
Mixed-Criticality Processing Pipelines
Dionisio de Niz1, Bjorn Andersson1, Hyoseung Kim2, Mark Klein1, Linh Thi Xuan Phan3, and Raj Rajkumar1

Carnegie Mellon University1 U.C. Riverside2 University of Pennsylvania3

Abstract—While a number of schemes exist for mixed-
criticality scheduling in a single processor setting, no solution
exists to cover the industry need for end-to-end scheduling across
multiple processors in a pipeline. In this paper, we present an end-
to-end zero-slack rate-monotonic scheme (ZSRM) based on real-
time pipelines, called the ZSRM pipeline scheduler, that addresses
this need. Under ZSRM, each task is associated with a parameter
called zero-slack instant, and whenever a higher-criticality job has
not finished at its zero-slack instant relative to its arrival time,
all jobs of lower criticality are suspended to meet the deadline
of the higher-criticality job. We develop a new schedulability
test and algorithm for computing the zero-slack instants of tasks
scheduled across a pipeline.

I. INTRODUCTION

Mixed-criticality (MC) scheduling provides a way to handle
variable execution times for tasks with different criticalities.
In this setting new guarantees are offered to ensure that, if
deadlines are missed due to overload, these deadlines are
missed in the reverse order of criticality. However, such
scheduling has not been considered for processing pipelines,
which are common in real systems. Thus, the goal of this paper
is to develop MC scheduling for processing pipelines.

The research community has developed solutions for pro-
cessing pipelines without considering MC. Holistic schedu-
lability analysis [10] is an approach which considers the
behavior of a job across multiple resources and does not
require end-to-end deadline decomposition. Unfortunately, this
approach considers that for each stage, a task may experience
the worst-case interference from higher-priority tasks; thus, it
can be very pessimistic for long pipelines. To address this
issue, Jayachandran and Abdelzaher [7] developed a real-time
pipeline scheduling approach where a task is composed of
a sequence of stages that run on different processors and
their schedulability test exploits the fact that a low-priority
task running in a stage can execute in parallel with a high-
priority task running in the next stage of the pipeline. This
reduces the interference that the low-priority task suffers when
running in the next stage. Other works consider a task as a
sequence of segments with potential suspension between these
segments [9] but only considers soft deadlines.

The research community has developed solutions for MC
scheduling but without pipelines [1], [6], [8], [2] — see
also [3] for an excellent survey. Zero-Slack Rate-Monotonic
(ZSRM) [5] is one solution where a zero-slack timer is started
upon the arrival of each job and all lower-criticality jobs are
suspended if the timer elapses and the corresponding job has
not finished. Tasks have a nominal and an overload worst-case
execution time and are guaranteed to execute for its overload

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see
Copyright notice for non-US Government use and distribution.

DM-0003976

execution time if no higher-criticality tasks execute for more
than their nominal. The work that is closest to our goal is [4]
which offers MC scheduling of multihop traffic on NoC. While
it is possible to think of a message flow as a task and the links
of a flow’s route as processing resources, [4] does not solve
our problem. This is because (i) we are interested in allowing
a job to have different execution time on different stages (the
transmission time of a message in [4] is the same on all links)
and (ii) we are interested in preemptive scheduling (a flit in
[4] is non-preemptive).

In this paper, we present the ZSRM pipeline scheduler — the
first solution for MC scheduling on processing pipelines. We
do so by leveraging the work by Jayachandran and Abdelza-
her [7] to extend the Zero-Slack Rate-Monotonic (ZSRM)
scheduler [5] to pipelines in order to support MC tasksets
with end-to-end deadlines in an efficient way.

II. SYSTEM MODEL

We define a system S = (Γ,Π = {π1, . . . ,πN}), where Γ
is a taskset and Π is the set of N processors in the pipeline
with πj denoting the jth processor of this pipeline. Each
processor of the pipeline represents a unique stage. Hence,
we use the terms processors and stages interchangeably in
the rest of the paper. A task τi ∈ Γ is characterized as
(Ti, Di, ζi, {Ci,j}, {Co

i,j}) where Ti is the period of τi, Di

is the relative deadline (Di ≤ Ti), ζi is the criticality of τi,
and Ci,j and Co

i,j are, respectively, the worst-case nominal
and overload execution times of any job of τi in stage j
(Ci,j ≤ Co

i,j). Task priorities and criticalities do not change at
runtime. We let ρi denote the priority of τi. Tasks have unique
priorities but not unique criticalities.

We use Ci,max1 and Ci,max2 to denote the largest and
second largest stage execution times of τi among all of its
stages, respectively. The terms Ci and Co

i denote the sum
of all per-stage nominal and overload execution times of τi.
Hence, Ci =

∑N
k=1 Ci,k and Co

i =
∑N

k=1 C
o
i,k. We also use

the following notation to describe tasks that interfere with τi
in an MC system:
• Hhc

i : tasks with higher priority and higher criticality than τi
• Hsc

i : tasks with higher priority and same criticality as τi
• H lc

i : tasks with higher priority and lower criticality than τi
• Lhc

i : tasks with lower priority and higher criticality than τi
Overload condition. Although our model captures the worst-
case nominal and overload execution times per stage, we test
the overload condition in a global fashion. Specifically, we
say that a job of task τi overloads when/if its accumulated
execution time across its stages exceeds

∑N
k=1 Ci,k. This

approach can yield better schedulability compared with an
alternative approach where the overload condition is checked
on a per-stage basis (i.e., a job of τi is overloaded if its per-
stage execution time in any stage k exceeds Ci,k).

1372978-3-9815370-8-6/17/$31.00 c⃝2017 IEEE

III. BACKGROUND

Jayachandran and Abdelzaher [7] presented a method for
computing an upper bound on the delay that a job can
experience across all stages in a pipeline. In their model a
task τi has one worst-case execution time Ci,j per stage j,
executed periodically with a period Ti and deadline Di. For
this model the authors built a synthetic task model to calculate
the worst-case end-to-end response time of a task executing
in a pipeline.

In their response-time test, a pipeline taskset is transformed
into an equivalent single-stage taskset with the following two
types of synthetic execution times: the one given by Eq. (1) for
τi’s own execution time, and the other one given by Eq. (2) for
the execution time of higher-priority tasks. Then, the worst-
case response time of τi (denoted Ri) is computed as the
smallest fixed point of Eq. (4).

C∗
e (i) =

∑

j|ρj≥ρi

Cj,max1 +
N−1∑

s=1

max
j|ρj≥ρi

(Cj,s) (1)

C∗
j = Cj,max1 + Cj,max2 (2)

R(0)
i = C∗

e (i) (3)

R(k)
i = C∗

e (i) +
∑

j|ρj>ρi

⌈
R(k−1)

i

Tj

⌉
C∗

j (4)

Zero-Slack Rate-Monotonic (ZSRM) scheduling [5] is a
MC scheduler developed for a non-pipeline system, i.e., the
number of stages N = 1. Under ZSRM, a task has two
parameters Ci and Co

i for nominal and overload WCET and
two execution modes: normal and critical. When the job of a
task τi arrives, it starts executing in normal mode, where the
Deadline-Monotonic policy is used for scheduling. However,
towards the end of its execution, the job may switch to the
critical mode if it reaches its zero-slack instant. The zero-slack
instant of τi (Zi) is an offline bound on the last instant when it
is possible to stop lower-criticality tasks and still complete Co

i

units of execution before its deadline. The ZSRM runtime, in
fact, suspends the low-criticality tasks whenever Zi is reached
(the calculation of Zi will be discussed shortly in Section IV).
ZSRM guarantees that a task τi can execute for Co

i before its
deadlines if no task τj with ζj > ζi executes for more than
its nominal execution time Cj . To achieve this guarantee, an
enforcement mechanism must ensure that, if a task τi runs
for more than Ci, the execution of any lower-criticality task
τk suspended or arrived during τi’s job execution in critical
mode is deferred until τk’s current period elapses.

IV. ZERO-SLACK INSTANT CALCULATION
REFORMULATION

This section presents the calculation of zero-slack instants
under ZSRM. The calculation is based on the response-time
test given in [5], but reformulated to simplify the reuse of the
pipeline schedulability test from [7]. We calculate the zero-
slack instant Zi for each task τi in the taskset such that with
the resulting zero-slack instants, this taskset is schedulable.
During this calculation, temporal bounds are calculated on the

execution time that each task τi can perform in normal mode,
Cn

i , and in critical mode, Cc
i . We start by iterating over all

tasks in the taskset in descending order of criticality and for
each task τi, compute Zi as follows. At first, set Zi = 0,
Cc

i = Co
i , and Cn

i = 0, i.e., all of its execution is done in
its critical mode assuming that it executes for its overload
execution time Co

i . Then, compute the response time of τi in
its critical mode, Rc

i , using Eq. (5) which can be solved with
fixed-point iteration.

Rc
i = Cc

i +
∑

j∈Hhc
i

⌈
Rc

i

Tj

⌉
Cj +

∑

j∈Lhc
i

⌈
Rc

i

Tj

⌉
(Cj − Cn

j) +
∑

j∈Hsc
i

⌈
Rc

i

Tj

⌉
Co

j (5)

Note that, as mentioned in the previous section, the guarantee
offered to task τi assumes different execution times of inter-
fering tasks depending on their criticality. In particular, a task
τj with higher criticality and higher priority than τi is assumed
to run for at most Cj , given that if it executes beyond Cj , the
execution of τi may be deferred (to let τj complete). A task
τj with higher criticality and lower priority than τi is assumed
to execute for up to Cj −Cn

j , given that τj’s execution in its
normal mode does not interfere with τi. A task τj with the
same criticality as and higher priority than τi is assumed to
execute for up to Co

j . These are reflected in Eq. (5).
Zi = Di −Rc

i (6)

Ii =
∑

j∈Hhc
i

⌈
Zi

Tj

⌉
Cj +

∑

j∈Hlc
i ∪Hsc

i

⌈
Zi

Tj

⌉
Co

j (7)

Sn
i = max(0, Zi − Ii − Cn

i) (8)
Cc

i = max(0, Cc
i − Sn

i) (9)
Cn

i = min(Co
i , C

n
i + Sn

i) (10)
Then, Eq. (6) calculates how much it is possible to increase
Zi without missing the deadline. This is done by subtracting
the critical mode response time from the deadline. Zi also
indicates the elapsed time of τi in its normal mode (from 0
to Zi). Hence, it is used to calculate the interference from
higher-priority tasks in the normal mode, Ii, in Eq. (7).

Using the calculated interference Ii, Eq. (8) calculates the
slack in normal mode, Sn

i , by subtracting from the length of
normal mode Zi the execution time in normal mode Cn

i and
the interference Ii. Then, we move computation from critical
mode to normal mode by subtracting the slack Sn

i from the
critical mode execution time Cc

i and adding it to the normal
mode execution time Cn

i , as shown in Eqs. (9) and (10),
respectively. With these new execution times, a new response
time, slack, and execution times are calculated again until
convergence is achieved obtaining the final Zi of task τi.

The resulting Zi of a task τi can be either (i) Zi < 0, mean-
ing the taskset is unschedulable, (ii) 0 ≤ Zi < Di, meaning
τi could execute partially in critical mode, or (iii) Zi = Di,
meaning τi will not execute in critical mode.

Let us now discuss the reasoning behind this procedure.
First, note that in Eq. (5), there is no summation over tasks

2017 Design, Automation and Test in Europe (DATE) 1373

in H lc
i ; the reason for this is because when a job executes

in its critical mode, it is not impacted by the execution of
lower-criticality tasks.

Second, the computation of Rc
i (expressed by Eq. (5)) does

not depend on the Z values of lower criticality tasks. The
computation of Ii (expressed by Eq. (7)) depends on lower-
criticality tasks but only on their T and C parameters; not
on their Z parameter. Hence, the calculation of Zi of a task
does not depend on the values of Z of lower criticality tasks.
However, in Eq. (5), the computation of Rc

i depends on Cn
j

(where τj is a higher criticality task), which in turn depends
on Zj . In conclusion, the calculation of Z of a task depends on
Z of higher-criticality tasks but not on Z of lower-criticality
tasks. It is for this reason that we calculate Z of tasks in
decreasing order of criticality.

Third, in Eq. (7) there is no summation over tasks in Lhc
i .

This is due to the following reason. Consider two tasks τi and
τj with τj ∈ Lhc

i . Because of our assumption of priorities
being assigned according to deadline monotonic, it holds that
Di ≤ Dj and because of our assumption of constrained-
deadlines, it holds that Dj ≤ Tj . Combining them yields
Di ≤ Tj and hence, there can be at most one job of τj whose
execution impacts a job of τi. We can change the arrival time
of this single job of τj so that the arrival time of τj plus
Zj is equal to the arrival time of τi plus Zi, and after this
change, the response time of the job of τi remains unchanged
or increases. Hence, from the perspective of computing the
worst-case response time of τi, it is sufficient to consider that
τj only performs execution in the critical mode of τi. As a
result, we consider Lhc

i only in Eq. 5 and not in Eq. 7.

V. ZSRM PIPELINE SCHEDULING

ZSRM pipeline scheduling has (just like its uniprocessor
counterpart) an offline Z calculation and an online enforce-
ment mechanism. We first discuss the zero-slack calculation.

A. Overview of Zero-Slack Pipeline Scheduling

In broad terms, to schedule a ZSRM pipeline taskset we
calculate the end-to-end zero-slack instant for each of the
tasks in decreasing order of criticality. To calculate the zero-
slack instant of a task τi we follow the same strategy as in
Section III creating an interfering taskset for τi’s normal mode
and another for its critical mode. This is done by extending
the task transformation mentioned in Section III by taking
into account the different interfering execution times of the
tasks that depend on their relative criticalities. With these two
tasksets, we initially assume that a task τi starts executing all
of its overload execution time in critical mode and calculate
the first zero-slack instant. We also calculate the zero-slack
stage, which is the first stage where the zero-slack instant can
occur. This allows us to separate the stages into normal stages
and critical stages, reflecting the execution mode of the task.
Then, compute the slack in normal mode and move part of
the computation from critical mode to the slack in normal
mode. Next, recalculate the zero-slack instant with the new

computation in critical mode. Repeat these steps until the zero-
slack instant converges.

Before providing the details of the zero slack calculation,
we first need to model the interference that a task τj ∈ Lhc

i

can cause on τi when τj reaches its zero-slack instant Zj and
executes in critical mode. In order to do that let us denote
the first stage where Zj can happen as σz

j (to be explained in
Eq. (21)). Now, because τj does not interfere with τi in any
stage πj |j < σz

j we need to model it as a new arrival at stage
πσz

j
.

Every time we calculate the zero-slack instant of τi (ex-
plained below) along with the zero-slack instant stage σz

i we
check if σz

i = σz
j , i.e., if Zi and Zj occur in the same stage.

If that is the case, we align Zj with Zi to ensure that we
capture the worst-case phasing of τj’s interference on τi as
explained in Section IV. However, if σz

i ̸= σz
j we align Zj at

the beginning of the τi’s stage where it occurs.

B. Revisiting Single Processor Analysis

Recall the zero-slack computation procedure for a single
processor system described in Section IV. We now discuss
how to transition this analysis to pipelines. For this discussion
we use the following notation. Γc

i is the interfering taskset in
τi’s critical mode; formally Γc

i = Lhc
i ∪ Hhc

i ∪ Hsc
i . Γn

i is
the interfering taskset in τi’s nominal mode; formally Γn

i =
Hhc

i ∪H lc
i ∪Hsc

i . We also define the execution variable of an
interfering task as Cei

j as follows

Cei
j =

⎧
⎪⎨

⎪⎩

Cj if τj ∈ Hhc
i

(Cj − Cn
j) if τj ∈ Lhc

i

Co
j if τj ∈ H lc

i ∪Hsc
i

(11)

We use Eq. (11) to rewrite the response time of τi in critical
mode from Eq. (5) as presented in Eq. (12) and the interference
in normal mode from Eq. (7) as presented in Eq. (13).

Rc
i = Cc

i +
∑

j∈Γc
i

⌈
Rc

i

Tj

⌉
Cei

j (12) Ii =
∑

j∈Γn
i

⌈
Zi

Tj

⌉
Cei

j (13)

We will now discuss how to adapt Eqs. (12) and (13) to
processing pipelines. In order to determine Cei

j we need to take
into account whether an interfering task τj overloads or not
according to its criticality and in which stages. In particular,
note that the pipeline response time calculation in [7] uses
the maximum (and second maximum) execution times across
all stages and all tasks. In particular, we will develop new
equations for the pipeline case where a new Cei

j term for each
stage s (Cei

j,s) will be used determining if it overloads or not
in stage s. These will be used in Eq. (14). The calculation of
Cei

j,s is necessary because if we were to select an execution
time of say Cj,s instead of Co

j,s in a stage s for an interfering
task τj this may not get selected by the max function of
Eq. (14). This is a problem because for interfering tasks τj
with higher-criticality than τi we must only consider its end-to-
end nominal execution time Cj allowing it to overload in any
single stage (according to our end-to-end overload semantics).
We discuss this in the next section.

1374 2017 Design, Automation and Test in Europe (DATE)

C. Taskset Tranformations

Let us now discuss how to create MC pipelined tasksets.
Specifically, we create two tasksets: one for the normal exe-
cution mode and the other for critical mode. In these tasksets
we will select the computation time for each task τi for which
we will calculate its zero-slack instant and its interfering tasks
τj’s. Then, we start by assuming that all the computation of τi
occurs in critical mode. Hence, we initialize the set of critical
stages as Πc

i = {πj |1 ≤ j ≤ N}. Note that, even though we
can calculate the minimum zero-slack stage, we assume that
it starts in the first stage to start with all the computation in
critical mode.

1) Taskset Transformation for Critical Mode: For the
taskset in critical mode we first initialize the execution time
in critical mode of each task τi with Cc

e(i) = CK
e (i), where

CK
e (i) is defined as in Eq. (14).
CK

e (i) =
∑

τj∈Γc
i∪{τi}

Cci
j,max1 +

∑

πi,s∈Πc
i\{πN}

max
τj∈Γc

i∪{τi}
Cei

j,s

(14)
We identify Cci

j,max1 and Cci
j,max2 as the largest and the

second largest overload execution time of τj’s stages and
refer to their respective stages as πj,max1 and πj,max2. Cei

j,s
is calculated by solving
maximize

∑

s∈Πc
i\{πN}

max
j∈Γc

i∪{τi}
{xj,s} subject to

∀⟨j, s⟩ s. t. (j ∈ Γc
i ∪ {τi}) ∧ (s ∈ Πc

i), xj,s ≤ Co
j,s

∀j s. t. (j ∈ Γc
i ∪ {τi}) ∧ (ζj > ζi),

∑

s∈Πc
i

xj,s ≤
∑

s∈Πc
i

Cj,s

where xj,s are non-negative real numbers. This can be for-
mulated as a Mixed-Integer Linear Program; a problem for
which a large number of efficient solvers are available (we
use Gurobi). It is worth noting that for tasks in Lhc

i the search
for the maximums will be limited to Πc,e

j = Πc
j ∩ Πc

i , i.e.,
stages where both τi and τj run in critical mode.

Note that Eq. (14) is equivalent to the original Eq. (1) in
the basic pipeline scheme but limited to the execution within
the set of critical stages (denoted by Πc

i).
Then, the execution times of the interfering tasks are ini-

tialized with C∗ci
j = Cci

j,max1+Cci
j,max2 and the response time

with Rc
i = Cc

e(i) finding the final value of the response time
with the fixed-point computation of Eq. (15).

Rc
i = Cc

e(i) +
∑

j∈Γc
i

⌈
Rc

i

Tj

⌉
C∗ci

j (15)

2) Taskset Transformation for Normal Mode: The
nominal execution time for task τi is calculated by first
identifying the largest and second largest execution times of
the nominal mode as Cni

j,max1 and Cni
j,max2 respectively among

the nominal stages Πn
i . The stage set Πn

i is initialized to ∅ in
the first iteration.

Next, the execution time of the preempting tasks is calcu-
lated as C∗ni

j = Cni
j,max1+Cni

j,max2. Cn
e (i) is initialized to zero

to allow it to grow as the zero-slack instant moves towards the
end of the period.

D. Pipeline Zero-Slack Calculation
With the response time equation for critical mode and

the tasksets for the normal and critical modes we can then
construct the zero-slack instant calculation in the pipeline and
solve Eq. (16) once we find the response time in critical
mode. Then, we calculate the interference before the zero slack
instant (normal mode) with Eq. (17). Next, we calculate the
slack in normal mode with Eq. (18) followed by the update
to the computation for each of the modes (Eqs. (19), (20)).
To update Πc

i we first update σz
i with Eq. (21) and then we

update the critical stage set with Πc
i = {πj |σz

i ≤ j ≤ N}
and the nominal stage set with Πn

i = {πj |1 ≤ j < σz
i }.

We repeated until the zero-slack instants converge. The zero-
slack calculation is applied to each task in decreasing order
of criticality to guarantee convergence.

Zi = Di −Rc
i (16)

Ii =
∑

j∈Γn
i

⌈
Zi

Tj

⌉
C∗ni

j (17)

Sn
i = max(0, Zi − Ii − Cn

e (i)) (18)
Cc

e(i) = max(0, Cc
e(i)− Sn

i) (19)
Cn

e (i) = min(Co
i , C

n
e (i) + Sn

i) (20)

σz
i = min

1≤j≤N
{j|

j∑

s=1

Co
i,s > Cn

e (i)} (21)

The run-time enforcement of pipeline ZSRM works as
described in the end of Section III but where Ci is defined
as in Section II.

VI. CONCLUSIONS

We presented the first MC scheduling scheme for processing
pipelines which we call ZSRM pipeline scheduling. This is
based on two previous results (i) schedulability analysis and
zero-slack configuration for ZSRM scheduling and (ii) an
efficient method for analyzing delays in pipelines which avoids
inefficiencies that previous methods suffered from when ana-
lyzing long pipelines.

REFERENCES

[1] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-criticality
scheduling on multiprocessors. Real-Time Systems, 2014.

[2] S. Baruah and G. Fohler. Certification-cognizant time-triggered schedul-
ing of mixed-criticality systems. In RTSS, 2011.

[3] A. Burns and R. Davis. Mixed criticality systems - a review. http://www-
users.cs.york.ac.uk/burns/review.pdf.

[4] A. Burns, J. Harbin, and L.S. Indrusiak. A wormhole NoC protocol for
mixed criticality systems. In RTSS, 2014.

[5] D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of
mixed-criticality real-time task sets. In RTSS, 2009.

[6] H. Huang-Ming, C. Gill, and C. Lu. Implementation and evaluation
of mixed-criticality scheduling approaches for periodic tasks. In RTAS,
2012.

[7] P. Jayachandran and T. F. Abdelzaher. A delay composition theorem for
real-time pipelines. In ECRTS, 2007.

[8] H. Li and S. Baruah. Outstanding paper award: Global mixed-criticality
scheduling on multiprocessors. In ECRTS, 2012.

[9] C. Liu and J. H. Anderson. Scheduling suspendable, pipelined tasks
with non-preemptive sections in soft real-time multiprocessor systems.
In RTAS, 2010.

[10] K. Tindell and J. Clark. Holistic schedulability analysis for distributed
hard real-time systems. Microprocessing and Microprogramming, 1994.

2017 Design, Automation and Test in Europe (DATE) 1375

