
Chapter 3

Context-Free Languages and PDA’s

3.1 Context-Free Grammars

A context-free grammar basically consists of a finite set
of grammar rules. In order to define grammar rules, we
assume that we have two kinds of symbols: the terminals,
which are the symbols of the alphabet underlying the lan-
guages under consideration, and the nonterminals, which
behave like variables ranging over strings of terminals. A
rule is of the form A → α, where A is a single nonter-
minal, and the right-hand side α is a string of terminal
and/or nonterminal symbols. Unlike automata, gram-
mars are used to generate strings, rather than recognize
strings.

139

140 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Definition 3.1.1 A context-free grammar (CFG) is a
quadruple G = (V, Σ, P, S), where

• V is a finite set of symbols called the vocabulary (or
set of grammar symbols);

• Σ ⊆ V is the set of terminal symbols (for short,
terminals);

• S ∈ (V − Σ) is a designated symbol called the start
symbol ;

• P ⊆ (V − Σ) × V ∗ is a finite set of productions (or
rewrite rules, or rules).

The set N = V − Σ is called the set of nonterminal
symbols (for short, nonterminals). Thus, P ⊆ N×V ∗,
and every production 〈A, α〉 is also denoted as A → α.
A production of the form A → ε is called an epsilon rule,
or null rule.

3.1. CONTEXT-FREE GRAMMARS 141

Remark : Context-free grammars are sometimes defined
as G = (VN, VT , P, S). The correspondence with our
definition is that Σ = VT and N = VN , so that V =
VN ∪ VT . Thus, in this other definition, it is necessary to
assume that VT ∩ VN = ∅.

Example 1. G1 = ({E, a, b}, {a, b}, P, E), where P is
the set of rules

E −→ aEb,

E −→ ab.

As we will see shortly, this grammar generates the lan-
guage L1 = {anbn | n ≥ 1}, which is not regular.

142 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Example 2. G2 = ({E, +, ∗, (,), a}, {+, ∗, (,), a}, P, E),
where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a.

This grammar generates a set of arithmetic expressions.

3.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES 143

3.2 Derivations and Context-Free Languages

The productions of a grammar are used to derive strings.
In this process, the productions are used as rewrite rules.
Formally, we define the derivation relation associated with
a context-free grammar.

Definition 3.2.1 Given a context-free grammar
G = (V, Σ, P, S), the (one-step) derivation relation =⇒G

associated with G is the binary relation =⇒G⊆ V ∗×V ∗

defined as follows: for all α, β ∈ V ∗, we have

α =⇒G β

iff there exist λ, ρ ∈ V ∗, and some production
(A → γ) ∈ P , such that

α = λAρ and β = λγρ.

The transitive closure of =⇒G is denoted as
+

=⇒G and
the reflexive and transitive closure of =⇒G is denoted as
∗

=⇒G.

144 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

When the grammar G is clear from the context, we usu-

ally omit the subscript G in =⇒G,
+

=⇒G, and
∗

=⇒G.

A string α ∈ V ∗ such that S
∗

=⇒ α is called a sentential
form, and a string w ∈ Σ∗ such that S

∗
=⇒ w is called

a sentence. A derivation α
∗

=⇒ β involving n steps is
denoted as α

n
=⇒ β.

Note that a derivation step

α =⇒G β

is rather nondeterministic. Indeed, one can choose among
various occurrences of nonterminals A in α, and also
among various productions A → γ with left-hand side
A.

3.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES 145

For example, using the grammar

G1 = ({E, a, b}, {a, b}, P, E),

where P is the set of rules

E −→ aEb,

E −→ ab,

every derivation from E is of the form

E
∗

=⇒ anEbn =⇒ anabbn = an+1bn+1,

or
E

∗
=⇒ anEbn =⇒ anaEbbn = an+1Ebn+1,

where n ≥ 0.

Grammar G1 is very simple: every string anbn has a
unique derivation. This is usually not the case.

146 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

For example, using the grammar

G2 = ({E, +, ∗, (,), a}, {+, ∗, (,), a}, P, E),

where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a,

the string a + a ∗ a has the following distinct derivations,
where the boldface indicates which occurrence of E is
rewritten:

E =⇒ E ∗ E =⇒ E + E ∗ E

=⇒ a + E ∗ E =⇒ a + a ∗ E =⇒ a + a ∗ a,

and

E =⇒ E + E =⇒ a + E

=⇒ a + E ∗ E =⇒ a + a ∗ E =⇒ a + a ∗ a.

3.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES 147

In the above derivations, the leftmost occurrence of a
nonterminal is chosen at each step. Such derivations are
called leftmost derivations .

We could systematically rewrite the rightmost occurrence
of a nonterminal, getting rightmost derivations . The
string a+a∗a also has the following two rightmost deriva-
tions, where the boldface indicates which occurrence of E
is rewritten:

E =⇒ E + E =⇒ E + E ∗ E

=⇒ E + E ∗ a =⇒ E + a ∗ a =⇒ a + a ∗ a,

and

E =⇒ E ∗ E =⇒ E ∗ a

=⇒ E + E ∗ a =⇒ E + a ∗ a =⇒ a + a ∗ a.

148 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

The language generated by a context-free grammar is de-
fined as follows.

Definition 3.2.2 Given a context-free grammar
G = (V, Σ, P, S), the language generated by G is the
set

L(G) = {w ∈ Σ∗ | S
+

=⇒ w}.
A language L ⊆ Σ∗ is a context-free language (for short,
CFL) iff L = L(G) for some context-free grammar G.

It is technically very useful to consider derivations in
which the leftmost nonterminal is always selected for rewrit-
ing, and dually, derivations in which the rightmost non-
terminal is always selected for rewriting.

3.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES 149

Definition 3.2.3 Given a context-free grammar
G = (V, Σ, P, S), the (one-step) leftmost derivation re-
lation =⇒

lm
associated with G is the binary relation

=⇒
lm

⊆ V ∗ × V ∗ defined as follows: for all α, β ∈ V ∗, we

have
α =⇒

lm
β

iff there exist u ∈ Σ∗, ρ ∈ V ∗, and some production
(A → γ) ∈ P , such that

α = uAρ and β = uγρ.

The transitive closure of =⇒
lm

is denoted as
+

=⇒
lm

and the

reflexive and transitive closure of =⇒
lm

is denoted as
∗

=⇒
lm

.

150 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

The (one-step) rightmost derivation relation =⇒
rm

as-

sociated with G is the binary relation =⇒
rm

⊆ V ∗ × V ∗

defined as follows: for all α, β ∈ V ∗, we have

α =⇒
rm

β

iff there exist λ ∈ V ∗, v ∈ Σ∗, and some production
(A → γ) ∈ P , such that

α = λAv and β = λγv.

The transitive closure of =⇒
rm

is denoted as
+

=⇒
rm

and the

reflexive and transitive closure of =⇒
rm

is denoted as
∗

=⇒
rm

.

Remarks : It is customary to use the symbols a, b, c, d, e
for terminal symbols, and the symbols A, B, C, D, E for
nonterminal symbols. The symbols u, v, w, x, y, z denote
terminal strings, and the symbols α, β, γ, λ, ρ, µ denote
strings in V ∗. The symbols X,Y, Z usually denote sym-
bols in V .

3.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES 151

Given a CFG G = (V, Σ, P, S), parsing a string w con-
sists in finding out whether w ∈ L(G), and if so, in
producing a derivation for w.

The following lemma is technically very important. It
shows that leftmost and rightmost derivations are “uni-
versal”. This has some important practical implications
for the complexity of parsing algorithms.

Lemma 3.2.4 Let G = (V, Σ, P, S) be a context-free
grammar. For every w ∈ Σ∗, for every derivation

S
+

=⇒ w, there is a leftmost derivation S
+

=⇒
lm

w, and

there is a rightmost derivation S
+

=⇒
rm

w.

Proof . Of course, we have to somehow use induction on
derivations, but this is a little tricky, and it is necessary
to prove a stronger fact. We treat leftmost derivations,
rightmost derivations being handled in a similar way.

152 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Claim: For every w ∈ Σ∗, for every α ∈ V +, for every
n ≥ 1, if α

n
=⇒ w, then there is a leftmost derivation

α
n

=⇒
lm

w.

The claim is proved by induction on n.

Lemma 3.2.4 implies that

L(G) = {w ∈ Σ∗ | S
+

=⇒
lm

w} = {w ∈ Σ∗ | S
+

=⇒
rm

w}.

3.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES 153

We observed that if we consider the grammar

G2 = ({E, +, ∗, (,), a}, {+, ∗, (,), a}, P, E),

where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a,

the string a + a ∗ a has the following two distinct left-
most derivations, where the boldface indicates which oc-
currence of E is rewritten:

E =⇒ E ∗ E =⇒ E + E ∗ E

=⇒ a + E ∗ E =⇒ a + a ∗ E =⇒ a + a ∗ a,

and

E =⇒ E + E =⇒ a + E

=⇒ a + E ∗ E =⇒ a + a ∗ E =⇒ a + a ∗ a.

154 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

When this happens, we say that we have an ambiguous
grammars. In some cases, it is possible to modify a gram-
mar to make it unambiguous. For example, the grammar
G2 can be modified as follows.

Let

G3 = ({E, T, F, +, ∗, (,), a}, {+, ∗, (,), a}, P, E),

where P is the set of rules

E −→ E + T,

E −→ T,

T −→ T ∗ F,

T −→ F,

F −→ (E),

F −→ a.

3.2. DERIVATIONS AND CONTEXT-FREE LANGUAGES 155

We leave as an exercise to show that L(G3) = L(G2), and
that every string in L(G3) has a unique leftmost deriva-
tion. Unfortunately, it is not always possible to modify a
context-free grammar to make it unambiguous.

There exist context-free languages that have no unam-
biguous context-free grammars. For example, it can be
shown that

L3 = {ambmcn | m, n ≥ 1} ∪ {ambncn | m, n ≥ 1}
is context-free, but has no unambiguous grammars. All
this motivates the following definition.

156 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Definition 3.2.5 A context-free grammar
G = (V, Σ, P, S) is ambiguous if there is some string
w ∈ L(G) that has two distinct leftmost derivations (or
two distinct rightmost derivations). Thus, a grammar G
is unambiguous if every string w ∈ L(G) has a unique
leftmost derivation (or a unique rightmost derivation). A
context-free language L is inherently ambiguous if every
CFG G for L is ambiguous.

Whether or not a grammar is ambiguous affects the com-
plexity of parsing. Parsing algorithms for unambiguous
grammars are more efficient than parsing algorithms for
ambiguous grammars.

3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 157

3.3 Normal Forms for Context-Free Grammars, Chom-

sky Normal Form

One of the main goals of this section is to show that every
CFG G can be converted to an equivalent grammar in
Chomsky Normal Form (for short, CNF). A context-
free grammar G = (V, Σ, P, S) is in Chomsky Normal
Form iff its productions are of the form

A → BC,

A → a, or

S → ε,

where A, B, C ∈ N , a ∈ Σ, S → ε is in P iff ε ∈
L(G), and S does not occur on the right-hand side of
any production.

The first step to eliminate ε-rules is to compute the set
E(G) of erasable (or nullable) nonterminals

E(G) = {A ∈ N | A
+

=⇒ ε}.

158 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

The set E(G) is computed using a sequence of approxi-
mations Ei defined as follows:

E0 = {A ∈ N | (A → ε) ∈ P},
Ei+1 = Ei ∪ {A | ∃(A → B1 . . . Bj . . . Bk) ∈ P,

Bj ∈ Ei, 1 ≤ j ≤ k}.

Clearly, the Ei form an ascending chain

E0 ⊆ E1 ⊆ · · · ⊆ Ei ⊆ Ei+1 ⊆ · · · ⊆ N,

and since N is finite, there is a least i, say i0, such that
Ei0 = Ei0+1. We claim that E(G) = Ei0. Actually, we
prove the following lemma.

3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 159

Lemma 3.3.1 Given any context-free grammar G =
(V, Σ, P, S), one can construct a context-free grammar
G′ = (V ′, Σ, P ′, S ′) such that:

(1) L(G′) = L(G);

(2) P ′ contains no ε-rules other than S ′ → ε, and
S ′ → ε ∈ P ′ iff ε ∈ L(G);

(3) S ′ does not occur on the right-hand side of any
production in P ′.

Proof . We begin by proving that E(G) = Ei0. For this,
we prove that E(G) ⊆ Ei0 and Ei0 ⊆ E(G).

160 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Having shown that E(G) = Ei0, we construct the gram-
mar G′. Its set of production P ′ is defined as follows.
Let

P1 = {A → α ∈ P | α ∈ V +} ∪ {S ′ → S},
and let P2 be the set of productions

P2 = {A → α1α2 . . . αkαk+1 | ∃α1 ∈ V ∗, . . . , ∃αk+1 ∈ V ∗,
∃B1 ∈ E(G), . . . ,∃Bk ∈ E(G)

A → α1B1α2 . . . αkBkαk+1 ∈ P, k ≥ 1, α1 . . . αk+1 �= ε}.

Note that ε ∈ L(G) iff S ∈ E(G). If S /∈ E(G), then
let P ′ = P1 ∪ P2, and if S ∈ E(G), then let P ′ =
P1 ∪ P2 ∪ {S ′ → ε}.

We claim that L(G′) = L(G), which is proved by show-
ing that every derivation using G can be simulated by a
derivation using G′, and vice-versa. All the conditions of
the lemma are now met.

3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 161

From a practical point of view, the construction or lemma
3.3.1 is very costly. For example, given a grammar con-
taining the productions

S → ABCDEF,

A → ε,

B → ε,

C → ε,

D → ε,

E → ε,

F → ε,

. . . → . . . ,

eliminating ε-rules will create 26 − 1 = 63 new rules cor-
responding to the 63 nonempty subsets of the set

{A, B, C, D, E, F}.

162 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

We now turn to the elimination of chain rules, i.e., rules
of the form

A → B

where A, B ∈ N .

It turns out that matters are greatly simplified if we first
apply lemma 3.3.1 to the input grammar G, and we ex-
plain the construction assuming that G = (V, Σ, P, S)
satisfies the conditions of lemma 3.3.1. For every nonter-
minal A ∈ N , we define the set

IA = {B ∈ N | A
+

=⇒ B}.

The sets IA are computed using approximations IA,i de-
fined as follows:

IA,0 = {B ∈ N | (A → B) ∈ P},
IA,i+1 = IA,i ∪ {C ∈ N | ∃(B → C) ∈ P, and B ∈ IA,i}.

3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 163

Clearly, for every A ∈ N , the IA,i form an ascending
chain

IA,0 ⊆ IA,1 ⊆ · · · ⊆ IA,i ⊆ IA,i+1 ⊆ · · · ⊆ N,

and since N is finite, there is a least i, say i0, such that
IA,i0 = IA,i0+1. We claim that IA = IA,i0. Actually, we
prove the following lemma.

Lemma 3.3.2 Given any context-free grammar G =
(V, Σ, P, S), one can construct a context-free grammar
G′ = (V ′, Σ, P ′, S ′) such that:

(1) L(G′) = L(G);

(2) Every rule in P ′ is of the form A → α where |α| ≥
2, or A → a where a ∈ Σ, or S ′ → ε iff ε ∈ L(G);

(3) S ′ does not occur on the right-hand side of any
production in P ′.

164 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Proof . First, we apply lemma 3.3.1 to the grammar G,
obtaining a grammar G1 = (V1, Σ, S1, P1). The proof
that IA = IA,i0 is similar to the proof that E(G) = Ei0.

We now define the following sets of rules. Let

P2 = P1 − {A → B | A → B ∈ P1},
and let

P3 = {A → α | B → α ∈ P1, α /∈ N1, B ∈ IA}.

We claim that G′ = (V1, Σ, P2 ∪P3, S1) satisfies the con-
ditions of the lemma.

3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 165

Let us apply the method of lemma 3.3.2 to the grammar

G3 = ({E, T, F, +, ∗, (,), a}, {+, ∗, (,), a}, P, E),

where P is the set of rules

E −→ E + T,

E −→ T,

T −→ T ∗ F,

T −→ F,

F −→ (E),

F −→ a.

We get IE = {T, F}, IT = {F}, and IF = ∅.

166 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

The new grammar G′
3 has the set of rules

E −→ E + T,

E −→ T ∗ F,

E −→ (E),

E −→ a,

T −→ T ∗ F,

T −→ (E),

T −→ a,

F −→ (E),

F −→ a.

3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 167

At this stage, the grammar obtained in lemma 3.3.2 no
longer has ε-rules (except perhaps S ′ → ε iff ε ∈ L(G))
or chain rules. However, it may contain rules A → α
with |α| ≥ 3, or with |α| ≥ 2 and where α contains
terminals(s).

To obtain the Chomsky Normal Form. we need to elim-
inate such rules. This is not difficult, but notationally a
bit messy.

168 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Lemma 3.3.3 Given any context-free grammar G =
(V, Σ, P, S), one can construct a context-free grammar
G′ = (V ′, Σ, P ′, S ′) such that L(G′) = L(G) and G′ is
in Chomsky Normal Form, that is, a grammar whose
productions are of the form

A → BC,

A → a, or

S ′ → ε,

where A, B, C ∈ N ′, a ∈ Σ, S ′ → ε is in P ′ iff ε ∈
L(G), and S ′ does not occur on the right-hand side of
any production in P ′.

3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 169

Proof . First, we apply lemma 3.3.2, obtaining G1.

Let Σr be the set of terminals occurring on the right-
hand side of rules A → α ∈ P1, with |α| ≥ 2. For every
a ∈ Σr, let Xa be a new nonterminal not in V1. Let

P2 = {Xa → a | a ∈ Σr}.
Let P1,r be the set of productions

A → α1a1α2 · · ·αkakαk+1,

where a1, . . . , ak ∈ Σr and αi ∈ N ∗
1 .

For every production

A → α1a1α2 · · ·αkakαk+1

in P1,r, let

A → α1Xa1α2 · · ·αkXak
αk+1

be a new production, and let P3 be the set of all such
productions.

170 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Let P4 = (P1 − P1,r) ∪ P2 ∪ P3.

Now, productions A → α in P4 with |α| ≥ 2 do not
contain terminals.

However, we may still have productions A → α ∈ P4

with |α| ≥ 3.

For every production of the form

A → B1 · · ·Bk,

where k ≥ 3, create the new nonterminals

[B1 · · ·Bk−1], [B1 · · ·Bk−2], · · · , [B1B2B3], [B1B2],

and the new productions

A → [B1 · · ·Bk−1]Bk,

[B1 · · ·Bk−1] → [B1 · · ·Bk−2]Bk−1,

· · · → · · · ,
[B1B2B3] → [B1B2]B3,

[B1B2] → B1B2.

All the productions are now in Chomsky Normal Form,
and it is clear that the same language is generated.

3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 171

Applying the first phase of the method of lemma 3.3.3 to
the grammar G′

3, we get the rules

E −→ EX+T,

E −→ TX∗F,

E −→ X(EX),

E −→ a,

T −→ TX∗F,

T −→ X(EX),

T −→ a,

F −→ X(EX),

F −→ a,

X+ −→ +,

X∗ −→ ∗,
X(−→ (,

X) −→).

After applying the second phase of the method, we get
the following grammar in Chomsky Normal Form:

172 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

E −→ [EX+]T,

[EX+] −→ EX+,

E −→ [TX∗]F,

[TX∗] −→ TX∗,
E −→ [X(E]X),

[X(E] −→ X(E,

E −→ a,

T −→ [TX∗]F,

T −→ [X(E]X),

T −→ a,

F −→ [X(E]X),

F −→ a,

X+ −→ +,

X∗ −→ ∗,
X(−→ (,

X) −→).

3.3. NORMAL FORMS FOR CONTEXT-FREE GRAMMARS 173

For large grammars, it is often convenient to use the ab-
breviation which consists in grouping productions having
a common left-hand side, and listing the right-hand sides
separated by the symbol |. Thus, a group of productions

A → α1,

A → α2,

· · · → · · · ,
A → αk,

may be abbreviated as

A → α1 | α2 | · · · | αk.

An interesting corollary of the CNF is the following de-
cidability result.

There is an algorithm which, given any context-free gram-
mar G, given any string w ∈ Σ∗, decides whether w ∈
L(G).

174 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

There are much better parsing algorithms than this naive
algorithm. We now show that every regular language is
context-free.

3.4 Regular Languages are Context-Free

The regular languages can be characterized in terms of
very special kinds of context-free grammars, right-linear
(and left-linear) context-free grammars.

Definition 3.4.1 A context-free grammar
G = (V, Σ, P, S) is left-linear iff its productions are of
the form

A → Ba,

A → a,

A → ε.

where A, B ∈ N , and a ∈ Σ.

3.4. REGULAR LANGUAGES ARE CONTEXT-FREE 175

A context-free grammar G = (V, Σ, P, S) is right-linear
iff its productions are of the form

A → aB,

A → a,

A → ε.

where A, B ∈ N , and a ∈ Σ.

The following lemma shows the equivalence between NFA’s
and right-linear grammars.

Lemma 3.4.2 A language L is regular if and only if
it is generated by some right-linear grammar.

176 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

3.5 Useless Productions in Context-Free Grammars

Given a context-free grammar G = (V, Σ, P, S), it may
contain rules that are useless for a number of reasons. For
example, consider the grammar

G3 = ({E, A, a, b}, {a, b}, P, E),

where P is the set of rules

E −→ aEb,

E −→ ab,

E −→ A,

A −→ bAa.

The problem is that the nonterminal A does not derive
any terminal strings, and thus, it is useless, as well as the
last two productions.

3.5. USELESS PRODUCTIONS IN CONTEXT-FREE GRAMMARS 177

Let us now consider the grammar

G4 = ({E, A, a, b, c, d}, {a, b, c, d}, P, E),

where P is the set of rules

E −→ aEb,

E −→ ab,

A −→ cAd,

A −→ cd.

This time, the nonterminal A generates strings of the

form cndn, but there is no derivation E
+

=⇒ α from E
where A occurs in α. The nonterminal A is not connected
to E, and the last two rules are useless. Fortunately, it is
possible to find such useless rules, and to eliminate them.

178 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

Let T (G) be the set of nonterminals that actually derive
some terminal string, i.e.

T (G) = {A ∈ (V − Σ) | ∃w ∈ Σ∗, A =⇒+ w}.

The set T (G) can be defined by stages.

We define the sets Tn (n ≥ 1) as follows:

T1 = {A ∈ (V − Σ) | ∃(A −→ w) ∈ P, with w ∈ Σ∗},
and

Tn+1 = Tn ∪ {A ∈ (V − Σ) | ∃(A −→ β) ∈ P,

with β ∈ (Tn ∪ Σ)∗}

3.5. USELESS PRODUCTIONS IN CONTEXT-FREE GRAMMARS 179

It is easy to prove that there is some least n such that
Tn+1 = Tn, and that for this n, T (G) = Tn.

If S /∈ T (G), then L(G) = ∅, and G is equivalent to the
trivial grammar G′ = ({S}, Σ, ∅, S).

If S ∈ T (G), then let U(G) be the set of nonterminals
that are actually useful, i.e.,

U(G) = {A ∈ T (G) | ∃α, β ∈ (T (G)∪Σ)∗, S =⇒∗ αAβ}.
The set U(G) can also be computed by stages.

180 CHAPTER 3. CONTEXT-FREE LANGUAGES AND PDA’S

We define the sets Un (n ≥ 1) as follows:

U1 = {A ∈ T (G) | ∃(S −→ αAβ) ∈ P,

with α, β ∈ (T (G) ∪ Σ)∗},
and

Un+1 = Un ∪ {B ∈ T (G) | ∃(A −→ αBβ) ∈ P,

with A ∈ Un, α, β ∈ (T (G) ∪ Σ)∗}.

It is easy to prove that there is some least n such that
Un+1 = Un, and that for this n, U(G) = Un ∪ {S}.

Then, we can use U(G) to transform G into an equivalent
CFG in which every nonterminal is useful (i.e., for which
V −Σ = U(G)). Indeed, simply delete all rules containing
symbols not in U(G).

We say that a context-free grammar G is reduced if all
its nonterminals are useful, i.e., N = U(G).

3.5. USELESS PRODUCTIONS IN CONTEXT-FREE GRAMMARS 181

It should be noted than although dull, the above consid-
erations are important in practice. Certain algorithms for
constructing parsers, for example, LR-parsers, may loop
if useless rules are not eliminated!

We now consider another normal form for context-free
grammars, the Greibach Normal Form.

But first, we need to explain how context-free languages
arise as least fixed points of certain language-valued func-
tions induced by context-free grammars.

