
  

Real-Time Tracking of Moving Objects
with an Active Camera

This article is concerned with the design and implementation of a system for real-time monocular
tracking of a moving object using the two degrees of freedom of a camera platform. Figure-ground
segregation is based on motion without making any a priori assumptions about the object form.

Using only the first spatiotemporal image derivatives, subtraction of the normal optical flow induced by
camera motion yields the object image motion. Closed-loop control is achieved by combining a stationary
Kalman estimator with an optimal Linear Quadratic Regulator. The implementation on a pipeline
architecture enables a servo rate of 25 Hz. We study the effects of time-recursive filtering and fixed-point
arithmetic in image processing and we test the performance of the control algorithm on controlled
motion of objects.
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Introduction

Traditional computer vision methodology regarded the
visual system as a passive observer whose goal was the
recovery of a complete description of the world. This
approach led to systems which were unable to interact
in a fast and stable way with a dynamically changing
environment. Several variations of a new paradigm
appearing under the names active, attentive, purposive,
behavior-based, animate, qualitative vision were intro-
duced in the last decade in order to overcome the
efficiency and stability caveats of conventional com-
puter vision systems. A common principle of the new
theories is the behavior-dependent selectivity in the
way that visual data are acquired and processed. To cite
one of the first definitions [1]: ‘‘Active Sensing can be

stated as a problem of controlling strategies applied to
the data acquisition process which will depend on the
current state of the data interpretation and the goal or
the task of the process’’.

Selection involves the ability to control the mechan-
ical and optical degrees of freedom during image
acquisition. Already in the early steps of active vision it
was proven that controlling the degrees of freedom
simplifies many reconstruction problems [2]. Selection
encompasses the processing of the retinal stimuli at
varying resolution, which we call space variant sensing
[3]: this means the ability to process only critical regions
in detail while the rest of the field of view is coarsely
analysed. Lastly and most importantly, selection means
the choice of the signal representation appropriate for
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a specific task to be accomplished, also taking into
account the physiology of the observer [4, Introduc-
tion]. Brown [5] resumes that a ‘‘a selective system
should depending on the task decide which information
to gather, which operators to use at which resolution,
and where to apply them’’.

The subject of this paper is the accomplishment of
one of the fundamental capabilities of an active visual
system, that of pursuing a moving object. Since the
moving object is detected at the beginning, our system
also encompasses the capability of saccadic eye move-
ments. Here the only cue for the ‘‘where to look next’’
problem is motion. It is the first step towards a
repertoire of oculomotor behaviors which will run in
parallel. These involve fixating a stationary point or
stabilizing the entire field of view if the observer is
moving, as well as binocular vergence movements. We
will first describe the usefulness of pursuing a moving
object.

The most evident reason for object pursuit is the
limited field of view available from CCD cameras. The
two degrees of freedom of panning and tilting enable a
moving object of interest to be kept in view for a longer
time interval. Even if we had a sensor with 180 degrees
field of view, it would not be computationally possible
to process every part of the field of view in the same
detail. We would be forced to apply foveal sensing,
hence we should move the camera in order to keep the
object inside the fovea. As was already proved in [6]
and [7], tracking facilitates the estimation of the
heading direction by reducing the number of unknowns
and restricting the position of the focus of expansion. It
allows the use of an object-centered coordinate system
and the simpler model of scaled orthographic projec-
tion. Object pursuit is necessary in co-operation with
vergence control to keep the disparity inside an
interval, thus facilitating binocular fusion and a relative
depth map.

As almost every visual system is engaged in a
behavior of an animal or a robot that involves action,
vision becomes coupled with feedback control in order
to enable a closed-loop between perception and action.
Such a cycle is also the task of pursuing a moving object
with an active camera described here. The most crucial
matter is the accomplishment of this task in real time
given the limited resources of our architecture. Under
these conditions, Marr’s conception of an implementa-
tion step succeeding the algorithmic stage becomes
obsolete. Here, the choice of the low-level signal
processing depends on the given pipeline-architecture:

we use two-dimensional, non-separable FIR kernels for
spatial filtering because our pipeline machine includes
such a dedicated module, but we apply recursive
filtering in time. Normal flow can be computed inside
the pipeline image processor; therefore it is the basis of
our motion detection algorithm. This does not mean
that we apply ad hoc techniques. We believe that real-
time design should be based on the detailed perform-
ance study of algorithms satisfying the real-time con-
straints. Hardware components become faster so that
mathematically sound image processing methods can
replace the Sobel operator for spatial derivatives or the
time differences for temporal ones.

The contribution of the work presented here can be
summarized as following:

• A system that can detect and track moving objects
independently of form and motion in 25 Hz.

• A study for the choice of the individual algorithms
– which we do not claim to have invented –
regarding:

fixed-point arithmetic accuracy;
space and time complexity of the filters given a
specific architecture;
and performance of the closed-loop control
algorithm.

• Experiments with several object forms and
motions.

Concerning biological findings, eye movements of
primates are classified in saccades, smooth pursuit,
optokinetic reflex, vestibulo-ocular reflex, and vergence
movements [8]. Optokinetic and vestibular reflexes try
to stabilize the entire field of view in order to eliminate
motion blur. Saccades are fast ballistic movements
which direct the gaze to a new focus of attention,
whereas smooth pursuits are slow, closed-loop move-
ments that keep an object fixated. Fixation enables the
analysis of objects in the high-resolution foveal region.
Vergence movements minimize the stereo disparity,
thus facilitating binocular fusion. Tracking of objects
consists of both smooth pursuit movements that move
the eye at the same velocity as the target, and corrective
saccades that shift a lost target into the fovea again. In
this sense, our system accomplishes tracking with
corrective saccades which, however, are smoothed by
the closed-loop control.

Potential applications for the system presented are in
the field of surveillance in indoor or outdoor scenes.
The advantages are not only in motion detection, but
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mainly in the capability of keeping an intruder inside
the field of view. Another application is in automatic
video recording and video teleconferencing. The cam-
era automatically tracks the acting or speaking person
so that it always remains in the center of the field of
view. In manufacturing or recycling environments, an
active camera can track objects on the conveyor-belt so
that they are recognized and grasped without stopping
the belt.

New directions are opened if such an active camera
platform is mounted on an autonomous vehicle. As
already mentioned in the introduction, fixation on an
object has computational advantages in navigational
tasks. Keeping objects of interest in the center reduces
the complexity of processing the dynamic imagery by
allowing fine-scale analysis in the center and a coarse
resolution level for the periphery. Shifting and holding
the gaze also facilitates scene exploration and the
building of an environmental map.

We start the paper with a description of the related
approaches in the next section. In later sections the
kinematics of the binocular head are described, the
solution to the object detection problem is explained,
and the spatiotemporal filtering estimation and control
are studied. The final sections deal with the architecture
and the presentation of the experimental results.

Related Work

As pursuit is one of the basic capabilities of an active
vision system, most of the research groups possessing a
camera platform have reported results. We divide the
approaches into two groups. The first group consists of
algorithms that use only motion cues for gaze shifting
and holding, and this is the group to which our system
belongs. Computational basis of this approach group is
the difference between measured optical flow and the
optical flow induced by camera motion.

The Oxford surveillance system [9, 10] uses data from
the motor encoders to compute and subtract the
camera motion-induced flow. It runs in 25 Hz with
processing latency of about 110 ms. Camera behavior is
modeled as either saccadic or pursuit motion. Saccadic
motion is based on the detection of motion in the
coarse scale periphery. Pursuit motion  is based only on
the optical flow of the foveal region. This is also the
difference to our system, which can also smoothly
pursue but with repeated motion detection. A finite

state automaton controls the switching between the two
reactions.

The KTH-Stockholm system [11] computes the ego
motion of the camera by fitting an affine flow model in
the entire image. It is the only approach claiming
pursuit in the presence of arbitrary observer motion
and not only pure rotation, as assumed by the rest of
the algorithms. However, this global affinity assumption
is valid only if the object occupies a minor fraction of
the field of view, which is not a realistic assumption.
Furthermore, the real-time (25 Hz) implementation
assumes a constant flow model over the entire image.
Such a constant flow model is approximately realistic
only if the observer’s translation is much smaller than
the rotation. In the final section the authors show that
if flow components induced by slow forward translation
are so negligible in comparison to the tracking rotation,
then they have no effect on the detection task using the
currently proposed approach either. However, an
advantage of the global fitting is that it deliberates the
motion detection from the encoder readings.

Elimination of the flow due to known camera
rotation is also applied by Murray and Basu [12]. The
background motion is compensated by shifting the
images. Then large image differences are combined
with high image gradients to give a binary image. This
binary image is processed with morphological opera-
tors and its centroid is extracted. No real-time imple-
mentation results are reported.

The Bochum system [13] is able to pursue moving
objects with a control rate of 2–3 Hz. The full optical
flow is computed and then segmented to detect regions
of coherent motion signaling an object. The known
camera rotation is subtracted only in order to compute
the object velocity. Tracking is carried out by a
sequence of saccadic and smooth gaze shifts.

Neither of the above approaches involves a study of
the appropriate real-time image processing techniques
or the control performance. The second group of
approaches in object pursuit is based on other cues and
a priori knowledge about the object form. Coombs and
Brown [14] demonstrated binocular smooth pursuit on
objects with vertical edges with a control rate of 7.5 Hz.
Vergence movements are computed using zero-dis-
parity filtering. The authors studied thoroughly the
latency problem and the behavior of the α-â-γ-filter.
Du and Brady [15] use temporal correlation to track an
object that has been detected while the camera was
stationary. They achieved a sample rate of 25 Hz with
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45 ms latency. Dias et al. [16] present a mobile robot
that follows other moving objects which are tracked at
approximately human walking rate. Only horizontally
moving objects are detected, based on very high image
differences without ego-motion subtraction. There are
many further systems that use very simple image
processing to detect and track well-defined targets like
white blobs [17, 18], putting emphasis on the control
aspect of the problem.

The problem of moving object detection by a moving
observer has been intensively studied using passive
cameras. However, without the need of a reactive
behavior, real-time constraints were not considered.
The approaches involve global affine flow models [19],
temporal coherency models [20], frequency domain
methods [21], and variational methods [22], to mention
only a few of them.

The estimation and control part of our work is
related to the approaches dealing with visual servoing.
Like our work, these approaches apply a regulation
criterion in order to control the joints of the robot by
means of visual sensor measurements. Most of them put
the main emphasis on the controller design and they
use a motion model of the objects to be tracked.
Furthermore, many of them apply a more complex
regulation criterion like the minimization of both
relative position and orientation with respect to an
object. The application in this case is grasping a moving
object instead of keeping it in the center of the field of
view. The most similar control scheme to ours is the first
method of Hashimoto and Kimura [23], who also apply
optimal LQ control and neglect the robot dynamics.
Their second method in [23] considers the robot
dynamics and applies input-output feedback lineariza-
tion. Similar to the latter method is the visual servoing
approach by Espiau et al. [24], who introduced the
concept of a task function. A task function gives the
optimality criterion and expresses the error between
actual and dependent on the task desired visual
measurements. Feddema et al. [25] concentrate on the
selection of geometric features in the image and their
impact on the properties of the Jacobian transforming
joint angle changes to feature shifts. The error in the
image space is transformed to the joint space where the
regulation is performed by six PD controllers, one for
each joint angle. Papanikolopoulos et al. [26] use the
optical flow in the center of the image to track an
object. Four different control methods (LQG, pole
assignment with DARMA and ARMAX models, and
PI) are compared, with special emphasis on the

disturbance treatment. Allen et al. [27] use a stationary
stereo camera system and employ object detection by
thresholding the normal flow magnitude. A position
prediction is based on the curvature of the trajectory
and the velocity of the object. Hager et al. [28] use also
stationary cameras but they exploit both the image of
the end-effector and the object image. A PI controller is
applied on the joint angle error obtained by means of
the inverse Jacobian of the mapping from angles to
stereo measurements.

Head Kinematics

The binocular camera mount* has four mechanical
degrees of freedom: the pan angle ø of the neck, the tilt
angle φ, and two vergence angles θl and θr for left and
right, respectively (Figure 1). The stereo basis is
denoted by b.

We denote by Pw the 4 ´ 1 vector of homogeneous
coordinates with respect to the world coordinate
system having origin at the intersection of the pan and
the tilt axes. Let Pl/r be the vectors with respect to the
left and right effector coordinate systems located at the
intersection of the tilt and the vergence axes. The
transformation between world and effector reads

Pw = TøTφTθl/r
Pl/r, (1)

with

Tø = (
cos ø

0

sin ø

0

0

1

0

0

–sin ø

0

cos ø

0

0

0

0

1
) ,
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1

0

0

0

0

cos φ

sin φ
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0

–sin φ
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0
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1
) ,

and

Tθl/r
= (

cos θl/r

0

7 sin θl/r

0

0

1

0

0

6 sin θl/r

0

cos θl/r

0

7 b/2

0

0

1
) .

* Consisting of the TRC BiSight Vergence Head and the TRC
UniSight Pan/Tilt Base.
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Regarding monocular tracking we need only the tilt
and the vergence angle of a camera, therefore we omit
the subscript in θl/r. Furthermore, we assume that the
effector coordinate system coincides with the camera
coordinate system having its origin at the optical center.
We introduce a reference coordinate system with origin
at the intersection of the tilt and the vergence axis. The
orientation of the reference coordinate system is
identical to the resting pose φ = 0 and θ = 0. As
monocular visual information gives only the direction
of viewing rays, we introduce a plane Z = 1 whose
points are in 1:1 mapping with the rays and are denoted
by p = (x,y,1). The transformation of the viewing ray
between reference and camera coordinate system
reads

λpr = RφRθpc (2)

with pc the coordinates after rotations Rφ and Rθ about
the x and y axes, respectively. The mapping is a
projective collineation in P2. As opposed to translation,
a pure rotation of the camera induces a projective
transformation independent of the depths of the
projected points. If a translation existed – like in the
mapping between left and right camera – then a point is
mapped to a line – the well-known epipolar line – and
the corresponding position on this line depends on the
depth. After elimination of λ in the above equation we
obtain

xr =
xc cos θ + sin θ

–xc cos φ sin θ + yc sin φ + cos φ cos θ
(3)

yr =
xc sin φ sin θ + yc cos φ – sin φ cos θ

–xc cos φ sin θ + yc sin φ + cos φ cos θ

These equations fully describe the forward kinematics
problem.

The inverse kinematics problem is given a camera
point (xc, yc, 1) to find the appropriate angles so that the
optical axis (0, 0, 1) after the rotation is aligned with
this point. From Eqn (3) we obtain the ray in the
reference coordinate system and applying again Eqn
(3) with (xc,yc) = (0,0) yields

tan φ = – yr tan θ =
xr

Ö1 + yr
2

(4)

We proceed with the computation of the instanta-
neous angular velocity ω of the camera coordinate
system necessary later for the optical flow representa-
tion. Let R(t) = Rφ(t) Rθ(t) be the time varying rotation
of the camera coordinate system and Ω the skew-
symmetric tensor of the angular velocity. Then we
have Ṙ(t) = R(t)Ω and the angular velocity with
respect to the moving coordinate system reads

ω = (φ̇ cos θ θ̇ φ̇ sin θ)T (5)

To complete the geometric description we need the
transformation from pixel coordinates (xi,yi) in the
image to viewing rays in the camera coordinate system.
This is an affine transformation given by

xi = αxxc + x0 yi = αyyc + y0

The scaling factors αx, αy depend on the focal length,
the cell size on the CCD-chip, and the sampling rate of
the A/D converter. The principal point (x0,y0) is the
intersection of the optical axis with the image plane. For
the computation of this transformation – called intrinsic
calibration – we applied conventional [29] as well as
active techniques similar to [30, 31].

Pursuing a Moving Object

Pursuit is accomplished by a series of correcting
saccades to the positions of the detected object, which

Figure 1. The four degrees of freedom of the camera platform
(top) and what it looks like (bottom).
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yield a trajectory as smooth as possible due to our
control scheme and the under-cascaded axis-control of
the mount. A moving object in the image is defined as
the locus of points with high image gradient whose
image motion is substantially different from the cam-
era-induced image motion. We exploit the fact that the
camera-induced optical flow is pure rotational

uc = ( xcyc

(1 + yc
2)

–(1 + xc
2)

–xcyc

yc

–xc ) ω (6)

where ω can be computed from Eqn (5) using the angle
readings of the motion encoder. If u = (u, v) is the
observed optical flow, then u – uc is the optical flow
induced only from object motion. We assume the
Brightness Change Constraint Equation

gxu + gyv + gt = 0

with gx, gy and gt the spatiotemporal derivatives of the
gray-value function. From this equation we can com-
pute only the normal flow – the projection of optical
flow in the direction of the image gradient (gx,gy). The
difference between the normal flow ucn

induced by
camera motion and the observed normal flow un

ucn
– un =

gxuc + gyvc

Ögx
2 + gy

2
+

gt

Ögx
2 + gy

2

is the normal flow induced by the object motion. It
turns out that we can test the existence of object image
motion without the computation of optical flow. The
sufficient conditions are that the object motion has a
component parallel to the image gradient and the
image gradient is sufficiently large. We can thus avoid
the computation of full optical flow, which would
require the solution of at least a linear system for every
pixel. Three thresholds are applied: the first for the
difference between observed and camera normal flow,
the second for the magnitude of the image gradient,
and the third for the area of the points satisfying the
first two conditions. The object position is given as the
centroid of the detected area.

Real-Time Spatiotemporal Filtering

Special effort was given to the choice of filters suitable

for the used pipeline-processor† so that the frequency
domain specifications are satisfied without violating the
real-time requirements. Whereas up to 8 ´ 8 FIR-
kernels can be convolved with the image with process-
ing rate of 20 MHz, the temporal filtering must be
carried out by delaying the images in the visual
memory. We chose IIR filtering for the computation of
the temporal derivatives, since its computation requires
less memory than temporal FIR filtering for the same
effective time lag.

The temporal lowpass filter chosen is the discrete
version of the exponential [32]:

E(t) = { τe–tτ

0

t ³ 0

t < 0

If En(t) is the nth order exponential filter (n ³ 2), its
derivative reads

dEn(t)

dt
= τ(En–1(t) – En(t))

After applying the bilinear mapping s = 2(1 – z–1)/
(1 + z–1) to the Laplace transform τ/(s + τ) of the
exponential filter from the s-plane to the z-plane, we
obtain the transfer function of the discrete lowpass
filter

H(z) = q
1 + z–1

1 + rz–1 , q =
τ

τ + 2
r =

τ – 2

τ + 2

If H(z)n is the nth order low pass filter, its derivative is
equal to the difference τ(H(z)n–1 – H(z)n) of two
lowpass filters of subsequent order. The recursive
implementation for the second order filter reads

h1(k) + rh1(k – 1) = q(g(k) + g(k – 1))
h2(k) + rh2(k – 1) = q(h1(k) + h1(k – 1))

gt(k) = τ(h1(k) – h2(k)) ,

where g(k) is the input image, h1(k) and h2(k) are the
lowpass responses of first and second order, respec-
tively, and gt(k) is the derivative response. We note that
the lowpass response is used to smooth the spatial
derivatives temporally.

† Datacube MaxVideo 200 board.
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The spatial FIR-kernels are binomial approximations
to the first derivatives of the Gaussian function [33].
The spatial convolutions are carried out in fixed-point
32 bit arithmetic, with the result stored in 8-bit word
length. The inverse of the magnitude of the spatial
gradient needed for the computation of normal flow is
computed using a LUT table. Fixed-point arithmetic
primarily affects the IIR filtering, since the binomial
coefficient of the FIR filter can be represented by the
quotient of powers of two. We use the Diverging Tree
sequence [34] as a test-bed for our accuracy investiga-
tions. The ground truth optical flow field is known, and
we test the filtering effects on the computation of the
optical flow field. We use a conventional method [35]
that assumes local constancy of the optical flow field. In

Figure 2 we show the 20th image of the sequence as
well as the optical flow field based on the spatio-
temporal derivatives computed with fixed-point arith-
metic. In Figure 2 (bottom) we compare the average
relative error between fixed-point and floating-point
filtering as a function of the flow vector length, which
increases with the distance from the focus of expansion.
In the central area of ± 30 pixels the relative errors vary
from 200% down to 10%. After this distance we note a
constant bias in the fixed-point case of 2.5% error
relative to the floating-point case. The fixed-point
effects are severe only for lengths between 0.2 and 0.4
pixels.

We proceed with studying the differences between

Figure 2. The 20th image of the Diverging Tree sequence (above left), the optical flow field computed with the fixed point
implementation of the FIR and IIR filters (above right), and the relative error in the estimation of optical flow of fixed- vs.
floating-point arithmetic. The relative error as well as the flow vector length are plotted as functions of the distance from the
focus of expansion, here the center of the image (below). Key to graph: (–) fixed point; (---) floating point; (····) length.

REAL-TIME TRACKING OF MOVING OBJECTS 9



3.0

3.0

M
ag

n
it

u
de

2.5

2.5

2.0

1.5

1.0

0.5

0.5 1.0 1.5 2.00

3.0

3.0

w

M
ag

n
it

u
de

2.5

2.5

2.0

1.5

1.0

0.5

0.5 1.0 1.5 2.00

5

1.0
C

on
t.

 im
pu

ls
e 

re
sp

on
se

0.6

0.4

0.2

0

–0.4
1 2 3 40

–0.2

0.8

w

t

temporal FIR and IIR filtering, in order to justify the
choice of the recursive IIR filter described above. The
delay of the temporal FIR first gaussian derivative (and
its binomial approximation) is equal to half of the
kernel size. The delay for the second order exponential
filter is between the mode 1/τ and the mean 2/τ. We
show in Figure 3 (top) the continuous impulse
responses for a Gaussian derivative with standard
deviation σ = 1 and the second order exponential filter
with τ = 1. The zero-crossings of both filters coincide,
but the IIR filter is highly asymmetric. For these
settings we show the spectra of the two filters in the
middle of Figure 3 as well as the goodness of
differentiation in Figure 3 (bottom). The latter is
obtained by dividing the frequency response of the
derivative filters with the frequency response of the
involved low-pass filters: a low-pass binomial mask in
the FIR case and the exponential in the IIR case. We
observe that FIR outperforms IIR for frequencies in
the transition band, and both are similar for low
frequencies.

We compare the behavior of both filters in the
computation of optical flow in the same sequence as
above. We tested several settings for the parameters of
both filters. The average relative errors for about the
same densities‡ of computed vectors are shown in Table
1. The IIR filters were computed with a delay of one
frame. The best results are obtained for an FIR kernel
of length 7 and for a recursive IIR with τ = 1.0.

We applied the same tests in one more sequence with
known ground truth, the Yosemite sequence. The
results (Table 2) are worse in this sequence – but
comparable to the results reported in the survey [34] –
and qualitatively the same as in the Diverging Tree
sequence, with the exception of the FIR filter, which
shows the best accuracy with a kernel length of 5.

Considering the used architecture (MaxVideo 200), a
temporal FIR filter needs as many image memories as
the kernel length N. The computational cost is N
multiplications and N – 1 additions, and the delay
(N –1)/2 frames. Our second order IIR filter imple-
mentation uses four image memories with the complex-
ity of two multiplications and three additions. The delay
for τ = 1 is between one and two frames. Taking into
account the almost negligible difference in the flow

‡ Density is the ratio of image positions where the flow
computation satisfies a confidence measure divided by the
image area.

Figure 3. Continuous impulse response comparison of the
shifted first derivative of a Gaussian (σ = 1, continuous
curve) and the IIR second order derivative filter (τ = 1,
dotted curve) (above). In the middle we show the frequency
responses of the five-points binomial approximation of the
first Gaussian derivative (dashed curve) and the IIR second
order derivative filter (τ = 1, dotted curve). Below we show
the pure differentiation effects, i.e. the same spectra divided
by the frequency responses of the low-pass prefilters.
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Table 1. The average relative error in the Diverging Tree
sequence for different t’s and kernel lengths

Filter Aver. rel. error (%) Vector density (%)

IIR (t = 0.5) 10.55 52.33
IIR (t = 1.0) 9.88 52.29
IIR (t = 1.25) 10.26 52.21
IIR (t = 2.0) 11.96 52.84

FIR (3p) 11.62 52.83
FIR (5p) 10.01 52.23
FIR (7p) 9.89 52.21

Table 2. The average relative error in the Yosemite sequence
for different t’s and kernel lengths

Filter Aver. rel. error (%) Vector density (%)

IIR (t = 0.75) 28.47 50.74
IIR (t = 1.0) 19.96 50.62
IIR (t = 1.25) 20.04 50.60
IIR (t = 2.0) 22.09 50.28

FIR (3p) 25.21 50.56
FIR (5p) 19.61 50.38
FIR (7p) 22.42 50.86

computation performance, the IIR filter guarantees the
same motion behavior with much lower space and time
complexity.

Estimation and Control

The control goal of pursuit is to hold the gaze as close
as possible to the projection of a moving object.
Actuator input signals are the pan angle φ and the
vergence angle θ. Since the angles can be uniquely
obtained from the position (xr,yr) through Eqn (4), we
use the reference coordinates (xr,yr) as input vector.
The intersection of the optical axis with the plane
Z = 1 of the reference coordinate system is denoted by
c. Output measurements are the position of the object
in the reference coordinate system denoted by o
obtained from the centroid in the image and Eqn (3).
Let v and a be the velocity and acceleration of the
object, and ∆u(k) the incremental correction in the
camera position. The state is described by the vector

s = (cT oT vT aT)T

A motion model of constant acceleration yields the
plant

s(k + 1) = Φs(k) + Γ∆u(k)

with

Φ = (
I2

O2

O2

O2

O2

I2

O2

O2

O2

∆tI2

I2

O2

O2

∆t2/2I2

∆tI2

I2

)
and

Γ = ( 1 1 0 0 0 0 0 0 )T

where I2 and O2 are 2 ´ 2 identity and null matrix,
respectively. Assuming a linear control function ∆u(k)
= –Kŝ(k), with ŝ an estimate of the state, we make use
of the separation principle stating that optimal control
can be obtained by combining the optimum determi-
nistic control with the optimal stochastic observer
[36].

The minimization of the difference io – ci between
object and camera position in the reference coordinate
system can be modeled as a Linear Quadratic Reg-
ulator problem with the minimizing cost function ·k=0

N

sT(k)Qs(k), where Q is a symmetric matrix

Q = (
1

–1

0

0

–1

1

0

0

0

0

0

0

0

0

0

0
)

In steady-state modus a constant control gain K is
assumed, resulting in an algebraic Ricatti equation with
the simple solution

K = ( 1 –1 –∆t –∆t2/2 ) (7)

The meaning of the solution is that input camera
position should be equal to the predicted position of
the object. One of the crucial problems in vision-based
closed loop control is how to tackle the delays
introduced by a processing time longer than a cycle
time. We emphasize here that the delay in our system is
an estimator delay. The normal flow detected after
frame k concerns the instantaneous velocity at frame
k – 1 due to the mode of the IIR temporal filter. At time
k – 1 the encoder is also asked to give the angle values
of the motors. To the delay amount of one frame we
must add the processing time, so that we have the
complete latency between motion event and onset of
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steered motion. The prediction in Eqn (7) enables a
compensation for the delayed estimation by appro-
priate settings for ∆t in the gain equation.

Concerning optimal estimation, we also assume
steady state modus obtaining a stationary Kalman
Filter with constant gains. The special case of a second
order plant yields the well known α-â-γ-Filter [37], with
update equation

ŝ+ (k + 1) = ŝ+ (k) + (α â/∆t γ/∆t2)T

(m(k + 1) – m–(k + 1)),

where s+ is the state after updating and m– is the
predicted measurement. The gain coefficients α, â and γ
are functions of the target maneuvering index λ. This
maneuvering index is equal to the ratio of plant noise
covariance and measurement noise covariance. The
lower the maneuvering index, the higher is our con-
fidence in the motion model resulting in a smoother
trajectory. The higher the maneuvering index, the
higher is the reliability of our measurement resulting in
a close tracking of the measurements, which may be
very jaggy. This behavior will be experimentally illus-
trated by the following example.

In this experimental study we excluded the image
processing effects by moving an easily recognizable
light-spot. We controlled the motion of the light-spot by
mounting it into the gripper of a robotic manipulator.
The control frame rate is equal to the video frame rate
(30 Hz). The world trajectory of the light-spot is a circle
with radius equal to 20 cm on a plane perpendicular to
the optical axis in resting position. The center of the

circle was 145 cm in front of and 80 cm below the
head.

We varied the angular velocity of the light-spot and
for every velocity we observed the tracking behavior
for different maneuvering indices. We first tested the
tracking error for the high velocity of 1 target revolu-
tion per 823 ms (1.2 Hz, Figure 4). The maneuvering
index λ was set equal to 1. The motors reached an
angular velocity of about 45 degrees per second in both
tilt and vergence angles. In order to decrease time
complexity, we first tested the possible application of
first order motion model with an αâ-filter. We applied
both filters for a target velocity of 0.52 Hz (Figure 5).
The behavior of the first order filter is satisfactory, with
the additional advantage that it is not as jaggy as the
α-â-γ-filter. We applied, therefore, in all following tests
the αâ filter.

We then tested the controller for two different
maneuvering index values λ = 0.1 and 1, and four
different velocities of the target starting from 0.17 Hz
up to 0.70 Hz (Figure 6). The pixel error increases with
the velocity of the target. It is higher for the low
maneuvering index, as expected, but with a smoother
image orbit.

Then we let the maneuvering index vary by keeping
the velocity constant (Figure 7). The decreasing
smoothness with increasing λ can be observed in the
image orbit as well as in the trace of the vergence angle
along time.

In summary, we do not expect a pixel error better

Figure 4. The tilt φ and vergence θ angles (left) and the image orbit of the target (right) with the large error due to the high
velocity (1.2 Hz) of the target. Key: left, (–) θ; (–) φ.
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than ± 10 pixels for the highest maneuvering index if
we assume that the object motion trajectory is as
smooth as a circle. As we will observe in the experi-
ments with usual moving objects instead of light-spots,
the trajectory of the detected moving area is so
irregular that only a high maneuvering index can lead
to smaller tracking errors.

Integration and System Architecture

The image processing and control modules above were
implemented on an architecture consisting of several
commercial components (Figure 8).

We summarize here all the processing steps of the loop:

Figure 5. Image orbit (left) and vergence angle vs. time (right) for the αâ- and the α-â-γ-filter plotted with a continuous and
dashed curve, respectively.

Figure 6. Image orbit of the target for four different velocities v1–4 = (0.17 Hz, 0.35 Hz, 0.52 Hz, and 0.70 Hz) for λ = 0.1 (left)
and λ = 0.1 (right). Key to graphs: (–) v1; (–––) v2; (----) v3; (········) v4.
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1. The current tilt and vergence angle values are read
out from the encoders.

2. The video signal is transmitted from the camera§ to
the MaxVideo 200 board where it is digitized,
lowpass filtered and subsampled to a resolution of
128 ´ 128. The real-time operating system (Solaris
2.4) on the SparcStation enables the firing of the
image acquisition exactly after the angle reading in
the last step.

3. The spatial derivatives are computed by convolving
with 7 ´ 7 binomial masks.

4. The spatial derivatives are lowpass filtered with an

IIR filter. The temporal derivatives are computed
with an IIR filter and then spatially smoothed with
a 7 ´ 7 binomial kernel.

5. The normal flow difference is computed using the
LUT table of the inverse of the gradient
magnitude.

6. The difference image and the gradient magnitude
image are thresholded and combined with a logical
AND. On the resulting binary image b(x,y) the
sums · xb(x,y) and · yb(x,y) are computed, as well
as the area. The resulting vectors are transmitted to
the SparcStation.

7. The centroid of the detected area is computed and
then transformed to the reference coordinate sys-§ We use Sony XC-77RR with a frame rate of 30 Hz.

Figure 7. Image orbit of the target for three values of λ = 0.01 (–), 0.1 (----), 0.5 (......) (left) and the vergence angle as a function
of time (right).

Figure 8. Hardware architecture of the closed-loop. Key: (···) analog signals; (–) digital signals; (III) motor control signals.
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tem using the intrinsic parameters and the angle
readings.

8. The state is updated with the α-â-γ-filter.
9. The state is predicted considering the time delay

and the input camera position is obtained in the
reference coordinate system.

10. The desired camera position is transformed to the
tilt and vergence angles.

11. The angles are transmitted to the motion
controller.

12. The motion controller runs its own axis control with
rate 2 kHz, computes the intrapoint trajectory, and
sends the analog control signals to the amplifier.

By means of the setitimer(ITIMER_REAL,..) func-
tion of the Solaris 2.4 operating system, we guarantee a

Figure 9. Six frames recorded while the camera is pursuing a Tetrapak moving from right to left. The pixel error (bottom left)
shows that the camera remains behind the target and the vergence change (bottom right) shows the turning of the camera from
right to left with an average angular velocity of 8.5 degrees per second. Key to graph: right, (–) theta; (----) phi.
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cycle time of 40 ms. This cycle time consists of 37 ms
image processing (steps 2–6 performed on the MaxVi-
deo 200 board) and 3 ms control (steps 7–10 performed
in the SparcStation). The motion controller guarantees
a motion execution time of 40 ms. Considering the
effective delay of the temporal derivatives calculations

of one frame, we obtain an effective latency of 80 ms
between event and onset of motion. The motion
duration is equal to the processing cycle time so that the
camera reaches the desired position 120 ms after the
event detected. The prediction for the control signal is
computed with respect to this lag.

Figure 10. Six frames recorded while the camera is pursuing a rotating target moving from right to left and then again to right,
first downwards and then upwards. The average angular velocities for both the vergence and the tilt are 10 degrees per second.
Key to graph: right, (–) theta; (----) phi.
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Experiments

The performance of the active tracking system in four
different object motions is shown here. The images in
the figures are chosen out of 20 frames saved ‘‘on the
fly’’ during a time of 8 s. The images are overlaid with
those points on the images where both the normal flow

difference and the gradient magnitudes exceed two
thresholds which are the same for all four experiments.
The centroid of the detected motion area is marked
with a cross. We show the tracking error by drawing the
trajectory of the centroid in the image as well as the
control values for the tilt and the vergence angle, φ and
θ for the entire time interval of 8 s.

Figure 11. The camera is pursuing a target attached in the gripper of a manipulator. The target is moving on a circle with
frequency 0.35 Hz. The angular velocity is 8 degrees per second for vergence and 5 degrees per second for tilt. Key to graph:
right, (–) theta; (----) phi.
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In all the experiments the motion tracking error is
much higher than the light-spot tracking error. This was
expected, since the object is modeled in the image by its
centroid. Although the target might move smoothly, the
orbit of the centroid depends on the distribution of the
detected points in the motion area. Therefore, it is

corrupted with an error of very high measurement
variance. Allowing a high maneuvering index which
enables close tracking would result in an extremely
jaggy motion of the camera. The estimator would forget
the motion model and yield an orbit as irregular as the
centroid motion. Therefore, we decrease the maneuver-

Figure 12. The camera is pursuing a target mounted on the gripper of a manipulator while the camera is itself translating
forwards. The target is moving on a circle with frequency 0.70 Hz. The translation of the camera is shown in the shift of the angle
oscillation center. As the camera is approaching on the left side of the manipulator it must turn more to the right (positive shift
in vergence) and more downwards (negative shift in tilt). Key to graph: right, (–) theta; (----) phi.
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ing index to 0.01 and obtain, as expected, a much higher
pixel error. Only a post-processing of the binary images
could improve the position of the detected centroid.

In the first experiment (Figure 9) the system is
tracking a Tetrapak moving from right to left. The small
size of the target enables a relatively small pixel error
(the target is always observed to the left of the center).
Because the centroid variation is only in the vertical
direction – due to the rod holding the target – the tilt
angle changes irregularly. The average angular velocity
is 8.5 degrees per second.

In the second experiment (Figure 10) we moved a
rotating target from right to left and then again to the
right, first downwards and then upwards. The achieved
angular velocity is 10 degrees per second. Due to the
rotation of the target the normal flow due to object
motion is higher, thus yielding many points above the
set threshold. We should emphasize here that algo-
rithms like [11], based on a global ego-rotation fitting,
would fail, since the object covers a considerable part of
the field of view.

The same fact characterizes the third experiment
(Figure 11). A box attached in the gripper of a
manipulator is moving in a circular trajectory with 0.35
Hz. Here the target is not distinctly defined because all
joints after the elbow give rise to image motion. The
centroid is continuously jumping in the image. How-
ever, the system was able to keep the object in an area
of ± 130 pix or ± 10 degrees visual angle.

In the last experiment, we asked the system to track
a target attached on the manipulator again (Figure 12).
However, we moved forward the vehicle which the
head was mounted on. This situation is not modeled by
our ego motion assumed as pure rotation. With a
forward translation of 10 cm/s nothing changed in the
average pixel error. The approach of the camera is
evident in the image as well as in the angle plots:
positive shift in the vergence mean (indicating
approaching the left side of the target) and negative
shift in the tilt mean (showing the viewing downwards).
The reason of this surprisingly good behavior is in the
components of the optical flow. As soon as the camera
rotates, the rotational component is much larger than
the translational one so that the effects on the normal
flow difference are negligible.

Conclusion

We presented a system that is able to detect and pursue
moving objects without knowledge of their form or
motion. The performance of the system with control
rate of 25 Hz, a latency of 80 ms, and average angular
velocities of about 10 degrees per second, is com-
petitive with respect to the state of the art. The system
needs the minimal number of tuning parameters: a
threshold for normal flow difference, a threshold for the
image gradient, a minimal image area over the men-
tioned thresholds, and the maneuvering index.

We have shown that in order to achieve real-time
reactive behavior we must apply the appropriate image
processing and control techniques. The main contribu-
tion of this paper is not only in the achieved high
performance of the system. Our work is different from
other presentations in the study of the individual
components with respect to the given hardware, time
constraints, and desired tracking behavior. We experi-
mentally studied the responses of the image processing
filters if fixed-point arithmetic is used. We studied the
trade-off between space-time complexity and response
accuracy concerning the choice of FIR or IIR filtering.
We dwelled on the control and estimation problem by
testing the behavior of the applied estimator with
different parameters. Last but not least, we presented
experimental results of the integrated system in four
different scenarios with varying form and motion of the
object.

The system will be enhanced with foveal pursuit
based on the full optical flow values in a small central
region. A top-down decision process is necessary for
shifting attention in the case of multiple moving objects.
The presented work is just the first step of a long
procedure. The goal is the building of a behavior-based
active vision system. The next reactive oculomotor
behaviors in plan are the vergence control and the
optokinetic stabilization.

Acknowledgements

We highly appreciate the contributions of Henrik
Schmidt in programming the camera platform, of Jörg
Ernst in the intrinsic calibration, and of Gerd Diesner
in Datacube programming. We gratefully acknowledge
discussions with Ulf Cahn von Seelen from GRASP
Lab.

REAL-TIME TRACKING OF MOVING OBJECTS 19



References

1. Bajcsy, R. (1988) Active Perception. Proceedings of the
IEEE, 76: 996–1005.

2. Aloimonos, Y., Weiss, I. & Bandyopadhyay, A. (1988)
Active Vision. International Journal of Computer Vision,
1: 333–356.

3. Tistarelli, M. & Sandini, G. (1992) Dynamic aspects in
active vision. CVGIP: Image Understanding, 56:
108–129.

4. Aloimonos, Y. (1993) Active Perception. Hillsdale, NJ:
Lawrence Erlbaum Associates.

5. Brown, C. M. (1992) Issues in selective perception. In:
Proc. Int. Conf. on Pattern Recognition, The Hague, The
Netherlands, pp. 21–30.

6. Bandopadhay, A. & Ballard, D. H. (1990) Egomotion
perception using visual tracking. Computational Intelli-
gence, 7: 39–47.

7. Fermüller, C. & Aloimonos, Y. (1992) Tracking facilitates
3-D motion estimation. Biological Cybernetics, 67:
259–268.

8. Carpenter, R. H. S. (1988) Movements of the Eyes. Lon-
don: Pion Press.

9. Murray, D. W., McLauchlan, P. L., Reid, I. D. & Sharkey,
P. M. (1993) Reactions to peripheral image motion using
a head/eye platform. In: Proc. Int. Conf. on Computer
Vision, Berlin, Germany, pp. 403–411.

10. Bradshaw, K. J., McLauchlan, P. F., Reid, I. D. & Murray,
D. W. (1994) Saccade and pursuit on an active head-eye
platform. Image and Vision Computing, 12: 155–163.

11. Nordlund, P. & Uhlin, T. (1995) Closing the loop:
pursuing a moving object by a moving observer. In:
Hlavac, V. et al. (ed.). Proc. Int. Conf. Computer Analysis
of Images and Patterns CAIP, Prag, Springer LNCS, 970:
400–407.

12. Murray, D. & Basu, A. (1994) Motion tracking with an
active camera. IEEE Trans. Pattern Analysis and Machine
Intelligence, 16: 449–459.
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