
Real-Time Network Function Virtualization with Timing Interfaces

Linh Thi Xuan Phan
University of Pennsylvania

linhphan@cis.upenn.edu

ABSTRACT
More and more infrastructure is becoming virtualized. Recently
this trend has begun to include network functions – such as fire-
walls, WAN optimizers, and intrusion prevention systems – that
have traditionally been implemented as middleboxes using dedi-
cated hardware. This trend towards network function virtualization
(NFV) offers a variety of potential benefits that resemble those
of cloud computing, including consolidation, easier management,
higher efficiency, and better scalability. However, current cloud
technology is not a perfect match for NFV workloads: since the
infrastructure is shared, the time it takes for a packet to pass through
a particular function is no longer predictable, and can in fact vary
considerably. This is causing headaches for operators, who can no
longer treat network functions as “bumps in the wire” and must now
consider a complex web of possible interactions and cross-talk when
operating or diagnosing their systems.

In this position paper, we propose a compositional approach to-
wards building a scalable NFV platform that can provide latency
and throughput guarantees using timing interfaces. We discuss our
preliminary results that leverage and extend recent advances on tim-
ing interfaces and compositional theory from the real-time systems
domain to the NFV setting, and we highlight open challenges and
potential directions towards real-time NFV.

1. INTRODUCTION
Modern network functions no longer restrict themselves to forward-
ing packets; they also perform a variety of other functions, such as
firewalling, intrusion detection, proxying, load balancing, network
address translation, or WAN optimization. Traditionally, these func-
tions have been implemented as middleboxes on dedicated hardware.
But increasingly this infrastructure is being virtualized, and the phys-
ical middleboxes are being replaced by virtual machines that run
on a shared cloud infrastructure [24]. This trend towards network
function virtualization (NFV) offers a variety of potential benefits
that resemble those of cloud computing – including consolidation,
easier management, higher efficiency, and better scalability.

Ideally, the virtualized network functions would offer the same
properties as the middleboxes they have replaced. In particular, they
would offer low, predictable latencies and guaranteed throughput.
These properties are necessary for the network functions to remain
transparent to the rest of the network: they are expected to behave
as “bumps in the wire” that do not have any effect on the traffic that
passes through them (other than the effects they were designed for).
If network functions were allowed to interact with each other or to
introduce bottlenecks, jitter, or latency variations of their own, this
would create a massive headache for the network operators, who

Copyright retained by the authors.

would face an exponential increase in the number of possible failure
modes.

However, current virtualization technology can only support these
properties to a very limited extent. The reasons are partly historical:
most existing virtualization platforms were developed for cloud
computing, where some latency and throughput variations can often
be tolerated. Of course, there are scenarios in which such variations
have problematic consequences even for cloud workloads – such as
performance “cross-talk” between VMs [4, 10, 26] – and a number
of countermeasures have been developed over the years, ranging
from careful resource allocation [12, 17, 18, 26] to profiling and
reactive reconfiguration [20, 28, 29]. However, most existing so-
lutions take a best-effort approach and can correct only relatively
large performance variations – far above the latency and jitter that
packets typically experience in a network. A truly transparent NFV
platform would require a far more fine-grained, proactive approach.

In principle, this problem could be avoided through careful re-
source management, e.g., using classical real-time scheduling tech-
niques. However, classical real-time technology is designed for
workloads that are very different from virtual network functions.
For instance, the real-time literature often assumes that all the tasks
run on a single machine, have few interdependencies, and are rela-
tively static. In contrast, a shared NFV infrastructure would have
a much larger number of tasks that would typically span several
machines and might adapt at runtime to changes in the traffic.

Fortunately, there are two recent developments in the real-time
systems domain that have brought a solution within reach: 1) Com-
positional scheduling algorithms [2, 15, 21, 23, 25, 27], which scale
much better than classical real-time schedulers and can handle the
large workloads a shared NFV platform would likely encounter, and
2) multi-mode scheduling techniques [7, 21, 22], which enable sys-
tems to adapt at runtime without losing their real-time guarantees.

In this paper, we propose to leverage these techniques to construct
a scalable NFV platform that can provide latency and throughput
guarantees. We first present the system model and an overview of
our approach. We then discuss the key challenges and highlight
potential directions towards the envisioned platform. We conclude
the paper with preliminary results that demonstrate the feasibility
and potential benefits of our approach.

2. SYSTEM MODEL AND GOALS
We consider a cloud setting in which the provider offers NFV ser-
vices to a wide variety of tenants, with each executing one or more
NFV applications on behalf of its customers.

Platform model. The cloud platform is made of multiple racks
of machines that are connected via switches that form a fat-tree
network topology [13], as shown in Figure 3(b). We model the plat-

RC1

NF1

NF2

NF3

NF4

NF5 NF6

NF7

NF1

NF2

NF3

NF4

NF5 NF6

NF7

αmax

Abstraction:

Original	service	chain	S =	{s1,	s2,	…,	s7}	

NF0

NF0

RC2 RC3

C1=	{NF0,	NF1,	NF2};	C2=	{NF3,	NF4};	C3=	{NF5,	NF6,	NF7}

RC

(a) NFV application model

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

top-of-rack	switch

aggregate	switch

core	switch

machine

Irack1

Im1 Im2 Im3 Im4 Im5

Irack2

Ipod1

Iroot

Ipod2

Im6 Im7 Im8 Im9 Im10

Irack3 Irack4
Re
so
ur
ce
	a
llo
ca
tio

n

In
te
rfa

ce
		r
ef
in
em

en
t

Abstraction:
(b) Cloud platform model

Figure 1: System model.

Input
Packets

Packet
Capture

IP
Assembler

TCP
Assembler
(FlowID)

Protocol
Detector
(FlowID)

SMTP
Processor
(FlowID)

Regex
Matcher

Result

Task Queues Task Stealing Threads

RTP
Capture

Trace

Input
Packets

Packet
Capture

IP
Assembler

Protocol
Detector

SIP Parser

SIP
Transaction
Processor

(CallID)

RTP Stream
Interceptor

(CallID)

Task Queues Task Stealing Threads

Packet
Capture

IP
Assembler

TCP
Assembler
(FlowID)

Feature
Extractor

SVM
Classifier

Result

Task Queues Task Stealing Threads

Input
Packets

Figure 2: An NFV application that implements DDoS detection using machine learning.

form as a multi-rooted tree, where each node v represents a machine
or a switch, and each edge (v,v′) represents the network link that
connects v and v′, which is annotated with the link’s total bandwidth.
Each physical machine consists of a number of unit-speed cores that
share a last-level cache and the main memory. Each machine runs a
virtual machine monitor (VMM), such as Xen [3] or KVM [1], and
it hosts multiple virtual machines (VMs) within which the network
functions are executed.

Application model and tenants. An NFV application is modeled
as a directed acyclic graph (DAG), whose nodes represent network
functions (NFs). Each NF is modeled by the per-packet worst-case
execution time (WCET), and the maximum required amounts of
shared cache, memory, and storage with respect to the given WCET.
Each edge from NFi to NF j is associated with a data size ratio ri j
and a selectivity si j: the former is the ratio of the input packet size
of NF j to that of NFi, and the latter is the maximum number of
output packets produced by an input packet of NFi that are input
packets to NF j.

Each NFV application has an end-to-end relative deadline, i.e., the
maximum end-to-end latency that any incoming packet can tolerate
through the application, as well as a minimum throughput require-
ment. Each incoming packet of the application will be processed
along one path in the DAG; the exact path depends on the packet’s
functional characteristics, which typically vary across packets.

Each tenant runs one or more NFV applications on the cloud,
serving traffic on behalf of its customers. The request of a customer
is modeled by a tuple that contains the ID of the NFV application it
wants to use, a maximum packet rate of its (incoming) traffic. The
request’s SLA is specified in terms of meeting the packet-level NFV
application end-to-end deadline and throughput requirements.

Example. Figure 2 shows an NFV application with a chain of NFs
that implements Distributed Denial of Service (DDoS) attack detec-
tion [19] using machine learning. This application receives pack-
ets from the network (Packet Capture) and assembles packets into
complete IP packets and TCP segments (IP Assembler and TCP As-
sembler). The Feature Extractor function extracts key features (e.g.,
connection duration, bytes/packets transferred, source/destination
port number and addresses) for each assembled flow, which are then

used by the SVM Classifier function to detect flows that exhibit DoS
behavior. The SVM Classifier is first trained using existing traces,
a subset of which are tagged as malicious, in order to learn which
TCP flow features correlate with malice.

Objectives. Given the above setting, our goal is to develop a re-
source management and scheduling system for the cloud platform to
maximize the number of requests that meet their SLAs at run time,
while guaranteeing performance isolation among tenants. Towards
this, our specific objectives are to develop (i) an NF assignment
algorithm that assigns NFs to virtual machines (VMs) and to ma-
chines, (ii) a scheduling policy for the VMs and for the NFs within
a VM on each node, and (iii) a routing strategy of the traffic in
the network. The system should consider both the initial resource
allocation and scheduling for an initial set of requests, as well as
when new requests arrive and existing requests leave the system.

3. APPROACH: RESOURCE ALLOCATION
VIA TIMING INTERFACES

To enable scalable resource allocation, we propose to use a com-
positional approach to the analysis and scheduling of the NFV
applications. Our key insight is that, despite their complexity, both
the cloud and NFV applications have well-defined structures that
are amenable to component-based modeling and compositional rea-
soning. Specifically, we can group related NFs of an application
into a component (to be executed within a VM) and describe their
total resource needs by a – much simpler – interface. Intuitively, the
interface specifies the amounts of resources (including CPU, mem-
ory, network bandwidth, etc.) that are needed for the component to
meet its SLA constraints. Similarly, the hierarchical structure of the
cloud enables us to decompose the platform into several pods, with
each pod consisting of several racks, and each rack consisting of
multiple machines that each consist of multiple cores. We can then
describe the current available resources of each such component
(machine, rack, pod, entire cloud) using an interface that captures
its aggregated resource supply.

Resource allocation and scheduling can be done in a hierarchical
manner based on these interfaces: at the top level, the resource
manager performs admission control of new NFV requests based on

RC1

NF1

NF2

NF3

NF4

NF5 NF6

NF7

NF1

NF2

NF3

NF4

NF5 NF6

NF7

αmax

Abstraction:

Original	service	chain	S =	{s1,	s2,	…,	s7}	

NF0

NF0

RC2 RC3

C1=	{NF0,	NF1,	NF2};	C2=	{NF3,	NF4};	C3=	{NF5,	NF6,	NF7}

RC

(a) NFV application abstraction

Irack1

Im1 Im2 Im3 Im4 Im5

Irack2

Ipod1

Iroot

Ipod2

Im6 Im7 Im8 Im9 Im10

Irack3 Irack4

(b) Cloud platform resource abstraction

Figure 3: Interfaces of the NFV and platform components.

their applications’ interfaces and the highest-level interface of the
platform, and it distributes the NFV components to the pods based
on their interfaces; the same then happens at each of the lower levels
of the platform, until each NFV component is assigned to a VM on
a machine. With this approach, performance isolation and SLAs can
be guaranteed simply by ensuring that requests of different tenants
are processed by different VMs, and that the resources requested
by the interfaces of the NFV components can be satisfied by the
interfaces of the platform components to which they are assigned.

Once an assignment is completed, the VMM at each machine
can simply allocate resources to the VMs based on the interfaces
of the NFV components they execute. Further, the feasibility of
the resource distribution also guarantees a feasible routing solu-
tion for the requests’ traffic through the machines that execute the
corresponding NFV components. The interfaces of the platform
components are recomputed after each successful assignment of
new requests and whenever an existing request leaves the system,
to reflect the current available resources. This computation can be
done efficiently based on the current platform interfaces and the
interfaces of the NFV applications of the requests.

Figure 3 illustrates our approach for the example shown in Fig-
ure 1. Here, the NFV application is decomposed into three com-
ponents, C = {C1,C2,C3}, with each Ci being encapsulated in an
interface RCi. The entire application is encapsulated in an interface
RC, which is the composition of all RCi. The platform is abstracted
as a hierarchical of interfaces, as shown in the figure. Admission
control of a request of the application is performed at the root level,
based on the top-level interface Iroot and the application’s interface
RC. If it admits the request, the resource manager then assigns the
corresponding instance(s) of the application to one of the pods, or
distributes its components, Ci, between the two pods based on RCi
(if neither Ipod1 nor Ipod2 can satisfy RC). The assignment at the
next level can be done similarly, until finally each component Ci
is assigned to a VM on some machine. Once the assignment is
completed, the VMM of the assigned machines can simply allocate
resources to Ci’s VM based on RCi.

4. CHALLENGES AND DIRECTIONS
There are several challenges to fully realizing our proposed com-
positional approach. In this section, we discuss some of the key
challenges and potential directions towards addressing them.

4.1 Component modeling
Existing compositional theories do not address the component mod-

eling for applications – instead, they always assume that the set
of components and their composition are given a priori. Finding
a good decomposition strategy for an NFV application is highly
non-trivial, as different partitions of the DAG of NFs can result in
very different scheduling decisions and resource demand patterns.
In theory, one could simply view the entire application as a single
basic component, but this approach does not always work because
the application itself may not fit within a VM (or even a node). In
contrast, simply viewing each NF as a basic component can lead to
too many VMs and thus high overheads.

To facilitate compositional reasoning, besides the structural par-
titioning of the application into components, one also needs to de-
compose the end-to-end specifications (e.g., incoming arrival rates,
end-to-end SLA requirements) into component-level specifications.
We expect that existing deadline decomposition methods from the
real-time scheduling literature can potentially be applied. However,
they would need to be substantially enhanced to work for our set-
ting, especially because – unlike in existing real-time work – the
exact routing of the traffic through the NFs (when they span mul-
tiple nodes) is not known in advance but, instead, is driven by the
decomposition itself.

4.2 Interface models and interface analysis
Existing timing interfaces are limited to independent tasks, and
they consider only one type of resources (such as CPU, memory,
or network) but not their combinations. While these assumptions
are reasonable for many real-time systems, they do not hold for
NFV applications: the NFs of an application require a much more
diverse set of resources (e.g., CPU, memory, bandwidth), and they
are highly dependent on each other, not only in the input-output data
dependencies but also in the arrival rates and data sizes.

One direction is to adopt a multi-dimensional interface, with each
dimension capturing the demand and supply of one resource type.
At first, this seems like a straightforward extension of the existing
interface models; however, since the different types of resources are
intertwined, a component’s demand for one type of resource (e.g.,
CPU) is dependent on how much resource of another type (e.g.,
memory) that is available to the component. This interdependence
makes interface analysis highly challenging, but it too provides
room for resource optimization based on various tradeoffs among
the resource types.

Ideally, we would like to expose this interdependence on the in-
terface to enable optimization; unfortunately, it is often difficult to
characterize such a relationship in a closed form. To enable flexi-
bility and online refinement, it would still be useful to consider an

approximation of this interdependence, e.g., using a multi-mode
multidimensional interface, where each mode captures an optimiza-
tion for a particular run-time operating condition. For example, the
interface could minimize the memory demand in a mode where
memory is a potential bottleneck, and it could minimize network
usage in another mode where network is a potential bottleneck.

Another challenge lies in the modeling of input and output flows
of a component. Here, we could exploit the property that each packet
typically traverses only one path in the NFV graph, to simplify the
interface. Instead of exposing all possible flows of a component, we
could group the ones with similar arrival rates and data sizes into
a single abstract flow that is characterized by the maximum arrival
rate and data size per packet of such flows.

4.3 Scalable resource allocation
The interfaces of the NFV applications and the platform’s available
resources can be used to check for feasibility and resource reser-
vation. Specifically, a component of an application can be feasibly
assigned to a platform component if the former’s interface can be
guaranteed by the latter’s interface. Further, once each NFV com-
ponent is assigned to a node, the node’s VMM can simply allocate
to the VM that execute an NFV component the exact amounts of
resources specified by the component’s interface.

To arrive at an efficient resource allocation, the system must
also be able to efficiently find a good assignment that optimizes
resources at each level based on the feasibility conditions. This
is not a one-time process: it must be able to add and remove the
NFV components at runtime as new requests arrive at the system or
existing customers leave, without disrupting too much the existing
allocation while still achieving efficient resource utilizations. If the
system were to generate an entirely new allocation for both the new
and existing applications in such cases, many NFV components
would likely end up on a different machine and would need to be
moved, which would result in substantial overhead.

Dynamic bin-packing algorithms [8, 9] and efficient approxima-
tion algorithms for multidimensional bin-packing [5, 6, 14] should
provide good starting points for this. Where multiple feasible assign-
ments exist, one can optimize for other objectives, e.g., by balancing
the load across servers, or by concentrating the workload on a subset
of the servers so that the remaining ones can be powered down. The
multiple modes of the interfaces also provide venues for optimiza-
tion, e.g., by choosing the interface modes from several components
that “fit together” the best, and thus yield the most efficient resource
uses. For incremental resource allocation, it seems useful to develop
an “interface decomposition” operator as the inverse of composition
to enable efficient computation of the available resource interfaces
of the platform components when an NFV component is removed
from a platform component.

4.4 Accounting for virtualization overheads
The presence of virtualization adds two important complications to
interface analysis. The first is that virtualization introduces several
types of extra overheads; if these are not considered, the interfaces
can underestimate the components’ resource needs, and thus the
components can violate their timing constraints even when their
interfaces are satisfied [27]. The second challenge is that virtual-
ization can cause unexpected interference, even between NFs in
different VMs. For instance, two components in different VMs may
be scheduled on cores in the same socket that share a L3 cache; thus,
a memory-intensive service in one component can slow down the ser-
vices in the other component. The magnitude of this effect can vary
with the values in the interfaces as well as with the implementation
of the interfaces by the VMM.

4.5 Time-aware traffic management
To achieve end-to-end timing guarantees, carefully scheduling the
VMs on the individual hosts is not enough: we must also ensure
that traffic is not delayed arbitrarily in the network. In principle, it
is well known how this can be done – e.g., using circuit switching
– but the network hardware that is commonly deployed today does
not support this very well. The emergence of software-defined
networking (SDN) provides a way out, namely by implementing a
timing-aware traffic management scheme on the SDN controller. In
our prior work, we have already explored OpenFlow-based protocols
that implement path selection and performs dynamic rate reservation
based on flow sizes and flow deadlines, as well as RTT estimates.
We expect that implementation of such protocols should be feasible
for the NFV setting as well.

5. PRELIMINARY RESULTS
We have done some exploratory work to verify the feasibility of the
proposed approach. (Part of the results presented here has appeared
in [16].) We consider the same cloud setting with a fat-tree topology
as described in Section 2. Each machine runs RT-Xen, a real-time
extension of Xen VMM that schedules VMs based on their assigned
VCPUs’ periods and budgets. For simplicity, we restrict each VM to
use only a single VCPU. The component modeling ensures that each
basic component does not require more than one core (i.e., their
maximum utilization is at most 1). To enable efficient scheduling,
we use partitioned EDF at both the VM and the VMM levels.

We study NFV applications with the general DAG topology, with
each edge connecting two NFs having a different data size ratio,
but the same selectivity of 1. We focus on only CPU and network
resources, and the SLA is specified in terms of end-to-end deadlines.
We assume that the timing specifications (e.g., WCETs) of the ap-
plications are never violated, and the scheduling and virtualization
overheads are negligible.

Component modeling and interface analysis. As a first step, we
focus on the abstraction of the NFV applications and use a simple
approach for capturing the cloud resources. The interface of a cloud
component is simply a fat-tree representing its network topology,
where each edge is associated with the current available bandwidth
of the associated network link, and each leaf node is associated with
a vector of the current available CPU bandwidth for each core of the
corresponding machine. We note that more efficient and effective
representations are possible, but we leave the exploration of such
interfaces for future work.

The NFV component is abstracted using an interface model

〈Period,Budget,MinBW,MaxPacketRate〉,

where Budget is the minimum amount of CPU time that must be
available to the component in each period of Period time units,
MinBW is the minimum network bandwidth required for transmit-
ting its output data to a subsequent component, and MaxPacketRate
is the maximum traffic rate that can be sent through (an instance of)
the component, to ensure that the component meets its SLA con-
straints. Intuitively, we can send some requests through an instance
of a component – which will be executed in a VM – if their total
packet rate is no more than MaxPacketRate, and we can assign the
VM to a machine if the machine can guarantee Budget execution
time units per Period time units for the VM. Note that, by definition,
MinBW can be computed directly from MaxPacketRate, the in-
coming packet size, and the data size ratios of the NFs. The interface
of the application is simply a vector of its components’ interfaces.

To minimize the VM and transmission overheads, our component

modeling aims to minimize the number of components of an NFV
application, such that each component can be feasibly scheduled by
a single VM that uses at most one core. To simplify the analysis,
we use the inverse of the maximum packet arrival rate of a com-
ponent as its component-level deadline (i.e., 1/MaxPacketRate).
In general, the maximum network delay depends on the specific
routing, which is unknown during the interface computation. To
minimize transmission delay, our resource allocation maximizes
locality by always assigning an instance of an NFV application to
the same pod. In addition, we limit the network bandwidth that can
be reserved for any transmission between two components to be at
most the smallest link bandwidth divided by a tunable parameter
α ≥ 1 1. As a result, we can compute the maximum network delay
of a packet between two components using the packet size and this
link bandwidth limitation, assuming the components can be located
in any two nodes of a pod.

The decomposition of the application into components and the
generation of the components’ interfaces can then be formulated to-
gether as an optimization problem that aims to minimize the number
of components of an application and maximize MaxPacketRate,
subjected to three conditions: (i) the total WCET of all NFs along
a path of a component is at most its deadline (1/MaxPacketRate);
this is necessary to ensure the VM executing a component is schedu-
lable on at most one core, (ii) the network bandwidth requirement
MinBW is at most the smallest link bandwidth divided by α , (ii) the
sum of the local deadlines of all contiguous components plus the the
sum of the maximum network delays between two consecutive com-
ponents along a path of the applications is at most the application’s
end-to-end deadline.

The optimization problem can easily be solved using dynamic
programming, and its solution gives both the set of components of
an application and their interfaces.

Resource allocation and routing. The resource allocation and
routing are performed based on the NFV interfaces and the current
interfaces of the cloud resources as follows. For each request of
an NFV application that arrives at the system, we first attempt to
send its entire traffic through the VMs that execute an existing
instance of the NFV application for the same tenant, if the sum
of the maximum packet rate of the new request and that of all
existing requests through this instance is at most MaxPacketRate,
where MaxPacketRate is the maximum packet rate specified by
the application’s interface. If no such instance exists, we create
a new instance of the NFV application (or multiple instances, if
the packet rate of the request exceeds MaxPacketRate) and find a
new assignment for its components based on their interfaces. An
assignment of components to machines is feasible if (i) for each
component Ci, the assigned machine contains a core with current
available CPU bandwidth at least equal to Ci’s interface bandwidth
(i.e., Budgeti/Periodi), and (ii) if its successor component C j is
assigned to a different machine, then there exists a route from the
machine of Ci to the machine of C j such that all links along the
route have the available bandwidth of at least minBWi.

We formulate the allocation as an optimization problem that aims
to find a feasible assignment with the maximum number of admitted
requests that most balances the total remaining network bandwidth
between the pods and the core switches, as well as the remaining
total utilization of the racks in a pod. The formulation can be solved

1Intuitively, the larger α is, the easier it is to find a feasible route
during run time (as the network demand is small); however, the
the transmission delay also becomes larger, and thus the compo-
nents’ local deadlines must be smaller and hence there will be more
components per application.

efficiently using linear programming with integer rounding.

Evaluation. To test scalability, we performed large-scale simula-
tions for infrastructures with up to thousands of machines, using a
greedy heuristic (based on an extension of the strategy from [11])
as a baseline. We found that a) for this very simple interface model,
resource assignment can be done very quickly, and that b) on the
same hardware, our approach can schedule many more requests
than the baseline, and can thus achieve a far better utilization of
the available resources. We also conducted emulation on a small
local cloud testbed, with three racks of machines and 40 cores, using
NFV applications with a simple chain that are made of firewall and
network address translation services. The results show that almost
all packets of the accepted requests met their deadlines, and the
number of requests that meet their SLAs under our approach is three
times that of the baseline. The remaining deadline misses of the
accepted requests were due to overheads, which were not accounted
for in this preliminary work.

Although the workload and setting in our experiments were rela-
tively simple, we consider these initial results to be promising; they
show that our approach works in principle, and they illustrate some
of the potential benefits.

6. CONCLUSION
We have presented a compositional approach towards building a
resource management system that can provide SLA guarantees for
NFV applications on the cloud, through the use of component ab-
straction and interface analysis. We discussed several open chal-
lenges towards realizing this approach, which showcase the dif-
ferences between the considered setting and traditional real-time
systems, and we highlighted some potential solutions. We also
presented premilinary results that validate the feasibility and demon-
strate the potential benefits of our approach.

Acknowledgement
This work was supported in part by NSF CNS 1563873 and CNS
1329984, ONR N00014-16-1-2195, and the Defense Advanced
Research Projects Agency (DARPA) under Contract No. HR0011-
16-C-0056.

References
[1] Kvm. http://www.linux-kvm.org/.

[2] RT-Xen: Real-Time Virtualization Based on Compositional
Scheduling. https://sites.google.com/site/realtimexen/.

[3] Xen. http://www.xenproject.org.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. A view of cloud computing. Commun. ACM,
53(4):50–58, Apr. 2010.

[5] N. Bansal, A. Caprara, and M. Sviridenko. A new approxima-
tion method for set covering problems, with applications to
multidimensional bin packing. SIAM Journal on Computing,
39(4):1256–1278, 2009.

[6] C. Chekuri and S. Khanna. On multidimensional packing
problems. SIAM journal on computing, 33(4):837–851, 2004.

[7] D. de Niz and L. T. X. Phan. Partitioned Scheduling of Multi-
Modal Mixed-Criticality Real-Time Systems on Multiproces-
sor Platforms. In Proceedings of the 20th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2014.

[8] L. Epstein and M. Levy. Dynamic multi-dimensional bin
packing. J. Discrete Algorithms, 8(4):356–372, 2010.

[9] L. Epstein and R. van Stee. Optimal online algorithms for mul-
tidimensional packing problems. SIAM Journal on Computing,
35(2):431–448, 2005.

[10] S. L. Garfinkel. An evaluation of amazon’s grid computing
services: EC2, S3 and SQS. Technical Report TR-08-07,
Computer Science Group, Harvard University, 2008.

[11] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,
A. Anand, T. Benson, A. Akella, and V. Sekar. Stratos: A
network-aware orchestration layer for middleboxes in the
cloud. CoRR, 2013.

[12] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica. Dominant resource fairness: Fair allocation
of multiple resource types. In 8th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2011.

[13] S. Kandula, S. Sengupta, A. G. Greenberg, P. Patel, and
R. Chaiken. The nature of data center traffic: measurements &
analysis. In IMC, 2009.

[14] D. Karger and K. Onak. Polynomial approximation schemes
for smoothed and random instances of multidimensional pack-
ing problems. In SODA, volume 7, pages 1207–1216, 2007.

[15] J. Lee, S. Xi, S. Chen, L. T. X. Phan, C. Gill, I. Lee, C. Lu,
and O. Sokolsky. Realizing compositional scheduling through
virtualization. In Proceedings of the 18th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2012.

[16] Y. Li, L. T. X. Phan, and B. T. Loo. Network functions virtual-
ization with soft real-time guarantees. In Proc. IEEE Interna-
tional Conference on Computer Communications (INFOCOM),
2016.

[17] C. Liu, L. Ren, B. T. Loo, Y. Mao, and P. Basu. Cologne: A
Declarative Distributed Constraint Optimization Platform. In
Proceedings of VLDB Conference, 2012.

[18] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.
Bubble-up: Increasing utilization in modern warehouse scale
computers via sensible co-locations. In Proceedings of the
44th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO-44, 2011.

[19] S. Mukkamala and A. H. Sung. Detecting Denial of Service
Attacks Using Support Vector Machines. In IEEE International
Conference on Fuzzy Systems (IEEE FUZZ), 2003.

[20] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R. Bian-
chini. Deepdive: Transparently identifying and managing
performance interference in virtualized environments. In Pro-
ceedings of the 2013 USENIX Conference on Annual Technical
Conference (ATC), 2013.

[21] L. T. X. Phan, I. Lee, and O. Sokolsky. Compositional analysis
of multi-mode systems. In Proceedings of the 23th Euromicro
Conference on Real-Time Systems (ECRTS), 2010. Available
from http://repository.upenn.edu/cgi/viewcontent.cgi?article=
1468&context=cis_papers.

[22] L. T. X. Phan, I. Lee, and O. Sokolsky. A semantic framework
for multi-mode systems. In Proceedings of the 17th IEEE Real-
Time and Embedded Technology and Applications Symposium
(RTAS), 2011. Available from http://repository.upenn.edu/cgi/
viewcontent.cgi?article=1495&context=cis_papers.

[23] L. T. X. Phan, J. Lee, A. Easwaran, V. Ramaswamy, I. Lee,
and O. Sokolsky. Carts: A tool for compositional analy-
sis of real-time systems. In Proceedings of the 3rd Work-
shop on Compositional Theory and Technology for Real-
Time Embedded Systems (CRTS), 2010. Tool available from
http://rtg.cis.upenn.edu/carts.

[24] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar. Making middleboxes someone else’s problem:
network processing as a cloud service. In L. Eggert, J. Ott,
V. N. Padmanabhan, and G. Varghese, editors, SIGCOMM,
pages 13–24. ACM, 2012.

[25] I. Shin and I. Lee. Compositional real-time scheduling frame-
work with periodic model. ACM Transactions on Embedded
Computing Systems, 7(3):1–39, 2008.

[26] D. Shue, M. J. Freedman, and A. Shaikh. Performance iso-
lation and fairness for multi-tenant cloud storage. In 10th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2012.

[27] M. Xu, L. T. X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and
C. D. Gill. Cache-Aware Compositional Analysis of Real-
Time Multicore Virtualization Platforms. In Proceedings of
the 34th IEEE Real-Time Systems Symposium (RTSS), 2013.

[28] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux:
Precise online qos management for increased utilization in
warehouse scale computers. In Proceedings of the 40th Annual
International Symposium on Computer Architecture, ISCA ’13,
2013.

[29] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes. Cpi2: Cpu performance isolation for shared compute
clusters. In Proceedings of the 8th ACM European Conference
on Computer Systems (EuroSys), 2013.

