
SafeMC: A system for the design and evaluation of
mode-change protocols

Tianyang Chen Linh Thi Xuan Phan
University of Pennsylvania

Abstract—Real-time systems with multiple modes require
mode-change protocols (MCPs) to ensure safety during mode
transitions. A variety of MCPs are available in the literature;
however, it can be difficult to tell which of them is the most
suitable for a given application. This is because 1) existing
work often evaluates MCPs analytically, without considering
platform-specific overheads in a real deployment; 2) experimental
evaluations, where available, tend to make very different choices
in run-time environments and workloads, which hinders a direct
comparison; and 3) practical applications often require at least
some customization, which can completely invalidate the analysis
and/or experimental evaluation of the underlying MCP.

In this paper, we take a first step towards more principled
comparisons. We identify a set of fundamental primitives that
most MCPs tend to be built on, and we show that a variety of
existing MCPs can be formulated by composing these primitives
in different ways. We then present SafeMC, a system for speci-
fying and evaluating current and new MCPs. SafeMC provides
an easy-to-use specification language, a library of existing MCPs
that can be customized by the user, as well as several tools for
test generation, automatic evaluation, tracing, and performance
analysis. To demonstrate the utlity of SafeMC, we use it to
compare the performance of five classical MCPs in Xen. SafeMC
is designed to be extensible and reusable, and we hope that it
can serve as a building block for future research in this area.

I. INTRODUCTION

Despite recent successful developments of self-driving cars
in companies such as Google, Uber, and Tesla, the road
towards full autonomy of cyber-physical systems still faces
many challenges—among them, the ability to respond and
adapt promptly to changes during operation. For instance, a
self-driving vehicle must adapt its behavior according to the
physical environment (such as road conditions or unexpected
behaviors of other vehicles) to avoid accidents; similarly, an
unmanned aircraft avionics system must adapt its configuration
during sudden turbulence or aircraft system failures to allow
continued safe operation. Adaptation may involve moving or
terminating existing tasks, as well as starting new ones, and
this must be done in a timely and safely manner.

One approach towards modeling and analysis of such adap-
tive behaviors is to use a multi-mode formalism. In this
formalism, the system operates in multiple modes. Each mode
corresponds to a configuration or behavior, and it can be
characterized by a unique set of tasks. Each mode change
corresponds to a change in the system behavior, in response to
either an event from the external environment or an event from
within the system. For example, an adaptive cruise control
system can be modeled as a multi-mode system with (at least)
two modes: (i) the Speed Control mode, in which the speed is
set to a predefined value, and (ii) the Time Gap Control mode,
in which the speed is computed dynamically to maintain a

minimum distance to leading vehicles. The system changes
its mode at runtime, depending on the estimated speeds of
other vehicles. Once the system has been modeled in this way,
a multi-mode analysis can be used to understand its timing
behavior.

A critical input to any multi-mode analysis is the specific
protocol used for executing mode changes, also known as the
mode-change protocol (MCP). When the system changes from
one mode to another, the set of jobs that are active can come
from both modes; as a result, even if each mode is schedulable
in isolation, timing violations can occur during this transient
interval. By enforcing a certain execution behavior of the
system during a mode change – such as aborting certain jobs,
or delaying the release of new jobs – the protocol can avoid
or minimize the potential overload, and thus avoid timing
violations. The real-time community has already developed a
variety of MCPs; see, e.g., Real and Crespo [21] or Burns [4]
for a survey.

However, in practice it can be difficult to tell which MCP is
the best fit for a given system. There are at least three reasons
for this. First, while almost all of the existing work presents
a careful analysis of the proposed MCPs, most of it lacks a
detailed experimental evaluation. This is problematic because,
as prior work has shown repeatedly [20, 26, 27], platform
overheads (which are usually abstracted away in the analysis)
can have a big impact on the performance of a protocol, to the
extent that tasks can miss deadlines even when the analysis
predicts that they will be schedulable. Second, when papers
do contain experimental evaluations, they tend to be done
in very different environments – on different platforms, with
different applications and different workloads, etc. – which
complicates a direct comparison. Finally, existing work often
analyzes relatively simple MCPs: for instance, the protocol
might prescribe to always drop a certain job first, regardless
of which mode the system is transitioning to, or how important
the job is for the safety of the system. Because of this,
practical applications of MCPs tend to require at least some
customization, which comes with a risk of invalidating the
analysis and/or destroying the protocol’s guarantees.

In this paper, we propose a way to address these problems.
Our key insight is that, while the existing MCPs may appear
very different at first glance, they actually have much in
common. We identify a set of key primitives that operate on the
smallest scheduling entity (i.e., a job) and specify the actions
that the MCP must perform, as well as the conditions under
which the actions should be invoked. These primitives can
be composed – at different levels of granularity, such as job,
job type, task, task type, or transition – to form an MCP,
and we show that a variety of previously proposed MCPs can

1

in fact be expressed using our primitives. Thus, we obtain
a way to decompose existing MCPs into 1) an MCP-specific
algorithmic core, and 2) a common, MCP-independent runtime
system that executes the algorithm. This solves all of the three
problems above: the algorithmic core can easily be customized
or (in the case of a novel MCP) rewritten from scratch, while
the common runtime simplifies experimentation and enables
fair comparisons on a real platform.

We present a system called SafeMC that implements our
primitives and that provides an easy-to-use specification lan-
guage (based on XML) that can be used to describe existing
and new MCPs. SafeMC also provides a variety of tools for
test generation, automatic evaluation, tracing, and performance
analysis. We have integrated SafeMC with Xen; to demonstrate
its usefulness, we have used it to experimentally compare the
performance of five existing MCPs from the literature. We
will make SafeMC freely available to the community under
an open-source license, and we hope that it can serve as a
building block for future research in this area. In summary,
this paper makes the following contributions:
• an extensible set of mode change primitives that imple-

ment a broad spectrum of mode change behaviors, and
that can be composed to form new MCPs (Section IV);

• the design of SafeMC and its tools for efficient specifi-
cation, execution, and evaluation of MCPs (Section V);

• a prototype implementation of SafeMC in Xen (Sec-
tion VI); and

• specifications and experimental evaluations of several
existing protocols (Section VII), as well as an automotive
case study (Section VIII), to demonstrate the benefits of
SafeMC.

Our evaluation of the prototype shows that SafeMC can
be implemented efficiently with minimal run-time overhead.
Through our evaluation and case study, we show how SafeMC
can be used not only to specify, evaluate, and compare a
broad set of the MCPs but also to design novel protocols that
are optimized for specific characteristics and requirements of
realistic multi-mode systems.

We begin with a discussion of related work (Section II) and
a description of our system model (Section III).

II. RELATED WORK

There exists a long line of work that extends models and
timing analysis techniques from the real-time systems lit-
erature to accommodate multi-mode behaviors at multiple
levels. For example, several task models and schedulability
methods have been developed to support variable computation
times or execution periods, which is a type of mode change
(e.g., [1, 5, 6, 8, 17]). Similarly, automata-based techniques
have also been used to model and analyze multi-mode sys-
tems [13, 16, 18, 23]. Existing work in this line, however,
focuses on the analysis of the multi-mode system for a given
mode-change semantics and not the design and evaluation of
different MCPs.

Several mode-change protocols have been studied over the
years, including the recent addition of protocols for criticality-
based mode changes [4]; an excellent survey of these tech-
niques can be found in [21]. A primary goal of these protocols

is to ensure that no deadlines are violated during a mode
change, and they typically are designed based on two aspects:
periodicity (where new jobs of unchanged tasks should be
released as before, without being affected), and synchrony
(where jobs of new tasks can only be released after all the old
mode jobs have completed). An important drawback of these
protocols is that they are agnostic to the safety requirements
and characteristics of the system in each mode, and thus they
may be inefficient or lead to safety violations.

To address this drawback, we have previously developed a
theoretical semantic framework for MCPs [19] that generalizes
these existing protocols and that allows for the design of
more application-specific MCPs. SafeMC nicely complements
this existing formal framework: the existing work relies on
automata semantics to express mode-change behaviors, e.g.,
via buffer evaluation and intermediate states, which is powerful
and useful for formal analysis, but also purely theoretical and
difficult to implement; in contrast, the focus in SafeMC is
practicality, with an easy-to-use specification language and
intuitive semantics. It should be possible to translate SafeMC
primitives to (simpler forms of) the theoretical models in [19].

A number of platforms have been developed to support
multi-mode behaviors. For instance, Neukirchner et al. [15]
provides an implementation of multi-mode monitors for job
activations. Run-time mode changes have also been supported
in Ada [3]. Recently, a number of implementations for mixed-
criticality systems have also been developed (e.g., [10, 11]),
which support a special form of mode changes. Azim and
Fischmeister [2] discusses a design that utilizes checkpoints
and rollback-based mode-change mechanism for efficient
mode changes and an implementation in LITMUSRT . None
of these implementations provides a general platform for
the design, implementation, and evaluation of a broad set
of new protocols, which ours provides. To the best of our
knowledge, SafeMC is also the first to provide system supports
for exploring mode-change protocols at the Xen level.

Prior work has also developed kernel primitives and ab-
stractions that aim to be expressive enough to support a
variety of different scheduling schemes. For example, in the
hierarchical scheduling setting, Regehr [22] introduces the
Hierarchical Loadable Scheduler (HLS) architecture, which
permits schedulers to be dynamically composed in the kernel
of a general-purpose OS. Similarly, Lackorzyński et al. [12]
uses scheduling contexts to enable flexible and efficient im-
plementation of various guest schedulers in the host scheduler.
Ford and Susarla [7] presents a CPU inheritance scheduling
framework in which arbitrary threads can act as schedulers
for other threads, thus providing much greater scheduling
flexibility. Language-based scheduling approaches, such as the
Bossa framework [14], allow schedulers to be written using
a domain-specific language, which can be instantiated in a
standard OS. These complementary lines of work focus on the
scheduler implementation instead of mode-change protocols,
which is our focus. Integration of such approaches with
SafeMC is an interesting future direction.

2

III. SYSTEM MODEL AND GOAL

Multi-mode system model. A multi-mode system is defined
by a set of modes, the initial mode, and a set of transitions
among the modes. Each mode has a set of tasks that are active
when the system is in this mode. We follow the conventional
real-time task model, where a task is characterized by four
(per-mode) timing attributes: a period, a deadline, a worst-
case execution time (WCET), and a criticality. Each transition
is associated with – and can be triggered by – a mode-change
request event (MCR), which for simplicity is assumed to be
unique for each transition.

Initially, the system begins in the initial mode. At runtime,
whenever an MCR associated with an outgoing transition
arrives, the system will perform the mode change, according
to a given protocol, to move to the destination mode.
Mode-change protocol. A mode-change protocol (MCP) de-
scribes the execution behavior of a multi-mode system during
a transition from one mode to another, i.e., from the instant an
MCR arrives (called MCR instant) until the instant where all
the new attributes associated with the destination mode are in
effect. It specifies, for instance, when to release a new job in
the destination mode (e.g., immediately or after some delay),
whether to complete or abort existing jobs, and whether to
update the existing jobs with the new timing parameters. In
general, the desirable mode-change behavior depends on the
safety and performance requirements of the system, and it can
vary across transitions, tasks, and jobs. For example, while
delaying the release of a new task may be acceptable when
an aircraft transits from the take-off mode to the cruise mode,
it is undesirable for a transition from the cruise mode to the
emergency mode, which requires that the emergency jobs be
released and executed as soon as possible.
Types of tasks during a mode transition. For convenience,
we refer to the set of tasks that are active in the source or
destination mode of the transition as the transition taskset. As
in prior work, each task τi in the transition taskset is of one
of the following four types:
• Old (O): If τi is active in the source mode but not in the

destination mode.
• New (N): If τi is active in the destination mode but not

in the source mode.
• Unchanged (U): If τi is active in both modes and all of

its timing parameters remain unchanged.
• Changed (C): If τi is active in both modes and some of its

timing parameters are modified in the destination mode.
Types of jobs. We further categorize jobs of a task during a
transition into three types:
• Pending: Unfinished jobs that are not currently executing

at the MCR instant.
• Executing: Unfinished jobs that are currently executing at

the MCR instant.
• New: New jobs to be released after the MCR instant.

By definition, pending and executing jobs are not applicable to
tasks of type N, whereas new jobs are usually not applicable to
tasks of type O. We distinguish pending jobs from executing
jobs because they may require different actions during a mode
change. For instance, if a currently executing job is almost

completed, continuing to execute it until completion may incur
less overhead, and thus may be better than aborting the job. In
contrast, aborting a pending job typically incurs less overhead
compared to letting it continue to run until it completes (due
to additional context switches).
Goals. To achieve the goals we have set for SafeMC, it
must have the following four properties. (1) Expressiveness:
SafeMC should cover a broad spectrum of mode-change
behaviors for general multi-mode systems that not only capture
existing MCPs but also novel MCPs that are desirable for
a given system; (2) Composability: SafeMC should allow
efficient MCP construction by composing different primitives
that implement different mode-change logics, at various levels
of granularity; (3) Performance: SafeMC should have low
run-time overhead to enable efficient mode changes; and (4)
Usability: SafeMC should allow users to easily specify and
experimentally evaluate different aspects of an MCP.

In the next sections, we first present the primitives that
form the core semantics supported by SafeMC, followed by
examples to illustrate how they can be composed to form
MCPs. We then present the design and implementation of
SafeMC, and end with an evaluation of existing protocols and
a case study of an autonomous system.

IV. MODE-CHANGE PRIMITIVES

Formally, an MCP specifies the set of primitives that are
performed on the jobs of each task that is active in the source
mode or in the destination mode of the transition. For SafeMC,
we have identified a set of key primitives that cover a broad
range of existing MCPs (and hopefully many future MCPs as
well). SafeMC can also be extended with additional primitives
if necessary.

Existing protocols typically specify the same behavior for
all tasks of the same type and globally for all transitions in
a system. In practice, however, different tasks of the same
type, and even jobs of the same task, may have different
requirements during a specific mode transition. For instance,
consider two changed tasks τ1 and τ2 whose criticality levels
change upon an MCR: τ1 is critical in the source mode but
non-critical in the destination mode, whereas τ2 is non-critical
in the source mode but critical in the destination mode. Then,
while it is often acceptable to delay the release of new jobs
of τ1 (since they are not critical), delaying the release of new
jobs of τ2 may lead to safety violation (since they are critical).
Similarly, while it is important not to drop existing jobs of τ1,
dropping some of the existing jobs of τ2 is often acceptable.

To capture the diverse characteristics of a wide range of
multi-mode systems, we need the ability to specify mode-
change semantics at different levels of granularity: for a
specific transition, for tasks of a specific type, for a specific
task, for jobs of a specific type, and for a specific subset of
jobs of a given type. We now describe the primitives in detail.

A. Basic primitives

Mode-change primitives describe the actions that are applied
to jobs of a specific type, for a particular task, or for all tasks
of a particular type during a mode change.

3

Definition 1 (Mode-change primitive). A mode-change prim-
itive is defined by an action A and a set of guards G that
specifies the conditions when the action should be applied
to the considered jobs during a mode transition. When G is
empty, A is applied to the jobs immediately at the MCR instant;
otherwise, depending on the guard type, A is applied to the
jobs only if, or when, G evaluates to true.

Mode-change actions. MCPs differ quite a bit in the actions
they can apply to jobs. We have identified the following key
actions for pending and executing jobs:
• CONTINUE: The jobs continue to be executed and sched-

uled with their current timing parameters.
• ABORT: The jobs are aborted and removed from the

system.
• ABORT[K]: The oldest K jobs are aborted and removed

from the system.
• UPDATE: The jobs continue to be executed, but their

timing attributes (period, deadline, WCET and criticality)
are changed to the values defined for the destination
mode. This action is typically applied to jobs of changed
tasks but not the others.

For new jobs, we have identified the following key actions:
• RELEASE: This action defines the release of new jobs

whose parameters are that of the destination mode, and
it is always associated with a guard. Specifically, the
release of the first new job with the destination mode’s
parameters is delayed until an associated guard becomes
true. (Note that the new values could be the same as the
old ones.)

• RELEASE O: This action specifies that the new jobs
whose parameters are that of the source mode should
continue to be released without being affected by the
MCR, as long as an associated guard still holds. This
action can be also used in conjunction with the RELEASE
action for new jobs of old, changed, or unchanged tasks
(e.g., in the Idle Time Protocol shown in Fig. 1.)

When no action is specified for new jobs, these jobs are no
longer released after the MCR, which typically is the case for
new jobs of an old task.
Action guards. The mode-change action defined by a prim-
itive may be associated with a set of guards, which specifies
the set of conditions for when that action should be applied.
We have identified multiple types of guards, which we define
below.

1) TRUE: This is a special guard that simply indicates that
the action is to be applied immediately. (It is equivalent to
having no guard for that action.)

2) OffsetMCR: This guard defines an offset relative to the
MCR instant. It is specified by a constant threshold value
∆, or one of the symbols OLD PERIOD, NEW PERIOD,
MIN PERIOD, and MAX PERIOD, which denote an offset
equal to the task’s old period (in the source mode), new
period (in the destination mode), and the minimum period
and maximum period of all tasks in the transition taskset,
respectively.1 It is evaluated once at the MCR instant, and the

1Additional symbols can easily be added, if necessary.

action is to be applied after a delay equal to the defined offset
from the MCR instant. This guard is often defined for the
RELEASE action to specify when to release the first new job,
e.g., to release it after a certain delay to prevent an overload
during the mode change.

3) OffsetLR: This guard defines an offset relative to the last
release time of the corresponding task. It has the same syntax
and evaluation strategy as an OffsetMCR guard, except that
the action is to be applied at the defined offset relative to
the most recent release time of the task. This guard is often
used to specify when to release new jobs; e.g., it can be used
to enforce periodicity of unchanged tasks (using the offset
OLD PERIOD) or to release the first job of a changed task
based on either the old period (using OLD PERIOD) or the
new period (using NEW PERIOD).

4) Backlog: This guard defines a formula that compares the
current backlog (number of pending and executing jobs) of the
corresponding task with a certain threshold ∆ or with a certain
fraction r of the queue size MAX VALUE. It is specified as
(Op,∆) or (Op,MAX VALUE ·r), where Op∈ {>,≥,=,≤,<
}, ∆ is a (non-negative) constant threshold, MAX VALUE is
the symbol denoting the task’s queue size, and r is a positive
constant ratio. For pending and executing jobs, this guard is
evaluated once at the MCR instant, and (only) if the guard
holds, the action is applied immediately. For new jobs, this
guard is first evaluated at the MCR instant and, if invalid, it
will continue to be evaluated whenever a context switch occurs
until either the guard becomes true or a new MCR arrives; the
action is applied when the guard becomes true (if it does).

A Backlog guard is useful for aborting pending or executing
jobs based on the current backlog (i.e., load) of the task when
the MCR arrives. For instance, one may abort some pending
jobs if the backlog is more than half the queue size. It is also
useful for controlling the release of new jobs, e.g., to delay
the release of the first new job of the task until the backlog is
below a certain threshold.

5) BacklogGlobal: This guard defines a formula on the
backlog of the global scheduling queue (i.e., the number of
pending and executing jobs of all active tasks). It follows the
same syntax, evaluation strategy, and usage as the Backlog
guard but considers the system-level load; here, MAX VALUE
denotes the size of the global scheduling queue. A special use
of this guard is to only release new jobs at the idle instant,
i.e., when the global backlog is equal to zero.

6) RemainTime: This guard defines a formula that compares
the remaining execution time of the job with a certain thresh-
old or with its WCET. The formula follows the same syntax
as in (4), where MAX VALUE denotes the job’s WCET. This
guard is applicable to only pending and executing jobs by
definition, and it is evaluated once at the MCR instant. It is
useful for aborting jobs based on their remaining execution
times, e.g., to abort a job only if its remaining execution time
is more than a threshold ∆ or a certain fraction r of its WCET.

7–10) Criticality (Period, Deadline, WCET): This guard
defines a formula on the criticality (period, relative
deadline, or WCET) of the corresponding task in the
source mode and in the destination mode. It is speci-
fied as (Op,OLD VALUE,∆) or (Op,NEW VALUE,∆) or

4

JOB TYPE Executing and Pending New
TASK TYPE OLD/UNCHANGED/CHANGED UNCHANGED CHANGED NEW

PR
OT

OC
OL

Maximum Period Offset CONTINUE OffsetLR: OLD_PERIOD OffsetMCR: MAX_PERIOD OffsetMCR: MAX_PERIOD

Min. Offset without periodicity CONTINUE BacklogGlobal: (=, 0)

Min. Offset with periodicity CONTINUE OffsetLR: OLD_PERIOD BacklogGlobal: (=, 0) BacklogGlobal: (=, 0)

Asynchronous with periodicity CONTINUE OffsetLR: OLD_PERIOD OffsetLR: OLD_PERIOD OffsetMCR: ∆

Asynchronous without periodicity CONTINUE OffsetMCR: ∆

TASK TYPE OLD/UNCHANGED/CHANGED OLD UNCHANGED CHANGED NEW

PR
O. Idle Time Protocol CONTINUE

[RELEASE_O;
BacklogGlobal: (>, 0)]

[RELEASE_O; BacklogGlobal: (>, 0)]
[RELEASE; BacklogGlobal: (=, 0)]

[RELEASE;
BacklogGlobal: (=, 0)]

Note: ∆ is a user-defined threshold per task. The action RELEASE is defined for all new jobs in all protocols except the Idle Time Protocol, but we omit for brevity.

Fig. 1: Specifications of existing mode-change protocols.

(Op,OLD VALUE,NEW VALUE · r), where Op ∈ {>,≥,=
,≤,<}; the symbols OLD VALUE and NEW VALUE rep-
resent the task’s criticality (period, deadline, WCET) in the
source mode and in the destination mode, respectively; ∆ is
a constant threshold value; and r is a constant ratio. It is
evaluated once at the MCR instant, and the action is applied
if the guard holds.

These types of guards are useful for defining an action based
on the task parameters. For example, the Criticality guard can
be used to release new jobs immediately if the task’s new
criticality is high (or higher than the old criticality), e.g., using
[RELEASE; Criticality: (<,OLD VALUE,NEW VALUE)]; it
could also be used to abort pending and executing jobs if the
old criticality is low (or lower than the new criticality). Since
the scheduling priority of a task is typically determined based
on its timing parameters, one can easily express a change in
the task’s scheduling priority at a mode transition in SafeMC.

Finally, we note that thanks to the well-defined semantics
and syntax of SafeMC primitives, it is possible to translate
the protocol specifications to automata models, e.g., using a
similar approach as in [16, 19], thus facilitating the theoretical
analysis of new user-defined protocols using verification.

B. Example MCP specifications

To demonstrate that the above primitives are indeed sufficient
to express many existing MCPs, we show the specifications
of several MCPs from the literature (taken from [21]) in
Fig. 1. Note that each protocol is simply a composition of
the different primitives defined for the different job and task
types. For example, the Maximum Period Offset specifies that
all old (pending or executing) jobs should continue to execute,
new jobs of unchanged tasks should be released as usual
(after a period from the last release) without being affected,
and the first new job of changed and new tasks should be
released after an offset equal to MAX PERIOD (the maximum
period of tasks in both modes) from the MCR instant. The
Minimum Offset without periodicity specifies that old jobs
should continue to execute, and the first new job in the new
mode (of unchanged, changed and new tasks) will only be
released at the idle time (i.e., when the global backlog is 0).
A complete description of these protocols is available in [21].

System Parser

Transition-level
protocol

Mode Change Initializer

Mode Change Manager

Task-level protocol
per transition

MCR Dispatcher

[domID, cpuID,
transID]

Run-time input from
the command line,
an automatic script,
a user domain, …

triggerMCR(domID, cpuID, transID)

load MC structures

User
Input

MCP
Library

Test
Generator

User
Input

Multi-mode
system model

System-level protocol
(globally for all transitions,
or for each transition ID)in

iti
ali

za
tio

n

Fig. 2: Overall architecture of SafeMC.

Besides existing protocols, we can also construct new proto-
cols, e.g., as discussed above in the use of different primitives.
An example of a new protocol that is optimized for a specific
system is described in Section VIII (Fig. 5).

V. DESIGN

Next, we describe the design of the SafeMC system, which
implements the above primitives and allows users to compose
them into new MCPs using a simple specification language.
A Xen-based implementation of SafeMC will be described in
Section VI.

A. Overall architecture

Fig. 2 shows the high-level architecture of SafeMC. Internally,
it is made of multiple components for the specification, ini-
tialization and execution of an MCP for a multi-mode system.

At initialization, SafeMC takes as input two specification
files: (i) a concrete multi-mode system model, and (ii) a system-
level protocol that defines the mode-change primitives. The
protocol can be specified either globally for all transitions or
for each transition ID; the former is agnostic of the multi-mode
system and thus simpler, whereas the latter requires knowledge
of the transition IDs but is useful for systems that need dif-
ferent mode-change behaviors for different transitions. From

5

these input files, the SystemParser generates a concrete task-
level protocol for each transition of the multi-mode system.

Alternatively, users can also specify a set of task-level
protocols for different transitions (that form a multi-mode
system) as input directly. This capability is useful for multi-
mode systems that require different mode-change behaviors
for different tasks, even when they are of the same type.

The ModeChangeInitializer is responsible for setting up
the mode-change (MC) data structures that are necessary for
correct and efficient operation of the ModeChangeManager at
runtime. Based on the generated (or given) task-level protocol
of each transition, it builds the MC data structures—which
contain the different modes and transitions, together with the
specific actions and guards for each task in each transition—
and then loads these structures into the ModeChangeManager
component. This initial processing enables MCRs to be pro-
cessed efficiently at runtime, since all corresponding actions
and guards are available in the MC data structures.

At runtime, the MCRDispatcher simply waits for new
MCRs, which can be initiated interactively from the command
line by the system administrator or automatically by some
program. Whenever an MCR arrives, it delivers the triggered
MCR event with the ID of the corresponding transition (and
potentially other information) to the ModeChangeManager.

The ModeChangeManager is responsible for performing the
mode changes upon receiving MCR events. It implements all
the mode-change primitives defined in Section IV-A, which
include various operations such as evaluating the guards for
each job (job type) and performing the corresponding actions
(e.g., remove some pending jobs from the run queue, disable
an old task, update the job/task parameters, release new jobs)
based on the guards. Upon a triggered MCR, it looks up
the corresponding transition in its MC data structures, scans
through all tasks involved in the transition, and performs the
actions defined for their jobs based on the action guards.

Besides the core components, SafeMC also contains a set
of tools to facilitate the design, experiment, and evaluation
of MCPs, such as (1) a TestGenerator for generating multi-
mode system models based a certain specified range of input
parameters, (2) an MCPLibrary that contains the specifications
of common MCPs, and (3) a toolset for tracing and analyzing
the MCP performance of an MCP under experiment.

B. Multi-mode system and MCP specification

Both the multi-mode system and the protocols are described in
the SafeMC specification language, which is based on XML
and follows the semantics and syntax defined in Sections III
and IV-A. A multi-mode system model specifies a concrete
number of modes, mode transitions, and the set of tasks
associated with each mode and their timing parameters. An
example specification of a simple system with two modes and
two transitions in SafeMC is shown in Listing 1.

A system-level protocol specifies the mode-change prim-
itives for (the different job types of) each task type, either
globally for all transitions (independent of the specific multi-
mode system that is being considered) or specifically for each
transition ID. Most existing protocols, such as the ones in

Fig. 1, are global system-level protocols. Listing 2 shows the
specification of the Minimum Offset with Periodicity protocol
(c.f. Fig. 1) in SafeMC. We can observe that an action is
defined for each valid job type (executing, pending, new) for
each task type (old, unchanged, changed, and new), and it is to
be applied globally to all transitions of any given multi-mode
system.

A task-level protocol per transition specifies the concrete
mode-change primitives for each task in the transition
taskset. This can be given as a user input or generated by
the SystemParser from the multi-mode system model and
system-level protocol. For example, the generated protocol for
the first transition of the example multi-mode system is shown
in Listing 3. Observe here that the action is now defined for
each concrete task in the transition taskset, and the task’s
timing parameters and the guard values (e.g., NEW PERIOD)
are concretized. All task parameters are associated with the
destination mode, except for old tasks (whose parameters
are that of the source mode). For completeness, a changed
task also contains the changes in the values (i.e., the field
diff_from_old gives the new value minus the old value for
each changed parameter).

<sys name="simple">
<mode id="0">

<task id="0" wcet="50" period="200" crit="1"/>
<task id="1" wcet="10" period="100" crit="0"/>
<task id="2" wcet="20" period="100" crit="0"/>

</mode>
<mode id="1">

<task id="1" wcet="10" period="100" crit="0"/>
<task id="2" wcet="20" period="150" crit="0"/>
<task id="3" wcet="5" period="50" crit="1"/>

</mode>
<trans id="0" src="0" dst="1"/>
<trans id="1" src="1" dst="0"/>

</sys>

Listing 1: An example multi-mode system specification.

<mcp name="minimum offset with periodicity">
<task type="old">

<action_executing value="CONTINUE"/>
<action_pending value="CONTINUE"/>

</task>
<task type="unchanged">

<action_executing value="CONTINUE"/>
<action_pending value="CONTINUE"/>
<action_new value="RELEASE">

<guard type="OffsetLR">NEW_PERIOD</guard>
</action_new>

</task>
<task type="changed">

<action_executing value="CONTINUE"/>
<action_pending value="CONTINUE"/>
<action_new value="RELEASE">

<guard type="BacklogGlobal" Op="="
threshold="const">0</guard>

</action_new>
</task>
<task type="new">

<action_new value="RELEASE">
<guard type="BacklogGlobal" Op="="

threshold="const">0</guard>
</action_new>

</task>
</mcp>

Listing 2: An example system-level protocol.

6

<mcp name="minimum offset with periodicity">
<task type="old" id="0"

wcet="50" period="200" crit="1">
<action_executing value="CONTINUE"/>
<action_pending value="CONTINUE"/>

</task>
<task type="unchanged" id="1"

wcet="10" period="100" crit="0">
<action_executing value="CONTINUE"/>
<action_pending value="CONTINUE"/>
<action_new value="RELEASE">

<guard type="OffsetLR">100</guard>
</action_new>

</task>
<task type="changed" id="2"

wcet="20" period="150" crit="0">
<action_executing value="CONTINUE"/>
<action_pending value="CONTINUE"/>
<action_new value="RELEASE">

<guard type="BacklogGlobal" Op="="
threshold="const">0</guard>

</action_new>
<diff_from_old wcet="0" period="50"/>

</task>
<task type="new" id="3"

wcet="5" period="50" crit="1">
<action_new value="RELEASE">

<guard type="BacklogGlobal" Op="="
threshold="const">0</guard>

</action_new>
</task>

</mcp>

Listing 3: The generated task-level protocol for the transition
from mode 0 to mode 1 of the system in Listing 1.

VI. IMPLEMENTATION

We now describe our current SafeMC prototype, which ex-
tends the Xen virtualization platform (version 4.7) [24] and
Xen’s RTDS scheduler to implement the different components
of SafeMC and to support mode changes at the hypervisor
level. The RTDS scheduler schedules the virtual CPUs (VC-
PUs) using the (partitioned or global) EDF algorithm [25].
From the hypervisor’s perspective, each ‘task’ defined in
SafeMC corresponds to a VCPU; the period, WCET and re-
maining execution time of the task correspond to the VCPU’s
period, replenishment budget, and remaining budget.

We opted for a Xen-based implementation for three main
reasons: 1) There is substantial interest in using virtualization
to consolidate components in real-time systems; 2) Xen has
been adopted in automotive platforms (e.g., GlobalLogic’s
Nautilus), and we also have projects with colloborators from
the automotive industry that use Xen in autonomous driving
research; and 3) Since Xen is widely used, our prototype
could have applications beyond traditional real-time embedded
systems, e.g., real-time cloud applications or IoT. SafeMC is
not limited to Xen/EDF; we plan to implement it on other
platforms (e.g., Linux/LITMUS) and schedulers in future.

A. Multi-mode data structures and API

The current Xen implementation allows only a single job per
VCPU. We extended the RTDS scheduler to support multiple
jobs per VCPU (i.e., each VCPU has a list of active jobs)
and job-level scheduling run-queue (i.e., a queue of runnable
jobs). This support is necessary for multi-mode systems due

to the presence of multiple jobs per VCPU during mode
changes. All the scheduler’s functions – such as wake(),
context_save() and sleep() – were modified to sup-
port scheduling at the job level (instead of at the VCPU level).
In addition, we extended the VCPU data structure to include
the VCPU type (old, new, changed, unchanged) and criticality.

The MC data structures stored in the ModeChangeManager
consist of a global array of MC structures for all transitions
of the multi-mode system. Each transition’s MC structure
contains the set of VCPUs that are involved, the IDs of
domains (VMs) to which they belong, and a pointer to
an array of VCPU-level MC structures for the VCPUs in
the set. A VCPU’s MC structure specifies all details of
the mode-change primitives to be applied to its jobs; for
example, it has fields for actions (action_executing,
action_pending, action_new) and guard structures
(with a guard type and a value field), as well as VCPU timing
parameters associated with the considering transition.

B. SafeMC core functionality

The components SystemParser, ModeChangeInitializer and
MCRDispatcher were implemented as three new modules in
Xen’s user-space tool stack. The ModeChangeManager was
implemented in the hypervisor; here, we extended the RTDS
scheduler (sched_rt.c) and the common Xen scheduling
framework (schedule.c and xc_rt.c) with the mode-
change primitives to support mode changes at run time.

We added two new hypercalls in the hypervisor to support
communication from Xen user-space to the hypervisor; once
executed, their handlers will invoke function hooks that we
added in the scheduler that realize the primitives. The first
hypercall, loadMC, is used by the ModeChangeInitializer
to copy the MC data structures that it built from the pro-
tocol specifications into the hypervisor’s space (dynamically
allocated). These data structures provide all the information
that the hypervisor needs to perform mode changes. Although
this hypercall is typically invoked during initialization, it can
also be called at runtime to add or modify some modes and
transitions dynamically; this provides support for systems in
which some modes or transitions are only known at runtime.

The second hypercall, triggerMCR, is used by the
MCRDispatcher to trigger a specific transition whenever a new
MCR event arrives; its handler implements (in the scheduler)
all the mode-change primitives defined by SafeMC. Once
the hypercall is executed, the handler iterates through each
VCPU of the corresponding transition, scans through its MC
data structure, identifies the actions and associated guards
(types and values), evaluates the guards, and performs the
actions accordingly. Different types of guards and actions were
implemented differently, based on the semantics described
in Section IV-A. For example, actions with no guard or a
TRUE guard are always performed immediately. Similarly,
for VCPUs with no action_new defined, the handler will
disable their new releases immediately. An OffsetMCR (or
OffsetLR) guard is checked only once, and it is implemented as
a timer that will fire after the specified amount of time from the
time the MCR is received (or from the last job release time);

7

when the timer expires, the handler will perform the associated
action (e.g., release the first new job of the VCPU). For a
Backlog (or BacklogGlobal) guard for new jobs, if the guard
does not hold, the handler will continue to check the backlog
condition of the job queue at each following context switch;
once the guard becomes valid, it will perform the action.

C. Toolset for design and evaluation
To facilitate the design and evaluation of MCPs, our
prototype also includes a set of tools for test generation,
testing automation, tracing, and post-processing.

Test Generation: The TestGenerator was implemented as
a new module in Xen’s userspace. It randomly generates a
multi-mode system model for testing, based on minimum
and maximum values for the different parameters (e.g.,
number of modes, number of transitions, number of VCPUs
per mode, VCPU utilization and period). As in existing
task generation tools, our test generation only generates the
multi-mode system (e.g., modes, set of tasks, and their timing
parameters). The actual code of a task and its undo code
are application-specific and should be supplied by users.
In addition, we also implemented a library of MCPs that
includes the specifications of a range of existing protocols
(such as those shown in Fig. 1) that users can choose from
for their experiments.

Tracing. We extended the Xen tracing framework in the
hypervisor to enable the performance evaluation of MCPs.
The extended tracing framework can trace several mode-
change-related variables and events, such as the time a job is
disabled/enabled/updated, the MCR instant, the job queue’s
backlog at MCR instants, and context switches. It can also
trace events that are useful for micro-benchmarks, such as
scheduling, context-switch, MC parsing, and job-release
overheads. All overheads due to the mode changes are
reflected in the collected traces.

Testing automation and post processing. We implemented
a set of scripts within Dom0 userspace for automating the
evaluation, e.g., scripts for (i) running a specific test for a
given protocol, (ii) invoking the ModeChangeInitializer to
load the MC structure of one or more transitions into the
ModeChangeManager, (iii) initiating MCR events, and (iv)
processing traces. In addition, we also developed a number
of MATLAB programs for post-processing tracing data and
for plotting scheduling and mode-change events and various
performance statistics.

D. Limitations
Our prototype currently supports only partitioned multicore
scheduling, but it should not be difficult to add global
scheduling and complex interactions between queues in future
work. Currently, our prototype does not yet support complex
rollback mechanisms (e.g., when aborting a job), and it only
implements some simple consistency checks. We plan to
add rollback features and develop a comprehensive layer in
SafeMC to check the consistency of a composition of rules
and protocols in future.

VII. EVALUATION

We conducted an extensive set of experiments using our
prototype to illustrate its applicability. Our main objective is
to show how SafeMC can be used to experimentally evaluate
and compare different MCPs according to several performance
metrics. In addition, we also show how much extra overhead
SafeMC introduces to support mode changes.

A. Experimental setup

System configuration. Our prototype ran on an 8-core 3.4
GHz Intel machine. We booted the hypervisor with Domain 0
and one test domain, both running Ubuntu 12.04 (Linux kernel
3.8).2 The test domain executes the multi-mode system under
test and is pinned to the first core, whereas Domain 0 is pinned
to the rest of the cores.

We used the TestGenerator to randomly generate a set of
multi-mode systems for our experiments, with varying number
of VCPUs that are active per mode (4, 8, 16, and 32), and
the total utilization of all active VCPUs in each mode of the
system was set to be at most 96% to ensure that they are
schedulable in each mode in isolation. (The extra 4% is to
account for potential overheads). The maximum VCPU period
was set to be 50ms, and the budget ranged between 1.5ms and
12ms.

The VCPUs were scheduled using the Earliest Deadline
First (EDF) algorithm by the RTDS scheduler that we extended
with SafeMC. We used the extended Xen tracing framework
to collect all data in all experiments for our benchmarks and
evaluation.
Protocols for evaluation. We considered five commonly
used MCPs in our evaluation: (1) maximum period offset,
(2) minimum offset without periodicity, (3) minimum offset
with periodicity, (4) asynchronous with periodicity, and (5)
asynchronous without periodicity. The primitives defined by
these protocols are shown in Fig. 1. For our experiments,
the threshold value of the guard OffsetMCR in the last two
protocols, (4) and (5), was set to be ∆ = 5 ms.

B. Run-time overhead

We ran a series of experiments using each of the five protocols
and the generated multi-mode systems, to evaluate the extra
overhead introduced by SafeMC based on our prototype. We
used an approach similar to [25] to measure the overhead.
We recorded the timestamps before and after several relevant
functions during each mode transition, such as
• schedule(), the main scheduling function,
• context(), the context-saving accounting function,
• repl(), the timer budget replenishment for a new job

release, and
• mc(), the mode-change function that processes all MC

data structures and performs the actual mode change upon
an MCR,

using gettime_stamp(), and then computed the differ-
ence. For each protocol and each multi-mode system, we took

2Note that this is not a limitation; our prototype works for any guest OS
that Xen supports.

8

0

10

20

30

40

50

60

70

Release-new Finish-old Finish-new-old

Number of VCPUs = 16

asyn w/ periodicity asyn w/o periodicity min offset w/ periodicity

min offset w/o periodicity max period offset

0

10

20

30

40

50

60

70

80

Release-new Finish-old Finish-new-old

Number of VCPUs = 32

asyn w/ periodicity asyn w/o periodicity min offset w/ periodicity

min offset w/o periodicity max period offset

Fig. 3: Mode-change delay of common protocols. Time units are in milliseconds.

1000 measurements (corresponding to 1000 mode transitions),
and we report the average.

Table I shows the scheduling, context-switch, release, and
mode-change overheads for different numbers of VCPUs per
mode. All values are in nanoseconds, and they are averaged
over all protocols and all iterations.

#VCPUs Schedule Context switch Release Mode change
4 540.5 125.4 1025.0 1986.2
8 478.2 86.8 1465.5 3697.5

16 399.8 44.5 1900.8 7063.2
32 366.2 64.0 3267.0 12753.5

TABLE I: Scheduling and mode-change overheads (in ns).

The results show that SafeMC incurs negligible scheduling,
context-switch, and release overheads; these overheads are
comparable to those of the vanilla Xen’s RTDS scheduler
(available from [25]). In addition, it has only a small mode-
change overhead. We observe that the mode-change overhead
increases (close to) linearly with the number of VCPUs, which
is expected as the numbers of guards and actions in the mode-
change logic also increase. In contrast, there is no clear trend
for scheduling and context switches: both scheduling and
context-switching are very fast (just a few hundred cycles);
at this scale, small platform effects (such as cache or TLB
misses) can make a big difference, which is why there is no
clear correlation with the number of VCPUs.

Remarks. Since our prototype is based on job-level priority
scheduling (EDF), we anticipate that the overheads would be
smaller for an implementation based on fixed-task priority
scheduling (which is simpler), but that it would follow a
similar pattern as the values observed here. In addition, a
native implementation of just one protocol could probably
avoid some of SafeMC’s overheads. However, there is a
tradeoff between generality and efficiency; since SafeMC was
designed to support experimental comparisons and exploration
of protocol space, we went with the former.

C. Performance evaluation of existing protocols
One use case of SafeMC is the experimental evaluation of
different MCPs for a given multi-mode system, which is nec-

essary to understand the protocols’ tradeoffs and effectiveness.
To illustrate this, we performed experiments to evaluate the
mode-change latency of the five existing protocols described
in the setup, using the following three metrics:

• Release-new: The delay from the MCR instant to the
instant where all tasks associated with the new mode have
released their first new job. This metric measures how fast
a new mode is activated.

• Finish-old: The delay from the MCR instant to the instant
where all pending and executing jobs have completed.
This metric measures how fast the system completely
leaves the old mode.

• Finish-new-old: The delay from the MCR instant to the
instant where all pending and executing jobs, as well as
the first job of every task in the new mode, have finished.
This measures how fast the system completely enters the
new mode, without any jobs left over from the old mode.

(We omitted the Idle-Time Protocol because it is simplistic
and not well-suited for real-time response to mode-change
requests. This protocol continues to release jobs of all old tasks
and moves to the new mode only when the processor is idle;
this could take arbitrarily long and thus is highly impractical.)
Results. Fig. 3 shows the maximum mode-change delay of
each protocol across 1000 runs for different VCPU settings.
The results show that relative performance among the proto-
cols is similar across all four VCPU settings (4, 8, 16 and
32 VCPUs per mode); due to space constraints, we omit the
results for 4 and 8 VCPUs.

It can be observed from the results that the minimum-offset-
without-periodicity protocol – which delays the release of all
new jobs until the idle instant – appears to be the most efficient
according to all three performance metrics. In contrast, the
maximum-period-offset protocol – which delays the release
of new jobs of changed and new VCPUs for a duration equal
to the maximum period of all VCPUs – performs poorly in
activating a new mode (Release-new) and in entering the new
mode completely (Finish-new-old).

These results show that using the maximum period as the
delay offset (as the maximum-period-offset protocol does)

9

v0 = (10,2): Adaptive Cruise Control
v1 = (10,2): Lane Keeping Assistance
v2 = (50,3): GPS, road condition
v3 = (50,2): Communication, weather
v4 = (30,3): Map display, touch screen
v5 = (30,3): Music

v0 = (10,2): Adaptive Cruise Control
v1 = (10,2): Lane Keeping Assistance
v2 = (50,1.5): GPS, road condition
v3 = (50, 1): Communication, weather
v4 = (60,1.2): Map display, touch screen
v5 = (60,1.2): Music
v6 = (10,5): Safety checking

v2 = (50,3): GPS, road condition
v3 = (50,2): Communication, weather
v4 = (30,3): Map display, touch screen
v5 = (30,3): Music
v7 = (5,2): Steering and throttle

Autonomous Decision
Manual

MCR0 MCR1

Fig. 4: Multi-mode system case study. Here, each vi = (Pi,Bi) gives the period Pi and WCET Bi (in ms) of the task vi.

JOB TYPE Executing and Pending New
TASK TYPE OLD/UNCHANGED/CHANGED OLD UNCHANGED CHANGED NEW

Idle Time
Protocol CONTINUE [CONTINUE; BacklogGlobal: (>, 0)] [CONTINUE; BacklogGlobal: (>, 0)]

[RELEASE; BacklogGlobal: (=, 0)] [RELEASE; BacklogGlobal: (=, 0)]

TASK TYPE OLD UNCHANGED CHANGED NEW

JOB TYPE Pend./Exec. Pending Executing New Executing Pending New New

MCR0
CONTINUE CONTINUE [RELEASE;

OffsetLR: OLD_PERIOD]
CONTINUE ABORT [RELEASE; OffsetLR: ∆] [RELEASE; TRUE]

Tasks: v0–v1 Tasks: v2–v5 Tasks: v6

MCR1 ABORT CONTINUE ABORT [RELEASE;
OffsetLR: OLD_PERIOD] [RELEASE; TRUE]

Tasks: v0,v1 ,v6 Tasks: v2–v5 Tasks: v7

Fig. 5: Primitives for the hybrid protocol.

can substantially hurt performance: if the current load at the
MCR instant is sufficiently small (this was the reason the
idle time was reached quickly in the minimum-offset-without-
periodicity protocol), this strategy will lead to unnecessary
delay. Hence, it seems useful to consider the backlog in
determining when to release new jobs, to avoid unnecessary
delay.

We can also observe from the results that, since these
protocols only release new jobs when there are no more
pending and executing jobs, they both can completely leave
the old mode much more quickly compared to other protocols
(as indicated by the Finish-old values). In other words, while
the maximum-period-offset protocol is a poor choice when a
prompt activation of the new mode is critical, it is suitable for
a mode transition where a fast completion of the originating
mode is more important.

Between the two asynchronous protocols, which release
new jobs even when old jobs have not yet completed, the
protocol without periodicity is faster in releasing new jobs
(Release-new). This is expected: this protocol does not need to
maintain periodicity, and thus, with a sufficiently small offset
(smaller than the task period), it can release new jobs earlier.
In addition, the results reveal that the asynchronous-without-
periodicity and the minimum-offset-with-periodicity protocols
have very similar performance, even though they are composed
of very different primitives.

VIII. CASE STUDY

To illustrate how SafeMC can be used to develop novel MCPs
for real systems, we conducted a case study of a simple multi-
mode system in self-driving cars. Our case study was created
based on the self-driving car patent published by Google [9].

A. Multi-mode system description
A self-driving car operates in (at least) three modes of oper-
ation: (i) autonomous mode, during which the software has

complete control of the vehicle; (ii) manual mode, during
which the driver maintains control; and (iii) decision mode,
which is an intermediate mode between the autonomous and
manual modes, during which various tests are performed to
ensure safe control handover to the driver. The functionality
and the tasks within each mode are described below.

In each mode, the system executes a subset of the following:

(C1) Essential control: Either Adaptive Cruise Control (v0) and
Lane Keeping Assistance (v1), or Steering and throttle
(v7).

(C2) Navigation and environmental control: GPS and road
condition sensors (v2); Communication and weather (v3).

(C3) Infotainment control: Map display and touch screen (v4);
Music (v5).

(C4) Safety decision checking: Safety checking (v6).

Initially, the system is in the autonomous mode, which
executes (C1) to (C3). Whenever the driver initiates a request
to take back control, the system first enters the decision
mode. In this mode, it executes (C4) to perform necessary
checks based on various kinds of information (such as the
environment, car speed, road condition/curvatures, lanes, and
future predictions) to ensure a safe handover. In addition,
it also needs to maintain control of the vehicle; thus, (C1)
remains unchanged, but the less critical tasks in (C2) and (C3)
have reduced execution budget and larger period to ensure
schedulability. While in the decision mode, if the safety check
produces positive output, the system then transitions to the
manual mode. In this mode, the system does not need to
execute (C4), and thus the parameters for (C2) and (C3) are
updated. In addition, since the driver has control, (C1) consists
of only steering and throttle (v7). Fig. 4 shows the modes and
their tasks’ parameters (period and WCET). All values are in
milliseconds.

10

B. Mode-change protocols

We considered two MCPs: (1) the existing minimal offset
with periodicity protocol, which was chosen to maintain the
periodicity of autonomous driving functions; this protocol was
defined globally for both transitions (MCR0 and MCR1); and
(2) a hybrid protocol, which was newly designed to provide
different mode-change semantics required by the different
transitions. We describe this hybrid protocol (Fig. 5) in detail.

For the first transition (to the decision mode), the system
executes a new task v6 for safety checks. Since this check
is critical for minimizing the delay to the manual mode, it
is released immediately. Since the system needs to maintain
control of the vehicle, v0 and v1 should not be affected by
the MCR. Finally, since v2 to v5 are less critical, the protocol
aborts all pending jobs to avoid overload, continues completing
the currently executing jobs to avoid context switch overhead,
and releases new jobs after a delay of ∆ = 1 ms.

For the second transition (to the manual mode), the protocol
releases the steering and throttle control v7 immediately, as it is
essential for the vehicle control. The autonomous functions, v0
and v1, are no longer needed; thus, no new jobs are released,
and pending and executing jobs can be safely aborted. The
logic for the pending and executing jobs of the less critical
functions v2 to v5 is the same as for the previous transition, and
their new jobs are released based on their tasks’ old periods.

Remarks. The goal of our case study was to show that
SafeMC can be applied to realistic multi-mode systems, and
that it can be used to design a completely new class of
protocols, e.g., protocols that consider the semantics of specific
mode transitions. The hybrid protocol serves as an example,
and is not necessarily the best choice for this application.
In addition, the minimal-offset-with-periodicity protocol was
chosen among the existing protocols instead of the one without
periodicity, because (1) it is critical to maintain periodicity
for essential autonomous driving functions – i.e., the adap-
tive cruise control and lane-keeping assistance tasks – when
transitioning from autonomous to decision mode (which the
hybrid protocol also does), and (2) it performed better than
other protocols with periodicity.

C. Evaluation results

We specified the multi-mode system and the above two
protocols in SafeMC, and performed experiments using our
prototype to evaluate the relative performance of the two
protocols. Table II shows the maximum values of the mode-
change delay in ms (Release-new, Finish-old, and Finish-new-
old), computed across 100 runs, for each transition under the
two protocols.

Transition Protocol Release-new Finish-old Finish-new-old

MCR0
Existing 32.984 2.005 39.927
Hybrid 3.441 15.223 26.176

MCR1
Existing 46.312 8.305 51.036
Hybrid 0.005 1.908 11.947

TABLE II: Maximum mode-change delay (in ms).

For the transition from the autonomous to the decision
mode, our hybrid protocol is substantially more effective

in both the Release-new and Finish-new-old metrics. For
example, it is almost 10 times faster than the existing protocol
in releasing new jobs in the new mode, and thus allows the
safety checks to be done much more quickly. In addition,
although it delays the completion of old jobs, it can completely
transition to the decision mode (i.e., complete both old jobs
and the first new job of the new tasks) a lot faster.

We further observe that, for the transition from the decision
mode to manual mode, our hybrid protocol outperforms the
existing protocol by an order of magnitude across all perfor-
mance metrics. These results demonstrate that, using SafeMC,
it is possible to design and evaluate a whole new class of
protocols that are optimized for specific and realistic multi-
mode systems.

For completeness, we also conducted experiments for the
minimal-offset-without-periodicity protocol, since it offered
the best performance among the existing protocols (Sec-
tion VII) even though it violates the periodicity requirement
of our case study. The results show that, for the autonomous-
to-decision transition, it performs better in releasing new
jobs and finishing old jobs, but worse in completely entering
the new mode, compared to the hybrid protocol. For the
decision-to-manual transition, however, it performs several
times worse than the hybrid protocol in all three metrics. We
also note that, unlike the hybrid protocol, the minimal-offset-
without-periodicity protocol does not preserve periodicity of
the essential autonomous driving functions, and thus it may
not be suitable in practice for this particular case study.

IX. CONCLUSION

In this paper, we have argued that it is often difficult to
determine which mode-change protocol is best for a given
application: existing work often omits an experimental evalu-
ation entirely, or makes choices that are incompatible with
those in other systems; additionally, practical applications
often require customizations, which can invalidate the analysis
or destroy important properties. To address these problems,
we have identified a set of common primitives that are at the
heart of many existing MCPs; this allowed us to decompose
existing MCPs into an MCP-specific algorithmic “core” and
an MCP-independent, shared runtime. We have shown that our
primitives can be used to express a wide variety of existing
(and hopefully future) MCPs, and we have implemented them
in a system called SafeMC. We hope that SafeMC can be an
asset both for practitioners and for future research in this area
– e.g., by enabling side-by-side experimental comparisons, or
by supporting rapid prototyping and customization.

ACKNOWLEDGEMENT

This research was supported in part by ONR N00014-
16-1-2195, NSF CNS 1703936, CNS 1563873 and CNS
1505799, and the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-16-C-0056 and
HR0011-17-C-0047.

11

REFERENCES

[1] T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and
W. Yi. TIMES: a tool for schedulability analysis and code
generation of real-time systems. In FORMATS, 2003.

[2] A. Azim and S. Fischmeister. Efficient mode changes in
multi-mode systems. In ICCD, 2016.

[3] S. Baruah and A. Burns. Implementing mixed criticality
systems in Ada. In Ada-Europe, 2011.

[4] A. Burns. System mode changes-general and criticality-
based. In WMC, 2014.

[5] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task
model for adaptive rate control. In RTSS, 1999.

[6] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni.
Elastic scheduling for flexible workload management.
IEEE Transactions on Computers, 51(3):289–302, 2002.

[7] B. Ford and S. Susarla. CPU inheritance scheduling. In
OSDI, 1996.

[8] S. Goddard and X. Liu. A variable rate execution model.
In ECRTS, pages 135–143, 2004.

[9] L. Gomez, N. Fairfield, A. Szybalski, P. Nemec, and
C. Urmson. Transitioning a mixed-mode vehicle to
autonomous mode, Dec 2011. US Patent 8,078,349.

[10] H.-M. Huang, C. Gill, and C. Lu. Implementation and
evaluation of mixed-criticality scheduling approaches for
sporadic tasks. ACM Trans. Embed. Comput. Syst.,
13(4s):126:1–126:25, Apr. 2014.

[11] Y. S. Kim and H. W. Jin. Towards a practical imple-
mentation of criticality mode change in RTOS. In ETFA,
2014.

[12] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig.
Flattening hierarchical scheduling. In EMSOFT, 2012.

[13] F. Maraninchi and Y. Rémond. Mode-automata: a new
domain-specific construct for the development of safe
critical systems. Science of Computer Programming,
46(3):219–254, 2003.

[14] G. Muller, J. L. Lawall, and H. Duchesne. A framework
for simplifying the development of kernel schedulers:
design and performance evaluation. In HASE, 2005.

[15] M. Neukirchner, K. Lampka, S. Quinton, and R. Ernst.
Multi-mode monitoring for mixed-criticality real-time
systems. In CODES+ISSS, 2013.

[16] L. T. X. Phan, S. Chakraborty, and I. Lee. Timing anal-
ysis of mixed time/event-triggered multi-mode systems.
In RTSS, 2009.

[17] L. T. X. Phan, S. Chakraborty, and P. Thiagarajan. A
multi-mode real-time calculus. In RTSS, 2008.

[18] L. T. X. Phan, I. Lee, and O. Sokolsky. Compositional
analysis of multi-mode systems. In ECRTS, 2010.

[19] L. T. X. Phan, I. Lee, and O. Sokolsky. A semantic
framework for mode change protocols. In RTAS, 2011.

[20] L. T. X. Phan, M. Xu, J. Lee, I. Lee, and O. Sokolsky.
Overhead-aware compositional analysis of real-time sys-
tems. In RTAS, 2013.

[21] J. Real and A. Crespo. Mode change protocols for real-
time systems: A survey and a new proposal. Real-Time
Systems, 26(2):161–197, 2004.

[22] J. D. Regehr. Using Hierarchical Scheduling to Support

Soft Real-Time Applications in General-Purpose Oper-
ating Systems. PhD thesis, University of Virginia, May
2001.

[23] Y. Shin, D. Kim, and K. Choi. Schedulability-driven
performance analysis of multiple mode embedded real-
time systems. In DAC, 2000.

[24] The Xen project. https://www.xenproject.org.
[25] S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokol-

sky, and I. Lee. Real-time multi-core virtual machine
scheduling in Xen. In EMSOFT, 2014.

[26] M. Xu, L. T. X. Phan, H. Y. Choi, and I. Lee. Analysis
and implementation of global preemptive fixed-priority
scheduling with dynamic cache allocation. In RTAS,
2016.

[27] M. Xu, L. T. X. Phan, O. Sokolsky, S. Xi, C. Lu,
C. Gill, and I. Lee. Cache-aware compositional analysis
of real-time multicore virtualization platforms. Real-Time
Systems, 51(6):675–723, 2015.

12

