
Towards a Safe Compositional Real-Time Scheduling Theory
for Cyber-Physical Systems ∗

Linh Thi Xuan Phan
University of Pennsylvania

Abstract
Modern cyber-physical systems are becoming increasingly
complex and distributed. These trends are making it more
and more difficult to ensure the timing guarantees of these
systems: traditional approaches were developed for much
simpler systems and are difficult to scale. As system sizes
are growing further, designing future cyber-physical sys-
tems is going to be even more challenging.

Compositional design and compositional analysis have
emerged as an effective means to address this challenge.
Several interface models and interface computation meth-
ods have been developed, which can be used to analyze
complex systems in an efficient manner. The existing the-
ories provide a foundation for ensuring the timing guar-
antees of cyber-physical systems; however, they also have
several important limitations. This position paper discusses
open challenges in this domain, and it highlights several
research directions towards a safe and resource-efficient
compositional theory for cyber-physical systems.

1. Introduction
Cyber-physical systems (CPS) are becoming increasingly
complex and distributed at large scale. One way to scale
timing analysis to such complex systems is to develop them
in a compositional manner [39]: real-time workloads (such
as tasks) are encapsulated in components, which expose
their resource needs through resource-aware interfaces.
These components can be composed under a scheduling
algorithm or input/output interconnections to form larger
components, and their interfaces can be computed effi-
ciently via component abstraction and interface composi-
tion. Timing constraints of a component can then be guar-
anteed by ensuring that the platform satisfies the compo-
nent’s interface.

Several interface models and interface computation
techniques have been developed (see e.g., [39, 9, 16, 27,
34, 38, 21, 14, 42, 30, 6, 10, 41, 20]), which enable effi-
cient integration and isolation of independently-developed
cyber-physical components. However, these existing the-
ories face several important limitations: they ignore the
platform overhead and the correlation between scheduling
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and communication, which could lead to timing violations
in practice; they assume that nodes’ clocks are closely syn-
chronized, which is difficult and expensive to accomplish
in a complex networked setting; they consider exclusively
timeliness and ignore the semantics of timed interactions
between components, or vice versa; and they focus only on
the cyber aspects, while making implicit assumptions about
the physical aspects that may not always be realizable.

Some of these assumptions are not unique to the cur-
rent compositional theories; they come from the underly-
ing schedulability and timing analysis. However, in large-
scale distributed CPS, they are much more likely to be vio-
lated and can no longer be ignored. In this paper, we discuss
these limitations in more detail, and we briefly sketch how
the current theories could be extended to overcome them.1

2. Platform overhead matters
The current compositional theories assume a somewhat
idealized platform in which all overhead is negligible. In
practice, the platform overhead – such as release delay,
preemption overhead, cache effects, context switches, and
interrupt delay – can substantially interfere with the ex-
ecution of tasks. Without considering such overhead, the
computed interfaces can underestimate the components’ re-
source needs; hence, the components can violate their tim-
ing constraints even if their interfaces are satisfied [35].

At first glance, it may seem that this issue can be solved
by inflating the worst-case execution time (WCET) of each
task by the overhead it experiences. However, this approach
can be unsafe: including the overhead as part of the tasks’
WCETs implies that the sources of overhead are assumed
to be scheduled together with tasks, but this does not hold
for certain types of overhead, such as interrupts and task
release events. Further, it is difficult to compute a safe
bound on the overhead experienced by a task, since such
overhead accumulates with the number of tasks in the entire
system2, but the task-level details of one component is
hidden from another component in a compositional setting.

Accounting for the platform overhead on multicore pro-
cessors is even more challenging because of the complex
interactions between various platform resources. In a com-
positional setting, the overhead a component incurs, e.g.,
due to cache interference, is harder to quantify: it depends
not only on the direct interference between the compo-
nent’s own tasks but also on the indirect interference be-
tween these tasks and the interfaces of other components,
1 Interface theories for ensuring functional correctness have been studied
extensively (see e.g., [37, 32, 36]); in this paper, we focus primarily on
interface theories from the scheduling perspective.
2 This is because a task within a component may be delayed by the
interrupt processing or task release events in other components.
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and the latter in turn depends on the actual values of the
interfaces and their implementations; consequentially, the
interface computation becomes a cyclic process, which is
often expensive and may not always converge.

In our recent work, we have proposed a new notion of
overhead-aware interfaces, as well as methods for com-
puting the interfaces that take into account platform over-
head [35, 43]. While these initial solutions are promising,
much work remains to be done to achieve a compositional
theory that is both safe and resource-efficient in practice.

3. Data-dependent components
Existing compositional theories typically assume indepen-
dent execution of tasks; in practice, however, CPS often
operate on data flows with end-to-end timing constraints.
Therefore, new interface models and interface analysis
methods that can provide end-to-end timing guarantees
for data-dependent and distributed components are nec-
essary. Although there are a number of relevant formalisms
that provide partial solutions to this problem, such as
assume-guarantee interfaces [21, 14, 42], data flow graphs
with LET semantics [30], and interfaces for network re-
source [38], none of them considers end-to-end timing con-
straints and compositional scheduling concurrently.

To meet the above needs, the component model and
composition semantics need to be extended to capture not
only resource sharing but also data communication seman-
tics and input/output connections. Ideally, the component
model should be self-sufficient for the analysis, i.e., it
should contain all the information necessary for comput-
ing the interfaces, such as local timing constraints (e.g.,
local deadlines) and activation patterns (e.g., periods or ar-
rival patterns) of tasks. However, such information about
a component is difficult to obtain, since it depends on the
local constraints assigned to other data-dependent compo-
nents and, consequently, on those components’ interfaces.
In addition, deriving a composition semantics that encap-
sulates the intricate correlation between scheduling and
communication is also non-trivial.

To illustrate the above cyclic relationship, consider an
end-to-end data flow with end-to-end deadline D that is
processed sequentially by two tasks, T1 and T2, which are
located in components C1 and C2, respectively. Then, the
deadline of T2 is inverse proportional to the deadline of T1.
Further, the arrival pattern of T2’s input data – which is
needed to compute C2’s interface – depends on the arrival
pattern of T1’s output data, which in turn depends on T1’s
deadline as well as the resource supply of C1’s interface.

One approach to tackle the above challenge is to adapt
deadline decomposition methods, coupled with synchro-
nization protocols, such as those outlined in [28]. This di-
rection offers a self-sufficient component model, and it en-
ables an efficient interface computation by directly apply-
ing existing results. However, it can also result in non-
optimal interfaces, due to the cyclic relationship between
the component model and the interfaces (discussed above).
Therefore, enhancements of the deadline decomposition
methods and synchronization protocols are required to im-
prove the analysis accuracy.

Another interesting direction is to explore parametric
interfaces, where an interface can be represented as a func-
tion of variables that denote unknown factors, such as lo-
cal timing constraints, and the interface computation can
be performed symbolically. The concrete values of the in-
terfaces can then be realized at the top-level component
based on the end-to-end constraints. Since the size of the
composed interface grows with more composition steps, it
would be useful to refine the interface, e.g., using a safe
approximation of the interface, at each composition step to
improve the analysis efficiency.

4. Clock synchronization
The current real-time scheduling theory and interface anal-
ysis methods assume a common notion of time. However,
achieving strong synchrony in a distributed system is a
known hard problem: due to clock drift and network prop-
agation delays, the local clocks of the different nodes are
always slightly different, and even frequent resynchroniza-
tion (which would have a high overhead) would not be suf-
ficient to achieve perfect synchrony.

Without perfect synchrony, the notion of a deadline be-
comes ambiguous. Since CPS interact directly with the
physical environment, deadlines are usually given in terms
of the physical time; however, when a control or data flow
passes through multiple nodes, each node’s local clock can
deviate from the physical time, which can result in jobs be-
ing scheduled too early or too late; also, nodes can disagree
whether a deadline has been missed or met.

At first glance, it may seem that timing variance due to
clock drift is too small to matter in practice; however, even
small discrepancies can cause scheduling anomalies and
thus ‘snowball’ into large anomalies. For instance, suppose
nodes A and B are expected to send messages to node C at
a certain time to trigger tasks TA and TB on C, and suppose
further that node A’s message is meant to be sent first, so
that TA is released before TB . If B’s clock is slightly faster
than A’s, then B may send its message too soon, causing
the messages to be reordered and TB to be released and
scheduled before TA; as a result, TA may miss its deadline,
even though the schedulability analysis (which assumes
perfect synchrony) may have predicted that the deadline
would be met. Worse, since C’s schedule is now different,
the timing of C’s own messages is also affected, which
may lead to further changes on other nodes. Thus, while
the original discrepancy on B is small, the resulting effect
on the system as a whole can be much larger.

One approach towards solving this problem is to extend
the system model with a bound on the clock drift and the
length of the synchronization intervals, so that it becomes
possible to reason about possible deviations from the refer-
ence time, and to make scheduling decisions accordingly.
To enable this approach, component interfaces would have
to be extended to expose information about drift and syn-
chronization, and the information would have to be carried
over when interfaces are composed and analyzed. To keep
the complexity of the analysis manageable, it may be use-
ful to 1) abstract some of the details in the interface, and/or
2) specify requirements for other subsystems that the com-
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ponent interacts with, such as an upper bound on the ac-
ceptable clock drift. One challenge is to determine good
abstractions; another is to determine which requirements
are useful and can be satisfied.

5. The gap between real-time scheduling
theory and high-level formal models

Cyber-physical systems are traditionally modeled using
two different paradigms: high-level models of computa-
tion and real-time task/resource models. These models
capture different timing properties: The former focus on
the high-level formal specifications of timed interactions,
communications, and synchronization among a collection
of independent processes or subsystems; examples include
timed automata [4], I/O automata [29], and real-time pro-
cess algebra [26]. The latter capture implementation-level
task timing information (e.g., execution time, deadline,
priority) and details on physical resources and resource
sharing (e.g., processing speed, network bandwidth, mem-
ory, scheduling policy). Although both categories are in-
tertwined, they are typically considered in isolation. On
the one hand, verification techniques for timed concurrent
models verify temporal properties based solely on the high-
level model, without considering the platform aspects, such
as communication delay and scheduling overhead (e.g.,
synchronization is assumed to be instantaneous). On the
other hand, the task and resource models used in real-time
scheduling theory are based on the execution platforms and
the source-code of the software; unlike the high-level mod-
els, they do not take the semantics of communication into
account. Thus, even if a higher-level property (e.g., a safety
property) is proven in the higher-level model, it does not
necessarily hold in the implemented system.

Several efforts have been made to bridge this gap by
adding platform aspects to the high-level models. For in-
stance, existing work on the implementability of timed au-
tomata incorporates the platform information in the timed
automata model by explicitly modeling the execution plat-
form [3] or by modifying the timed automata semantics to
reflect the implementation platform, such as the sampling-
based [23], almost ASAP [15, 11], time-triggered [22],
and probabilistic and topological [8] semantics. Real-time
scheduling has also been combined with timed automata
in [2, 7] and with process algebra in [26, 31]. In addition,
a number of automata- and actor-oriented scheduling inter-
faces have also been developed [6, 10, 41, 20].

However, the above approaches are not only expensive
in terms of analysis complexity but also assume a very
simple model of resources – for instance, the processor
is assumed to have unit speed and be fully available. As
we move towards multicore and distributed systems, these
assumptions no longer hold: the processor is not always
fully available due to various types of platform overhead
(such as I/O, interrupts, communication), and these types
of overhead can even vary between different nodes. We
believe that it would be useful to develop new models and
analysis techniques that combine both aspects.

One direction is to establish an intermediate ‘glue layer’
that connects the two classes of models, e.g., similar to

the hierarchical heterogeneity approach for composing
high-level models of computation in Ptolemy [17], or the
functional mock-up interface for co-simulation and model
exchange [1, 12]. The glue layer could precisely capture
the assumptions (e.g., synchronization semantics) that the
higher-level model makes about the platform, and it could
be used to mechanically verify that a given platform satis-
fies these assumptions. The assumptions must be realistic
(i.e., realizable on common platforms) but should abstract
low-level details of the platform as much as possible. Since
the assumptions may be relevant to other subsystems that
the component communicates with, they should be taken
into account by the interface analysis.

6. Analyzing state-based systems
While real-time scheduling theory provides a clean system
abstraction and enables efficient analysis, it currently can-
not be applied to scheduling state-based systems. For in-
stance, a system might schedule tasks depending on the
current state of their input buffers, or it might handle data
differently based on its current buffer state (e.g., append
new data items to an input buffer if there is room, and dis-
card them otherwise). State-based scheduling is also inher-
ent in adaptive systems, which need to respond to the ex-
ternal environment. For example, a video encoder compo-
nent might send encoded video frames to a receiver com-
ponent depending on how quickly the receiver can decode
the video to avoid buffer overflows and buffer underflows.
Although it is sometimes possible to derive a stateless ap-
proximation of the system, such approximation often leads
to overly pessimistic analysis results.

A common approach to analyzing such systems is to use
state-based models, such as timed automata [4] or event
count automata [13], and to perform the analysis using
formal verification. Here, if very small time steps are used,
the resulting state space can be very large, and thus, the
analysis can become expensive; hence, it is desirable to
use large time steps wherever possible. However, large
time steps can decrease accuracy, i.e., the analysis may fail
for systems that are actually schedulable, or may succeed
only with additional resources. It seems promising to apply
abstraction refinement in these cases. Furthermore, some
systems may contain a mixture of state-based and stateless
components; to efficiently support this case, it would be
useful to have a way to interconnect components of both
types. It seems interesting to explore hybrid techniques,
along the lines of [33] and [24].

7. Beyond resource-aware interfaces
The current compositional theories focus only on the cyber
layer, such as timing and resource aspects, while making
implicit assumptions about the physical system and the en-
vironment. As a result, failures may occur in the system,
e.g., when these hidden assumptions are violated. To guar-
antee the safety and trustworthy of the system, it is critical
to extend these theories beyond cyber concerns.

We believe that it would be essential to develop a no-
tion of safety-aware interfaces to enable the compositional
analysis of safety properties for CPS. For this, the com-
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ponent and interface models would need to be extended
to capture not only the cyber aspects but also the physi-
cal aspects and the cyber-physical interactions of compo-
nents, including e.g., the dynamics of the physical system,
the control algorithm, safety-criticality levels of tasks, and
safety goals of components under different environment
conditions. One approach is to integrate control-theoretic
multi-mode systems [25, 5] with a mixed-criticality exten-
sion of real-time multi-mode interfaces [34].

A challenge towards a safety-aware compositional the-
ory is how to detect unsafe interactions between compo-
nents, as well as to enforce their absences, during the inter-
face composition. Undesirable interactions between com-
ponents on the same cyber-physical platform can arise from
multiple dimensions, such as via shared data and variables,
via shared actuators and sensors, via computational and
communication resource sharing, and via the physical en-
vironment. For instance, an unsafe interaction between an
adaptive cruise control component and a collision avoid-
ance component in an automotive system might arise via
the physical environment when the former requests an in-
crease in speed while the latter simultaneously requests a
sharp turn, which could cause the vehicle to roll over.

New approaches for analyzing the coupling between
control, safety and resource aspects are especially needed
to detect undesirable interactions such as above. It seems
useful here to adapt results on hazard analysis and safety
assessment from the safety engineering domain (e.g., [18])
for the modeling and interface analysis. Further, as it may
not be feasible to identify all interactions statically, it would
be interesting to incorporate the idea of run-time monitor-
ing and recovery [40] to enable automatic refinements of
the interfaces and component interactions during run time.

Besides safety, there is a growing need for a security-
aware compositional theory for CPS. This is highly chal-
lenging, as it may not be possible to ‘decompose’ the im-
pact of an attack down to the component level, and it is also
difficult to predict the attack behavior (e.g., of a malicious
adversary). Existing work on compositional security [19]
might provide useful insights to address this challenge.

8. Conclusion
As cyber-physical systems continue to grow in complexity,
we believe that compositional approaches will remain to be
effective for future CPS design and analysis. We have dis-
cussed in this paper several important existing limitations
and research challenges in this research area. The list is not
exhaustive, but through it we hope to inspire future research
towards a safe, secure and resource-efficient compositional
theory for CPS that is fully realizable in practice.
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