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Abstract—In this paper, we explore the challenges and needs
of current cloud infrastructures, to better support cloud-based
data-intensive applications that are not only latency-sensitive
but also require strong timing guarantees. These applications
have strict deadlines (e.g., to perform time-dependent mission
critical tasks or to complete real-time control decisions using
a human-in-the-loop), and deadline misses are undesirable. To
highlight the challenges in this space, we provide a case study of
the online scheduling of MapReduce jobs executed by Hadoop.
Our evaluations on Amazon EC2 show that the existing Hadoop
scheduler is ill-equipped to handle jobs with deadlines. However,
by adapting existing multiprocessor scheduling techniques for the
cloud environment, we observe significant performance improve-
ments in minimizing missed deadlines and tardiness. Based on
our case study, we discuss a range of challenges in this domain
posed by virtualization and scale, and propose our research
agenda centered around the application of advanced real-time
scheduling techniques in the cloud environment.

I. INTRODUCTION
In recent years, there has been an emergence of sev-

eral data-parallel middleware platforms primarily targeted to-
wards large-scale data processing in the cloud environment,
for example, MapReduce [18], Pig [35], Dryad [26] and
DryadLINQ [45]. These middleware platforms provide simple
yet powerful and extremely versatile programming models,
and can be applied to a wide spectrum of domains where large-
scale data analytics is performed. Unlike traditional Database-
as-a-Service [2], [16] models for latency-sensitive user queries,
these analytic models are typically used for data processing
in batch mode, where high throughput and high resource
utilization are key concerns.
Recent trends and uses of cloud data analytics have moved

beyond this “batch processing only” mode. MapReduce ap-
plications are now becoming increasingly latency-sensitive,
operating under demanding workloads that require fast re-
sponse times for data-intensive computations under high data
rates. These include online log processing [5], traffic simula-
tion [42], personalized recommendations [17], advertisement
placement [10], social network analysis [6], real-time web
indexing [20], and continuous web data analysis [12], among
others.
Beyond latency-sensitivity, we pose the following intriguing

research challenge: Is it possible to develop a cloud infrastruc-
ture that not only supports latency-sensitive and large-scale
data processing but also provides strong timing guarantees?
If so, what types of applications can we envision on such a
cloud?We argue that current applications are slowly but surely

evolving in that direction. These emerging applications include
interactive OLAP queries [9], network traffic analysis [30],
flight control [13], military warfighter coordination [14], and
real-time actuation of physical devices [24] based on sensor
feeds. These applications typically require deployment at a
large-scale to process data from multiple locations, and in-
creasingly can benefit from having timing guarantees (e.g., to
perform time-dependent mission critical tasks or to complete
real-time control decisions using a human-in-the-loop). In the
long term, we predict that the continued evolution of cloud
applications and the scale of cloud buildout will ultimately
challenge the cloud’s ability to provide timing guarantees.
To explore some initial answers to our broad challenge

above, we provide a case study of Hadoop’s implementation of
MapReduce, to understand its ability to meet timing guaran-
tees. Specifically, given a stream of Hadoop jobs continuously
submitted to a cloud cluster, where each job has a number
of tasks and a deadline, we aim to schedule them on the
cluster such that a particular real-time objective is achieved.
These objectives can be expressed in terms of minimizing
the (i) miss rate, the fraction of the applications that miss
their deadlines, and (ii) the maximum (total) tardiness, the
maximum (total) elapse time from deadline to completion time
of the applications that miss their deadlines, or a combination
of various time-dependent objectives.
We focus on MapReduce as our first case study, because

its popularity and well-understood execution model provide
a useful starting point for further exploration. We perform
a series of performance benchmarks using Hadoop and Pig
queries (compiled into Hadoop programs) on Amazon EC2.
Our results show that the current Hadoop schedulers are
ill-equipped to handle MapReduce jobs with deadlines as
they incur high miss rates and large tardiness even under
moderate loads. To explore possible next steps, we adapt
existing multiprocessor scheduling techniques (e.g., Earliest
Deadline First (EDF) [31]) from the real-time systems domain
to the cloud setting. Our enhancements address cloud-specific
issues not addressed by traditional multiprocessor scheduling
techniques, such as data placement, data distribution (skews),
online (potentially bursty) arrivals of jobs and data, and the
inherent precedence relationships among MapReduce tasks.
We have developed a prototype HadoopRT system, which

enhances Hadoop [22] with various real-time scheduling poli-
cies. Using Amazon EC2, we perform an extensive evaluation
of a variety of Hadoop and Pig applications. Our evaluation
results show that our proposed enhancements of EDF are sig-



nificantly more effective than the default Hadoop schedulers.
Their relative performances depend on a variety of system load
conditions and scheduling metrics.
Based on the insights obtained from our evaluation, we

conclude with a broad discussion of challenges towards the
vision of a real-time cloud, centered around the themes of
advanced real-time scheduling techniques (probabilistic, hier-
archical, and multi-modal).

II. RELATED WORK

Scheduling theory for cloud computing has received grow-
ing attention over the past years. For instance, Zaharia et
al. [48] developed the LATE scheduling algorithm that ex-
ecutes duplicates of speculative slow jobs on fast nodes to
improve their response times. Agrawal et al. [1] improved
Hadoop’s performance by modifying the Hadoop’s sched-
uler to favor shared scans between jobs that read from the
same inputs. Fairness scheduling has been explored in a
number of frameworks such as the default Hadoop’s fair-
sharing scheduling [22], the Quincy scheduling [25], and
scheduling techniques based on delay scheduling [47] and
copy-compute splitting [46]. Grid-based scheduling techniques
have also been adopted into the cloud setting [34]. Price
models and cost-based resource provision techniques have
also been studied (e.g., [19], [23], [32]). All these techniques,
however, targeted non real-time applications where the primary
objectives are to increase throughput and minimize average re-
sponse time instead of meeting deadlines. Scheduling of data-
intensive applications has been widely explored in the field
of transaction scheduling in real-time databases (e.g., [28]).
However, these techniques require fine-grain information such
as transactions’ data access patterns and periodization, which
are often not available for general jobs running in the cloud
environment.
In our technical report [36], we first introduce deadline-

based scheduling metrics for hard and soft real-time MapRe-
duce jobs. We perform an experimental study on Amazon
EC2 to understand the extent to which the completion time
of a MapReduce job is predictable, and the factors that are
important to its predictability. We also outline a number of
online scheduling heuristics, which are used as a basis for
our MapReduce case study in this paper. [43] proposed the
FLEX slot allocation, which considers timeliness as a metric
for Hadoop. While improving upon the default Hadoop’s fair
scheduler, the scheduling techniques used in FLEX assume
restricted settings such as homogeneous CPU resources and
negligible data communication delay, which are unlikely to
hold true in the deployment scenarios for our target appli-
cations in Section I. Verma et al. [41] proposes a schedul-
ing algorithm that combines EDF with fair scheduling. Our
motivating case study also has an EDF variant that enhances
EDF with locality-awareness and overload handing; however,
the focus of our case study, and of the paper as a whole,
are on broader issues related to the challenge statement in
Section I, rather than the specifics of one particular policy.
Herein, we also significantly improve upon the experimental
methodology compared to [41], with extensive evaluations
on an actual cloud platform (Amazon EC2) with detailed

comparisons against state-of-the-art Hadoop schedulers (in the
presence of data skews and communication delays).
An important area of related work is scheduling theory

for real-time systems. Many well-known theories have been
established in this area, with a growing focus on multiproces-
sor (e.g., [3], [4]) and virtualized platforms (e.g., [8], [11],
[15], [29], [39], [40]). The results established in this area are
promising foundation for our proposed research. However, as
they are based on relatively simple task models and focus
primarily on computing resources, several adaptations and
extensions are necessary to adapt them to the cloud setting
and data-intensive applications such as MapReduce.

III. CASE STUDY: MAPREDUCE

We present a case study of MapReduce to give some
insights into the challenges faced in providing stronger timing
guarantees for cloud data processing. We first formulate the
online scheduling of soft real-time MapReduce jobs on a cloud
cluster that runs Hadoop middleware. We then propose our
cloud adaptations of the well-known Earliest Deadline First
(EDF) scheduling policy as solutions and present evaluation
results highlighting their effectiveness.

A. Problem Formulation
The cluster consists of M connected slave nodes on which

jobs are scheduled and a master node on which the scheduler
resides. Each slave node is a multicore processor, which is
configured to have a number of slots for executing tasks. Each
job submitted to the cluster consists of a set of independent
map tasks, followed by a set of independent reduce tasks. Each
map task processes an input data block, which consists of a
number of (key, value) tuples that are stored at one of the
slave nodes (called data node of the task). Each reduce task
(containing also shuffle and sort phases) computes final results
from the output data of all the map tasks.

Parameter Description

M Number of slave nodes
ci Number of cores of node i
si Number of slots of node i

rateij Data rate (bytes/s) between nodes i and j

mJ Number of map tasks of job J
rJ Number of reduce tasks of job J

mapJ The set of map tasks of job J
reduceJ The set of reduce tasks

DJ Relative deadline of job J
dJ Absolute deadline of job J

tsize Data size (bytes) of a tuple
ntuples(T ) Number of input tuples of task T
dnode(T ) The data node of task T

ui(T ) Unit WCET (per tuple) of task T on node i
Ei(T ) Estimated WCET of task T on slave i

TABLE I
JOB AND PLATFORM PARAMETERS.



Table I summarizes our terminology. Here, ntuples(T ) (for
reduce tasks) and ui(T ) can be obtained by runtime measure-
ments. Ei(T ) can be computed based on its unit worst-case
execution time (WCET), number of input tuples, tuple size
and data transfer rate. The WCET of a task T on a node i is
defined as the maximum amount of time required to execute T
on node i, assuming there is no contention of CPU resource,
plus the input data transfer time if the input data of T is not on
node i. We describe in details how these values are obtained
in Section III-E.
We say that a task is local on its data node (which stores

its input data) and remote to all other nodes. Reduce tasks are
considered as remote on all nodes since their data nodes are
unknown in advance (i.e., where the map tasks are scheduled).
In our case study, every task is non-preemptable and shares the
same deadline and release time as its job’s. As a first step, we
consider no failures and no pipelining/speculative execution.
Given the above system model, jobs are submitted continu-

ously to the cluster, and the master scheduler needs to schedule
their tasks on the slaves without a priori knowledge of future
job arrivals. Our goal is to design a scheduling algorithm for
the scheduler to minimize one of the following metrics: (1) the
miss rate, (2) the maximum tardiness of the jobs that miss their
deadlines, and (3) the total tardiness of all jobs that miss their
deadlines. These are standard metrics that are used to evaluate
the timing performance of soft real-time applications [33].

B. Existing Scheduling Policies in Hadoop
In the current Hadoop implementation, scheduling of

MapReduce jobs proceeds as follows. Periodically, slave nodes
inform the master about the availability of free map/reduce
slots. The master will then select a pending job to execute on
a free slot based on a scheduling policy, which can be one of
the following:
FIFO. The scheduler maintains a FIFO waiting queue of

jobs, sorted by their arrival times. Whenever a slot becomes
available, the master selects the task at the head of the queue
for execution.
Fair. The scheduler selects a task of a job whose utilized

resource is farthest from its fair share for execution on the
available slot.
Capacity [38]. The scheduler maintains multiple job

queues, each containing jobs submitted by an organization (or
group within), sorted by job arrival times. Each queue is given
a fixed capacity in terms of the maximum number of slots it
can use, based on organizational resource needs. Given a free
slot, the scheduler schedules the first task in the queue that
has the most free space (i.e., the lowest ratio of the number
of running slots to queue capacity).
Once a job is selected, the scheduler will execute a task of

the selected job that has input data closest to the free slot.

C. Basic Real-Time Scheduling Ideas
As observed in the previous section, none of the existing

scheduling policies in Hadoop considers timeliness of jobs.
In this section, we present a real-time variant for the Hadoop
master scheduler. Our scheduler is based on EDF but
adapted to the cloud execution platform and the MapReduce

data-intensive characteristics. Intuitively, it implements two
high-level ideas:

Data locality-aware. Like conventional EDF, the scheduler
schedules tasks with earlier deadlines first (i.e., more urgent
ones). However, to minimize data transfer overheads, it aims
to schedule tasks on or close to the node where the input data
are located. Here, the distance between a task and a node
is measured in terms of the ratio between the task’s WCET
on the node (which may include input data transfer time)
to the task’s WCET on its data node. Hence, the scheduler
may schedule for execution a less urgent but local task (on
the node with a free slot), and delay the more urgent but
remote tasks until future, so that it can schedule them on
their data nodes when those nodes are free. Effectively, our
enhancement balances the tradeoff between jobs’ urgencies
and data transfer overheads.

Overload handling. It is known from the real-time scheduling
theory that when using EDF-based schedulers, anomaly may
occur under heavy load, e.g., one task missing deadline causes
a chain of subsequent deadline misses. When the system is
under a heavy load condition, some pending jobs may still miss
their deadlines even if we allocate all the available resources
to them. If the scheduling objective is to minimize the miss
rate, scheduling those jobs immediately is not useful (because
they are going to miss their deadlines anyway) and may even
cause other potentially schedulable jobs to miss their deadlines
(as in the anomaly example). As such, our scheduler schedules
jobs that are potentially schedulable first, and only schedules
the ones that are predicted to miss deadlines when there are
no more potentially schedulable jobs.

D. Concrete Scheduling Implementations
We now detail two concrete policies for selecting a task

to execute on a free slot that implement the basic ideas
discussed in the previous section. The first, EDF/TD, is used
when the scheduling objective is to minimize total/maximum
tardiness. The second, EDF/MR, is used when the scheduling
objective is to minimize miss rate. Both policies are data
locality-aware, and EDF/MR further implements overload
handling.

EDF/TD scheduling policy. Algorithm 1 gives the pseudo-
code for the EDF/TD scheduling policy. The function
edftd(jobs, i, w) computes as output a task to be executed on
the free slot on node i. jobs is the queue of unfinished jobs,
sorted by their absolute deadlines. w is a configurable constant
weight factor of the scheduler, which indicates how important
data locality is in making scheduling decisions. The smaller
w is, the shorter the distance that the scheduler enforces
between the data node of a task and the node where it is
executed. In this paper, we determine w experimentally for our
evaluation; however, we plan to investigate the quantitative
relationships between w and the network condition as well
as the application characteristics in future extensions. The set
localTasks contains all ready tasks that are local to node i. As
was mentioned earlier, Reduce tasks are considered as remote



to all nodes; hence, this set contains only Map tasks. The set
nearTasks contains tasks that are close to node i, with respect
to the weight factor w. Specifically, a task T is considered to
be close to node i if its estimated WCET on node i (denoted
by Ei(T )) is less than the minimum estimated execution
time (denoted by Emin(T )) times the weight factor w. Here,
Emin(T ) is the minimum of all Ek(T ) for all nodes k in the
system.

Algorithm 1 edftd(jobs, i, w)

for job J ∈ jobs do
localTasks = {T ∈ J ∧ ready(T ) | dnode(T ) = i};
if localTasks �= ∅ then
return breakTies(localTasks);

end if
nearTasks={T ∈ J∧ready(T ) | Ei(T ) < w×Emin(T )};
if nearTasks �= ∅ then
return breakTies(nearTasks);

end if
end for
return the first ready task of jobs[1]

The algorithm works as follows. The scheduler scans
through the job queue in increasing deadline order. For each
job J , if J has some ready (to be executed) tasks with
data on node i, it selects one of those to schedule based
on tie-breaking rules. Here, ties are broken based on the
smallest value of laxity (elapse time to deadline less estimated
execution time) and the index of a task, in that order. In
case all ready tasks of J are remote on node i, the scheduler
executes the tasks whose data are near to node i. If no ready
tasks in J satisfies the above criteria, the scheduler goes
to the next job in the queue and repeats the same process.
Eventually, if no tasks are found, the scheduler simply picks
the first ready task of the first job in the queue.

EDF/MR scheduling policy. The scheduler partitions the
ready tasks into two disjoint sets: Schedulable, consisting of
all and only tasks of the jobs that are predicted to meet their
deadlines; and Unschedulable, consisting of the remaining
ones. Only the Schedulable set is considered for scheduling
unless it is empty, in which case, the Unschedulable set is
considered. The highest priority task is chosen for execution
from the considered set based on the EDF/TD policy above.
A job is predicted to miss deadline if t+ remainExec(J) >

dJ where t is the current time, remainExec(J) is the estimated
remaining execution time, and dJ is the deadline of J .
remainExec(J) is the total estimated WCET of all unfinished
tasks in J , assuming they are given all slots. Specifically, let s
be the total number of slots within the system (s =

∑M
k=1 sk)

and nMaps (nReduces) be the number of unfinished map
(reduce) tasks in J . Then,

remainExec(J) = Em
max ×

⌈nMaps

s

⌉
+ Er

max ×
⌈nReduces

s

⌉

where Em
max (Er

max) is the maximum among the estimated
WCET Ek(T ) on any node k of any unfinished map (reduce)
task T .

E. WCET Computation
We first outline our measurement method for the unit

WCET per tuple um
i (ur

i ) of a map (reduce) task on a node
i (which will be used for every other node with the same
system configuration). Based on the measured values, we
present our estimation of the execution time Ei(T ) of a task
T on node i (c.f. Table I).

Unit WCET measurement. The unit WCET of a task on a
node is estimated based on debug runnings on small sample
inputs on the node. Specifically, we perform multiple runs of
the corresponding job for a set of sample inputs on the node,
and record the number of input tuples and the execution
time for each map or reduce task. We then derive the unit
execution time of each task (execution time per tuple). The
unit WCET um

i (ur
i ) of a map (reduce) task on the node is

assigned to be the average unit execution time, added with
the standard deviation of unit execution times across all map
(reduce) tasks1. Our earlier experimental results [36] show
that these values are stable when the slot-to-core ratio (si/ci)
is set to 1.

Task WCET estimation. The WCET of a task on a node i
is estimated as the total WCETs of all its input tuples (on
the node), plus the input data transfer time if its input data
is not on the node. The first part is the product of its unit
WCET measured above and the number of input tuples. The
second part is the ratio of its input size (i.e., number of tuples
times the tuple size) to the transfer rate between the task’s
data node and the node i. Since the input data of a reduce
task can be distributed over multiple nodes, we simply use
the minimum transfer rate between node i and any other node.
For our evaluation, we consider a fixed network topology, and
we assign the minimum transfer rate to be the minimum of
the rates measured during the same time period of the day as
when the evaluation is taken.
For a reduce task, the number of input tuples depends on

the output results of the map tasks of the same job, which
is only known during run-time. To estimate this value, one
simple way is to use the selectivity2 of the map function.
However, this approach works only on uniform distribution of
(key, value) pairs. For skewed data distribution, the number
of tuples processed by each reduce task varies significantly.
In our case study, we measure by profiling. Specifically, we
first log the size of partitioned data for each reduce task when
a map task is done, then aggregate the logged information to
get the total input size for each reduce task at the end of the
map phase. The number of tuples will then be the ratio of the
input data size to the tuple size.
1Since safe WCET estimation is not required for soft real-time tasks, we

use this method instead of taking the actual maximum value to avoid overly
pessimistic WCETs.
2We define selectivity to be the ratio of output to input size for a given

map task.



F. Evaluation

The goals of our evaluation are as follows. First, we aim
to study the effectiveness of existing Hadoop schedulers at
meeting job-specified deadlines. Second, we compare our real-
time schedulers with Hadoop’s schedulers. While Hadoop’s
default schedulers are certainly not designed with real-time
applications in mind, our evaluation aims to experimentally
quantify how well (or badly) they perform given a particular
system load, and whether our strawman solutions (based on
adaptations to well-known multiprocessor scheduling tech-
niques) can offer improvements. Third, we aim to understand
the impact of data skews and communication delays on
scheduling performance.
To study the above three goals, we have implemented a pro-

totype HadoopRT system, based on modifications to Hadoop
(version 0.20.2). HadoopRT includes new scheduler plug-ins
for the enhanced EDF scheduler (MR and TD variants with
locality-aware and overload handling). Our implementation
also includes an extended API that allows users to submit
jobs with deadlines.
Our experiments are carried out on 21 Amazon EC2

medium size compute instance, where we deploy 1 master
node and 20 slave nodes on each instance. Each instance
has 1.7GB of memory, and runs 5 compute units. One EC2
Compute Unit provides the equivalent CPU capacity of a
1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

Experimental workload. Our workload consists of MapRe-
duce jobs selected from the following three MapReduce pro-
grams: the WordCount example available in Hadoop’s distri-
bution, and two Pig queries as described in [27]. The two Pig
queries (Aggregation and Join) are representative queries that
perform a SUM aggregation with a single group-by attribute,
and a typical select-project-join query involving a relational
parallel join of two tables respectively. Table II summarizes
our workload, by showing the input data size, number of
map and reduce tasks, and job completion time (averaged
across all experiments) of the three programs used in our
experiments. We measure the completion time for each job by
taking the difference between the completion and submission
times of a MapReduce program execution, averaged across
several experimental runs.

Program Input # Map # Reduce Avg Time (s)
WordCount 2.4GB 40 40 210
Aggregation 5GB 80 160 87

Join 10GB 64 64 320

TABLE II
JOB DESCRIPTIONS

For each MapReduce program, we additionally obtain the
unit WCET measurements (separately for tasks local and
remote to slaves) by profiling each MapReduce program over
multiple execution runs. Since we have a homogeneous cluster
with identical compute instances and bandwidth, each program
has only three unit WCET measurements, each for local map
tasks, remote map tasks, and reduce tasks, respectively. To
ensure a stable WCET measurement, we set the slot-to-core

ratio at each slave to be 1 [36]. This results in stable tasks’
execution times and thus, a stable unit WCET values (where
the standard deviation is only 10% of the average). The task
WCETs are computed based on the measured unit WCET and
the experimental platform settings as detailed in Section III-E.
Based on the above three programs, we generate a workload

consisting of 30 jobs (executed over a 1 hour period), selected
randomly from the three MapReduce programs above. The
arrival times of jobs follow the Poisson distribution with the
expected number of occurrences λ = 0.1 (seconds). We assign
the job deadlines in order to emulate normal and high load
scenarios. For a given job J , we define its utilization UJ to
be the ratio of its estimated WCET to its relative deadline. α
is set to the sum of all UJ for all 30 jobs in each experiment,
where a higher value of α means a heavier load on the system
(jobs having tighter deadlines). In our experiments, we set α
to be 1.0 and 3.0 for the normal and high load scenarios.
We use a mixture of 3 MapReduce programs in our exper-

iments. One is the WordCount example which is available as
part of Hadoop’s distribution. The other two are Pig programs
based on the data set and data generator described in [27].
Particularly, We choose the datasets Rankings and UserVisits,
the Rankings table contains two attributes which are pargeURL
and pageRank. the UserVisits table contains nine attributes
which are sourceIP, destURL, visitDate, adRevenue, userA-
gent, countryCode,languageCode, searchWord and duration.
The queries we used in our experiments are

• aggregation query: SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP

• join query: SELECT INTO Temp sourceIP, pageRank,
adRevenue FROM Rankings as R, UserVisits as UV
WHERE R.pageURL = UV.destURL

Experimental results. Given the above experimental setup,
we evaluate the effectiveness of our real-time schedulers
(EDF/MR and EDF/TD) and the Hadoop’s default FIFO,
Fair, and Capacity scheduler. In the capacity scheduler, we
configured two job queues at the master, one with 80%
capacity which is for urgent jobs and the other with 20%
capacity. We classify a job J as urgent if its utilization UJ

is above the average utilization of all jobs in the experiment.
All experiments are averaged across two runs.
For each experimental run, we evaluate all scheduling

policies against three metrics introduced in Section III-A:
• Miss rate: Percentage of jobs that missed their deadlines.
• Total and max tardiness: For each job that missed their
deadlines, we compute its tardiness the total time differ-
ence between the job deadline and job completion for all
jobs that miss their deadlines.

• Max tardiness: the maximum time difference between the
job deadline and job completion among all jobs that miss
their deadlines.

In the following, we present the experimental results under
different data distributions and load conditions.

Uniform data distribution. Table III and Table IV show the
results for normal and high load scenarios under uniform data
distribution.
We make the following observations:



Scheduling Policy Miss rate
(%)

Tardiness (s)
Total Maximum

FIFO 16.7 4990 1420
Fair 30.0 7627 1565
Capacity 3.3 150 150
EDF/MR 0.0 0 0
EDF/TD 0.0 0 0

TABLE III
PERFORMANCE OF SCHEDULERS UNDER NORMAL LOAD.

Scheduling Policy Miss rate
(%)

Tardiness (s)
Total Maximum

FIFO 46.7 16958 2535
Fair 76.7 33672 2483
Capacity 43.3 10825 1811
EDF/MR 13.3 7756 2106
EDF/TD 20.0 1261 321

TABLE IV
PERFORMANCE OF SCHEDULERS UNDER HIGH LOAD.

• Default schedulers are clearly ill-equipped for meeting
job deadlines. Even under a normal load scenario, FAIR
results in a miss rate of 30%. Under high load, all existing
schedulers (FIFO, Fair, and Capacity) perform poorly,
resulting in high miss rates and tardiness.

• On the other hand, the real-time schedulers (EDF/MR,
EDF/TD) outperform Hadoop’s default schedulers. Under
normal load, all the real-time schedulers result in zero
miss rates. Under high load, we observe that the real-time
schedulers perform favorably compared to the default
schedulers. EDF/TD achieves an order of magnitude
improvement in tardiness over the default schedulers.

• Overload handling is effectively at mitigating the negative
effects of cascaded missed deadlines under high load.
EDF/MR (which includes this optimization) has a low
miss rate of only 13.3% (6X and 3.5X improvements
over Fair and FIFO/Capacity) since it avoids running un-
schedulable tasks under high load. EDF/TD, on the other
hand, incurs a higher miss rate compared to EDF/MR
without this optimization, but nevertheless, results in 2-
4X improvements over default schedulers. All in all, the
two EDF variants show a tradeoff between miss rates and
tardiness.

Skewed data distribution. To evaluate the impact of data
skews on the performance of the algorithms, we repeat our
experiments in Section III-F while varying data distribution.
We modify the input data to the three MapReduce programs,
such that the data distribution is now heavily skewed (Zipf
distribution parameterized to 1.0), as opposed to a uniform
distribution. We observe from Tables V and VI that both
EDF/MR and EDF/TD outperform default schedulers across
all performance metrics in both the normal and high load
scenarios, an observation consistent with our earlier evaluation
results. For instance, in the normal load case, both EDF
schemes result in 0% miss rate, compared to FIFO (23%),
Fair (30%), and Capacity (6.7%). EDF/MR and EDF/TD also
show the tradeoff between miss rate and tardiness that we
observed in our earlier experiments.
To examine the benefits of the overload handling optimiza-

tion, we compare EDF/MR against a pathological EDF/MR

Scheduling Policy Miss rate
(%)

Tardiness (s)
Total Maximum

FIFO 23.0 5461 1418
Fair 30.0 8186 1567
Capacity 6.7 378 325
EDF/MR 0 0 0
EDF/TD 0 0 0

TABLE V
PERFORMANCE OF SCHEDULERS WITH SKEWED DATA

DISTRIBUTION UNDER NORMAL LOAD.

Scheduling Policy Miss rate
(%)

Tardiness (s)
Total Maximum

FIFO 53.3 19147 2424
Fair 76.7 31753 2179
Capacity 63.3 13720 1877
EDF/MR 33.3 18824 2715
EDF/TD 43.3 4258 749

TABLE VI
PERFORMANCE OF SCHEDULERS WITH SKEWED DATA

DISTRIBUTION UNDER HIGH LOAD.

case in the high load case, where the WCET is miscalculated
to assume a uniform (instead of a skewed) distribution. We
observe that this results in a 10% higher miss rate, indicating
that the overload handling (for forgoing unschedulable tasks)
optimization is highly dependent on the current estimation of
task WCET.
Locality-aware scheduling. We study the effectiveness of
locality-aware optimizations in ensuring good scheduler per-
formance. Given that our EC2 setup has high speed connectiv-
ity across all nodes, we emulate transmission delays by adding
a significant computation delay to all remote map tasks. This
results in each remote task requiring approximately 8 times
the execution time of a local task. By setting the w parameter
(weight factor of scheduler) in the locality-aware EDF policy
to be 2, we ensure that the locality-aware enhancement is used
at times when running EDF-based schedulers. One important
future work to pursue is a cost-based approach towards setting
the w parameter, based on the measured differences between
local and remote task WCET.

Scheduling Policy Miss rate
(%)

Tardiness (s)
Total Maximum

FIFO 50.0 41706 5992
Fair 90.0 125338 6940
Capacity 66.7 55111 5240
EDF/MR 0 0 0
EDF/TD 0 0 0

TABLE VII
PERFORMANCE OF SCHEDULERS UNDER NORMAL LOAD WITH
INCREASED EXECUTION TIME DIFFERENCES BETWEEN LOCAL

AND REMOTE TASKS.

Our evaluation results in Tables VII and VIII show that
both EDF/MR and EDF/TD outperform the default schedulers
in the normal and high load scenarios, with the expected
tradeoff in miss rate and tardiness in their relative comparisons.
To quantify the benefits of locality-aware optimizations, we
compare EDF/MR with and without this optimization, and
observe a significant performance improvement (4X reduction
in miss rate, 9.4X reduction in total tardiness), highlighting



Scheduling Policy Miss rate
(%)

Tardiness (s)
Total Maximum

FIFO 66.7 92066 8272
Fair 100.0 194911 8039
Capacity 86.7 115690 9849
EDF/MR 20.0 13363 2743
EDF/TD 43.3 4662 727

TABLE VIII
PERFORMANCE OF SCHEDULERS UNDER HIGH LOAD WITH

INCREASED EXECUTION TIME DIFFERENCES BETWEEN LOCAL
AND REMOTE TASKS.

the importance of locality-awareness in making scheduling
decisions.

IV. CONCLUSION
We have presented an empirical analysis of various schedul-

ing techniques for large-scale real-time data processing ap-
plications on cloud platforms. Our evaluation results of a
Hadoop’s MapReduce case study on Amazon EC2 show that
existing schedulers in the current Hadoop implementation
perform poorly in terms of meeting deadlines and response
time. This is expected since these schedulers were not de-
signed for real-time performance. On the other hand, direct
applications of conventional real-time scheduling techniques
(e.g., EDF) without considering cloud platform related factors,
such as data locality and unpredictable system load, offer little
improvement over Hadoop’s default schedulers. We have also
proposed and evaluated different locality-aware cum overload-
handling enhancements of EDF. Our extensive empirical eval-
uations show that the proposed methods are highly effective in
minimizing both deadline miss ratio and tardiness. Moreover,
the effectiveness of each scheduling algorithm is dependent on
(1) an accurate measure of data distribution (for the purpose of
correctly estimating reduce task WCET for overload handling)
and (2) locality-aware enhancements.
Our empirical analysis reveals several interesting insights

to the challenges in guaranteeing timeliness in the cloud
environment. We outline some of our ongoing research.

Cloud Unpredictability. Unpredictability is the biggest bane
of any real-time scheduler. To provide a specific example based
on WCET measurements, the effectiveness of the real-time
scheduling policies in Section III-B largely hinges on correct
prediction of task and job level WCET. Indeed, our evaluation
results clearly demonstrate that having perfect knowledge of
WCET (from prior performance profiling) can result in a
significantly better overall system performance in meeting
timing guarantees. Moreover, mispredicting WCET in the
presence of data skews and increased delays may result in
poor scheduling decisions.
To improve the accuracy of both techniques, one potential

direction is to investigate parameterizedWCET [7] techniques
for large-scale data analytics in the cloud environment. The
idea is to incorporate with the analysis useful information
that may affect a task’s execution time (or its dependent
tasks) as parameters to achieve more accurate estimates. These
parameters include (i) data-related information, e.g., the size
of the input/output data, the distribution of the data values;

(ii) middle-ware and architectural information, e.g., the block
size, data buffer size, I/O and network speed, data-transfer rate,
processor configuration; and (iii) design-level knowledge, e.g.,
different phases of the application that may lead to mutually
exclusive paths in the program.
For run-time measurements, these parameters help to pro-

vide a better coverage on the range of input data and system
architecture, which in turn leads to more coverage of relevant
execution scenarios. Likewise, static methods compute the
result symbolically and give results based on these parameters.
The information encoded by these parameters does not only
help to address the challenges described above but also makes
the estimation more flexible.
Another promising area of research is in probabilistic

scheduling techniques for soft real-time applications. These
techniques are particularly useful for performing statistical
analysis of WCET [21], and has been applied to great success
in real-time applications with probabilistic task arrival and
execution times (e.g., [33]).

Runtime Scheduler Adaptation. One observation from our
evaluation study is that even with all our assumptions, deter-
mining a one-size-fits-all scheduling policy is non-trivial. For
instance, depending on the overall system goal of minimizing
miss rate or tardiness, EDF/MR or EDF/TD is preferred over
the other. Policies are highly dependent on the presence data
skews, and the absolute differences between local vs remote
task execution in determining whether to apply locality-based
enhancements. Even when a single scheduling policy is fixed,
the specific configuration parameters require careful perfor-
mance tuning based on deployment scenarios.
One interesting direction we plan to pursue is the use of

multi-model resource allocation [37] techniques, commonly
used in dynamic real-time systems. At a high level, multi-
model techniques significantly reduces the search space, by
restricting the scheduler to search for optimal policies within
“modes” (preset cloud configurations), and switching across
modes whenever cloud configurations change. Applying multi-
mode scheduling to the cloud requires additional research to
deal with its unique nature, in particular, precedence and data
dependency of MapReduce workflows, developing a set of
scheduling strategies for different modes of a cloud system
and their switching mechanisms, and incorporating the use of
feedback-based control methods.

Hierarchical Scheduling. The motivating applications in our
introduction suggest that cloud analytics is increasingly de-
ployed at an Internet-scale, since the input data themselves are
inherently distributed. This is in contrast to today’s MapRe-
duce usage, which is typically assumed to run within a single
data center with high bandwidth connectivity. Scaling up will
further lead to unpredictability at many levels (e.g., cluster,
data center, administrative domains over the Internet).
Since a cloud infrastructure is inherently hierarchical, one

can view the cloud scheduling as a multi-level hierarchical
scheduling problem, consisting of the infrastructure sched-
uler (e.g., Amazon EC2’s cloud scheduler), the middleware
schedulers (e.g., Hadoop’s master scheduler), and the virtual



machine schedulers (e.g., Xen scheduler). From the above
observation, a promising approach that we plan to explore is
the use of hierarchical scheduling techniques (e.g., [37], [39])
in the cloud setting as they are not only a natural choice of
the cloud infrastructure but also allow compositionality and
reduce system complexity, particularly when scaling cloud
analytics to operate at Internet-scale. These techniques also
provide mechanisms for guaranteeing timeliness in virtualized
environments as demonstrated in [40] and [44].
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