It could also be the case that the pure RTC
alternative is not available due to the fact that the semantics
of some of the processing elements are state-dependent or
because the performance property we are validating cannot
be formulated in the RTC framework.

Before concluding this section, we would like to point out
that our approach is orthogonal to the previous efforts on
full-system performance analysis, for example, using holistic
schedulability analysis [2], [12], [13], [14], [17]. Although
these efforts were also directed towards analyzing systems
with multiple resources and scheduling policies, the underlying
analysis techniques used for the different components were
similar and are mostly based on classical event models. Our
goal, on the other hand, is to combine two fundamentally
different performance models for system-level analysis.

B. Organization of this paper
The rest of this paper is organized as follows. In the

next section, we brie�y outline the RTC framework, follow-
ing which we describe ECA-based modeling and analysis.
Sections III and IV contain the core technical results of
this paper, i.e. the composition of RTC and ECA models
and the construction of the interfaces between them. Finally,
the advantages of this combined method are brought out in
Section V with the help of some experimental results. The
paper concludes by outlining some directions for future work.

II. PERFORMANCE MODELS

This section outlines the Real-Time Calculus (RTC) and
Event Count Automata (ECA) based modeling and analysis.
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Figure 2 gives a high-level overview of both the schemes.
It shows how a processing element processing an event/data
stream is modeled. At the model level, load models describe
the timing characteristics of the event streams. Since the
analysis aims at providing results for a family of possible
input streams instead of a (single) concrete event stream,
this information must be represented in an abstract way (e.g.
using a periodic or periodic with burst or an even general
event model). Service models provide information about the
resources available within a system (e.g. their capacities
like processor or bus bandwidth). Lastly, processing models
represent the processing semantics (e.g. the scheduling and
arbitration policies) that is used to execute the application
tasks. A performance model of a whole system is obtained
by connecting the load models and service models to the
corresponding models of processing components. The main
distinction between RTC and ECA-based models is that while
the former uses functions to represent load, service and
processing models, the later relies on explicit state-based
(automata-theoretic) modeling.

A. Real-Time Calculus
Here, an event stream is described using upper and lower

arrival curves, αu(∆) and αl(∆), which provide upper and
lower bounds on the number of events that are seen on the
event stream within any time interval of length ∆. In particular,
there are at most αu(∆) and at least αl(∆) events within the
time interval [t, t+∆) for all time instances t. If R(t) denotes
the number of events that arrive at a resource during the time
interval [0, t] then such a stream is bounded by αu(∆) and
αl(∆), where αl(∆) ≤ R(t + ∆) − R(t) ≤ αu(∆) for all
t ≥ 0 and all ∆ ≥ 0.

Analogously, a resource is characterized using upper and
lower service curves, βu(∆) and βl(∆), which provide upper
and lower bounds on the available resource in any time interval
of length ∆. The unit of resource depends on the kind of
shared resource, for example processing cycles (computation)
or bytes (communication), which can be transformed to the
same unit as the arrival curves (number of events). The
formulation presented in this paper assumes the service curves
and arrival curves are being both expressed in terms of number
of events. A more technical de�nition of arrival and service
curves is given in the next section.

The processing semantics of a processing/communication
component (e.g. a processor or a bus) can be captured using
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Fig. 3. An abstract performance model in RTC.

an RTC component as shown on Figure 3. Here, an arrival
curve α(∆) enters the component and is processed using the
service curve β(∆). The output is an arrival curve α′(∆)
(which denotes the arrival pattern of the processed events)
and the remaining resource is expressed as the service curve
β′(∆). Internally, the RTC component is speci�ed by a set of
functions, that relate the incoming arrival and service curves
to the outgoing arrival and service curves. These functions are
dependent on the processing semantics of the component (see
e.g. [4]). Similar representations exist for resource scheduling
disciplines such as EDF, TDMA, and GPS, when multiple
streams or tasks are being processed by the component.
The outgoing arrival curves might serve as input to another
component, denoting further processing of the event stream.
Similarly, the outgoing service curve represents the service
that is available to other tasks running on the same component.
Various performance properties can be computed analytically
using this performance model such as end-to-end delays and
buffer requirements. These methods have been implemented
as a toolbox which is based on Matlab and Java (see [19]).

B. Event Count Automata
An Event Count Automaton (ECA) too describes arrival

patterns of event streams (as well as arbitrary service patterns).
It may be viewed as a device which records the arrival
pattern of a stream and decides to accept or reject the stream.
The accepted streams constitute the family of arrival patterns
speci�ed by the ECA. An ECA is an ordinary automaton
augmented with count variables. These are integer variables
that are used to keep track of the number of events that
are seen on an event stream (or the number of events that
can be processed by the available resource) over certain time
intervals. In particular, an ECA consists of a set of states
(modes), a set of count variables, and a transition relation that
speci�es possible transitions from one state to another and a
guard associated with each transition which must be satis�ed if
the transition is to be taken. Each state has a rate vector [l, u],
which speci�es that at least l and at most u events arrive in
every unit of time when the system is in the state. The guard
associated to a transition is a logical conjunction of formulas
of the form x ≤ C or x ≥ C, where x is a count variable of
the ECA and C is a constant.

ECAs take a transition at discrete time instances. During
every unit interval, an ECA stays at its current state and
counts the number of events that arrive from the event stream
associated with it. At the end of the current unit interval,
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Fig. 4. An example ECA.

it increases all its count variables by the number of events
that have arrived in this interval. It then checks the guards
associated with the out-going transitions from the current state.
If one or more of the guards evaluates to true, the ECA
will take -instantaneously and non-deterministically- one of
the enabled transitions to the next state. If no transition is
enabled then, it will stay put in the current state. During this
move, it may reset some of its count variables (as speci�ed
in the transition) to zero. The purpose of the resets is to
adjust the time interval over which the count variable keeps
the information. Hence, at any instant, the current value of the
count variable x denotes the number of events that have arrived
since x was last reset. For modeling convenience, a count
variable may also be reset to a non-zero value determined by
a linear expression over the count variables.

Figure 4 shows an ECA that models an event stream that
has at most 7 events arriving in every unit time interval when
in mode S0, at least 1 event and at most 6 events arrive per
unit interval when in mode S1 and exactly 5 events per unit
interval arrive when in mode S2. The behavior of an ECA that
describes a resource is similar, except that the ECA counts the
number of resource units (e.g. processor/bus cycles) available
instead of the events seen on a stream.

A run of the automaton will consist of a sequence of the
form s0n1s1n2 . . . nksk where so is an initial state and ni

is the number of events that have arrived during the interval
[i−1, i). If sk is an accepting state, then we say that the ECA
�accepts� the event stream n1n2 . . . nk. It is in this sense, that
an ECA de�nes a family of event streams. More details about
the syntax and semantics of ECAs may be found in [6].

For system-level modeling, an ECA is augmented with a
set of input and output buffers, and an update function using
which items are removed from the input buffers and added
to the output buffers during the execution of a transition.
Various scheduling policies can be described using such update
functions. The performance model consists of a network of
ECAs (augmented with update functions) communicating with
each other via shared buffers. Figure 5 depicts the ECA model
of a system consisting of two input streams processed by a
processor using some scheduling policy. The arrival patterns
of the two streams are speci�ed by the ECA1 and ECA2

while the semantics of P, the processing element, is captured
by ECAP . Such ECA networks can be analyzed by converting
them into Petri nets or might serve as input programs for
any of the veri�cation tools that perform ef�cient state space
explorations to do model checking.
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Fig. 5. An abstract performance model using ECAs.

III. COMPOSING RTA AND ECA MODELS

In this section, we describe our compositional method that
combines RTC-based and ECA-based modeling and analysis
into a single framework. The abstract model for each compo-
nent in the system can be represented using either the RTC or
the ECA formalism, depending on the processing semantics
of the computing/communication resource in the component.
The performance model of the whole system is obtained by
connecting the components together to re�ect the �ow of data
and resources, with interfaces between the RTC components
and ECA components. The construction of the performance
model for a given system consists of the following steps:
• Identify all components of the system and based on the

processing semantics of the components, select between
RTC and ECA models.

• Describe the components using the selected models. The
construction of the component models is the same as
outlined in Sections II-A and II-B.

• Connect the component models using interfaces into a
network that captures the performance aspects of the
whole system.

Typically, RTC modeling is used for components in which
the processing of the streams depends solely on known infor-
mation about the event streams and the available computing
resource. For example, components that process event streams
based on their prede�ned priorities (e.g. rate monotonic,
earliest deadline �rst) or sharing slots (e.g. TDMA). On
the other hand, components in which the processing of the
event streams depends on state information of the system or
synchronization between the streams are modeled using ECAs.
Examples of such components are the ones that implement
blocking-read/write at some of the buffers, the ones in which
the resource given to the streams are adjusted at run-time based
on the �ll-levels of the buffers (multi-level service) or ones
that contain AND-task activation (synchronization between
multiple streams).

RTC and ECA components are connected through the
RTC-ECA interfaces. An RTC-ECA interface converts RTC
models into ECA models and ECA-RTC interfaces work the
other way round. The algorithms for building these interfaces
are explained in the next section.

An illustrative example: We now present an example to
illustrate typical hardware/software architectures that can be
modeled and analyzed using our approach. Figure 6 shows
an architecture consisting of three processing elements PE1,
PE2 and PE3 onto which an MPEG-2 decoder has been par-
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titioned and mapped. The architecture implements a picture-
in-picture (PiP) application in which two concurrent video
streams are being decoded and displayed on the same out-
put device. The �rst and the second processing elements
implement the variable length decoding (VLD) and inverse
quantization (IQ) tasks of the decoder, each of which processes
a different video stream. PE3 implements the inverse discrete
cosine transform (IDCT) and the motion compensation (MC)
tasks. It processes both the output streams from PE1 and PE2

using a Fixed Priority scheduling algorithm.
The �rst stream (sHR in Figure 6) is associated with a

higher frame resolution and generates a higher workload on
PE3, compared to the lower resolution video sLR. The com-
pressed bitstreams arrive over a network and enter the system
after some initial processing at the network interface. They are
processed by PE1 and PE2 and their outputs, which contain
partially decoded macroblocks, are fed as input to PE3. The
fully decoded video streams after being processed by PE3 are
written into two playout buffers BHR and BLR associated with
the high and low resolution streams respectively. These buffers
are �nally read by the display device at pre-speci�ed constant
frame rates rHR and rLR. Here, blocking-write is implemented
at the play-out buffer associated with sHR. In particular, PE3

is allowed to write into buffer BHR only if the buffer is not
full. In this system, we are interested in answering questions
such as (i) What is the maximum �ll-level of the buffer b4? (ii)
What is the maximum end-to-end delay of the stream sLR?

As can be seen from the architecture, the system consists
of three components, corresponding to PE1, PE2 and PE3.
Since the processing of the input stream sHR on PE1 is
done in a greedy fashion and does not depend on any state
information, we use RTC to describe the component. Similarly,
RTC is used to describe the component corresponding to PE2.
The processing on PE3, however, depends on the internal state
of the output buffers, which cannot be modeled using RTC.
Therefore, we use ECA to model this component.

Based on the above observations, the two input streams are
modeled using arrival curves αHR and αLR. The two resulting
arrival curves α′1 and α′2 are then transformed into ECA1 and
ECA2, respectively, using the RTC-ECA interface. Figure 7
sketches the performance model of the system.

The maximum backlog at b4 is computed using ECA-based
analysis on the ECA component. The maximum end-to-end
delay of sLR is the summation of the end-to-end delay of αLR

on PE2 component and the end-to-end delay of ECA2 on the
ECA component. Clearly, various other analysis questions can

ECA
1

ECA
3

B3

B4

BHR

0

2

4

6

8

∆

FP

0

2

4

6

8

∆
0

2

4

6

8

∆

α

GP

HR

β
1

α′1

0

2

4

6

8

∆

FP

0

2

4

6

8

∆
0

2

4

6

8

∆

α

GP

LR

β
2

α′2 ECA
2

BLR

R
T

C
-E

C
A

 I
n

te
rf

a
c

e

Fig. 7. The performance model for the architecture in Figure 6.
.

also be answered based on this same performance model. In
the next section, we present algorithms for building the above-
mentioned interfaces between RTC and ECA components.

IV. RTC-ECA INTERFACING

This section presents the construction of the interfaces
between RTC and ECA components. In particular, we will
show how to construct:
(i) from an arrival (service) curve, an ECA which models

the same set of arrival (service) patterns described by the
curve. This is done in Section IV-A.

(ii) from an ECA component, an arrival (service) curve which
models all arrival (service) patterns of the output stream
(remaining service) of the ECA component. This is done
in Section IV-B.

A. From Real-Time Calculus to Event Count Automata
Our translation relies on a speci�c representation of ar-

rival/service curves, which we �rst describe. A discrete arrival
and service curve, say γ(∆), ∆ ∈ N≥0, can be compactly
represented as a tuple v = {ΣA, ΣP } where
• ΣA =

〈
(x1, y1), (x2, y2), . . . , (xn, yn)

〉
with xi < xi+1

is a segment sequence describing an initial aperiodic part
of the curve γ(∆) for 0 < ∆ ≤ xn.

• ΣP =
〈
(xp

1, y
p
1), (xp

2, y
p
2), . . . , (xp

m, yp
m)

〉
with xn < xp

1

and xp
i < xp

i+1 is a segment sequence describing a
periodic part of the curve γ(∆) that starts after the
aperiodic part, i.e. ∆ > xn.

The periodic part of γ is de�ned by the period P =
xp

m − xn and the vertical offset E = yp
m − yn between two

consecutive repetitions of the periodic section de�ned by ΣP .
The �rst occurrence of ΣP starts at (xn, yn). The curve γ(∆)
corresponding to v can now be determined as follows:

γv(∆) =





0 if ∆ = 0
y1 if 0 < ∆ ≤ x1

yi if xi−1 < ∆ ≤ xi

yp
1 + kE if xn + kP < ∆ ≤ xp

1 + kP

yp
j + kE if xp

j−1 + kP < ∆ ≤ xp
j + kP

for all 1 < i ≤ n, 1 < j ≤ m and k ≥ 0. Figure 8 sketches
the graphical representation of v.

The constraints given by an upper (lower) arrival curve
represented by v can be interpreted as follows:
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(i) The aperiodic part ΣA requires that the number of events
that arrive in any interval of length xi is at most (at least)
yi, for all 1 ≤ i ≤ n.

(ii) The periodic part ΣP requires that the number of events
that arrive in any interval of length xp

i + kP is at most
(at least) yp

i + kE, for all 1 ≤ i ≤ m and k ≥ 0.
The constraints given by an upper (lower) service curve
corresponding to v are exactly the same as that of an upper
(lower) arrival curve, except that the conditions are on the
number of events that can be processed by the resource.

Given a compact representation v of an arrival (service)
curve, we would like to construct an ECA A corresponding
to the curve. In particular, an arrival (service) pattern of a
given stream (resource) should satisfy the curve v if and
only if it is an event stream accepted by A. Since guards on
count variables are the means for an ECA to allow/reject a
particular arrival pattern, we need to �nd a suitable set of
count variables for A, the necessary and suf�cient conditions
on these variables under which an arrival pattern is said to
satisfy v, i.e. accepted by A.

Constructing an ECA corresponding to an arrival curve:
Let v = {ΣA, ΣP } be the compact representation of an arrival
(service) curve as described above. The ECA that models
the event streams constrained by the upper arrival curve v
is de�ned as

A = (S, S0, CV, T, R, δ, I)

where
• S = {s0, s1, . . . , sN} is the set of states, where N =

xp
m − 1, and s0 is the initial state.

• CV = {f1, f2, . . . , fxn , g0, g1, . . . , gP−1} is the set of
count variables.

• I : CV → N is the initialization function. I(c) = 0 for
all c ∈ CV .

• T =
{
(si, si+1) | 0 ≤ i < N

} ∪ {
(sN , sxn)

}
is the

transition system. All transition in T are urgent.
• δ is the guard function associate with each transition

(sk, sk′) in R, which is de�ned as

δ(sk, sk′) =

{
δA, if k < xn

δA ∧ δP (k, k′), otherwise

where δA =
∧

( fxj
≤ yj | 1 ≤ j ≤ n ) and

δP (k, k′) =
∧

( gh ≤ yp
i | h = (k′ − xp

i ) mod P,

1 ≤ i ≤ m )

• R is the reset of the count variables associated with
transitions. The reset of the count variables fj and gh

along each transition (sk, s′k) is de�ned as
� fj ← 0 if j = 1,
� fj ← fj−1 if 1 < j ≤ n,
� gh ← 0 if h = k′ < xn,
� gh ← max(gh − E, fxn

) if h = k′ − xn ≥ 0,
� no reset on gh, otherwise.

The following lemma claims the correctness of the
construction.

Lemma 4.1: Let τ = e1e2e3 . . . be an event stream, with ei

denoting the number of events that arrive in the time interval
[i − 1, i). Then, τ satis�es the constraints given by v iff τ is
accepted by A.

Below we give a proof sketch. The intuition, the technical
basis underlying the construction of the ECA, as well as
a detailed proof of the above lemma are presented in the
Appendix.

Proof Sketch: The ECA corresponding to v consists
of xp

m states connected in a cyclic fashion. Since there is
exactly one out-going transition at every state, the ECA is
deterministic. It admits only state sequences of the form τ =
s0 → s1 → · · · → sN → sxn → sxn+1 → · · · → sN → · · · .
At any time instant t, the system makes a move to state sk′

from its current state sk if the guard δ(sk, sk′) is true, where
k′ = t = k+1 if t < xn. Otherwise, k′ = (t−xn) mod P+xn

and k = (t− xn − 1) mod P + xn.
Let R(s, t) denote the total number of events that arrive

in the time interval [s, t) (s < t). In other words, R(s, t) =
es+1 + . . .+ et. By de�nition, τ satis�es the constraints given
by the upper arrival curve v if and only if the following
inequalities hold :

R(t− xj , t) ≤ yj , ∀ 1 ≤ j ≤ n (1)

R(t− xp
i − kP, t) ≤ yp

i + kE, ∀ 0 ≤ k ≤ b t− xp
i

P
c,

1 ≤ i ≤ m
(2)

Let

δ(t, j) = max
0≤k≤

⌊
t−xn−j

P

⌋
{
R(t− xn − j − kP, t)− kE

}

for all 0 ≤ j < P . Then, (5) is equivalent to

δ(t, xp
i − xn) ≤ yp

i , ∀ 1 ≤ i ≤ m. (3)
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Fig. 9. The ECA model of the arrival curve v.

Let fj(t) and gh(t) be the values of count variables fj and
gh at time t. From the construction of the ECA, we can prove
that
• fd(t) = R(t− d, t) for 1 ≤ d ≤ xn, and
• For 0 ≤ j < P , it is the case that δ(t, j) = gh(t) with

h = (t− xn − j) mod P for all t ≥ xn + j.
Thus, conditions (4) and (6) are equivalent to

i. fxj ≤ yj for all 1 ≤ j ≤ n, and
ii. gh(t) ≤ yp

i for all 1 ≤ i ≤ m, where h = (t− xp
i ) mod

P .
The conditions (i) and (ii) are equivalent to the guard com-
ponents δA and δP associated with the each transition of the
constructed ECA. In other words, the ECA accepts exactly the
same event streams that are accepted by v.

The ECA that models the upper service curve corresponding
to v is exactly the same as the ECA which models an upper
arrival curve v, with a different interpretation: the automaton
counts the number of events which can be processed by the
resource, and hence it models all possible service patterns
described by v.

As an example, Figure 9 shows the ECA corresponding to
an arrival curve

v = {〈(1, y1), (2, y2), (3, y3)
〉
,
〈
(4, yp

1), (6, yp
2)

〉}
Note that xi = i, 1 ≤ i ≤ 3, xp

1 = 4,xp
2 = 6 and P = 3.

With a minor modi�cation, we can also construct an ECA
that models a given lower arrival (service) curve. In particular,
the ECA in this case has similar structure as the one modeling
the upper curve, with the same set of count variables. The
guards and resets associated with the transitions are changed
as follows:
• Replace �max� by �min� in all the resets gh ←

max(gh − E, fxn).
• Replace the �≤� sign by �≥� in all the guards.

The correctness of this construction can be established in a
similar fashion as done for the upper bound case.

B. From Event Count Automata to Real-Time Calculus
Here, given an ECA component, we would like to compute

a safe approximation1 of the arrival curves (α′u, α′l) of an
output stream and the remaining service curves (β′u, β′l) of
a processing element from the component. For simplicity of
exposition, the class of curves constructed in this section is a
subset of the general curves presented in previous section. In
particular, an approximated curve will have an initial aperiodic
part and the periodic part will contain just a single entry (a
long term period). This class of curves is also suf�cient for
representing most practical applications.

To reconstruct the arrival curves, we �rst introduce a spec-
i�cation size W , up to which the aperiodic part is de�ned.
For each window of size ∆, 0 < ∆ ≤ W , we compute the
maximal and minimal number of output events seen in each
window, resulting in αu(∆) and αl(∆), respectively.

In addition, to capture the long-term behavior (long-term
average arrival rate) of the stream, we select a window size
W ∗ which is large enough (W ∗ À W ) and compute the arrival
curves for this window size. The arrival curves are then safely
extended for arguments larger than W as follows:

αu(∆) =

{
αu(W ∗) if W < ∆ ≤ W ∗

∞ if ∆ > W ∗

αl(∆) =

{
αu(W ∗) if W < ∆ ≤ W ∗

0 if ∆ > W ∗

These curves can now be re�ned by guaranteeing super- and
subadditivity (i.e. αu(∆) ≤ αu(∆− δ) + αu(δ) and αl(∆) ≥
αl(∆ − δ) + αl(δ) for all 0 ≤ δ ≤ ∆, ∆ > 0). To this end,
we perform a stepwise update of the upper and lower arrival
curves for all ∆, starting at ∆ = 2:

αu(∆) := min
0≤δ≤

⌊
∆
2

⌋
{
αu(δ) + αu(∆− δ)

}
for ∆ = 2, 3, ...

αl(∆) := max
0≤δ≤

⌊
∆
2

⌋
{
αl(δ) + αl(∆− δ)

}
for ∆ = 2, 3, ...

The computation of the remaining service curves is done in the
same manner by observing the service left from the component
instead of the output stream.

We compute the maximal and minimal number of output
events seen in any interval of a speci�ed size ∆ using a model
checking procedure which we now outline. First we augment
the ECA component with an ECA which observes the number
of events written into the output buffer at every time unit. As
shown in Figure 10, this ECA has two states and two count
variables t, s.

The count variable t is used as the timer whereas s is used
to count the number of output events from the instant the timer
is reset. The variable r on the �gure is the number of output
events written into the output buffer observed at every unit
interval. Initially, the observer ECA is in �idle� state. At the
end of every time unit, it non-deterministically chooses to stay
put at the current state or move to the �busy� state.

1ECAs are more expressive than arrival/service curves.
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{ t ← t + 1; 

s ← s + r }

t = ∆
busy

t < ∆

Fig. 10. The observer ECA which observes the output buffer.

When the ECA moves to the �busy� state, it resets the count
variable t (the timer) and s. When the ECA is in �busy� state,
it increases s by the value of r (the number of output events
observed) at the end of each time unit. When ∆ time units
have elapsed, the ECA moves back to the �idle� state. Since
the rate vector associated with both states is [0, 0], the ECA
generates no events and therefore when t = ∆, s contains
the number of events of the output stream in an interval of
length ∆. Since the interval is non-deterministically chosen
by the ECA, the maximum and minimum values of s are the
maximum and minimum number of events in any interval of
length ∆, or αu(∆) and αl(∆), respectively.

Using standard veri�cation tools, we can verify if s is at
least C1 and at most C2, where C1 ≤ C2 are two pre-speci�ed
values. This can be achieved by model checking the following
LTL speci�cation:

G(s ≥ C1 ∧ s ≤ C2)

The maximum and minimum values of s are then obtained
using binary search on the values of C1 and C2.

In addition, there are components which can be modeled
using RTC, even though the analysis result thus obtained will
be a pessimistic one. For example, in the AND-task activation
example that we consider in Section V-A. Now suppose that
we need to compute the arrival curve of the output event
stream of an ECA, then we may be able use RTC to model
the component and use RTC analysis technique to derive the
output arrival curve. The computed curves can be used as the
initial value for the curves that we need to compute. The above
procedure is then run on these initial bounds to get a tighter
result.

Thus, the use of RTC for computing initial approximations
is not applicable to all components but only for components
which can pessimistically be modeled using RTC. When it can
be used, the curve construction process will be speeded up.

V. EXPERIMENTAL RESULTS

In this section, we illustrate how our compositional method
can help to improve the performance analysis of practical real-
time systems using two examples. The �rst example concerns
a simple arti�cial system with AND-task activations, whereas
the second one looks into the example Picture-in-Picture (PiP)
application already described in Section III. Our analysis aims
at answering two important questions: (i) what is the maximum
backlog at a buffer in the system? and (ii) what is the end-to-
end delay of a stream? Two tools have been used to perform
the necessary calculations: the MPA/RTC Toolbox[19] and the
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Fig. 11. AND-task activation.

Symbolic Analysis Laboratory (SAL)[15]. We used Perl script
to describe the interface between RTC and ECA components
and to combine the analysis results from the two components.

The freely-available Real-Time Calculus (RTC) Toolbox is
a toolbox for system-level performance analysis of distributed
real-time and embedded systems. Built on top of Matlab,
the toolbox supports most min-plus and max-plus algebra
operators and it provides a library of functions for Modular
Performance Analysis with Real-Time Calculus (see [4]).

The Symbolic Analysis Laboratory (SAL) is a veri�cation
tool for transition systems. The key parts of the tool consist
of an intermediate language for describing transition systems
and a collection of state-of-the-art LTL model checkers. An
ECA component can be easily described in the tool as a
composition of different modules, each of which is an ECA.
The count variables of an ECA are coded as integer variables
and the guards on the ECA transition are written as guarded
commands. At the same time, the system properties of an ECA
component can be de�ned as temporal logic formula, which
will be veri�ed using one or a combination of the three model
checkers: the symbolic model checker based on BDDs, the
bounded model checker based on SAT (Boolean Satis�ability
Problem) solving, and the in�nite bounded model checking
based on SMT (Satis�ability Modulo Theories) solving.

A. Case study 1: AND-task activation
The system contains two processing elements PE1 and PE2,

which run two tasks T1 and T2. Two input streams, s1 and s2

enter the system at PE1 and PE2, respectively. s1 will be �rst
processed by T1 and the partially processed stream (denoted
as s′1) then enters PE2. At PE2, the AND-task T2 is only
activated if there are events from both streams s′1 and s2. When
activated, it takes an event from each stream, processes them
and produces an output event for the playout buffer PB. The
system is depicted in Figure 11. In this example, both streams
are periodic with burst/jitter and the processing elements have
a bandwidth of one (i.e. one event can be processed per
unit time). Since task T1 processes a single input stream
s1, it can be easily analyzed using Real-Time Calculus. Task
T2, however, requires synchronization/correlation between the
streams, which cannot be naturally modeled using Real-Time
Calculus. As a result, we decide to use RTC to model PE1

and ECA to model PE2 and connect them using an RTC-
ECA interface. This interface converts the arrival curves of
the output stream s′1 after being processed by T1 into an ECA,
which will be fed as input to the ECA component.
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Figures 12 and 13 sketch the backlog at T2 and the end-to-
end delay of s1 with respect to different execution times of T2

for the three methods: (1) RTC for both PEs (2) ECA for both
PEs and (3) RTC for PE1 and ECA for PE2. As shown in these
�gures, the combined method gives optimal backlog and close
to optimal end-to-end delay (as computed by the ECA method,
which can accurately capture this setup). On the other hand,
using purely RTC-based analysis shows a clear degradation in
accuracy in both cases.

Although the ECA-based analysis produces optimal results,
it requires long running times. Using our compositional ap-
proach, we are able to reduce the analysis time by an average
of 23% for the calculation of the maximum backlog of T2

and by 78% for the end-to-end delay calculation of s1, as
shown in Figure 14. In other words, while achieving optimal
or nearly optimal results, our method is substantially faster
than using an ECA-only modeling and analysis. Note that the
interface computation is done of�ine and was not counted into
the analysis time. Although this may add additional cost to the
running time of our method, we only need to do it once, before
the analysis is repeated for several values of system parameters
(e.g. different execution times of T2).

B. Case study 2: Picture-in-Picture application
In this case study, we look at the PiP application described

in Section III. Our main objectives are to estimate the maxi-
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Fig. 16. End-to-end delay experienced by the video stream sLR.

mum �ll-level of the buffer b4 and the end-to-end delay of the
lower resolution stream sLR (please refer to Figure 6) with
different sizes of the playout buffer BHR. In our experiments,
both the incoming streams have the same frame resolution of
704 × 576 pixels (the display device is assumed to perform
window resizing for the video stream being displayed at the
smaller window). They arrive at the system at a constant bitrate
of 8 Mbps and the playout buffers are read at a constant rate
of 25 frames/second. The frequencies for PE1, PE2 and PE3

are set as 1.3 GHz, 1.25 GHz and 3 GHz, respectively.
Figures 15 and 16 show the maximum backlog at buffer
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b4 and the end-to-end delay of the lower resolution stream
for different sizes of the playout buffer PBHR. As shown in
these �gures, the analysis result obtained using our method
is relatively close to the optimal result given by ECA-only
analysis. On the other hand, as can been seen in Figures 17
and 18, our method provides a substantial improvement in
terms of analysis time. Note that the comparison with RTC-
only analysis is omitted as the system cannot be modeled using
this approach.

In summary, we have shown through two examples that by
using our compositional approach, we are able to model sys-
tems which cannot be modeled using an RTC-only framework,
or which suffer from substantially long analysis times when
modeled using ECAs only. Our proposed approach leads to
acceptable accuracy (in terms of performance estimation) and
at the same time has reasonable run times.

VI. CONCLUDING REMARKS

In this paper we proposed an interfacing technique for
composing functional and state-based performance models for
distributed real-time systems. Given the growing complexity
and heterogeneity of real-time and embedded systems, we
believe that composing such fundamentally different modeling
and analysis techniques will increasingly become important.

As already mentioned, our current implementation relies on
a number of independently-developed tools � such as the
RTC Toolbox (developed in Matlab and Java) and SAL �
which have been hooked together using Perl script. We plan to
further develop this tool-chain and at the same time add user-
interfaces to aid in the speci�cation of large-scale real-time
systems. We also plan to provide hooks to such a tool-chain
that may be used to connect other related tools, such as those
for architecture design space exploration.
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APPENDIX A: INTUITION UNDERLYING THE ECA
CONSTRUCTION IN SECTION IV-A

This section gives the main ideas behind the construction
of the count variables and the guards in the ECA modeling an
arrival curve. Suppose S is an event stream and τ = e1e2e3 . . .
is a concrete arrival pattern of S, where ei is the number of
events that arrives in the time interval [i−1, i). Denote R(s, t)
as the total number of events that arrives in the time interval
[s, t) (s < t), i.e. R(s, t) = es+1 + . . . + et. By de�nition, τ
satis�es the constraints given by the upper arrival curve αv if
and only if the following inequalities hold for all t > 0

R(t− xj , t) ≤ yj , ∀ 1 ≤ j ≤ n (4)

R(t− xp
i − kP, t) ≤ yp

i + kE, ∀ 0 ≤ k ≤ b t− xp
i

P
c,

1 ≤ i ≤ m
(5)

De�ne fd(t) = R(t− d, t) for all 1 ≤ d ≤ xn. Then (4) is
equivalent to

fxj
(t) ≤ yj , ∀ 1 ≤ j ≤ n

At the same time, fd(0) = 0, f1(t) = R(t− 1, t) = et and

fd(t + 1) = R(t + 1− d, t + 1)
= R(t− d + 1, t) + et+1

= fd−1(t) + et+1.

As a result, if we have xn count variables f1, f2, . . . , fxn such
that
• at time 0, fd are initialized to zeros for all 1 ≤ d ≤ xn,

and
• at time t, f1 is reset to et and fd is reset to fd−1 + et,

1 < d ≤ xn,
then by verifying fxj ≤ yj for all 1 ≤ j ≤ n at every time
instance t, we verify that τ satis�es the set of constraints (i)
given by the aperiodic part.

For the periodic part of the curve speci�cation, let

δ(t, j) = max
0≤k≤

⌊
t−xn−j

P

⌋
{
R(t− xn − j − kP, t)− kE

}

for all 0 ≤ j < P . Then, (5) is equivalent to

δ(t, xp
i − xn) ≤ yp

i , ∀ 1 ≤ i ≤ m. (6)

In order to verify (6), we �rst de�ne a recursive function g over
time which computes δ(t, j) for any given j. This function
will then be part of the ECA that models a given curve, i.e.
its values will be determined by the state updates of the ECA.

Lemma 6.1: Let gi(t) be an array such that

gi(t) =





0 if t ≤ i

max
{
gi(t− 1) + et − E, R(t− xn, t)

}

if t ≥ xn + i + P ∧ (t− xn − i) mod P = 0
gi(t− 1) + et otherwise

for all 0 ≤ i < P . Given any j such that 0 ≤ j < P , then

δ(t, j) = gh(t)

with h = (t− xn − j) mod P for all t ≥ xn + j.

Proof Sketch: We will prove Lemma 6.1 by induction
on t.
• xn + j ≤ t < xn + j + P : Let h = (t− xn − j) mod P .

Then, h = t − xn − j < P or t < xn + h + P . Thus,
δ(t, j) = R(t− xn − j, t) = R(h, t) and

gh(t) = gh(t− 1) + et = · · · = gh(h) + eh+1 + · · ·+ et

= R(h, t) = δ(t, j)

• Suppose the lemma is true for all t < d for d ≥ xn +
j + P . Let h = (d − xn − j) mod P and q = (d −
xn − j − h)/P ≥ 1. Then, d − j ≥ xn + h + P and
(d− j − xn − h) mod P = 0. As a result,

gh(d− j) = max
{
gh(d− j − 1) + ed−j − E,

R(d− j − xn, d− j)
}

Since 0 ≤ j < P , (d− j + k − xn − h) mod P > 0 for
all k ≤ j. Hence,

gh(d) = gh(d− 1) + ed = gh(d− 2) + ed−1 + ed

= gh(d− j) + ed−j+1 + · · ·+ ed

= max
{
gh(d− j − 1) + ed−j − E,

R(d− j − xn, d− j)
}

+ R(d− j, d)
= max

{
gh(d− j − 1) + R(d− j − 1, d)− E,

R(d− j − xn, d)
}

Similarly,

gh(d− j − 1) = gh(d− P ) + ed−P+1 + · · ·+ ed−j−1

= gh(d− P ) + R(d− P, d− j − 1)

Therefore,

gh(d) = max
{
gh(d− P ) + R(d− P, d)− E,

R(d− j − xn, d)
}

At the same time, h = (d− xn − j) mod P = (d− P −
xn − j) mod P . By induction hypothesis, we obtain

gh(d− P ) = δ(d− P, j)
= max

0≤k≤q−1

{
R(d− P − xn − j − kP, d− P )− kE

}

As a result,

gh(d) = max
0≤k≤q−1

{
R

(
d− xn − j − (k + 1)P, d

)

− (k + 1)E, R(d− j − xn, d)
}

= max
1≤k′≤q

{
R(d− xn − k′P, d)− k′E,

R(d− j − xn, d)
}

= max
0≤k′≤q

{
R(d− xn − j − k′P, d)− k′E

}

= δ(d, j)

In other words, the lemma holds for t = d.
Hence, the lemma holds for all t ≥ xn + j.

As a result of the above lemma, to verify that τ satis�es the
constraints (ii) given by the periodic part of αv , it is suf�cient



to maintain P variables gh, 0 ≤ h < P and verify at any
time instance t that gh(t) ≤ yp

i for all 1 ≤ i ≤ m, where
h = (t− xp

i ) mod P .
The ECA that corresponds to a given arrival curve can be

constructed based on the variables fj and gh, as described
in Section IV-A. Note that the resetting and conditions on
the variables fj do not depend on the actual value of t.
Furthermore, the resetting and conditions on gh take the same
form for values t and t − kP for all t ≤ xp

m. Hence, it is
suf�cient to use xp

m states to cover all values of t.

APPENDIX B: PROOF OF LEMMA 4.1
The ECA corresponding to v consists of xp

m states con-
necting in a cyclic fashion. As there is exactly one out-going
transition at every state, the ECA is deterministic and accepts
only traces of the form

τ = s0 → s1 → · · · → sN → sxn
→ sxn+1 → · · · → sN → · · ·

At any time instance t, the system makes a move to state sk′

from its current state sk if the guard δ(sk, sk′) is true, where
k′ = t = k + 1 if t < xn, and k′ = (t−xn) mod P + xn and
k = (t − xn − 1) mod P + xn, otherwise. The set of count
variables of the ECA contains the two variable arrays fj and
gh described in Appendix VI. It is easy to see that the guard
δA on fj and the updating of fj in the ECA are exactly the
same as de�ned earlier. By checking δA at every transition
of the ECA, we verify that the constraints imposed by the
aperiodic part of v is always satis�ed at any time instance t.

At the same time, recall that during every time unit [t−1, t),
the system increases the count variables by the number of
events that arrived. Therefore, at the end of the time unit, each
of gh has been increased by et (i.e. gh(t) contains gh(t−1)+
et). Moreover, fxn = R(t, t − xn). Hence, the reset gh ←
max(gh − E, fxn) at time t is equivalent to assigning gh(t)
to max

{
gh(t− 1)+ et−E, R(t−xn, t)

}
. Similarly, no reset

on gh is equivalent to assigning gh(t) to gh(t−1)+et. In other
words, the resetting of gh at time t in the ECA is equivalent to
the updating of gh(t) in Lemma 6.1. As a result, by verifying
the guard δP (k, k′) at every time instant t ≥ xn, we verify
that the constraints given by the periodic part of v is always
satis�ed.


