
Simulation Relations, Interface Complexity, and ResourceOptimality
for Real-Time Hierachical Systems

Arvind Easwaran, Madhukar Anand, Insup Lee, Linh T.X. Phan,and Oleg Sokolsky
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA, 19104, USA

{arvinde,anandm,lee,linhphan,sokolsky}@seas.upenn.edu

Abstract

Compositional schedulability analysis of hierarchical real-
time systems is a well-studied problem. Various techniques
have been developed to abstract resource requirements of com-
ponents in such systems, and schedulability has been ad-
dressed using these abstract representations (also calledcom-
ponent interfaces). These approaches for compositional anal-
ysis incur resource overheads when they abstract components
into interfaces. In this talk, we define notions of resource
schedulability and optimality for component interfaces, and
compare various approaches.

This research was support in part by AFOSR FA9550-07-1-
0216 and NSF CNS-0720703.

1. Introduction
Compositional schedulability analysis of hierarchical sys-

tems has been a subject of extensive studies in the real-time
systems community [1, 3–5, 7–11, 15, 17, 19–23]. Many re-
source models have been proposed to abstract component re-
source requirements, such as periodic [8,15,19,20], bounded-
delay [9, 21], EDP [7]) and demand bound functions [22, 23].
There have also been various extensions supporting interac-
tions between components using task abstractions [1,4,17]and
resource-sharing protocols [3, 5, 10]. However, the notionof
resource optimalityfor such systems has not been sufficiently
discussed. Given a hierarchical system, resource optimality
refers to a quantitative measure of the minimum total amount
of resource required by this system. Without knowledge of this
measure, it is not possible to quantitatively assess the various
analysis techniques. Although local component-level resource
utilization bounds for interfaces have been studied [20], there
is no global system-level measure for resource usage.

This paper aims to formalize the concepts of resource
optimality for component interfaces in hierarchical systems.
Specifically, we define two notions of optimality:load-based
or load optimality, and demand-basedor demand optimal-
ity. Intuitively, a component interface is load optimal iff the
amount of resource required by the interface is the same as the
average resource requirements of component workload. On

the other hand, an interface is demand optimal iff the amount
of resource required by the interface is the same as the actual
resource demand of component workload. We further present
a technique for generating load optimal interfaces, for both
open (components are partially specified) and closed (complete
knowledge of all the components in the system) systems.

Assuming component workloads comprised of constrained
deadline periodic tasks, we show that load optimal interfaces,
for both open and closed hierarchical systems, can be gener-
ated in pseudo-polynomial time. Each load optimal interface
is represented by a single constrained deadline periodic task,
the size of which is constant in comparison to the input speci-
fication. Through an example, we demonstrate that a demand
optimal interface – for both open and closed component – has
exponentially larger number of tasks in comparison to number
of tasks in the underlying component.

The techniques presented in this paper provide a baseline
for resource utilization in hierarchical systems; they identify
the minimum resource requirements of workloads scheduled
under a given scheduling hierarchy. In addition, they also re-
veal an interesting trade-off between resource requirements of
interfaces and their size in terms of number of tasks. In the
example we consider for demand optimality, number of tasks
in the interface is exponentially larger than number of tasks
in the underlying component workload. Although in general
this increase is unavoidable, demand imposed by a set of tasks
in the workload may sometimes be represented by a smaller
set of tasks, reducing the size of the interface. In Section 5.2,
we characterize some of the cases when such a reduction is
possible without loss of precision in demand. It is interesting
to note that resource model based interfaces and load optimal
interfaces offer an extreme case of such reduction, essentially
over-approximating resource demand and collapsing the entire
workload into a single task. The optimality characterization
presented here, in turn, helps us to understand this trade-off
between over-approximation of demand and interface size.
Related work. Since a two-level system was introduced by
Deng and Liu [6], its schedulability has been analyzed under
Fixed-Priority (FP) [12] and Earliest Deadine First (EDF) [14,
16] scheduling. The bounded-delay resource model [18] has

been proposed to achieve a clean separation in a multi-levelhi-
erarchical scheduling framework, and analysis techniqueshave
been introduced for this resource model [9,21].

Periodic resource model based interfaces, together with
their compositional analysis, is a well known technique that
has been studied extensively [15, 19, 20]. These models have
been developed underFP [1, 4, 15, 19] andEDF [20] schedul-
ing. Techniques have also been proposed to support interacting
tasks [17] and mutually exclusive resource sharing between
components [3, 5, 10]. Extensions to periodic models with
more efficient interfaces have also been proposed [7]. There
have also been studies on incremental analysis for hierarchical
systems [8, 11, 22, 23]. They abstract resource requirements
of components in the form of demand functions [22, 23], and
bounded-delay [11] or periodic [8] resource models.

2. Hierarchical systems and their semantics
A hierarchical real-time systemcontains a finite set of jobs

that are scheduled in a hierarchical manner, forming a tree
of components. Each component of the hierarchy consists
of a workload, given by a finite number of job sets and sub-
components, and a scheduling policy for the workload. A real-
time job is specified by a tuple(r, c, d) with r being the instant
at which the job is released (with respect to the origin of time),
c the number of resource units required by the job, andd the
job’s deadline relative to the release instant. Here, we assume
that a granularity of time has been fixed.

Definition 1 (Real-time component) A real-time component
C is specified asC = 〈W ,S〉, whereW is a finite set of real-
time components and job sets, andS is a scheduling policy.
C is called anelementary componentif W comprises only job
sets; otherwise, it is anon-elementary component.

EDF

DMEDF

EDF

DM

EDF

C1 C2

C3

Component comprising of C4, C3

Component comprising of C1, C2

C5

C4

Figure 1. A hierarchical real-time system

Figure 1 shows a hierarchical systemH = 〈C5, DM〉, where the
root componentC5 consists of a non-elementary component
C4 and an elementary componentC3 that are scheduled using
DM (Deadline Monotonic) policy. Further, the whole system is
scheduled underEDF on the hardware platform.
Assumptions. We assume that each job set is generated by
a set of independent, constrained deadline periodic tasks.A
constrained deadline periodic taskτ = (T, C, D) has release
separationT, maximum resource capacity requirementC, and

relative deadlineD, whereC ≤ D ≤ T. τ generates the job
set{(t, C, D)|T dividest}.

We further assume that the system is scheduled on a gener-
alized uniprocessor platform having constantbandwidthb (i.e.,
providing b × t resource units in everyt time units) where
0 < b ≤ 1, and each component is scheduled under either
EDF or DM. We recall thatEDF is a dynamic-priority scheduler
that selects for execution the job with earliest absolute dead-
line, whereasDM is a fixed-priority scheduler that prioritizes
jobs based on their (fixed) relative deadlines. We too assume
negligible preemption overheads.
Scheduling elementary components.Given a periodic task
set T = {τ1 = (T1, C1, D1), . . . , τn = (Tn, Cn, Dn)}.
Without loss of generality, we assumeD1 ≤ . . . ≤ Dn. The
utilization ofT is defined byUT =

∑n

i=1
Ci

Ti
.

Let C = 〈T , EDF〉 be an elementary component that is
scheduled on a uniprocessor platform having bandwidthb. Re-
call that the demand bound function [2,13] ofC gives its max-
imum resource demand in any time interval, computed by

dbfC(t) =

n
X

i=1

„—

t + Ti −Di

Ti

�

Ci

«

(1)

Theorem 1 (Schedulability under EDF [2]) Component
C = 〈T , EDF〉 is schedulable on a uniprocessor platform
having bandwidthb iff

∀t s.t.0 < t ≤ L, dbfC(t) ≤ b × t, (2)

whereL = min
{

LCM + maxn
i=1 Di,

UT (maxn
i=1(Ti −Di))
b−UT

}

,

LCM being the least common multiple ofT1, . . . , Tn.

The schedulability loadof C, calledLOADC , is defined as
maxt∈(0,L]

dbfC(t)
t

. If b ≥ LOADC , the processor can suc-
cessfully scheduleC. SinceEDF is an optimal scheduler for
periodic tasks, thefeasibility loadof task setT (LOADT) is
also equal toLOADC . As a result,T is not schedulable by any
uniprocessor with bandwidth smaller thanLOADC under any
scheduling algorithm.

Similarly, consider an elementary componentC = 〈T , DM〉.
The request bound function [13] ofC specifies the maximum
resource requested in any time interval, computed by

rbfC,i(t) =
X

k≤i

„‰

t

Tk

ı

Ck

«

(3)

The schedulability condition forC is given in Theorem 2.
The schedulability loadof C is defined asLOADC =

maxi=1,...,n mint∈(0,Di]
rbf(C,i)(t)

t
.

Theorem 2 (Schedulability under DM [13]) Component
C = 〈T , DM〉 is schedulable on a uniprocessor platform
having bandwidthb iff

∀i, ∃t ∈ [0, Di] s.t. rbfC,i(t) ≤ b × t. (4)

Scheduling non-elementary components.While scheduling
the workload (job sets) of an elementary component is straight-
forward, scheduling the workload of a non-elementary com-
ponent faces many challenges. To schedule the workload of
a non-elementary component, we must present a set of jobs
to the component’s scheduler. In the case ofDM scheduler,
this set of jobs must be generated by a collection of tasks with
fixed relative deadlines. In other words, each componentCi in
the workload ofC must be transformed into a set of tasks/jobs
that C’s scheduler can schedule. Further, these transformed
tasks/jobs ofCi should be such that (s.t. their resource require-
ment underC’s scheduler is at least as much as the resource
demanded by componentCi. We call them aninterfaceof Ci.
Definition 2 (Component interface) Consider a component
C = 〈W ,S〉 with W = {C1, . . . , Cn}. Let C itself be sched-
uled underS ′, andIW denote the set of interfaces of workload
W. IC is an interface forC iff IC is schedulable underS′ im-
pliesIW is schedulable underS. In this definition, we assume
thatIW executes underS wheneverIC is scheduled byS ′. An
interface of a task set is the task set itself.

A non-elementary componentC = 〈{C1, . . . , Cn},S〉 is said
to befeasibleon a uniprocessor platform having bandwidthb,
if there exists interface setI = {IC1 , . . . , ICn

} such thatI is
schedulable underS on this resource. The fundamental ques-
tion in schedulingC now is, “What is the interface that eachCi

must present toS?”. The rest of this paper aims to answer this
question, and in the process generates component interfaces
that areoptimal with respect to resource utilization. Without
loss of generality, our interface generation techniques assume
vertical synchronizationbetween components and their inter-
faces, i.e., the release time of first job in a component is syn-
chronized with that of the first job in the component’s inter-
face. Observe that vertical synchronization does not enforce
any horizontal synchronizationbetween the release times of
jobs in different components in the system (which often does
not hold if the system is open).

3. Optimality in hierarchical systems
Component interfaces are generally computed based on a

chosen representationF of the components’ resource require-
ment used in schedulability analysis. Interface optimality is
in turn defined with respect to (wrt.) this representation. De-
pending on the expressiveness ofF , an optimal interface wrt.
F may or may not be both sufficient and necessary for schedu-
lability analysis. Further, optimality of an interface wrt. a fixed
representationF can only be obtained by an optimal algorithm
for interface generation. Often, there is a trade-off between
accuracy and (storage and computational) complexity of rep-
resentations of resource requirements, and hence of the inter-
faces and their generation. We consider two representationsF :
the former characterizes theaverage load(bandwidth) and the
latter gives theexact demand(dbf).

3.1. Load-based optimality

The feasibility load LOADIC
of an interfaceIC is the

smallest bandwidth required from a uniprocessor platform to

successfully schedule tasks inIC under some scheduler. Sim-
ilarly, given a set of interfacesI = {IC1 , . . . , ICn

} and a
schedulerS, theschedulability loadLOADI,S is the smallest
bandwidth required from a uniprocessor platform to success-
fully scheduleI underS. The feasibility and schedulability
loads of an interface comprising constrained deadline periodic
tasks under eitherEDF or DM are given in the previous section.

Definition 3 (Local load optimality) Consider a component
Ci = 〈{Ci1 , . . . , Cim

},Si〉 and letIi be a set of interfaces
of the workload{Ci1 , . . . , Cim

}. ICi
is locally load optimaliff

LOADICi
= LOADIi,Si

.

Although there could be many possible locally load optimal
interfaces forCi, not all of them may result in a load optimal
interface forCi’s parent. Hence the notion of global optimality.

Definition 4 (Global load optimality) Consider a compo-
nentC = 〈{C1, . . . , Cn},S〉. Let I = {IC1

, . . . , ICn
} be a

set of locally load optimal interfaces of the workload ofC, and
IC a locally load optimal interface generated fromI. Each
interfaceICi

∈ I is globally load optimaliff LOADIC
≤

LOADI′

C
for any given setI ′ of locally load optimal inter-

faces of the workload ofC and every local optimal load inter-
faceI ′

C generated fromI ′.

Note that if Ci is an elementary component, its job set is a
global load optimal interface. Theorem 3 highlights the rela-
tionship between load optimal interfaces and schedulability.

Theorem 3 Consider a hierarchical systemH = 〈C,S〉, with
C1, . . . , Cm denoting all the components in the tree rooted at
C. Let interfacesI = {IC1

, . . . , ICm
} of all these components

be globally load optimal. Also, letIC denote a load optimal
interface forC generated fromI. If eachCi is scheduled exclu-
sively on a uniprocessor having bandwidthLOADICi

(= bi),
thenC is not schedulable on any uniprocessor having band-
width b that is smaller thanLOADIC

.

Theorem 3 is proved by induction on the height of nodeC.
Overheads of load optimality. Although a load optimal in-
terface minimizes the average resource utilization, it mayincur
overheads with respect to the actual demand of the underly-
ing component. As an example, consider a componentC3 =
〈{C1, C2}, EDF〉, with C1 = 〈{(6, 1, 6), (12, 1, 12)}, EDF〉 and
C2 = 〈{(5, 1, 3), (10, 1, 7)}, EDF〉. DefineIC1

= (1, 0.25, 1),
IC2

= (1, 0.43, 1), IC3
= (1, 0.68, 1) andI ′ = {IC1

, IC2
}.

The demand bound functions ofIC3 , C1, and component2
are plotted in Figure 2(a). One can verify thatLOADIC1

=
LOADC1

, LOADIC2
= LOADC2

, and LOADIC3
=

LOAD〈I′,EDF〉. ThusIC1
andIC2

are globally load optimal.
However, as seen in Figure 2(b),LOADIC3

> LOADI , where
I = {(6, 1, 6), (12, 1, 12), (5, 1, 3), (10, 1, 7)}. Assuming ver-
tical synchronization, it is easy to see that the total resource
requirements ofI is equal to the total resource requirements
of componentsC1 andC2, and henceI is an interface for com-
ponentC3. This shows that even thoughIC3

is feasible only
on a uniprocessor platform having bandwidthLOADIC3

, com-
ponentC3 itself is feasible on a platform having bandwidth
strictly smaller thanLOADIC3

.

 0 5 10 15 20
 0

 2

 4

 6

 8

 10

Time

IC3

IC2

IC1

C1

d
b
f

(a) Load optimal interface

 0 5 10 15 20
 0

 2

 4

 8

 10

Time

 6

d
b
f

IC3

LOADIC3

I

LOADI

(b) Sub-optimality

Figure 2. Load vs. demand optimality

3.2. Demand-based optimality

When the hierarchical system under consideration is an
open system, a component in the system is not aware of other
components scheduled with it. Therefore, when generating an
interface for such a component, we must consider the worst-
case interference from other components scheduled with it.
This interference is made precise using azero slack assump-
tion. Given a componentCi = 〈{Ci1 , . . . , Cim

},Si〉. Let Ii

denote the set of interfaces of the subcomponents. We assume
that the schedule ofIi haszero slack. In other words, the
amount of resource supplied toCi is such that each job inIi

finishes as late as possible, subject to satisfaction of all job
deadlines.

Definition 5 (Local demand optimality (open systems))
Consider a componentCi = 〈{Ci1 , . . . , Cim

},Si〉. Let Ii be
the set of interfaces of workload{Ci1 , . . . , Cim

}. Interface
ICi

is locally demand optimal iff assuming zero slack forCi

(and hence forICi
), schedulability ofIi under Si implies

feasibility ofICi
.

Definition 6 (Global demand optimality (closed systems))
Consider a hierarchical system〈C,S〉. Let IC denote an
interface forC generated using some set of interfaces for all
components inC. IC is globally demand optimal if and only
if, whenever there exists interfaces for all the components
in C such that the components are schedulable using those
interfaces,IC is feasible.

As the actual interference from other components may be
smaller than the worst-case scenario considered in the zero
slack assumption, local demand optimal interfaces are not al-
ways globally optimal. Intuitively, if it is possible to sched-
ule the system’s workload using some set of interfaces, it is
also possible to schedule the workload using a set of globally
demand optimal interfaces. Note that, the interface of a con-
strained deadline periodic task set (i.e., task set itself)is (local
and globally) demand optimal.

4. Computing load optimal interfaces
Definition 7 presents a globally load optimal interface for

both open and closed hierarchical systems (cf. Theorem 4).

Definition 7 (Schedulability load based abstraction)If Ci

is a constrained deadline periodic task set then abstraction
ICi

= Ci. OtherwiseICi
= {τ i = (1, LOADWCi

,Si
, 1)},

whereSi denotes scheduler used byCi, andWCi
denotes the

set of schedulability load based abstractions ofCi’s children.
τ i is a periodic task, and the release time of its first job
coincides with the release time of the first job in componentCi

(vertical synchronization).

Finally, we can prove the optimality of the interfaceICi
.

Theorem 4 Given componentC = 〈{C1, . . .Ci, . . . , Cn},S〉.
If interfacesIC andI = {IC1

, . . . , ICi
, . . . , ICn

} are as given
by Definition 7, thenICi

is a globally load optimal interface.

We prove this theorem by induction on the height ofCi in the
underlying subtree rooted atC.
Complexity Analysis. Interfaces in Definition 7 can be
computed in pseudo-polynomial time wrt. input specifica-
tion. LOADWCi

,Si
can be computed using Equation (2) or

(4). Since these equations must be evaluated for all values
of t in the range(0, L] underEDF, and(0, Dj] for each task
τ j ∈ WCi

underDM, interfaceICi
can be generated in pseudo-

polynomial time. Further, interfaceICi
only hasO(1) storage

requirements with respect to the input size.
Task models. Although we assume periodic tasks in this pa-
per, the technique in Definition 7 can generates load optimal
interfaces for constrained deadline sporadic tasks, assuming all
job release times are multiples of the basic chosen time unit.
The only modifications required in Definition 7 are that, (1)
taskτ i is sporadic, and (2)τ i is released whenever there are
unfinished jobs active inCi, subject to these releases satisfying
the minimum separation criteria. It is straightforward to show
that Theorem 4 holds for such interfaces as well.
Preemptions. Preemption overheads can be upper bounded
by a function that is monotonically decreasing with respectto
task periods in interfaces (e.g., [8, 15]). Under this assump-
tion, our interface generation technique in Definition 7 will in-
cur maximum preemption overhead. However, the technique
can be modified such that taskτ i = (k, LOADWCi

×k, k),
wherek is any divisor of theGCD (greatest common divisor)
of periods and deadlines of tasks in{WCi

}
⋃

{WCj
|j 6= i}.

Here{Cj |j 6= i} denotes other components scheduled withCi.

Thus, we can generate load optimal interfaces without forcing
interface tasks to have period one.
Comparison to resource model based interfaces.It is well
known that the feasibility load of interfaces generated using
bounded delay [9, 21] or periodic [15, 20] resource models is
lower bounded by the schedulability load of underlying com-
ponent. In fact, this schedulability load is achieved only when
periodΠ for periodic models, or delayδ for bounded delay
models, is0 (see Theorems 7 and 8 in [20] and Theorems 4
and 5 in [21]). NoteΠ or δ = 0 indicates that the interface
is not realizable, becauseEDF and DM cannot schedule tasks
generated from such models. In all other cases, the feasibility
load of interface is strictly larger than the schedulability load of
component. Hence, these interfaces are not load optimal. The
reason for this sub-optimality is lack of vertical synchroniza-
tion between the component and its interface. EDP resource
model based interfaces can achieve load optimality whenever
deadline of the model is equal to its capacity (∆ = Θ), and pe-
riodΠ = 1. Correctness of this statement follows from the fact
that (1) in any time interval of lengthΠ this model guarantees
Θ units of resource, and (2) transformation from EDP model
to periodic task is demand optimal (see Equation 6 and Defini-
tion 5.2 in [7]). Note thatΠ can also take values as described in
the previous paragraph to account for preemption overheads.

5. Demand optimal interfaces
Although demand optimal interfaces are optimal for

schedulability analysis, their sizes in general are exponentially
larger than the input size. We first present an example to illus-
trate this complexity, and discuss scenarios under which load
optimal interfaces also satisfy demand optimality afterwards.

5.1. Hardness of demand optimality

We employ asynchronous tasks to represent a compo-
nent interface in this section. A constrained deadline, asyn-
chronous periodic task set is specified asT = {τ1 =
(O1, T1, C1, D1), . . . , τn = (On, Tn, Cn, Dn)}, where each
τ i is a periodic task with offsetOi, exact separationTi, worst
case execution requirementCi, and relative deadlineDi, such
that Ci ≤ Di ≤ Ti. For each taskτ i, its jobs are released
at timesOi, Oi + Ti, Oi +2 Ti, . . ., and each job requiresCi

units of resource withinDi time units.

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

Deadline shift

τ 2

τ 1

τ 1

18 21 27 28

τ 2

Figure 3. Partial schedule of component C1

Consider an open componentC = 〈{C1, C2}, EDF〉 with
C1 = 〈{τ1 = (7, 1, 7), τ2 = (9, 1, 9)}, DM〉 and C2 is as-
sumed to interfere with the execution ofC1 in an adversarial
manner (zero slack assumption). In componentC1, jobs of
taskτ1 have a higher priority than jobs of taskτ2. Further, due

to zero slack assumption, each job ofτ2 finishes its execution
only by its deadline. Thus, some jobs ofτ1 are required to fin-
ish their executions much before their deadlines. For instance,
consider the job ofτ2 released at time18, with deadline at27.
Since schedule ofC1 has zero slack, this job finishes its exe-
cution requirements only by time27 (its latest possible finish
time). Then, the job ofτ1 released at time21 must also finish
its execution by time27 underDM (see Figure 3).

Interval

Demand

(0,7] (7,9] (14,18] (21,27] (28,35] (35,42] (42,45] (49,54] (56,63]

1 1 1 1 1 1 1 1 1

(a) Demand intervals forτ1

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60

D
em

an
d

Time

(b) Demand function ofτ1

Figure 4. Demand of task τ1 in component C1

The amount of resource required by jobs of taskτ1 in the
interval(0, LCM], is given in Figure 4(b). Here,LCM(= 63)
denotes the least common multiple of periods7 and9. Also,
release constraints on these demands are given in Table 4(a).
As discussed above, these demands and release constraints are
exact in the sense that they are necessary and sufficient to guar-
antee schedulability ofτ1. Then, any locally demand opti-
mal interface must reproduce this demand function and release
constraints exactly to abstractτ1.

Suppose an asynchronous periodic taskτ = (O, T, C, D)
is used to abstract the resource requirements of some jobs of
τ1. Then,O andD must be such that(O, O+ D] is one of
the entries in Table 4(a). Also,T must be such that, for allk,
O +k T = l LCM +a andO+k T + D = l LCM +b for some
l ≥ 0 and entry(a, b] in the table. It is easy to see that these
properties do not hold for anyT < 63. This means that taskτ
can be used to abstract the demand of only one job ofτ1 in the
interval(0, 63]. Therefore, at leastLCM

T1
= 9 tasks are required

to abstract the demand of all jobs ofτ1. This highlights the
exponential complexity of demand optimal interfaces as well
as the necessity of increased interface size in both open and
closed systems.

5.2. Comparisons to load optimal interfaces

Local demand optimality vs. load optimality. Let T =
{τ1 = (T1, C1, D1), . . . , τn = (Tn, Cn, Dn)} be a con-
strained deadline periodic task set andC = 〈T , EDF〉. We
know that(1, LOADC , 1) is a load optimal interface forC. Fur-
ther, from Section 4,IC = (GCD, LOADC ×GCD, GCD) is
also a load optimal interface forC, whereGCD is the greatest

common divisor ofT1, . . . , Tn, D1, . . . , Dn. SupposeT1 =
· · · = Tn = D1 = · · · = Dn = GCD. Then,IC is also a
local demand optimal interface sincedbfC = dbfIC

(cf. Defi-
nition 5). However, ifTi 6= Di for somei orTi 6= Tj for some
i andj, IC is not a local demand optimal interface. This is be-
cause there existst such thatdbfC(t) < LOADC ×t = dbfIC

andt = k × GCD for some integerk. (Indeed, ifTi 6= Di for
somei, thent = LCM whereLCM is the least common multi-
ple ofT1, . . . , Tn. Otherwise,t = mini=1,...,n Ti, if Ti 6= Tj

for somei, j andDi = Ti for all i). Similar results hold for
components withDM scheduler, i.e., load optimality results in
local demand optimality in an extremely restrictive case.
Global demand optimality vs. load optimality. Consider
a componentC, with C1, . . . , Cm denoting all the elementary
components in the tree rooted atC. SupposeC1, . . . , Cm are
the only components inC with periodic tasks in their work-
loads, and eachCi uses schedulerSi = EDF. Let IC be
a load optimal interface forC. Assuming all interfaces in
this system having period 1, Theorem 3 impliesLOADIC

=
∑m

i=1 LOADCi,Si
. Now, suppose there is a timet such that

for eachi, LOADCi,Si
×t = dbfCi

(t). Then,IC is also glob-
ally demand optimal, because

∑m

i=1 LOADCi,Si
is indeed the

minimum bandwidth required from a uniprocessor platform to
scheduleC. However, if such at does not exist or if someSi

is DM, then
∑m

i=1 LOADCi,Si
can be strictly larger than the

minimum required bandwidth (e.g., the example in Section 3);
as a result,IC is not globally demand optimal.

5.3. Size vs. overhead in interface generation

We have seen in Section 4 that a load optimal interface can
be represented using one periodic task. At the same time, we
have shown that load optimal interfaces can suffer from signif-
icant overhead compared to demand optimal interfaces. On the
other hand, the size of a demand-optimal interface can contain
exponentially many periodic tasks in the size of the compo-
nent, making its generation and its use in schedulability anal-
ysis intractable in practice. Intuitively, there is a tradeoff be-
tween the amount of overhead the interface incurs and the size
of the interface.

Currently, there are no known techniques for implementing
this tradeoff. In particular, it appears to be quite difficult to
generate an interface of a given size whole load bounded from
above by the load of the load-optimal interface and from below
by the load of the demand-optimal interface.

6. Conclusions and future work
We have introduced two notions of resource optimality in

hierarchical systems and proposed efficient techniques to gen-
erate load optimal interfaces wrt. average resource require-
ments. Each load optimal interface comprises of a single task,
thereby hasO(1) storage requirements in terms of the input
size. We further showed the hardness in generating demand
optimal interfaces through an example. Although the size of
demand optimal interfaces is exponential in general, it would
be interesting to identify special cases where optimal interfaces
can be represented by a smaller set of tasks. As the accuracy

and complexity of resource interfaces are often involved ina
trade-off, instead of capturing the exact resource demands, one
can approximate them using simpler sets of tasks according to
the degree of accuracy required by the systems.

References

[1] L. Almeida and P. Pedreiras. Scheduling within temporalpar-
titions: response-time analysis and server design. InEMSOFT,
2004.

[2] S. Baruah, R. Howell, and L. Rosier. Algorithms and complex-
ity concerning the preemptive scheduling of periodic, real-time
tasks on one processor.Journal of Real-Time Systems, 2:301–
324, 1990.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: A synchro-
nization protocol for hierarchical resource sharing in real-time
open systems. InEMSOFT, pages 279–288, 2007.

[4] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive
scheduling. InRTSS, 2005.

[5] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed
priority pre-emptive systems. InRTSS, 2006.

[6] Z. Deng and J. W.-S. Liu. Scheduling real-time applications in
an open environment. InRTSS, December 1997.

[7] A. Easwaran, M. Anand, and I. Lee. Optimal compositional
analysis using explicit deadline periodic resource models. In
RTSS, 2007.

[8] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremental
schedulability analysis of hierarchical real-time components. In
EMSOFT, 2006.

[9] X. A. Feng and A. K. Mok. A model of hierarchical real-time
virtual resources. InRTSS, 2002.

[10] N. Fisher, M. Bertogna, and S. Baruah. The design of an edf-
scheduled resource-sharing open environment. InRTSS, pages
83–92, 2007.

[11] T. A. Henzinger and S. Matic. An interface algebra for real-time
components. InRTAS, 2006.

[12] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open environ-
ment for real-time applications. InRTSS, 1999.

[13] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic schedul-
ing algorithm: exact characterization and average case behavior.
In RTSS, pages 166–171, December 1989.

[14] G. Lipari and S. Baruah. Efficient scheduling of real-time multi-
task applications in dynamic systems. InRTAS, 2000.

[15] G. Lipari and E. Bini. Resource partitioning among real-time
applications. InECRTS, July 2003.

[16] G. Lipari, J. Carpenter, and S. Baruah. A framework for achiev-
ing inter-application isolation in multiprogrammed hard-real-
time environments. InRTSS, 2000.

[17] S. Matic and T. A. Henzinger. Trading end-to-end latency for
composability. InRTSS, 2005.

[18] A. Mok, X. Feng, and D. Chen. Resource partition for real-time
systems. InRTAS, 2001.

[19] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein.
Analysis of hierar hical fixed-priority scheduling. InECRTS,
2002.

[20] I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. InRTSS, 2003.

[21] I. Shin and I. Lee. Compositional real-time schedulingframe-
work. In RTSS, 2004.

[22] L. Thiele, E. Wandeler, and N. Stoimenov. Real-time interfaces
for composing real-time systems. InEMSOFT, 2006.

[23] E. Wandeler and L. Thiele. Interface-based design of real-time
systems with hierarchical scheduling. InRTAS, 2006.

