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Preface

This book is an introduction to fundamental geometric concepts and tools needed
for solving problems of a geometric nature with a computer. Our main goal is to
present a collection of tools that can be used to solve problems in computer vision,
robotics, machine learning, computer graphics, and geometric modeling.

During the ten years following the publication of the first edition of this book,
optimization techniques have made a huge comeback, especially in the fields of
computer vision and machine learning. In particular, convex optimization and its
special incarnation, semidefinite programming (SDP), are now widely used tech-
niques in computer vision and machine learning, as one may verify by looking at
the proceedings of any conference in these fields. Therefore, we felt that it would
be useful to include some material (especially on convex geometry) to prepare the
reader for more comprehensive expositions of convex optimization, such as Boyd
and Vandenberghe [2], a masterly and encyclopedic account of the subject. In par-
ticular, we added Chapter 7, which covers separating and supporting hyperplanes.

We also realized that the importance of the SVD (singular value decomposition)
and of the pseudo-inverse had not been sufficiently stressed in the first edition of this
book, and we rectified this situation in the second edition. In particular, we added
sections on PCA (principal component analysis) and on best affine approximations
and showed how they are efficienlty computed using SVD. We also added a sec-
tion on quadratic optimization and a section on the Schur complement, showing the
usefulness of the pseudo-inverse.

In this second edition, many typos and small mistakes have been corrected, some
proofs have been shortened, some problems have been added, and some references
have been added. Here is a list containing brief descriptions of the chapters that have
been modified or added.

» Chapter 3, on the basic properties of convex sets, has been expanded. In par-
ticular, we state a version of Carathéodory’s theorem for convex cones (Theo-
rem 3.2), a version of Radon’s theorem for pointed cones (Theorem 3.6), and
Tverberg’s theorem (Theorem 3.7), and we define centerpoints and prove their
existence (Theorem 3.9).

vii
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* Chapter 7 is new. This chapter deals with separating hyperplanes, versions of
Farkas’s lemma, and supporting hyperplanes. Following Berger [1], various ver-
sions of the separation of open or closed convex subsets by hyperplanes are
proved as consequences of a geometric version of the Hahn—Banach theorem
(Theorem 7.1). We also show how various versions of Farkas’s lemma (Lemmas
7.3, 7.4, and 7.5) can be easily deduced from separation results (Corollary 7.4
and Proposition 7.3). Farkas’s lemma plays an important result in linear program-
ming. Indeed, it can be used to give a quick proof of so-called strong duality in
linear programming. We also prove the existence of supporting hyperplanes for
boundary points of closed convex sets (Minkowski’s lemma, Proposition 7.4).
Unfortunately, lack of space prevents us from discussing polytopes and polyhe-
dra. The reader will find a masterly exposition of these topics in Ziegler [3].

* Chapter 14 is a major revision of Chapter 13 (Applications of Euclidean Geome-
try to Various Optimization Problems) from the first edition of this book and has
been renamed “Applications of SVD and Pseudo-Inverses.” Section 14.1, about
least squares problems, and the pseudo-inverse has not changed much, but we
have added the fact that AA™ is the orthogonal projection onto the range of A and
that AT A is the orthogonal projection onto Ker(A)+, the orthogonal complement
of Ker(A). We have also added Proposition 14.1, which shows how the pseudo-
inverse of a normal matrix A can be obtained from a block diagonalization of A
(see Theorem 12.7). Sections 14.2, 14.3, and 14.4 are new.

In Section 14.2, we define various matrix norms, including operator norms, and
we prove Proposition 14.4, showing how a matrix can be best approximated by a
rank-k matrix (in the || ||, norm).

Section 14.3 is devoted to principal component analysis (PCA). PCA is a very
important statistical tool, yet in our experience, most presentations of this con-
cept lack a crisp definition. Most presentations identify the notion of principal
components with the result of applying SVD and do not prove why SVD does in
fact yield the principal components and directions. To rectify this situation, we
give a precise definition of PCAs (Definition 14.3), and we prove rigorously how
SVD yields PCA (Theorem 14.3), using the Rayleigh—Ritz ratio (Lemma 14.2).
In Section 14.4, it is shown how to best approximate a set of data with an affine
subspace in the least squares sense. Again, SVD can used to find solutions.

» Chapter 15 is new, except for Section 15.1, which reproduces Section 13.2 from
the first edition of this book. We added the definition of the positive semidefinite
cone ordering, >, on symmetric matrices, since it is extensively used in convex
optimization.

In Section 15.2, we find a necessary and sufficient condition (Proposition 15.2)
for the quadratic function f(x) = %xTAx—l-be to have a minimum in terms of
the pseudo-inverse of A (where A is a symmetric matrix). We also show how to
accommodate linear constraints of the form C'x = 0 or affine constraints of the
form C"x =t (where t # 0).

In Section 15.3, we consider the problem of maximizing f(x) = x"Ax on the
unit sphere x'x = 1 or, more generally, on the ellipsoid x' Bx = 1, where A is
a symmetric matrix and B is symmetric, positive definite. We show that these
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problems are completely solved by diagonalizing A with respect to an orthogonal
matrix. We also briefly consider the effect of adding linear constraints of the form
C"x = 0 or affine constraints of the form C"x = ¢ (where ¢ #£0).

» Chapter 16 is new. In this chapter, we define the notion of Schur complement, and
we use it to characterize when a symmetric 2 x 2 block matrix is either positive
semidefinite or positive definite (Proposition 16.1, Proposition 16.2, and Theo-
rem 16.1).

* Chapter 17 is also brand new. In this chapter, we show how a computer vision
problem, contour grouping, can be formulated as a quadratic optimization prob-
lem involving a Hermitian matrix. Because of the extra dependency on an an-
gle, this optimization problem leads to finding the derivative of eigenvalues and
eigenvectors of a normal matrix X. We derive explicit formulas for these deriva-
tives (in the case of eigenvectors, the formula involves the pseudo-inverse of X)
and we prove their correctness. It appears to be difficult to find these formulas to-
gether with a clean and correct proof in the literature. Our optimization problem
leads naturally to the consideration of the field of values (or numerical range)
F(A) of a complex matrix A. A remarkable property of the field of values is that
it is a convex subset of the plane, a theorem due to Toeplitz and Hausdorff, for
which we give a short proof using a deformation argument (Theorem 17.1). Prop-
erties of the fields of values can be exploited to solve our optimization problem.
This chapter describes current and exciting research in computer vision.

* Chapter 18 (which used to be Chapter 14 in the first edition) has been slightly ex-
panded and improved. Our experience in teaching the material of this chapter, an
introduction to manifolds and Lie groups, is that it is helpful to review carefully
the notion of the derivative of a function f: E — F where E and F are normed
vector spaces. Thus we added Section 18.7, which provides such a review. We
also state the inverse function theorem and define immersions and submersions.
Section 18.8 has also been slightly expanded. We added Proposition 18.6 and
Theorem 18.7, which are often useful in proving that various spaces are mani-
folds; we defined critical and regular values and defined Morse functions; and
we made a few cosmetic improvements in the paragraphs following Definition
18.20. A number of new problems on manifolds have been added.

* The only change to Chapter 19 (Chapter 15 in the first edition) is the inclusion of
a more complete treatment of the Frenet frame for nD curves in Section 19.10.

* Similarly, the only change to Chapter 20 (Chapter 16 in the first edition) is the
addition of Section 20.12, on covariant derivatives and the parallel transport.

Besides adding problems to all the chapters listed above we added one more
problem to Chapter 2.

As in the first edition, there is some additional material on the web site http:
//www.cis.upenn.edu/~jean/gbooks/geom2.html

This material has not changed, and the chapter and section numbers are those of
the first edition. A graph showing the dependencies of chapters is shown in Figure
0.1.
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Since the publication of the first edition of this book I have received valuable com-
ments from Kostas Daniilidis, Marcelo Siqueira, Jianbo Shi, Ben Taskar, CJ Taylor,
Mickey Brautbar, Katerina Fragiadaki, Ryan Kennedy, Oleg Naroditsky, and Weiyu
Zhang. I also want to extend special thanks to David Kramer, who copyedited the
first edition of this book over ten years ago, and did a superb job on this second
edition.

Fig. 0.1 Dependency of chapters.
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Preface to the First Edition

Many problems arising in engineering, and notably in computer science and me-
chanical engineering, require geometric tools and concepts. This is especially true
of problems arising in computer graphics, geometric modeling, computer vision,
and motion planning, just to mention some key areas. This book is an introduction
to fundamental geometric concepts and tools needed for solving problems of a ge-
ometric nature with a computer. In a previous text, Gallier [24], we focused mostly
on affine geometry and on its applications to the design and representation of poly-
nomial curves and surfaces (and B-splines). The main goal of this book is to provide
an introduction to more sophisticated geometric concepts needed in tackling engi-
neering problems of a geometric nature. Many problems in the above areas require
some nontrivial geometric knowledge, but in our opinion, books dealing with the
relevant geometric material are either too theoretical, or else rather specialized. For
example, there are beautiful texts entirely devoted to projective geometry, Euclidean
geometry, and differential geometry, but reading each one represents a considerable
effort (certainly from a nonmathematician!). Furthermore, these topics are usually
treated for their own sake (and glory), with little attention paid to applications.
This book is an attempt to fill this gap. We present a coherent view of geometric
methods applicable to many engineering problems at a level that can be understood
by a senior undergraduate with a good math background. Thus, this book should
be of interest to a wide audience including computer scientists (both students and
professionals), mathematicians, and engineers interested in geometric methods (for
example, mechanical engineers). In particular, we provide an introduction to affine
geometry, projective geometry, Euclidean geometry, basics of differential geometry
and Lie groups, and a glimpse of computational geometry (convex sets, Voronoi
diagrams, and Delaunay triangulations). This material provides the foundations for
the algorithmic treatment of curves and surfaces, some basic tools of geometric
modeling. The right dose of projective geometry also leads to a rigorous and yet
smooth presentation of rational curves and surfaces. However, to keep the size of
this book reasonable, a number of topics could not be included. Nevertheless, they
can be found in the additional material on the web site: see http://www.cis.

Xiii
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upenn.edu/~jean/gbooks/geom2.html. This is the case of the material
on rational curves and surfaces.

This book consists of sixteen chapters and an appendix. The additional material
on the web site consists of eight chapters and an appendix: see http://www.
cis.upenn.edu/~Jjean/gbooks/geom2.html.

* The book starts with a brief introduction (Chapter 1).

* Chapter 2 provides an introduction to affine geometry. This ensures that readers
are on firm ground to proceed with the rest of the book, in particular, projective
geometry. This is also useful to establish the notation and terminology. Readers
proficient in geometry may omit this section, or use it as needed. On the other
hand, readers totally unfamiliar with this material will probably have a hard time
with the rest of the book. These readers are advised do some extra reading in
order to assimilate some basic knowledge of geometry. For example, we highly
recommend Pedoe [42], Coxeter [9], Snapper and Troyer [52], Berger [2, 3],
Fresnel [22], Samuel [51], Hilbert and Cohn—Vossen [31], Boehm and Prautzsch
[5], and Tisseron [54].

* Basic properties of convex sets and convex hulls are discussed in Chapter 3.
Three major theorems are proved: Carthéodory’s theorem, Radon’s theorem, and
Helly’s theorem.

* Chapter 4 presents a construction (the “hat construction”) for embedding an
affine space into a vector space. An important application of this construction
is the projective completion of an affine space, presented in the next chap-
ter. Other applications are treated in Chapter 20 on the web site, see http:
//www.cis.upenn.edu/~jean/gbooks/geom2.html.

e Chapter 5 provides an introduction to projective geometry. Since we are not
writing a treatise on projective geometry, we cover only the most fundamental
concepts, including projective spaces and subspaces, frames, projective maps,
multiprojective maps, the projective completion of an affine space, cross-ratios,
duality, and the complexification of a real projective space. This material also
provides the foundations for our algorithmic treatment of rational curves and
surfaces, to be found on the web site (Chapters 18, 19, 21, 22, 23, 24); see
http://www.cis.upenn.edu/~jean/gbooks/geom2.html.

» Chapters 6, 8, and 9, provide an introduction to Euclidean geometry, to the groups
of isometries O(n) and SO(n), the groups of affine rigid motions Is(n) and
SE(n), and to the quaternions. Several versions of the Cartan—Dieudonné the-
orem are proved in Chapter 8. The QR-decomposition of matrices is explained
geometrically, both in terms of the Gram—Schmidt procedure and in terms of
Householder transformations. These chapters are crucial to a firm understanding
of the differential geometry of curves and surfaces, and computational geometry.

e Chapter 10 gives a short introduction to some fundamental topics in computa-
tional geometry: Voronoi diagrams and Delaunay triangulations.

* Chapter 11 provides an introduction to Hermitian geometry, to the groups of
isometries U(n) and SU(n), and the groups of affine rigid motions Is(n,C)
and SE(n,C). The generalization of the Cartan—Dieudonné theorem to Her-
mitian spaces can be found on the web site, Chapter 25; see http://www.
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cis.upenn.edu/~Jjean/gbooks/geom2.html. A short introduction to
Hilbert spaces, including the projection theorem, and the isomorphism of every
Hilbert space with some space /%(K), can also be found on the web site in Chapter
26, see http://www.cis.upenn.edu/~Jjean/gbooks/geom2.html.

e Chapter 12 provides a presentation of the spectral theorems in Euclidean and
Hermitian spaces, including normal, self-adjoint, skew self-adjoint, and orthog-
onal linear maps. Normal form (in terms of block diagonal matrices) for various
types of linear maps are presented.

* The singular value decomposition (SVD) and the polar form of linear maps are
discussed quite extensively in Chapter 13. The pseudo-inverse of a matrix and its
characterization using the Penrose properties are presented.

* Chapter 14 presents some applications of Euclidean geometry to various opti-
mization problems. The method of least squares is presented, as well as the ap-
plications of the SVD and QR-decomposition to solve least squares problems.
We also describe a method for minimizing positive definite quadratic forms, us-
ing Lagrange multipliers.

» Chapter 18 provides an introduction to the linear Lie groups, via a presentation
of some of the classical groups and their Lie algebras, using the exponential map.
The surjectivity of the exponential map is proved for SO(n) and SE(n).

* An introduction to the local differential geometry of curves is given in Chapter
19 (curvature, torsion, the Frenet frame, etc).

* An introduction to the local differential geometry of surfaces based on some
lectures by Eugenio Calabi is given in Chapter 20. This chapter is rather unique,
as it reflects decades of experience from a very distinguished geometer.

e Chapter 21 is an appendix consisting of short sections consisting of basics of
linear algebra and analysis. This chapter has been included to make the material
self-contained. Our advice is to use it as needed!

A very elegant presentation of rational curves and surfaces can be given us-
ing some notions of affine and projective geometry. We push this approach quite
far in the material on the web; see http://www.cis.upenn.edu/~jean/
gbooks/geom2.html. However, we provide only a cursory coverage of CAGD
methods. Luckily, there are excellent texts on CAGD, including Bartels, Beatty, and
Barsky [1], Farin [17, 18], Fiorot and Jeannin [20, 21], Riesler [50], Hoschek and
Lasser [33], and Piegl and Tiller [43]. Although we cover affine, projective, and Eu-
clidean geometry in some detail, we are far from giving a comprehensive treatment
of these topics. For such a treatment, we highly recommend Berger [2, 3], Samuel
[51], Pedoe [42], Coxeter [11, 10, 8, 9], Snapper and Troyer [52], Fresnel [22], Tis-
seron [54], Sidler [45], Dieudonné [13], and Veblen and Young [57, 58], a great
classic.

Similarly, although we present some basics of differential geometry and Lie
groups, we only scratch the surface. For instance, we refrain from discussing mani-
folds in full generality. We hope that our presentation is a good preparation for more
advanced texts, such as Gray [27], do Carmo [14], Berger and Gostiaux [4], and
Lafontaine [36]. The above are still fairly elementary. More advanced texts on dif-
ferential geometry include do Carmo [15, 16], Guillemin and Pollack [29], Warner
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[59], Lang [37], Boothby [6], Lehmann and Sacré [38], Stoker [53], Gallot, Hulin,
and Lafontaine [25], Milnor [41], Sharpe [44], Malliavin [39], and Godbillon [26].

It is often possible to reduce interpolation problems involving polynomial curves
or surfaces to solving systems of linear equations. Thus, it is very helpful to be
aware of efficient methods for numerical matrix analysis. For instance, we present
the QR-decomposition of matrices, both in terms of the (modified) Gram—Schmidt
method and in terms of Householder transformations, in a novel geometric fashion.
For further information on these topics, readers are referred to the excellent texts by
Strang [48], Golub and Van Loan [28], Trefethen and Bau [55], Ciarlet [7], and Kin-
caid and Cheney [34]. Strang’s beautiful book on applied mathematics is also highly
recommended as a general reference [46]. There are other interesting applications
of geometry to computer vision, computer graphics, and solid modeling. Some good
references are Trucco and Verri [56], Koenderink [35], and Faugeras [19] for com-
puter vision; Hoffman [32] for solid modeling; and Metaxas [40] for physics-based
deformable models.

Novelties

As far as we know, there is no fully developed modern exposition integrating the
basic concepts of affine geometry, projective geometry, Euclidean geometry, Her-
mitian geometry, basics of Hilbert spaces with a touch of Fourier series, basics of
Lie groups and Lie algebras, as well as a presentation of curves and surfaces both
from the standard differential point of view and from the algorithmic point of view
in terms of control points (in the polynomial and rational case).

New Treatment, New Results

This book provides an introduction to affine geometry, projective geometry, Eu-
clidean geometry, Hermitian geometry, Hilbert spaces, a glimpse at Lie groups and
Lie algebras, and the basics of local differential geometry of curves and surfaces.
We also cover some classics of convex geometry, such as Carathéodory’s theo-
rem, Radon’s theorem, and Helly’s theorem. However, in order to help the reader
assimilate all these concepts with the least amount of pain, we begin with some
basic notions of affine geometry in Chapter 2. Basic notions of Euclidean geom-
etry come later only in Chapters 6, 8, 9. Generally, noncore material is relegated
to appendices or to the web site: see http://www.cis.upenn.edu/~jean/
gbooks/geom2.html.

We cover the standard local differential properties of curves and surfaces at an
elementary level, but also provide an in-depth presentation of polynomial and ra-
tional curves and surfaces from an algorithmic point of view. The approach (some-
times called blossoming) consists in multilinearizing everything in sight (getting
polar forms), which leads very naturally to a presentation of polynomial and ratio-
nal curves and surfaces in terms of control points (Bézier curves and surfaces). We
present many algorithms for subdividing and drawing curves and surfaces, all im-
plemented in Mathematica. A clean and elegant presentation of control points with
weights (and control vectors) is obtained by using a construction for embedding
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an affine space into a vector space (the so-called “hat construction,” originating in
Berger [2]). We also give several new methods for drawing efficiently closed ratio-
nal curves and surfaces, and a method for resolving base points of triangular rational
surfaces. We give a quick introduction to the concepts of Voronoi diagrams and De-
launay triangulations, two of the most fundamental concepts in computational ge-
ometry. As a general rule, we try to be rigorous, but we always keep the algorithmic
nature of the mathematical objects under consideration in the forefront.

Many problems and programming projects are proposed (over 230). Some are
routine, some are (very) difficult.

Applications

Although it is core mathematics, geometry has many practical applications. When-
ever possible, we point out some of these applications, For example, we mention
some (perhaps unexpected) applications of projective geometry to computer vision
(camera calibration), efficient communication, error correcting codes, and cryptog-
raphy (see Section 5.13). As applications of Euclidean geometry, we mention mo-
tion interpolation, various normal forms of matrices including QR-decomposition
in terms of Householder transformations and SVD, least squares problems (see Sec-
tion 14.1), and the minimization of quadratic functions using Lagrange multipliers
(see Section 15.1). Lie groups and Lie algebras have applications in robot kine-
matics, motion interpolation, and optimal control. They also have applications in
physics. As applications of the differential geometry of curves and surfaces, we
mention geometric continuity for splines, and variational curve and surface design
(see Section 19.11 and Section 20.13). Finally, as applications of Voronoi diagrams
and Delaunay triangulations, we mention the nearest neighbors problem, the largest
empty circle problem, the minimum spanning tree problem, and motion planning
(see Section 10.5). Of course, rational curves and surfaces have many applications
to computer-aided geometric design (CAGD), manufacturing, computer graphics,
and robotics.

Many Algorithms and Their Implementation

Although one of our main concerns is to be mathematically rigorous, which implies
that we give precise definitions and prove almost all of the results in this book, we
are primarily interested in the representation and the implementation of concepts
and tools used to solve geometric problems. Thus, we devote a great deal of efforts
to the development and implemention of algorithms to manipulate curves, surfaces,
triangulations, etc. As a matter of fact, we provide Mathematica code for most of
the geometric algorithms presented in this book. We also urge the reader to write his
own algorithms, and we propose many challenging programming projects.

Open Problems

Not only do we present standard material (although sometimes from a fresh point of
view), but whenever possible, we state some open problems, thus taking the reader
to the cutting edge of the field. For example, we describe very clearly the problem
of resolving base points of rectangular rational surfaces (this material is on the web
site, see http://www.cis.upenn.edu/~jean/gbooks/geom2.html).
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What’s Not Covered in This Book

Since this book is already quite long, we have omitted solid modeling techniques,
methods for rendering implicit curves and surfaces, the finite elements method, and
wavelets. The first two topics are nicely covered in Hoffman [32], and the finite el-
ement method is the subject of so many books that we will not attempt to mention
any references besides Strang and Fix [47]. As to wavelets, we highly recommend
the classics by Daubechies [12], and Strang and Truong [49], among the many texts
on this subject. It would also have been nice to include chapters on the algebraic ge-
ometry of curves and surfaces. However, this is a very difficult subject that requires
a lot of algebraic machinery. Interested readers may consult Fulton [23] or Harris
[30].

How to Use This Book for a Course
This book covers three complementary but fairly disjoint topics:

(1) Projective geometry and its applications to rational curves and surfaces (Chapter
5, and on the web page, Chapters 18, 19, 21, 22, 23, 24);

(2) Euclidean geometry, Voronoi diagrams, and Delaunay triangulations, Hermitian
geometry, basics of Hilbert spaces, spectral theorems for special kinds of linear
maps, SVD, polar form, and basics of Lie groups and Lie algebras (Chapters 6,
8,9,10,11, 12,13, 14, 18);

(3) Basics of the differential geometry of curves and surfaces (Chapters 19 and 20).

Chapter 21 is an appendix consisting of background material and should be used
only as needed.

Our experience is that there is too much material to cover in a one—semester
course. The ideal situation is to teach the material in the entire book in two
semesters. Otherwise, a more algebraically inclined teacher should teach the first
or second topic, whereas a more differential-geometrically inclined teacher should
teach the third topic. In either case, Chapter 2 on affine geometry should be covered.
Chapter 4 is required for the first topic, but not for the second.

Problems are found at the end of each chapter. They range from routine to very
difficult. Some programming assignments have been included. They are often quite
open-ended, and may require a considerable amount of work. The end of a proof is
indicated by a square box ([]). The word iff is an abbreviation for if and only if . Ref-
erences to the web page http://www.cis.upenn.edu/~jean/gbooks/
geom?2 . html will be abbreviated as web page.

Hermann Weyl made the following comment in the preface (1938) of his beauti-
ful book [60]:

The gods have imposed upon my writing the yoke of a foreign tongue that was not sung at
my cradle . ... Nobody is more aware than myself of the attendant loss in vigor, ease and
lucidity of expression.

Being in a similar position, I hope that I was at least successful in conveying my
enthusiasm and passion for geometry, and that I have inspired my readers to study
some of the books that I respect and admire.
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Chapter 1
Introduction

Je ne crois donc pas avoir fait une ceuvre inutile en écrivant le présent Mémoire; je regette
seulement qu’il soit trop long; mais quand j’ai voulu me restreindre, je suis tombé dans
I’obscurité; j’ai préféré passer pour un peu bavard.

—Henri Poincaré, Analysis Situ, 1895

1.1 Geometries: Their Origin, Their Uses

What is geometry? According to Veblen and Young [8], geometry deals with the
properties of figures in space. Etymologically, geometry means the practical sci-
ence of measurement. No wonder geometry plays a fundamental role in mathemat-
ics, physics, astronomy, and engineering. Historically, as explained in more detail by
Coxeter [1], geometry was studied in Egypt about 2000 B.C. Then, it was brought to
Greece by Thales (640-456 B.C.). Thales also began the process of abstracting po-
sitions and straight edges as points and lines, and studying incidence properties. This
line of work was greatly developed by Pythagoras and his disciples, among which
we should distinguish Hippocrates. Indeed, Hippocrates attempted a presentation of
geometry in terms of logical deductions from a few definitions and assumptions. But
it was Euclid (about 300 B.C.) who made fundamental contributions to geometry,
recorded in his immortal Elements, one of the most widely read books in the world.

Euclid’s basic assumptions consist of basic notions concerning magnitudes, and
five postulates. Euclid’s fifth postulate, sometimes called the “parallel postulate,” is
historically very significant. It prompted mathematicians to question the traditional
foundations of geometry, and led them to realize that there are different kinds of
geometries. The fifth postulate can be stated in the following way:

V. If a straight line meets two other straight lines, so as to make the two interior
angles on one side of it together less than two right angles, the other straight
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lines will meet if produced on that side on which the angles are less than two
right angles.

Euclid’s fifth postulate is definitely not self-evident. It is also not simple or natural,
and after Euclid, many people tried to deduce it from the other postulates. However,
they succeeded only in replacing it by various equivalent assumptions, of which we
only mention two:

V'. Two parallel lines are equidistant. (Posidonius, first century B.C.).
V". The sum of the angles of a triangle is equal to two right angles. (Legendre,
1752-1833).

According to Euclid, two lines are parallel if they are coplanar without intersect-
ing.

It is remarkable that until the eighteenth century, no serious attempts at proving
or disproving Euclid’s fifth postulate were made. Saccheri (1667—1733) and Lam-
bert (1728-1777) attempted to prove Euclid’s fifth postulate, but of course, this was
impossible. This was shown by Lobachevsky (1793-1856) and Bolyai (1802-1860),
who proposed some models of non-Euclidean geometries. Actually, Gauss (1777-
1855) was the first to consider seriously the possibility that a geometry denying
Euclid’s fifth postulate was of some interest. However, this was such a preposterous
idea in those days that he kept these ideas to himself until others had published them
independently.

Thus, circa the 1830s, it was finally realized that there is not just one geometry,
but different kinds of geometries (spherical, hyperbolic, elliptic). The next big step
was taken by Riemann, (1826—1866) who introduced the “infinitesimal approach” to
geometry, wherein the differential of distance is expressed as the square root of the
sum of the squares of the differentials of the coordinates. Riemann studied spherical
spaces of higher dimension, and showed that their geometry is non-Euclidean. Fi-
nally, Cayley (1821-1895) and especially Klein (1849—1925) reached a clear under-
standing of the various geometries and their relationships. Basically, all geometries
can be viewed as embedded in a universal geometry, projective geometry. Projec-
tive geometry itself is non-Euclidean, since two coplanar lines always intersect in a
single point.

Projective geometry was developed in the nineteenth century, mostly by Monge,
Poncelet, Chasles, Steiner, and Von Staudt (but anticipated by Kepler (1571-1630)
and Desargues (1593-1662)). Klein also realized that “a geometry” can be defined
by the set of properties invariant under a certain group of transformations. For ex-
ample, projective properties are invariant under the group of projectivities, affine
properties are invariant under the group of affine bijections, and Euclidean proper-
ties are invariant under rigid motions. Although it is possible to define these various
groups of transformations as certain subgroups of the group of projectivities, such
an approach is quite bewildering to a novice. In order to appreciate such acrobatics,
one has to already know about projective geometry, affine geometry, and Euclidean
geometry.

Since the fifties, geometry has been built on top of linear algebra, as opposed to
axiomatically (as in Veblen and Young [8, 9] or Samuel [6]). Even though geometry
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loses some of its charm presented that way, it has the advantage of receiving a more
unified and simpler treatment.

Affine geometry is basically the geometry of linear algebra. Well, not quite, since
affine maps are not linear maps. The additional ingredient is that affine geometry is
invariant under translations, which are not linear maps! Instead of linear combina-
tions of vectors, we need to consider affine combinations of points, or barycenters
(where the scalars add up to 1). Affine maps preserve barycenters. In some sense,
affine geometry is the geometry of systems of particles and forces acting on them.
Angles and distances are undefined, but parallelism is well defined. The crucial
notion is the notion of ratio. Given any two points a,b and any scalar A, the point
¢ = (1—A)a+ Abis the point on the line (a,b) (assuming a # b) such that at = Mz,
i.e., the point ¢ is “A of the way between a and b.” Even though such a geometry
may seem quite restrictive, it allows the handling of polynomial curves and surfaces.

Euclidean geometry is obtained by adding an inner product to affine geometry.
This way, angles and distances can be defined. The maps that preserve the inner
product are the rigid motions. In Euclidean geometry, orthogonality can be defined.
This is a very rich geometry. The structure of rigid motions (rotations and rotations
followed by a flip) is well understood, and plays an important role in rigid body
mechanics.

Projective geometry is, roughly speaking, linear algebra “up to a scalar.” There
is no notion of angle or distance, and projective maps are more general than affine
maps. What is remarkable is that every affine space can be embedded into a pro-
jective space, its projective completion. In such a projective completion, there is a
special hyperplane of “points at infinity.” Affine maps are the projectivities that pre-
serve (globally) this hyperplane at infinity. Thus, affine geometry can be viewed as a
specialization of projective geometry. What is remarkable is that if we consider pro-
jective spaces over the complex field, it is possible to introduce the notion of angle in
a projective manner (via the cross-ratio). This discovery, due to Poncelet, Laguerre,
and Cayley, can be exploited to show that Euclidean geometry is a specialization of
projective geometry.

Besides projective geometry and its specializations, there are other important and
beautiful facets of geometry, notably differential geometry and algebraic geometry.
Nowdays, each one is a major area of mathematics, and it is out of the question to
discuss both in any depth. We will present some basics of the differential geometry
of curves and surfaces. This topic was studied by many, including Euler and Gauss,
who made fundamental contributions. However, we will limit ourselves to the study
of local properties and not even attempt to touch manifolds.

These days, projective geometry is rarely taught at any depth in mathematics de-
partments, and similarly for basic differential geometry. Typically, projective spaces
are defined at the begining of an algebraic geometry course, but modern alge-
braic geometry courses deal with much more advanced topics, such as varieties and
schemes. Similarly, differential geometry courses proceed quickly to manifolds and
Riemannian metrics, but the more elementary “geometry in the small” is cursorily
covered, if at all.
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Paradoxically, with the advent of faster computers, it was realized by manufac-
turers (for instance of cars and planes) that it was possible and desirable to use
computer-aided methods for their design. Computer vision problems (and some
computer graphics problems) can often be formulated in the framework of projec-
tive geometry. Thus, there seems to be an interesting turn of events. After being ne-
glected for decades, stimulated by computer science, old-fashioned geometry seems
to be making a comeback as a fundamental tool used in manufacturing, computer
graphics, computer vision, and motion planning, just to mention some key areas.

We are convinced that geometry will play an important role in computer science
and engineering in the years to come. The demand for technology using 3D graph-
ics, virtual reality, animation techniques, etc., is increasing fast, and it is clear that
storing and processing complex images and complex geometric models of shapes
(face, limbs, organs, etc.) will be required. This book represents an attempt at pre-
senting a coherent view of geometric methods used to tackle problems of a geomet-
ric nature with a computer. We believe that this can be a great way of learning some
old-fashioned (and some new!) geometry while having fun. Furthermore, there are
plenty of opportunities for applying these methods to real-world problems.

While we are interested in the standard (local) differential properties of curves
and surfaces (torsion, curvature), we concentrate on methods for discretizing curves
and surfaces in order to store them and display them efficiently. However, in order
to gain a deeper understanding of this theory of curves and surfaces, we present the
underlying geometric concepts in some detail, in particular, affine, projective, and
Euclidean geometry.

1.2 Prerequisites and Notation

It is assumed that the reader is familiar with the basics of linear algebra, at the level
of Strang [7]. The reader may also consult appropriate chapters on linear algebra in
Lang [3]. For the material on the differential geometry of curves and surfaces and
Lie groups, familiarity with some basics of analysis are assumed. Lang’s text [4] is
more than sufficient as background. A general background in classical geometry is
helpful, but not mandatory. Two excellent sources are Coxeter [2] and Pedoe [5].

We denote the set {0,1,2,...} of natural numbers by N, the ring {...,—2,
—1,0,1,2,...} of integers by Z, the field of rationals by Q, the field of real numbers
by R, and the field of complex numbers by C. The multiplicative group R — {0} of
reals is denoted by R*, and similarly, the multiplicative field of complex numbers is
denoted by C*. We let R = {x € R | x > 0} denote the set of nonnegative reals.

The n-dimensional vector space of real n-tuples is denoted by R”, and the com-
plex n-dimensional vector space of complex n-tuples is denoted by C".

Given a vector space E, vectors are usually denoted by lowercase letters from the
end of the alphabet, in italic or boldface; for example, u,v,w, X,y, zZ.

The null vector (0,...,0) is abbreviated as 0 or 0. A vector space consisting
only of the null vector is called a trivial vector space. A trivial vector space {0} is
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sometimes denoted by 0. A vector space E # {0} is called a nontrivial vector space.

When dealing with affine spaces, we will use an arrow in order to distinguish be-

tween spaces of points (E, U, etc.) and the corresponding spaces of vectors (?, 7,
etc.).

The dimension of the vector space E is denoted by dim(E). The direct sum of
two vector spaces U,V is denoted by U @ V. The dual of a vector space E is denoted
by E*. The kernel of a linear map f: E — F is denoted by Ker f, and the image
by Im f. The transpose of a matrix A is denoted by A'. The identity function is
denoted by id, and the n x n-identity matrix is denoted by I, or I. The determinant
of a matrix A is denoted by det(A) or D(A).

The cardinality of a set S is denoted by |S|. Set difference is denoted by

A—B={x|x€Aandx ¢ B}.

A list of symbols in their order of appearance in this book is given at the end of the
book.
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Chapter 2
Basics of Affine Geometry

L’algebre n’est qu’une géométrie écrite; la géométrie n’est qu’une algebre figurée.
—Sophie Germain

2.1 Affine Spaces

Geometrically, curves and surfaces are usually considered to be sets of points with
some special properties, living in a space consisting of “points.” Typically, one
is also interested in geometric properties invariant under certain transformations,
for example, translations, rotations, projections, etc. One could model the space of
points as a vector space, but this is not very satisfactory for a number of reasons.
One reason is that the point corresponding to the zero vector (0), called the origin,
plays a special role, when there is really no reason to have a privileged origin. An-
other reason is that certain notions, such as parallelism, are handled in an awkward
manner. But the deeper reason is that vector spaces and affine spaces really have
different geometries. The geometric properties of a vector space are invariant under
the group of bijective linear maps, whereas the geometric properties of an affine
space are invariant under the group of bijective affine maps, and these two groups
are not isomorphic. Roughly speaking, there are more affine maps than linear maps.
Affine spaces provide a better framework for doing geometry. In particular, it
is possible to deal with points, curves, surfaces, etc., in an intrinsic manner, that
is, independently of any specific choice of a coordinate system. As in physics, this
is highly desirable to really understand what is going on. Of course, coordinate
systems have to be chosen to finally carry out computations, but one should learn to
resist the temptation to resort to coordinate systems until it is really necessary.
Affine spaces are the right framework for dealing with motions, trajectories, and
physical forces, among other things. Thus, affine geometry is crucial to a clean
presentation of kinematics, dynamics, and other parts of physics (for example, elas-
ticity). After all, a rigid motion is an affine map, but not a linear map in general.
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Also, given an m X n matrix A and a vector b € R™, the set U = {x € R" | Ax = b}
of solutions of the system Ax = b is an affine space, but not a vector space (linear
space) in general.

Use coordinate systems only when needed!

This chapter proceeds as follows. We take advantage of the fact that almost ev-
ery affine concept is the counterpart of some concept in linear algebra. We begin by
defining affine spaces, stressing the physical interpretation of the definition in terms
of points (particles) and vectors (forces). Corresponding to linear combinations of
vectors, we define affine combinations of points (barycenters), realizing that we are
forced to restrict our attention to families of scalars adding up to 1. Corresponding to
linear subspaces, we introduce affine subspaces as subsets closed under affine com-
binations. Then, we characterize affine subspaces in terms of certain vector spaces
called their directions. This allows us to define a clean notion of parallelism. Next,
corresponding to linear independence and bases, we define affine independence and
affine frames. We also define convexity. Corresponding to linear maps, we define
affine maps as maps preserving affine combinations. We show that every affine map
is completely defined by the image of one point and a linear map. Then, we investi-
gate briefly some simple affine maps, the translations and the central dilatations. At
this point, we give a glimpse of affine geometry. We prove the theorems of Thales,
Pappus, and Desargues. After this, the definition of affine hyperplanes in terms of
affine forms is reviewed. The section ends with a closer look at the intersection of
affine subspaces.

Our presentation of affine geometry is far from being comprehensive, and it is
biased toward the algorithmic geometry of curves and surfaces. For more details,
the reader is referred to Pedoe [9], Snapper and Troyer [11], Berger [2, 3], Coxeter
[4], Samuel [10], Tisseron [13], and Hilbert and Cohn-Vossen [7].

Suppose we have a particle moving in 3D space and that we want to describe
the trajectory of this particle. If one looks up a good textbook on dynamics, such
as Greenwood [6], one finds out that the particle is modeled as a point, and that the
position of this point x is determined with respect to a “frame” in R3 by a vector.
Curiously, the notion of a frame is rarely defined precisely, but it is easy to infer that
a frame is a pair (O, (e1,e2,e3)) consisting of an origin O (which is a point) together
with a basis of three vectors (ej,es,e3). For example, the standard frame in R3 has
origin O = (0,0,0) and the basis of three vectors e; = (1,0,0), e = (0,1,0), and
e3 = (0,0,1). The position of a point x is then defined by the “unique vector” from
Otox.

But wait a minute, this definition seems to be defining frames and the position of
a point without defining what a point is! Well, let us identify points with elements of
IR3. If so, given any two points a = (ay,a,a3) and b = (by,by,b3), there is a unique
free vector, denoted by E, from a to b, the vector ab = (by — ay,by —ay, b3 — as).
Note that N

b=a+ab,
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addition being understood as addition in R3. Then in the standard frame, given a

pointx = (xy,x2,x3), the position of x is the vector Ox = (x1,x2,x3), which coincides
with the point itself. In the standard frame, points and vectors are identified. Points
and free vectors are illustrated in Figure 2.1.

ab

Fig. 2.1 Points and free vectors.

What if we pick a frame with a different origin, say Q = (w;, @, ®@3), but the
same basis vectors (e, ez,e3)? This time, the point x = (x1,x,,x3) is defined by two
position vectors:

H
Ox = (x1,x2,x3)

in the frame (O, (e1,e3,e3)) and

Qx = (x1 — @1,% — @, x3 — %)

in the frame (2, (eg,e2,e3)).
This is because

:0?4—5?( and @:(wl,%,@)-

We note that in the second frame (Q, (e1,e2,e3)), points and position vectors are
no longer identified. This gives us evidence that points are not vectors. It may be
computationally convenient to deal with points using position vectors, but such a
treatment is not frame invariant, which has undesirable effects.

Inspired by physics, we deem it important to define points and properties of
points that are frame invariant. An undesirable side effect of the present approach
shows up if we attempt to define linear combinations of points. First, let us review
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the notion of linear combination of vectors. Given two vectors u and v of coordinates
(u1,up,u3) and (vq,v,v3) with respect to the basis (e1,e;,e3), for any two scalars
A, 1, we can define the linear combination Au + W as the vector of coordinates

(Auy + vy, Auy + pvy, Auz + uvs).

If we choose a different basis (¢}, €5, €5) and if the matrix P expressing the vectors
(¢,€},€5) over the basis (e1,er,e3) is

ay by ¢
P=labyc |,
az by c3

which means that the columns of P are the coordinates of the e/]- over the basis
(e1,e2,e3), since
!/ !/ !l
uje] +ugey +uszes = uje; +uye, + uze;
and
/! /! ! !
viel +vper +vzez = vier + Vr€s + V3é€s3,

it is easy to see that the coordinates (uy,uy,u3) and (vi,vs,v3) of u and v with
respect to the basis (e1,e;,e3) are given in terms of the coordinates (u},u},u}) and
(V},v5,v5) of u and v with respect to the basis (¢}, €5, €}) by the matrix equations

u u} V1 Vi
u | =P | i and v | =P,
u3 Uy V3 V;

Uy 23] V1 Vi

uh | = P and vy | = P wl,
/ /

Uz us V3 V3

and by linearity, the coordinates
(Auy + pvy, Audy + vy, Auy + pvy)

of Au+ pv with respect to the basis (¢, €, €%) are given by

Au + uv) up Vi Auy + uvy
Auhy+ vy | = APy | +uP v | =P | Aua 4wy
Auly+ pvh u3 V3 Auz+ WUvs

Everything worked out because the change of basis does not involve a change of
origin. On the other hand, if we consider the change of frame from the frame
(0, (e1,e2,e3)) to the frame (£, (e1,e2,e3)), where 06 = (1,0, @3), given two
points a, b of coordinates (a;,az,a3) and (by,by,b3) with respect to the frame
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(0, (e1,e2,e3)) and of coordinates (a},a},ds) and (b},b),b5) with respect to the
frame (Q, (eq,ez,e3)), since

(allua/%ag) = (a1 — @1,ar — ,a3 — 03)

and
( /11b/27bg) = (bl - wlabz_ a)27b3 - (1)3),

the coordinates of Aa + ub with respect to the frame (O, (e}, e2,e3)) are

(Aay+ uby,Aay + uby, Aas + ubs),
but the coordinates

(Ad) + ub, Ads+ uby, Aas + pbs)
of Aa+ ub with respect to the frame (2, (e1,e2,e3)) are

(Aar+pby — (A + p)on,Aay + uby — (A + w)an, Aaz + ubs — (A + ) @s),
which are different from
(Aay + puby — o1, Aay + by — an, Aaz + ubs — ws),

unless A +pu = 1.

Thus, we have discovered a major difference between vectors and points: The
notion of linear combination of vectors is basis independent, but the notion of linear
combination of points is frame dependent. In order to salvage the notion of linear
combination of points, some restriction is needed: The scalar coefficients must add
up to 1.

A clean way to handle the problem of frame invariance and to deal with points in
a more intrinsic manner is to make a clearer distinction between points and vectors.
We duplicate R? into two copies, the first copy corresponding to points, where we
forget the vector space structure, and the second copy corresponding to free vectors,
where the vector space structure is important. Furthermore, we make explicit the
important fact that the vector space R> acts on the set of points R*: Given any
point a = (ay,a;,a3) and any vector v = (v{,v,,v3), we obtain the point

a+v=(a;+vy,ap+vy,a3+v3),

which can be thought of as the result of translating a to b using the vector v. We
can imagine that v is placed such that its origin coincides with a and that its tip
coincides with b. This action +: R3 x R? — R satisfies some crucial properties.
For example,

a+0=a,
(a+u)+v=a+(u+v),
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and for any two points a, b, there is a unique free vector a? such that
%
b=a+ab.

It turns out that the above properties, although trivial in the case of R?, are all that
is needed to define the abstract notion of affine space (or affine structure). The basic

idea is to consider two (distinct) sets £ and ?, where E is a set of points (with no

structure) and ? is a vector space (of free vectors) acting on the set E.

Did you say “A fine space”?

Intuitively, we can think of the elements of ? as forces moving the points in E,
considered as physical particles. The effect of applying a force (free vector) u € ?

to a point a € E is a translation. By this, we mean that for every force u € f, the
action of the force u is to “move” every point a € E to the point a +u € E obtained
by the translation corresponding to u viewed as a vector. Since translations can be

composed, it is natural that ? is a vector space.

For simplicity, it is assumed that all vector spaces under consideration are defined
over the field R of real numbers. Most of the definitions and results also hold for
an arbitrary field K, although some care is needed when dealing with fields of char-
acteristic different from zero (see the problems). It is also assumed that all families
(Ai)ier of scalars have finite support. Recall that a family (A;);c; of scalars has finite
support if A; =0 for all i € I —J, where J is a finite subset of I. Obviously, finite
families of scalars have finite support, and for simplicity, the reader may assume
that all families of scalars are finite. The formal definition of an affine space is as
follows.

Definition 2.1. An affine space is either the degenerate space reduced to the empty
set, or a triple <E , ?, —|—> consisting of a nonempty set E (of points), a vector space

? (of translations, or free vectors), and an action +: E X ? — E, satisfying the
following conditions.

(Al) a+0=a, foreverya € E.
(A2) (a+u)+v=a+ (u+v),forevery a € E, and every u,v € E.
(A3) For any two points a,b € E, there is a unique u € ? such thata+u = b.

The unique vector u € ? such that a + u = b is denoted by E, or sometimes by
ab, or even by b — a. Thus, we also write

b:a—i-cz

(orb=a+ab,orevenb =a+ (b—a)).
The dimension of the affine space (E, ?,+> is the dimension dim(?) of the
vector space E . For simplicity, it is denoted by dim(E).
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Conditions (A1) and (A2) say that the (abelian) group ? acts on E, and condition
(A3) says that ? acts transitively and faithfully on E. Note that

a(a—i—v;:v

forallac E and all v € ?, since a(a + V) is the unique vector such that a+v =

a+ala+ vi. Thus, b = a+ v is equivalent to E =v. Figure 2.2 gives an intuitive
picture of an affine space. It is natural to think of all vectors as having the same
origin, the null vector.

E o

Fig. 2.2 Intuitive picture of an affine space.

The axioms defining an affine space <E ,?,+> can be interpreted intuitively

as saying that E and ? are two different ways of looking at the same object, but
wearing different sets of glasses, the second set of glasses depending on the choice
of an “origin” in E. Indeed, we can choose to look at the points in E, forgetting that

every pair (a,b) of points defines a unique vector cz in ?, or we can choose to look

at the vectors u in ?, forgetting the points in E. Furthermore, if we also pick any
point a in E, a point that can be viewed as an origin in E, then we can recover all

the points in E as the translated points a + u for all u € f This can be formalized
by defining two maps between E and ?
For every a € E, consider the mapping from ? to E given by

u—a+u,

where u € ?, and consider the mapping from E to ? given by

bwcz,
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where b € E. The composition of the first mapping with the second is

u>—>a+ul—>a(a—|—ui,

which, in view of (A3), yields u. The composition of the second with the first map-
ping is
b— (z —a+ CZ,

which, in view of (A3), yields b. Thus, these compositions are the identity from ?
to f and the identity from E to E, and the mappings are both bijections.

When we identify E with ? via the mapping b — E, we say that we consider E
as the vector space obtained by taking a as the origin in E, and we denote it by E,.
Because E, is a vector space, to be consistent with our notational conventions we

should use the notation E, (using an arrow), instead of E,. However, for simplicity,
we stick to the notation E,,.

Thus, an affine space <E , ?, —|—> is a way of defining a vector space structure on
a set of points E, without making a commitment to a fixed origin in E. Nevertheless,
as soon as we commit to an origin a in E, we can view E as the vector space E,.

However, we urge the reader to think of E as a physical set of points and of ? as
a set of forces acting on E, rather than reducing E to some isomorphic copy of R”.
After all, points are points, and not vectors! For notational simplicity, we will often

denote an affine space <E , f, —|—> by (E, ?), or even by E. The vector space ? is
called the vector space associated with E.

@ One should be careful about the overloading of the addition symbol +.
Addition is well-defined on vectors, as in u + v; the translate a + u of a

pointa € E by a vector u € ? is also well-defined, but addition of points a + b does
not make sense. In this respect, the notation b — a for the unique vector u such that
b = a-+u is somewhat confusing, since it suggests that points can be subtracted (but
not added!). Yet, we will see in Section 4.1 that it is possible to make sense of linear
combinations of points, and even mixed linear combinations of points and vectors.

Any vector space ? has an affine space structure specified by choosing £ = ?,
and letting + be addition in the vector space f We will refer to the affine structure

<?, ?, —|—> on a vector space ? as the canonical (or natural) affine structure on

E.In particular, the vector space R” can be viewed as the affine space <R”,R”, —|—>,
denoted by A”. In general, if K is any field, the affine space <K”,K”, —|—> is denoted
by A%. In order to distinguish between the double role played by members of R”,
points and vectors, we will denote points by row vectors, and vectors by column
vectors. Thus, the action of the vector space R” over the set R” simply viewed as a
set of points is given by
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ui
(ar,...,an)+ | © | =(a14ur,...,an+uy).
Un
We will also use the convention that if x = (x1,...,x,) € R", then the column vec-

tor associated with x is denoted by x (in boldface notation). Abusing the notation
slightly, if a € R" is a point, we also write a € A". The affine space A" is called the
real affine space of dimension n. In most cases, we will consider n = 1,2,3.

2.2 Examples of Affine Spaces

Let us now give an example of an affine space that is not given as a vector space (at
least, not in an obvious fashion). Consider the subset L of A” consisting of all points
(x,y) satisfying the equation

x+y—1=0.

The set L is the line of slope —1 passing through the points (1,0) and (0,1) shown

in Figure 2.3.

<

Fig. 2.3 An affine space: the line of equation x+y—1=0.

The line L can be made into an official affine space by defining the action +: L X
R — L of R on L defined such that for every point (x,1 —x) on L and any u € R,

(e, 1=x)+u=(x+ul—x—u).
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It is immediately verified that this action makes L into an affine space. For example,
for any two points a = (a1,1 —ay) and b = (b1,1 — by) on L, the unique (vector)
u € R such that b = a+u is u = by — a;. Note that the vector space R is isomorphic
to the line of equation x 4y = 0 passing through the origin.
Similarly, consider the subset H of A3 consisting of all points (x,y,z) satisfying
the equation
x+y+z—1=0.

The set H is the plane passing through the points (1,0,0), (0,1,0), and (0,0,1). The
plane H can be made into an official affine space by defining the action +: H X
R? — H of R? on H defined such that for every point (x,y,] —x—y) on H and any

()=
v

(Lxl—x—y%%co:=@+ud+w1—x—u—y—ﬂ~

For a slightly wilder example, consider the subset P of A3 consisting of all points
(x,y,z) satisfying the equation

4y —z=0.
The set P is a paraboloid of revolution, with axis Oz. The surface P can be made into
an official affine space by defining the action +: P x R> — P of R? on P defined
such that for every point (x,y,x> 4+ y?) on P and any (3) € R?,

(5,357 +37) + <Lv’> = (uy v () + (4 v)).

This should dispell any idea that affine spaces are dull. Affine spaces not already
equipped with an obvious vector space structure arise in projective geometry. In-
deed, we will see in Section 5.1 that the complement of a hyperplane in a projective
space has an affine structure.

2.3 Chasles’s Identity

_>
Given any three points a,b,c € E, since ¢ = a—|—c?, b= a—|—£, and c = b+ bc, we
get
— — —
c=b+bc= (a—f—a?)—l—bc:a—i—(a?—i—bc)

by (A2), and thus, by (A3),
ab+be = at,

which is known as Chasles’s identity, and illustrated in Figure 2.4.
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E 7

Fig. 2.4 Points and corresponding vectors in affine geometry.

Since a = a + ad and by (Al) a =a+0, by (A3) we get
at = 0.
Thus, letting a = ¢ in Chasles’s identity, we get

ba = —ab.

Given any four points a,b, c,d € E, since by Chasles’s identity
= = =
(z—i—bc:ad—i—dc:ic),
we have the parallelogram law

ab=dc iff be=ad.

2.4 Affine Combinations, Barycenters

A fundamental concept in linear algebra is that of a linear combination. The cor-
responding concept in affine geometry is that of an affine combination, also called
a barycenter. However, there is a problem with the naive approach involving a co-
ordinate system, as we saw in Section 2.1. Since this problem is the reason for
introducing affine combinations, at the risk of boring certain readers, we give an-
other example showing what goes wrong if we are not careful in defining linear
combinations of points.

Consider R? as an affine space, under its natural coordinate system with origin

O = (0,0) and basis vectors ((1)) and ((1)) . Given any two points a = (a;,a,) and
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b = (by,by), it is natural to define the affine combination Aa + ub as the point of
coordinates
(Aay + puby,Aay + uby).

Thus, when a = (—1,—1) and b = (2,2), the point a + b is the point ¢ = (1, 1).

Let us now consider the new coordinate system with respect to the origin ¢ =
(1,1) (and the same basis vectors). This time, the coordinates of a are (—2,—2), the
coordinates of b are (1, 1), and the point a + b is the point d of coordinates (—1,—1).
However, it is clear that the point d is identical to the origin O = (0,0) of the first
coordinate system.

Thus, a + b corresponds to two different points depending on which coordinate
system is used for its computation!

This shows that some extra condition is needed in order for affine combinations
to make sense. It turns out that if the scalars sum up to 1, the definition is intrinsic,
as the following lemma shows.

Lemma 2.1. Given an affine space E, let (a;)ici be a family of points in E, and let
(Ai)ier be a family of scalars. For any two points a,b € E, the following properties
hold:
(1) If Lier Ai = 1, then _
a—+ lefﬁ% =b+ Z;Libai-

icl icl
(2) IfYici Ai =0, then _

Z)”Cﬁ’ = Z)vibai-

icl il

Proof. (1) By Chasles’s identity (see Section 2.3), we have

a+ Y had; = a+ Y Ai(ab+ ba)

icl icl
_>
=a-+ <Z7L,>(z—|— Z/’Libai
il icl
— —
=a+ab+) Aiba since Y A =1
il
H
= b—l—Zlibai since b = a—i—cz.
il

(2) We also have

Y Aad; = Zli(£+l;>i)

i€l i€l
= <Zli) cz—f— Zli@
iel iel
= Z)Lilzv
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since Y;c; i =0. O

Thus, by Lemma 2.1, for any family of points (a;);c; in E, for any family (A;);es
of scalars such that };; A; = 1, the point

x=a—|—z&~cﬁ[

iel

is independent of the choice of the origin a € E. This property motivates the follow-
ing definition.

Definition 2.2. For any family of points (a;);es in E, for any family (A;);c; of scalars
such that }';c; A; = 1, and for any a € E, the point

a—+ Z)L,Lﬁ,

icl

(which is independent of a € E, by Lemma 2.1) is called the barycenter (or barycen-
tric combination, or affine combination) of the points a; assigned the weights A;, and
it is denoted by

Z /’Lia,'.

icl

In dealing with barycenters, it is convenient to introduce the notion of a weighted
point, which is just a pair (a,A), where a € E is a point, and A € R is a scalar. Then,
given a family of weighted points ((a;, A;))ics, Where Y ;c; A; = 1, we also say that
the point Y ;c; A;a; is the barycenter of the family of weighted points ((a;, Ai))icr-

Note that the barycenter x of the family of weighted points ((a;,A;))ier is the
unique point such that

at = Zlmﬁi foreverya € E,

il
and setting a = x, the point x is the unique point such that

Y Aixd; = 0.

iel

In physical terms, the barycenter is the center of mass of the family of weighted
points ((a;, A;))icr (Where the masses have been normalized, so that };; A; = 1, and
negative masses are allowed).

Remarks:

(1) Since the barycenter of a family ((a;,A;))ier of weighted points is defined for
families (A;);c; of scalars with finite support (and such that Y ;c; 4; = 1), we
might as well assume that / is finite. Then, for all m > 2, it is easy to prove that
the barycenter of m weighted points can be obtained by repeated computations
of barycenters of two weighted points.
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(2) This result still holds, provided that the field K has at least three distinct ele-
ments, but the proof'is trickier!

(3) When ¥;c;4; = 0, the vector ¥;; Aad; does not depend on the point a, and
we may denote it by Y ;c; Aia;. This observation will be used in Section 4.1 to
define a vector space in which linear combinations of both points and vectors
make sense, regardless of the value of ¥ ;c; A;.

Figure 2.5 illustrates the geometric construction of the barycenters g; and g, of
the weighted points (a, 1), (b,1), and (c, 1), and (a,—1), (b,1), and (c, 1).

The point g; can be constructed geometrically as the middle of the segment join-
ing ¢ to the middle Ja -+ 35 of the segment (a,b), since

1/1 1

= —a—l—lb +-c
s175(2473 2¢

The point g can be constructed geometrically as the point such that the middle
$b+ %c of the segment (b, c) is the middle of the segment (a, g>), since

1 1
=— 2l =b+=c).
2 a—+ <2 —|—20>

Fig. 2.5 Barycenters, g; = %a—&— %b—&— %c, g =—a+b+c.

Later on, we will see that a polynomial curve can be defined as a set of barycen-
ters of a fixed number of points. For example, let (a,b,c¢,d) be a sequence of points
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in A2. Observe that
(1=t 4+3c(1—1)* +32(1 —1) + 2 = 1,

since the sum on the left-hand side is obtained by expanding (t + (1 —¢))* = 1 using
the binomial formula. Thus,

(1—1)3a+3t(1—1)?b+36(1 —1)c+13d

is a well-defined affine combination. Then, we can define the curve F: A — A2 such
that
F(t)=(1—1Pa+3t(1—1)2b+3*(1 —t)c+13d.

Such a curve is called a Bézier curve, and (a,b,c,d) are called its control points.
Note that the curve passes through a and d, but generally not through b and c. We
show in Chapter 18 (on the web site) how any point F () on the curve can be con-
structed using an algorithm performing affine interpolation steps (the de Casteljau
algorithm).

2.5 Affine Subspaces

In linear algebra, a (linear) subspace can be characterized as a nonempty subset of
a vector space closed under linear combinations. In affine spaces, the notion cor-
responding to the notion of (linear) subspace is the notion of affine subspace. It is
natural to define an affine subspace as a subset of an affine space closed under affine
combinations.

Definition 2.3. Given an affine space <E , ?, —|—>, a subset V of E is an affine sub-

space (of (E, ?, +)) if for every family of weighted points ((a;, 4;))ies in V such
that ¥';,c; A; = 1, the barycenter };c; A;a; belongs to V.

An affine subspace is also called a flat by some authors. According to Definition
2.3, the empty set is trivially an affine subspace, and every intersection of affine
subspaces is an affine subspace.

As an example, consider the subset U of R? defined by

U={(xy) eR*|ax+by=c},
i.e., the set of solutions of the equation
ax+by=c,

where it is assumed that a # 0 or b # 0. Given any m points (x;,y;) € U and any m
scalars A; such that A; + - -- + A,, = 1, we claim that
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s

Il
—

Ai(xi,yi) € U.

Indeed, (x;,y;) € U means that
ax; + by; = c,

and if we multiply both sides of this equation by A; and add up the resulting m

equations, we get
m

(Aiax; + Aiby;) = Z Aic,

i=1

™=

—_

and since A; +---+ A, = 1, we get

(5 00) o3 0) - (E4)

<i/1ixi7 i%’)ﬁ) = iki(xiv)’i) ev
=i i=

which shows that

Thus, U is an affine subspace of AZ. In fact, it is just a usual line in A%
It turns out that U is closely related to the subset of R? defined by

7 = {(x,y) cR? | ax—i—by:O},
i.e., the set of solutions of the homogeneous equation
ax+by=0

obtained by setting the right-hand side of ax + by = ¢ to zero. Indeed, for any m
scalars A;, the same calculation as above yields that

m
Z Xza)’z € ﬁ

this time without any restriction on the 4;, since the right-hand side of the equation

is null. Thus, 7 is a subspace of R2. In fact, ﬁ is one-dimensional, and it is just
a usual line in R?. This line can be identified with a line passing through the origin
of A2, a line that is parallel to the line U of equation ax + by = c, as illustrated in
Figure 2.6.

Now, if (xo,Y0) is any point in U, we claim that

U = (x0,y0) + v,
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Fig. 2.6 An affine line U and its direction.

where

(0,30) + T = { Go+u1,30+12) | (s, 2) € T }.

First, (xo,y0) + 74 C U, since axg + byy = ¢ and auy + buy = 0 for all (uj,up) € U.
Second, if (x,y) € U, then ax+ by = ¢, and since we also have axy + byy = ¢, by
subtraction, we get

a(x—xo) +b(y—y0) =0,

which shows that (x —xq,y —yo) € ﬁ, and thus (x,y) € (x0,y0) + U. Hence, we

also have U C (xo,y0) + U,andU = (x0,¥0) + U.
The above example shows that the affine line U defined by the equation

ax+by=c
is obtained by “translating” the parallel line ﬁ of equation
ax+by=0

passing through the origin. In fact, given any point (xg,yo) € U,

U= (.X(),y()) + ﬁ
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More generally, it is easy to prove the following fact. Given any m X n matrix A and
any vector b € R"”, the subset U of R” defined by

U={xeR"|Ax=b}

is an affine subspace of A".

Actually, observe that Ax = b should really be written as Ax" = b, to be consistent
with our convention that points are represented by row vectors. We can also use the
boldface notation for column vectors, in which case the equation is written as AX =
b. For the sake of minimizing the amount of notation, we stick to the simpler (yet
incorrect) notation Ax = b. If we consider the corresponding homogeneous equation
Ax = 0, the set

U ={xeR"| Ax=0}

is a subspace of R”, and for any xy € U, we have

UZ)C()-Fﬁ.

This is a general situation. Affine subspaces can be characterized in terms of sub-

spaces of f Let V be a nonempty subset of E. For every family (ay,...,a,) inV,
for any family (A4,,...,A,) of scalars, and for every point a € V, observe that x € E
given by

x:a—i-zn:licﬁi
i=1

is the barycenter of the family of weighted points

((dl,ll)a---a(an,ln), (a, 1 —lzn:lli))

since

n n
Z)Li-l- (1 —Z)L,’) =1.
i=1 i=1
Given any point a € E and any subset ? of ?, let a + 7 denote the following

subset of E:
a+v:{a+v|v€ ?}

Lemma 2.2. Let <E, f, +> be an daffine space.
(1) A nonempty subset'V of E is an affine subspace iff for every point a € V, the set

V.= {ak|xeV)

H
is a subspace of ? Consequently, V = a+ V,. Furthermore,
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V= {F|xyev)

is a subspace of? and 7; = 7f0r allac E. Thus, V =a+ ?

(2) For any subspace ? of ? and for any a € E, the setV = a+ 7 is an affine
subspace.

Proof. The proof is straightforward, and is omitted. It is also given in Gallier [5].
O

In particular, when E is the natural affine space associated with a vector space
?, Lemma 2.2 shows that every affine subspace of E is of the form u + ﬁ, for a
subspace ﬁ of f The subspaces of ? are the affine subspaces of E that contain
0.

The subspace V associated with an affine subspace V is called the direction of
V. Itis also clear that the map +: V x ? — Vinduced by +: E x ? — E confers
to <V, ?, +> an affine structure. Figure 2.7 illustrates the notion of affine subspace.

E o4

Fig. 2.7 An affine subspace V and its direction 7

By the dimension of the subspace V, we mean the dimension of V

An affine subspace of dimension 1 is called a line, and an affine subspace of
dimension 2 is called a plane.

An affine subspace of codimension 1 is called a hyperplane (recall that a sub-
space F of a vector space E has codimension 1 iff there is some subspace G of
dimension 1 such that E = F @ G, the direct sum of F and G, see Strang [12] or
Lang [8]).

We say that two affine subspaces U and V are parallel if their directions are

identical. Equivalently, since ﬁ = ?, we have U =a+ ﬁ andV =>b+ 7 for any
a €U and any b € V, and thus V is obtained from U by the translation ab.
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In general, when we talk about n points ay,...,a,, we mean the sequence
(ay,...,ay), and not the set {ay,...,a,} (the a;’s need not be distinct).

By Lemma 2.2, a line is specified by a point a € E and a nonzero vector v € ?,
i.e., a line is the set of all points of the form a+ Av, for A € R.

We say that three points a, b, ¢ are collinear if the vectors CZ and at are linearly
dependent. If two of the points a, b, c are distinct, say a # b, then there is a unique

A € R such that a¢ = Aab, and we define the ratio % =A.
a
A plane is specified by a point @ € E and two linearly independent vectors u,v €

?, i.e., a plane is the set of all points of the form a+ Au+ pv, for A, u € R.

%
We say that four points a,b,c,d are coplanar if the vectors E, at, and ad are
linearly dependent. Hyperplanes will be characterized a little later.

Lemma 2.3. Given an affine space <E, f, +>,f0r any family (a;)ics of points in E,
the set V of barycenters Y ;c; Adia; (where Y jc; A = 1) is the smallest affine subspace
containing (a;)icj-

Proof. If (a;)ics is empty, then V = 0, because of the condition Y;c; A; = 1. If (a;)es
is nonempty, then the smallest affine subspace containing (a;);c; must contain the
set V of barycenters Y ;c; A;a;, and thus, it is enough to show that V is closed under
affine combinations, which is immediately verified. O

Given a nonempty subset S of E, the smallest affine subspace of E generated by
S is often denoted by (S). For example, a line specified by two distinct points a and
b is denoted by {(a,b), or even (a,b), and similarly for planes, etc.

Remarks:

(1) Since it can be shown that the barycenter of n weighted points can be obtained
by repeated computations of barycenters of two weighted points, a nonempty
subset V of E is an affine subspace iff for every two points a,b € V, the set
V contains all barycentric combinations of a and b. If V contains at least two
points, then V is an affine subspace iff for any two distinct points a,b € V,
the set V contains the line determined by a and b, that is, the set of all points
(1—A)a+Ab, A €R.

(2) This result still holds if the field K has at least three distinct elements, but the
proofis trickier!

2.6 Affine Independence and Affine Frames

Corresponding to the notion of linear independence in vector spaces, we have the
notion of affine independence. Given a family (g;);e; of points in an affine space
E, we will reduce the notion of (affine) independence of these points to the (linear)
independence of the families (aTa;) je(r—{it) of vectors obtained by choosing any a;
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as an origin. First, the following lemma shows that it is sufficient to consider only
one of these families.

Lemma 2.4. Given an affine space <E,?,—|—>, let (a;)ier be a family of points
in E. If the family (W)je(lf{i}) is linearly independent for some i € I, then
(cTa;)je(I,{i}) is linearly independent for every i € I.

Proof. Assume that the family (CTH;)]‘G (1{iy) 1s linearly independent for some spe-
cific i € I. Let k € I with k # i, and assume that there are some scalars (1) jc(7—{x})

such that
Y Aama;=o.
je—{k})
Since
Ay = axd; + aiaj,
we have
Y Naai= Y Aad+ Y Aaa,
je(I—{k}) je(—{k}) jeU—{k})
= Y Aad+ Y, A,
je(—{k}) je(—{ik})
= Y z,-ai—f,—( )y Aj)ai—ai,
je(—{ik}) jeU—{k})
and thus

At — ( )y %‘)ai_fk =0.
Je(—{ik}) Je(—{k})

Since the family (cTa;) je(i—{i}) is linearly independent, we must have A; = 0 for all
J € (I—={i,k}) and ¥jc(;—qxy) Aj = O, which implies that A; = 0 for all j € (1 — {k}).
O

We define affine independence as follows.

Definition 2.4. Given an affine space <E , f, +>, a family (a;);es of points in E is
affinely independent if the family (cTa;)je(I, (i}) is linearly independent for some
iel.

Definition 2.4 is reasonable, since by Lemma 2.4, the independence of the family
(cTa;) je(r—{i) does not depend on the choice of a;. A crucial property of linearly
independent vectors (u,...,uy) is that if a vector v is a linear combination

m
V= Z /'Ll-u,-
i=1

of the u;, then the A; are unique. A similar result holds for affinely independent
points.
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Lemma 2.5. Given an affine space (E, ?, +), let (ag,...,am) be a family of m+ 1
points in E. Let x € E, and assume that x =Y.' y Lia;, where Y.I" s A; = 1. Then, the
Samily (Ao, ..., Ap) such that x = Y1 Aia; is unique iff the family (apai, ..., aoan)
is linearly independent.

Proof. The proof is straightforward and is omitted. It is also given in Gallier [5].
O

Lemma 2.5 suggests the notion of affine frame. Affine frames are the affine ana-

logues of bases in vector spaces. Let <E , ?, +> be a nonempty affine space, and let
(ap,-..,am) be a family of m+ 1 points in E. The family (ao,...,a,) determines

the family of m vectors (apai,...,apdn) in ? Conversely, given a point ag in E

and a family of m vectors (uy,...,uy) in ?, we obtain the family of m + 1 points
(ag,...,am)in E, where a; = ap+u;, 1 <i<m.
Thus, for any m > 1, it is equivalent to consider a family of m + 1 points

(ag,...,am) in E, and a pair (ag, (u1,...,uy)), where the u; are vectors in E. Figure
2.8 illustrates the notion of affine independence.

E g

apas

Fig. 2.8 Affine independence and linear independence.

Remark: The above observation also applies to infinite families (a;);es of points in

E and families (7,?)1-€ 1-{o} of vectors in ?, provided that the index set / contains 0.

When (agai,...,aoan) is a basis of f then, for every x € E, since x = ag + cﬁ,
there is a unique family (xj,...,x,) of scalars such that

— —
X=ag+xiapai + - - -+ xpaodp-
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The scalars (xy,...,x,) may be considered as coordinates with respect to
(ao, (apai,...,apan)). Since

(ngE

m m
x:ao—i—incm iff x= <1— xi> ao+ inai,
i=1 i=1 i=1

x € E can also be expressed uniquely as

m
X = Z /’Lia,'
i=0

with ¥y A4; = 1, and where 4o = 1 — Y7 | x;, and A; = x; for 1 <j < m. The scalars
(A0, ..,Am) are also certain kinds of coordinates with respect to (a,...,a,). All
this is summarized in the following definition.

Definition 2.5. Given an affine space (E, E, +), an affine frame with origin ag is a
family (ao, . ..,an) of m+ 1 points in E such that the list of vectors (m yeeesA00m)

is a basis of f The pair (ag, (apai,...,aoan)) is also called an affine frame with
origin ap. Then, every x € E can be expressed as

— —
X =aog+xiapail + -+ xnapanm

for a unique family (xj,...,x,,) of scalars, called the coordinates of x w.r.t. the affine
frame (ag, (apai, ..., aoan)). Furthermore, every x € E can be written as

x=Apao+ -+ Apmam

for some unique family (Ay, ..., Ax) of scalars such that A+ - - - 4+ A, = 1 called the
barycentric coordinates of x with respect to the affine frame (ag, ... ,an).

The coordinates (x1,...,x,) and the barycentric coordinates (Ao, ..., A,) are re-
lated by the equations Ag = 1 — Y7 | x; and A; = x;, for 1 <i < m. An affine frame is
called an affine basis by some authors. A family (a;);c; of points in E is affinely de-
pendent if it is not affinely independent. We can also characterize affinely dependent
families as follows.

Lemma 2.6. Given an affine space <E, ?, +>, let (a;)ier be a family of points in E.
The family (a;)ies is affinely dependent iff there is a family (A;)icr such that A; # 0
forsome jEL Y, c;Ai =0, and ¥, Aixd; = 0 for every x € E.

Proof. By Lemma 2.5, the family (a;);e; is affinely dependent iff the family of vec-
tors (aTa;) jet—{i1) 1s linearly dependent for some i € I. For any i € I, the family
(aia}) je(1—1iy) is linearly dependent iff there is a family (A;) jc(;—{;) such that 4; #0
for some j, and such that

Y, Ajaid;=0.

je—{i})

Then, for any x € E, we have
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Maiay = Y. Aj(xa; — xd;)

je—gy — je(—iy)
= ) /'ij_a;—< Y A.,-)Eﬁ,
jei—{i}) jei—{i})

and letting A; = — (Zje(l,{i}) Aj), we get Yicq Aixd; =0, with Y;e; 4 =0 and A # 0
for some j € I. The converse is obvious by setting x = a; for some i such that A; £ 0,
since Y ;c; A; = 0 implies that A; # 0, for some j #i. O

Even though Lemma 2.6 is rather dull, it is one of the key ingredients in the proof
of beautiful and deep theorems about convex sets, such as Carathéodory’s theorem,
Radon’s theorem, and Helly’s theorem (see Section 3.1).

A family of two points (a,b) in E is affinely independent iff ab #£0,iffa#b. If
a # b, the affine subspace generated by a and b is the set of all points (1 —A)a+Ab,
which is the unique line passi% through a and b. A family of three points (a,b,c) in

E is affinely independent iff ab and at are linearly independent, which means that
a, b, and c are not on the same line (they are not collinear). In this case, the affine
subspace generated by (a, b, c) is the set of all points (1 — A — u)a+ Ab+ pc, which
is the unique plane containing a, b, and c. A family of four points (a,b,c,d) in E is
affinely independent iff E, at, and ad are linearly independent, which means that
a, b, ¢, and d are not in the same plane (they are not coplanar). In this case, a, b,
¢, and d are the vertices of a tetrahedron. Figure 2.9 shows affine frames and their
convex hulls for |I| =0,1,2,3.

Given n + 1 affinely independent points (ag,...,a,) in E, we can consider the
set of points Agag + - - - + Ayay, where Ag+---+ A, =1 and 4; > 0 (A4; € R). Such
affine combinations are called convex combinations. This set is called the convex
hull of (ay,...,an) (or n-simplex spanned by (ay,...,a,)). When n =1, we get the
segment between ag and ay, including ag and a;. When n = 2, we get the interior
of the triangle whose vertices are ag,ay,ay, including boundary points (the edges).
When n = 3, we get the interior of the tetrahedron whose vertices are ag,a;,as,as,
including boundary points (faces and edges). The set

{ao—i—hm-l----—i—lnao_af,|where0§k,~§l(lieR)}

is called the parallelotope spanned by (ao,...,a,). When E has dimension 2, a
parallelotope is also called a parallelogram, and when E has dimension 3, a paral-
lelepiped.

More generally, we say that a subset V of E is convex if for any two points
a,b €V, wehave c €V forevery pointc = (1 —A)a+ Ab,with0 <A <1 (A €R).

g% Points are not vectors! The following example illustrates why treating
points as vectors may cause problems. Let a,b,c be three affinely inde-
pendent points in A3. Any point x in the plane (a,b,c) can be expressed as

x = Aoga+ A1b+ Ay,
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O ap ap ai

ay O————"->0a ap & O az

ap
Fig. 2.9 Examples of affine frames and their convex hulls.
where Ag + A1 + A, = 1. How can we compute Ag,A;,A,? Letting a = (a1,a2,a3),

b= (b1,by,b3), c = (c1,c2,c3), and x = (x1,x2,x3) be the coordinates of a,b, ¢, x in
the standard frame of A%, it is tempting to solve the system of equations

ay by ¢y Ao x|
az by ¢ M) =|x
az bz c3) \ A X3

However, there is a problem when the origin of the coordinate system belongs to the
plane (a,b,c), since in this case, the matrix is not invertible! What we should really
be doing is to solve the system

4000 + M 0b + 1,0¢ = Ox,

where O is any point not in the plane (a,b,c). An alternative is to use certain well-
chosen cross products.

It can be shown that barycentric coordinates correspond to various ratios of areas
and volumes; see the problems.
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2.7 Affine Maps

Corresponding to linear maps we have the notion of an affine map. An affine map is
defined as a map preserving affine combinations.

%
Definition 2.6. Given two affine spaces (E ,?,+> and (E',E',+'), a function
f: E — E'is an affine map iff for every family ((a;,4;)):es of weighted points in E
such that };c; A; = 1, we have

f(Z%m) =Y Aif(ai).
il il
In other words, f preserves barycenters.

Affine maps can be obtained from linear maps as follows. For simplicity of nota-
tion, the same symbol + is used for both affine spaces (instead of using both + and
+).

Given any point a € E, any point b € E’, and any linear map h: ? — E°, we
claim that the map f: E — E’ defined such that

fla+v)=b+h(v)

is an affine map. Indeed, for any family (A;);e; of scalars with ¥;c; 4; = 1 and any

family (W),-el, since
Zli(a—i— vi)=a-+ Zlia(a—i— vi; =a+ Zlivi
icl icl icl
and
Y Ai(b+h(vi)=b+) Aib(b+ h(v,»)i =b+) Ah(vi),
il i€l i€l
we have

icl icl

=b+h <Z7Liw>
il

=b+ leh(v,')
iel
= le[(b =+ h(v,'))

= Zl,f(a—i—vﬁ.

icl

f<ZA,~(a + v,)) = f<a+ Zlm)
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Note that the condition ¥;c; A; = 1 was implicitly used (in a hidden call to Lemma

2.1) in deriving that
Z;Li(a + V,’) =a-+ Z)L,’V,’
icl icl
and

Zl[(b +h(v))=b+ Zlih(v,').

i€l i€l

As a more concrete example, the map

X1 12 X1 3
()= (03 () ()
defines an affine map in A”. It is a “shear” followed by a translation. The effect of

this shear on the square (a,b,c,d) is shown in Figure 2.10. The image of the square
(a,b,c,d) is the parallelogram (a’,b',c’,d").

d/ C,
| | /
a b

Fig. 2.10 The effect of a shear.

Let us consider one more example. The map

()= (3)(2) )

is an affine map. Since we can write

11 V2/2 —v2/2\ (12

= \/E 5

13 2/2 Vv2/2 )\01
this affine map is the composition of a shear, followed by a rotation of angle /4,
followed by a magnification of ratio /2, followed by a translation. The effect of
this map on the square (a,b,c,d) is shown in Figure 2.11. The image of the square
(a,b,c,d) is the parallelogram (a’,b',c’,d’).

The following lemma shows the converse of what we just showed. Every affine
map is determined by the image of any point and a linear map.
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I

dl
d c
I:I ’
a b a/

Fig. 2.11 The effect of an affine map.

Lemma 2.7. Given an affinemap f: E — E', there is a unique linear map 7: ? —
%
E’ such that

fla+v) = fla)+ 7 (),
for every a € E and every v € ?

Proof. Let a € E be any point in E. We claim that the map defined such that
7 )= flapfla+y
ﬁ
foreveryv € ? is a linear map 7: ? — E'. Indeed, we can write
a+Av=A>a+v)+(1—2A)a,
since a+ Av = a+ Aa(a+v)+ (1 — A)ad, and also

atut+v=(a+u)+(a+v)—a,

since a+u+v=a+ala+ uj +a(a+ vj — ad. Since f preserves barycenters, we
get
fla+Av)=Af(a+v)+ (1 —21)f(a).

If we recall that x = ¥;c; A;a; is the barycenter of a family ((a;,A;));e; of weighted
points (with Y ;c; A; = 1) iff

— —

bx = Z?Libai forevery b € E,

icl

we get

f@)fla+av)=Af(a)f(a+v)+(1—A)f(a)f(a) =Af(a)f(a+V),
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showing that ?(lv) = l?(v). We also have

flatutv)=fla+u)+fla+v)=fla),

from which we get

fa)f(a+u+v)=f(a)f(a+u)+ f(a)f(a+V),

showing that ?(u +v)= 7(u) + 7(\1) Consequently, 7 is a linear map. For any
other point b € E, since

b—i—v:a—l—%—l—v:a—l—a(a—i—vi—cﬁ—i—%,

b+v=(a+v)—a+b,andsince f preserves barycenters, we get

fb+v) = fla+v)—fla)+ f(b),

which implies that

F@)f(b+V) = f(b)fla+v)— f(b)f(a)+ f(b)£(b),
F(@)f(b)+ f(b)f(a+v),

@) f(a+).

Thus, f(b)f(b+v) = f(a)f(a+v), which shows that the definition of ? does not
depend on the choice of a € E. The fact that 7 is unique is obvious: We must have

70 =rf@faty). o

. . - . .
The unique linear map 7: f — E’ given by Lemma 2.7 is called the linear
map associated with the affine map f.
Note that the condition

fla+v)=fla)+ 7 ),
foreverya € E andevery v € ?, can be stated equivalently as
f@) = fla)+ F @), or fla)f(x) = F (@),

for all a,x € E. Lemma 2.7 shows that for any affine map f: E — E’, there are

%
points a € E, b € E’, and a unique linear map ?: ? — E', such that

fla+v)=b+ F (),



36 2 Basics of Affine Geometry

forallve E (just let b = f(a), for any a € E). Affine maps for which 7 is the
identity map are called translations. Indeed, if ? =id,

F() = fla)+ (@) = fla) + @ = x+ %+ af (a) +

= x+ T +af(a)— T =x+af(a),
x/ () = af (@),

which shows that f is the translation induced by the vector af(a) (which does not
depend on a).

Since an affine map preserves barycenters, and since an affine subspace V is
closed under barycentric combinations, the image f(V) of V is an affine subspace
in E’. So, for example, the image of a line is a point or a line, and the image of a
plane is either a point, a line, or a plane.

It is easily verified that the composition of two affine maps is an affine map. Also,
given affine maps f: E — E' and g: E/ — E”, we have

and so

s(fa+v) =g(fl@+ 7 M) =er@)+ 2 (7 1),

which shows that go f = ? o ? It is easy to show that an affine map f: E — E’ is
injective iff ?: f — E’ isinjective, and that f: E — E’ is surjective iff ?: ? —
= —

E' is surjective. An affine map f: E — E’ is constant iff ?: ? — E’ is the null

(constant) linear map equal to O for all v € f

If E is an affine space of dimension m and (ag,ay,...,a,) is an affine frame
for E, then for any other affine space F and for any sequence (bg,by,...,by) of
m+ 1 points in F, there is a unique affine map f: E — F such that f(a;) = b;, for
0 <i < m. Indeed, f must be such that

f(AOa0+"'+)~mam):A'ObO'f'""i‘)vmbmu

where A9+ ---+ A, = 1, and this defines a unique affine map on all of E, since

(ag,ay,...,an) is an affine frame for E.
Using affine frames, affine maps can be represented in terms of matrices. We ex-
plain how an affine map f: E — E is represented with respect to a frame (a, ... ,a,)

in E, the more general case where an affine map f: E — F is represented with re-
spect to two affine frames (ay,...,a,) in E and (by,...,b,) in F being analogous.
Since

Flao+x) = flao)+ f (v)

forall x € ?, we have

aof(ao+x) = agf(ao) + ?(x)
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Since x, aof(aoj, and ao f(ao +x§, can be expressed as

— —

X = x1apai + - - - +xpaodn,
‘S — —
aof(ag) = bragai + - - - + byaoay,

ao f(ao FX) = y1d@oal + -+ + yudtody,

if A = (a;;) is the n x n matrix of the linear map 7 over the basis (apat, .. .,doa,),
letting x, y, and b denote the column vectors of components (x1,...,%,), (V1,---sYn),
and (by,...,by,),

ao f(ao +x) = ag f(ao) + ?(x)

is equivalent to
y=Ax+b.

Note that b = 0 unless f(ag) = ap. Thus, f is generally not a linear transformation,
unless it has a fixed point, i.e., there is a point ag such that f(ag) = ao. The vector
b is the “translation part” of the affine map. Affine maps do not always have a fixed
point. Obviously, nonnull translations have no fixed point. A less trivial example is

given by the affine map
X1 N 10 X1 + 1
X2 0-1 X2 0/

This map is a reflection about the x-axis followed by a translation along the x-axis.

The affine map
()= (e 2) () + 6)

can also be written as

lezo 1/2 —/3/2 x1+1

X2 01/2)\V3/2 1/2 X2 1
which shows that it is the composition of a rotation of angle 7 /3, followed by a
stretch (by a factor of 2 along the x-axis, and by a factor of % along the y-axis),

followed by a translation. It is easy to show that this affine map has a unique fixed
point. On the other hand, the affine map

() Gro i) (2)+ ()

has no fixed point, even though

()G 638
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and the second matrix is a rotation of angle 6 such that cos 8 = % and sin@ = % For

more on fixed points of affine maps, see the problems.

There is a useful trick to convert the equation y = Ax + b into what looks like a
linear equation. The trick is to consider an (n+ 1) X (n+ 1) matrix. We add 1 as the
(n+ 1)th component to the vectors x, y, and b, and form the (n+ 1) x (n+ 1) matrix

Ab
01
so that y = Ax+ b is equivalent to

(1)=62)0)

This trick is very useful in kinematics and dynamics, where A is a rotation matrix.
Such affine maps are called rigid motions.

If f: E — E' is a bijective affine map, given any three collinear points a, b, c in
E, with a # b, where, say, ¢ = (1 — A)a+ Ab, since f preserves barycenters, we have
f(e)=(1=2A)f(a)+ Af(b), which shows that f(a), f(), f(c) are collinear in E’.
There is a converse to this property, which is simpler to state when the ground field
is K = R. The converse states that given any bijective function f: E — E’ between
two real affine spaces of the same dimension n > 2, if f maps any three collinear
points to collinear points, then f is affine. The proof is rather long (see Berger [2]
or Samuel [10]).

Given three collinear points a, b, c, where a # ¢, we have b = (1 — 8)a+ Bc for
some unique 3, and we define the ratio of the sequence a,b, c, as

g ab

ratio(a,b,c) = = =,

(1-B) b

provided that § # 1, i.e., b # c. When b = ¢, we agree that ratio(a,b,c) = . We
—

warn our readers that other authors define the ratio of a,b, ¢ as —ratio(a,b,c) = z:‘é
C

Since affine maps preserve barycenters, it is clear that affine maps preserve the ratio
of three points.

2.8 Affine Groups

We now take a quick look at the bijective affine maps. Given an affine space E, the
set of affine bijections f: E — E is clearly a group, called the affine group of E, and
denoted by GA(E). Recall that the group of bijective linear maps of the vector space

? is denoted by GL(?). Then, the map f — ? defines a group homomorphism
L: GA(E) — GL(?). The kernel of this map is the set of translations on E.
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The subset of all linear maps of the form Aid—, where A € R — {0}, is a

subgroup of GL(?), and is denoted by R*idw (where Aid (u) = Au, and
R* =R — {0}). The subgroup DIL(E) = L’I(R*id?) of GA(E) is particularly
interesting. It turns out that it is the disjoint union of the translations and of the
dilatations of ratio A # 1. The elements of DIL(E) are called affine dilatations.

Given any point @ € E, and any scalar A € R, a dilatation or central dilatation
(or homothety) of center a and ratio A is a map H, ; defined such that

Hyp(x) =a+ Aak,
forevery x € E.

Remark: The terminology does not seem to be universally agreed upon. The terms
affine dilatation and central dilatation are used by Pedoe [9]. Snapper and Troyer
use the term dilation for an affine dilatation and magnification for a central dilata-
tion [11]. Samuel uses homothety for a central dilatation, a direct translation of the
French “homothétie” [10]. Since dilation is shorter than dilatation and somewhat
easier to pronounce, perhaps we should use that!

Observe that H, ; (a) = a, and when A # 0 and x # a, H, (x) is on the line
defined by a and x, and is obtained by “scaling” ak by 1.

Figure 2.12 shows the effect of a central dilatation of center d. The triangle
(a,b,c) is magnified to the triangle (a’,b’,c’). Note how every line is mapped to
a parallel line.

Fig. 2.12 The effect of a central dilatation.
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When A = 1, H, ) is the identity. Note that Im = Aid. When A # 0, itis clear
that H,, ; is an affine bijection. It is immediately verified that

Hyj 0Hyp=H, ;.

We have the following useful result.

Lemma 2.8. Given any affine space E, for any affine bijection f € GA(E), if ? =
Aid, for some A € R* with A # 1, then there is a unique point ¢ € E such that

f = Hc,)L~

Proof. The proof is straightforward, and is omitted. It is also given in Gallier [5].
O

Clearly, if ? = id—, the affine map f is a translation. Thus, the group of affine
dilatations DIL(E) is the disjoint union of the translations and of the dilatations of
ratio A # 0, 1. Affine dilatations can be given a purely geometric characterization.

Another point worth mentioning is that affine bijections preserve the ratio of
volumes of parallelotopes. Indeed, given any basis B = (uy,...,u,) of the vector

space ? associated with the affine space E, given any m + 1 affinely independent
points (ao, .. .,anm), we can compute the determinant detg(apat, . . .,doas,) w.r.t. the
basis B. For any bijective affine map f: E — E, since

detg(?(cm%...,?(m)) = det( 7 )dety(aval, .. .avar,)

and the determinant of a linear map is intrinsic (i.e., depends only on 7, and not on
the particular basis B), we conclude that the ratio

det3(7(M>),..-,7(ao_a>m))

detg(m, e ,aoam)

—det(7)

is independent of the basis B. Since detp (m yee ,M) is the volume of the par-
allelotope spanned by (aq,...,a,), where the parallelotope spanned by any point
a and the vectors (uy,...,u,) has unit volume (see Berger [2], Section 9.12), we
see that affine bijections preserve the ratio of volumes of parallelotopes. In fact, this
ratio is independent of the choice of the parallelotopes of unit volume. In particu-

lar, the affine bijections f € GA(E) such that det(?) = 1 preserve volumes. These
affine maps form a subgroup SA(E) of GA(E) called the special affine group of E.
We now take a glimpse at affine geometry.
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2.9 Affine Geometry: A Glimpse

In this section we state and prove three fundamental results of affine geometry.
Roughly speaking, affine geometry is the study of properties invariant under affine
bijections. We now prove one of the oldest and most basic results of affine geometry,
the theorem of Thales.

Lemma 2.9. Given any affine space E, if Hy,H,,H3 are any three distinct parallel
hyperplanes, and A and B are any two lines not parallel to H;, letting a; = HiNA
and b; = H; N\ B, then the following ratios are equal:

ajas b1b3 .
ajap b1b2
ad

Conversely, for any point d on the line A, lfm =p, thend = a3.

Proof. Figure 2.13 illustrates the theorem of Thales. We sketch a proof, leaving the
details as an exercise. Since Hy, H,, H; are parallel, they have the same direction ﬁ,
a hyperplane in ? Letu € ? — ﬁ be any nonnull vector such that A = a; + Ru.
Since A is not parallel to H, we have ? = ﬁ @ Ru, and thus we can define the linear

map p: ? — Ru, the projection on Ru parallel to ﬁ This linear map induces an
affine map f: E — A, by defining f such that

f(b1+w)=ai+p(w),

forall w € . Clearly, f(b1) = ai, and since Hy,H,,Hs all have direction ﬁ, we
also have f(by) = ay and f(b3) = a3. Since f is affine, it preserves ratios, and thus

,  —
aia;  bibs
: —_— :.
ajar b1b2

The converse is immediate. O
We also have the following simple lemma, whose proof is left as an easy exercise.

Lemma 2.10. Given any affine space E, given any two distinct points a,b € E, and
for any affine dilatation f different from the identity, if ' = f(a), D = {(a,b) is the
line passing through a and b, and D' is the line parallel to D and passing through
d, the following are equivalent:

(i) b = f(b);

(ii) If f is a translation, then b’ is the intersection of D' with the line parallel to
(a,d’) passing through b;
If f is a dilatation of center c, then b’ = D' N {c,b).
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a by

Hy

az by

Fig. 2.13 The theorem of Thales.

The first case is the parallelogram law, and the second case follows easily from
Thales’ theorem.

We are now ready to prove two classical results of affine geometry, Pappus’s
theorem and Desargues’s theorem. Actually, these results are theorems of projective
geometry, and we are stating affine versions of these important results. There are
stronger versions that are best proved using projective geometry.

Lemma 2.11. Given any affine plane E, any two distinct lines D and D', then for
any distinct points a,b,c on D and a’,b',c' on D', if a,b,c,d’, V', ¢ are distinct from
the intersection of D and D' (if D and D' intersect) and if the lines {(a,b") and (d',b)
are parallel, and the lines (b,c') and (b',c) are parallel, then the lines {a,c’) and
(d',c) are parallel.

Proof. Pappus’s theorem is illustrated in Figure 2.14. If D and D’ are not parallel,
let d be their intersection. Let f be the dilatation of center d such that f(a) = b,
and let g be the dilatation of center d such that g(b) = c. Since the lines {a,b’) and
(d',b) are parallel, and the lines (b,c’) and (b, c) are parallel, by Lemma 2.10 we
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Fig. 2.14 Pappus’s theorem (affine version).

have @’ = f(b’) and b’ = g(c’). However, we observed that dilatations with the same
center commute, and thus fog = go f, and thus, letting h = go f, we get ¢ = h(a)
and a’ = h(c"). Again, by Lemma 2.10, the lines {(a,c’) and (&', c) are parallel. If D
and D' are parallel, we use translations instead of dilatations. O

There is a converse to Pappus’s theorem, which yields a fancier version of Pap-
pus’s theorem, but it is easier to prove it using projective geometry. It should be
noted that in axiomatic presentations of projective geometry, Pappus’s theorem is
equivalent to the commutativity of the ground field K (in the present case, K = R).
We now prove an affine version of Desargues’s theorem.

Lemma 2.12. Given any affine space E, and given any two triangles (a,b,c) and
(d',b',c), where a,b,c,d',b',c are all distinct, if {a,b) and {d',b') are parallel
and (b,c) and (b',c') are parallel, then (a,c) and (d',c') are parallel iff the lines
(a,d’), (b,b"), and {(c,c’) are either parallel or concurrent (i.e., intersect in a com-
mon point).

Proof. We prove half of the lemma, the direction in which it is assumed that (a, c)
and (d’,c’) are parallel, leaving the converse as an exercise. Since the lines (a,b) and
(a',b') are parallel, the points a,b,a’,b’ are coplanar. Thus, either {a,a’) and (b,b’)
are parallel, or they have some intersection d. We consider the second case where
they intersect, leaving the other case as an easy exercise. Let f be the dilatation
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of center d such that f(a) = a’. By Lemma 2.10, we get f(b) =b". If f(c) =",
again by Lemma 2.10 twice, the lines (b,c) and (b’,c") are parallel, and the lines
{a,c) and {(d’,c") are parallel. From this it follows that ¢ = ¢’. Indeed, recall that
(b,c) and (b',c’) are parallel, and similarly {(a,c) and {(a’,c’) are parallel. Thus, the
lines (b',c") and (b',c’) are identical, and similarly the lines (d’,c¢") and (d’,c’)
are identical. Since a’c’ and b'c’ are linearly independent, these lines have a unique
intersection, which must be ¢’ = ¢’.

The direction where it is assumed that the lines {(a,d’), (b,b’) and (c,c’), are
either parallel or concurrent is left as an exercise (in fact, the proof is quite similar).
O

Desargues’s theorem is illustrated in Figure 2.15.

Fig. 2.15 Desargues’s theorem (affine version).

There is a fancier version of Desargues’s theorem, but it is easier to prove it using
projective geometry. It should be noted that in axiomatic presentations of projective
geometry, Desargues’s theorem is related to the associativity of the ground field K
(in the present case, K = R). Also, Desargues’s theorem yields a geometric charac-
terization of the affine dilatations. An affine dilatation f on an affine space E is a
bijection that maps every line D to a line f(D) parallel to D. We leave the proof as
an exercise.
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2.10 Affine Hyperplanes

We now consider affine forms and affine hyperplanes. In Section 2.5 we observed
that the set L of solutions of an equation

ax+by=c

is an affine subspace of A? of dimension 1, in fact, a line (provided that ¢ and b are
not both null). It would be equally easy to show that the set P of solutions of an
equation

ax+by+cz=d

is an affine subspace of A3 of dimension 2, in fact, a plane (provided that a, b, ¢ are
not all null). More generally, the set H of solutions of an equation

Mxi+-+Apxm = U

is an affine subspace of A™, and if A1,...,A,, are not all null, it turns out that it is a
subspace of dimension m — 1 called a hyperplane.
We can interpret the equation

llxl—l—---—i—kmxm:u
in terms of the map f: R™ — R defined such that
f(xlv"'a-xm) :)LI.XI—F"'—F)Lm.xm—,u

for all (xi,...,x,) € R™. It is immediately verified that this map is affine, and the
set H of solutions of the equation

llxl—l—---—i—kmxm:u
is the null set, or kernel, of the affine map f: A™ — R, in the sense that
H=f"1(0)={xe A" [ f(x) =0},

where x = (xy,...,Xp).

Thus, it is interesting to consider affine forms, which are just affine maps f: E —
R from an affine space to R. Unlike linear forms f*, for which Ker f* is never
empty (since it always contains the vector 0), it is possible that £~!(0) = @ for an
affine form f. Given an affine map f: E — R, we also denote f~!(0) by Ker f, and
we call it the kernel of f. Recall that an (affine) hyperplane is an affine subspace
of codimension 1. The relationship between affine hyperplanes and affine forms is
given by the following lemma.

Lemma 2.13. Let E be an affine space. The following properties hold:
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(a) Given any nonconstant affine form f: E — R, its kernel H = Ker f is a hyper-
plane.

(b) For any hyperplane H in E, there is a nonconstant affine form f: E — R such
that H = Ker f. For any other affine form g: E — R such that H = Ker g, there
is some A € R such that g = A f (with A #0).

(c) Given any hyperplane H in E and any (nonconstant) affine form f: E — R such
that H = Ker f, every hyperplane H' parallel to H is defined by a nonconstant
affine form g such that g(a) = f(a) — A, for all a € E and some A € R.

Proof. The proof is straightforward, and is omitted. It is also given in Gallier [5].
O

When E is of dimension n, given an affine frame (ao, (u1,...,u,)) of E with
origin ag, recall from Definition 2.5 that every point of E can be expressed uniquely
asx = ag+xju| + - - +Xuuy, where (xy,...,x,) are the coordinates of x with respect
to the affine frame (ag, (u1,...,un)).

Also recall that every linear form f* is such that f*(x) = Ajx; + - - + Aux,, for
every x = xjuj + - - - +x,u, and some Ay, .., A, € R. Since an affine form f: E — R

satisfies the property f(ap+x) = f(ao)+ ?(x), denoting f(ap+x) by f(x1,...,Xn),
we see that we have

f(-xlu"'7xn):)’lx1+"'+)’nxn+u7

where it = f(ap) € R and Ay,...,A, € R. Thus, a hyperplane is the set of points
whose coordinates (xy,...,x,) satisfy the (affine) equation

Axp -+ Axy +u=0.

2.11 Intersection of Affine Spaces

In this section we take a closer look at the intersection of affine subspaces. This
subsection can be omitted at first reading.

First, we need a result of linear algebra. Given a vector space E and any two
subspaces M and N, there are several interesting linear maps. We have the canonical
injections i: M — M +N and j: N — M + N, the canonical injections iny: M —
M@®N and iny: N — M @ N, and thus, injections f: MNN - M@ N and g: M N
N — M ® N, where f is the composition of the inclusion map from M NN to M with
iny, and g is the composition of the inclusion map from M NN to N with in,. Then,
we have the maps f+g: MNN —-M@N,andi— j: M&GN - M+N.

Lemma 2.14. Given a vector space E and any two subspaces M and N, with the
definitions above,

0—MAN LS MaN ZA MeN — 0
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is a short exact sequence, which means that f 4 g is injective, i — j is surjective, and
that Im (f 4+ g) = Ker (i — j). As a consequence, we have the Grassmann relation

dim(M) + dim(N) = dim(M + N) + dim (M NN).

Proof. 1t is obvious that i — j is surjective and that f + g is injective. Assume that
(i—j)(u+v)=0,where u € M,and v € N. Then, i(«) = j(v), and thus, by definition
of i and j, there is some w € MNN, such that i(u) = j(v) =w € MNN. By definition
of fand g, u = f(w) and v = g(w), and thus Im (f + g) = Ker (i — j), as desired.
The second part of the lemma follows from standard results of linear algebra (see
Artin [1], Strang [12], or Lang [8]). O

We now prove a simple lemma about the intersection of affine subspaces.

Lemma 2.15. Given any affine space E, for any two nonempty affine subspaces M
and N, the following facts hold:

(I)MﬂN;é(Dzﬁcze ﬁ—l—ﬁforsomeaeMandsomebEN.

(2) MNN consists of a single point zﬁ(z € ﬁ—l— ﬁfor some a € M and some b € N,
and MNN = {0}.

(3) If S is the least affine subspace containing M and N, then ? = ﬁ + ﬁ + K%
(the vector space ? is defined over the field K).

Proof. (1) Pick any a € M and any b € N, which is possible, since M and N are
nonempty. Since M= {ak | xe M} and N = {;z |y €N}, if MNN # 0, for any
ceMﬂNwehavecz:cTc)—b_g, with a¢ € ﬁandb_ée ﬁ, andthus,cze ﬁ—l—ﬁ
Conversely, assume that az IS ﬁ + ﬁ for some a € M and some b € N. Then CZ =
at+ a), for some x € M and some y € N. But we also have

ab =@+ 3+ b,

— —
and thus we get 0 = x—y> + % — by, that is, E = 2by. Thus, b is the middle of the

segment [x,y], and since )7 = 2yb, x = 2b —y is the barycenter of the weighted
points (b,2) and (y, —1). Thus x also belongs to N, since N being an affine subspace,
it is closed under barycenters. Thus, x € MNN, and M NN # 0.

(2) Note that in general, if M NN # 0, then

MAN=MnN,

because
MON = {ab|a,be MNN} = {ab|a,beM}n{ab|apeN =M NN.

Since MNN =c+MNN for any c € MNN, we have
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MﬁN:c—i—ﬁﬁﬁ foranyc € MNN.

From this it follows that if M NN # 0, then M NN consists of a single point iff

ﬁ N ﬁ = {0}. This fact together with what we proved in (1) proves (2).
(3) This is left as an easy exercise. 0O

Remarks:

(1) The proof of Lemma 2.15 shows that if M NN # 0, then a? S ﬁ + ﬁ for all
acMandallbeN.
(2) Lemma 2.15 implies that for any two nonempty affine subspaces M and N, if

? = ﬁ &) ﬁ, then M NN consists of a single point. Indeed, if f = ﬁ ® ﬁ,

then ab € E foralla € Mandall b € N, and since MAN = {0}, the result
follows from part (2) of the lemma.

We can now state the following lemma.

Lemma 2.16. Given an affine space E and any two nonempty affine subspaces M
and N, if S is the least affine subspace containing M and N, then the following
properties hold:

(1) IfMNN =0, then

dim(M) +dim(N) < dim(E) + dim( M+ ﬁ

and

dim(S) = dim(M) + dim(N) + 1 — dim(M N V).
(2) If MNON # 0, then

dim(S) = dim(M) 4 dim(N) — dim(M NN).

Proof. The proof is not difficult, using Lemma 2.15 and Lemma 2.14, but we leave
it as an exercise. [

2.12 Problems

2.1. Given a triangle (a,b,c), give a geometric construction of the barycenter of
the weighted points (a, 71;)’ (b, i) and (c, ) Give a geometric construction of the
barycenter of the weighted points (a, ), (b, ) and (¢, —2).

(
2.2. Given a tetrahedron (a,b,c,d) and any two distinct points x,y € {a,b,c,d}, let
let m, , be the middle of the edge (x, y) Prove that the barycenter g of the weighted
points (a,3), (b,1), (¢, 1), and (d, 1) is the common intersection of the line seg-

ments (mgp,Mcq), (Mac,Mpa), and (mq q,myp ). Show that if g4 is the barycenter
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of the weighted points (a, %), (b, %), (c, %), then g is the barycenter of (d, flt) and
(8a4:3)-

2.3. Let E be a nonempty set, and ? a vector space and assume that there is a func-

tion®: EXE — ?, such that if we denote ®(a,b) by E, the following properties
hold:

%
(1) ab+Dbé = @, for all a,b,c € E;
(2) Foreverya € E,themap &,: E — ? defined such that forevery b € E, &,(b) =
ab, is a bijection.

Let¥,: ? — E be the inverse of &,: £ — ?
Prove that the function +: E X ? — E defined such that

a+u=Y¥u)

foralla € Eandall u € E makes (E, ?, +) into an affine space.

Note. We showed in the text that an affine space (E, f), +) satisfies the properties
stated above. Thus, we obtain an equivalent characterization of affine spaces.

2.4. Given any three points a, b, ¢ in the affine plane AZ, letting (ay,a2), (b1,b2),
and (cy,cy) be the coordinates of a, b, ¢, with respect to the standard affine frame for
AZ, prove that a, b, c are collinear iff

ay by ¢
azszZ :0,
111

i.e., the determinant is null.

Letting (ag,a1,az), (bo,b1,b2), and (co,c1,c2) be the barycentric coordinates of
a,b, c with respect to the standard affine frame for A2, prove that a, b, ¢ are collinear
iff

ao bo co
aq b1 Ccl| = 0.
az by ¢

Given any four points a, b, ¢,d in the affine space A3, letting (ay,ay,as), (b1,b2,b3),
(c1,¢2,¢3), and (dy,ds,d3) be the coordinates of a,b,c,d, with respect to the stan-
dard affine frame for A, prove that a, b, c,d are coplanar iff

ay by ¢ dy
az by ¢ dy —0
az bz c3 d3 ’
1111

i.e., the determinant is null.
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Letting (ao,al,ag,ag), (bo,bl,b27b3), (60761762,6‘3), and (do,dl,dz,dg) be the
barycentric coordinates of a, b, ¢, d, with respect to the standard affine frame for A3,
prove that a, b, c,d are coplanar iff

ag by co dy
ay by ¢ dy
az by ¢y dy
az by c3 d

=0.

2.5. The function f : A — A3 given by
1 (1,2,8)

defines what is called a rwisted cubic curve. Given any four pairwise distinct values
t1,t,13,14, prove that the points f(#1), f(t2), f(t3), and f(z4) are not coplanar.
Hint. Have you heard of the Vandermonde determinant?

2.6. For any two distinct points a,b € A? of barycentric coordinates (ag,ai,az) and
(bo,b1,b,) with respect to any given affine frame (O, i, j), show that the equation of
the line {a,b) determined by a and b is

ao b() X
ai bl Yy = 07
a by z

or, equivalently,

(a1b2 — azbl)x—l— (azbo — aobz)y + (aob1 — albo)z =0,

where (x,y,z) are the barycentric coordinates of the generic point on the line {(a,b).
Prove that the equation of a line in barycentric coordinates is of the form

ux+vy+wz=0,
where u # v or v # w or u # w. Show that two equations
ux+vy+wz=0 and u'x+Vy+wz=0
represent the same line in barycentric coordinates iff («,v',w') = A (u, v, w) for some
A € R (with A #0).
A triple (u,v,w) where u # v or v # w or u # w is called a system of tangential
coordinates of the line defined by the equation

ux+vy+wz=0.

2.7. Given two lines D and D’ in A? defined by tangential coordinates (u,v,w) and
(u',v,w') (as defined in Problem 2.6), let
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u
d=u'Vv w
1 1

<

w

/ / / / / /
N =ww —wv +wi' —uw’ +uw’ —vid.

—

(a) Prove that D and D' have a unique intersection point iff d # 0, and that when
it exists, the barycentric coordinates of this intersection point are

/ / / / / /
(v —wv', wi’ —uw', w" — '),

U=

(b) Letting (0, i, j) be any affine frame for A2, recall that when x +y +z = 0, for
any point a, the vector
i R B
xa0 +yai +zaj

is independent of a and equal to
= =
y0i+z0j = (,2).

The triple (x,y,z) such that x+y+z = 0 is called the barycentric coordinates of the
vector ya)i +z0j w.r.t. the affine frame (O, i, j).
Given any affine frame (O, i, j), prove that for u # v or v # w or u # w, the line
of equation
ux+vy+wz=0

in barycentric coordinates (x,y,z) (where x+ y+ z = 1) has for direction the set of
vectors of barycentric coordinates (x,y,z) such that

ux+vy+wz=0

(where x+y+z=0).
Prove that D and D' are parallel iff d = 0. In this case, if D # D', show that the
common direction of D and D' is defined by the vector of barycentric coordinates

/ / !/ / / !/
(v —w' wu' —uw', w" — ).

(c) Given three lines D, D', and D", at least two of which are distinct and defined
by tangential coordinates (u,v,w), (u',v/,w'), and (u” V"', w"), prove that D, D', and
D" are parallel or have a unique intersection point iff

u

!
u
/Y

<

w

w' | =0.

W/

<
~

I
<

u

<

2.8. Let (A,B,C) be a triangle in A2, Let M, N, P be three points respectively on the
lines BC, CA, and AB, of barycentric coordinates (0,m',m"), (n,0,n"), and (p, p’,0),
w.r.t. the affine frame (A, B,C).

(a) Assuming that M # C, N # A, and P # B, i.e., m'n" p # 0, show that
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ME NC PA B _m”np’
MC NA PE mn'p’

(b) Prove Menelaus’s theorem: The points M, N, P are collinear iff
m//np/—i-m/n//p —0.
When M # C, N # A, and P # B, this is equivalent to

WA

—1
MC NA P

(c) Prove Ceva’s theorem: The lines AM, BN, CP have a unique intersection point
or are parallel iff
m//np/ —m/n//p —0.

When M # C, N # A, and P # B, this is equivalent to

iR
wenim

2.9. This problem uses notions and results from Problems 2.6 and 2.7. In view of (a)
and (b) of Problem 2.7, it is natural to extend the notion of barycentric coordinates
of a point in A? as follows. Given any affine frame (a, b, c) in A%, we will say that the
barycentric coordinates (x,y,z) of a point M, where x+y+z = 1, are the normalized
barycentric coordinates of M. Then, any triple (x,y,z) such that x+y+z # 0 is also
called a system of barycentric coordinates for the point of normalized barycentric

coordinates |

X+y+z

With this convention, the intersection of the two lines D and D’ is either a point or a
vector, in both cases of barycentric coordinates

(x,3,2)-

/ / ! ! / !
(v —wv' wu’ —uw', w' —vul').

When the above is a vector, we can think of it as a point at infinity (in the direction
of the line defined by that vector).

Let (Dy,Dy), (D1,D}), and (D,,D)) be three pairs of six distinct lines, such that
the four lines belonging to any union of two of the above pairs are neither parallel
nor concurrent (have a common intersection point). If Dy and Dj, have a unique
intersection point, let M be this point, and if Dy and D’0 are parallel, let M denote
a nonnull vector defining the common direction of Dy and Dj,. In either case, let
(m,m’,m"") be the barycentric coordinates of M, as explained at the beginning of the
problem. We call M the intersection of Dy and Djy. Similarly, define N = (n,n’,n")
as the intersection of Dy and D/, and P = (p,p’, p”) as the intersection of D, and
D).
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Prove that
m n p
m/ n/ p/ :0
m// n// p//
iff either

(i) (Do,Dy}), (D1,D}), and (D, D)) are pairs of parallel lines; or
(ii) the lines of some pair (D;,D;) are parallel, each pair (D;,D’;) (with j # i) has
a unique intersection point, and these two intersection points are distinct and
determine a line parallel to the lines of the pair (D;,D}); or
(iii) each pair (D;,D}) (i = 0,1,2) has a unique intersection point, and these points
M, N, P are distinct and collinear.

2.10. Prove the following version of Desargues’s theorem. Let A,B,C, A’,B',C' be
six distinct points of A2. If no three of these points are collinear, then the lines
AA’, BB', and CC' are parallel or collinear iff the intersection points M, N, P (in the
sense of Problem 2.7) of the pairs of lines (BC,B'C’), (CA,C’'A’), and (AB,A’B’) are
collinear in the sense of Problem 2.9.

2.11. Prove the following version of Pappus’s theorem. Let D and D' be distinct
lines, and let A,B,C and A’,B’,C’ be distinct points respectively on D and D’. If
these points are all distinct from the intersection of D and D’ (if it exists), then the
intersection points (in the sense of Problem 2.7) of the pairs of lines (BC',CB'),
(CA',AC"), and (AB’,BA’) are collinear in the sense of Problem 2.9.

2.12. The purpose of this problem is to prove Pascal’s theorem for the nondegener-
ate conics. In the affine plane A2, a conic is the set of points of coordinates (x,y)
such that

ox® + By? + 2yxy +28x+ 24y + 1 =0,
where a # 0 or B # 0 or ¥ # 0. We can write the equation of the conic as
ayo X
ey ) YBA|[y]=0.
oAu 1

If we now use barycentric coordinates (x,y,z) (Where x+y+z = 1), we can write

X 100 X
y|=(010 y
1 111 Z
Let
oyo 100 X
B=|yBA], C=[010], X=[y
SAu 111 z

(a) Letting A = CT BC, prove that the equation of the conic becomes
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XTAX =0.

Prove that A is symmetric, that det(A) = det(B), and that X " AX is homogeneous of
degree 2. The equation X ' AX = 0 is called the homogeneous equation of the conic.

We say that a conic of homogeneous equation X ' AX = 0 is nondegenerate if
det(A) # 0, and degenerate if det(A) = 0. Show that this condition does not depend
on the choice of the affine frame.

(b) Given an affine frame (A, B,C), prove that any conic passing through A, B,C
has an equation of the form

ayz+bxz+cxy=0.

Prove that a conic containing more than one point is degenerate iff it contains three
distinct collinear points. In this case, the conic is the union of two lines.

(c) Prove Pascal’s theorem. Given any six distinct points A,B,C, A’,B', C', if no
three of the above points are collinear, then a nondegenerate conic passes through
these six points iff the intersection points M, N, P (in the sense of Problem 2.7) of
the pairs of lines (BC',CB'), (CA’,AC’) and (AB’,BA’) are collinear in the sense of
Problem 2.9.

Hint. Use the affine frame (A, B,C), and let (a,d’,d”), (b,b’,b"), and (c,c’,c") be
the barycentric coordinates of A’,B’,C’ respectively, and show that M,N,P have
barycentric coordinates

(be,cb’ "), (ca,dd,"d), (ab”,d"b,a"b").

2.13. The centroid of a triangle (a,b,c) is the barycenter of (a, 1), (b, 1), (c,%). If
an affine map takes the vertices of triangle A; = {(0,0),(6,0),(0,9)} to the vertices
of triangle Ay = {(1,1),(5,4),(3,1)}, does it also take the centroid of A; to the
centroid of A;? Justify your answer.

2.14. Let E be an affine space over R, and let (ay,...,a,) be any n > 3 points in E.
Let (41,...,A,) be any n scalars in R, with A +---+ A, = 1. Show that there must
be some i, | <i < n,such that A; # 1. To simplify the notation, assume that A; # 1.
Show that the barycenter Aya; + - - - + A,a, can be obtained by first determining the
barycenter b of the n — 1 points ay,...,a, assigned some appropriate weights, and
then the barycenter of a; and b assigned the weights A; and A, + --- + A,,. From
this, show that the barycenter of any n > 3 points can be determined by repeated
computations of barycenters of two points. Deduce from the above that a nonempty
subset V of E is an affine subspace iff whenever V contains any two points x,y € V,
then V contains the entire line (1 —A)x+ Ay, A € R.

2.15. Assume that K is a field such that 2 =1+ 1 # 0, and let E be an affine space
over K. In the case where A; +---+A,=1and A; =1, for 1 <i<nandn >3, show
that the barycenter a; +a» + - - - +a, can still be computed by repeated computations
of barycenters of two points.
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Finally, assume that the field K contains at least three elements (thus, there is
some U € K such that u # 0 and p # 1, but 2 = 1+ 1 = 0 is possible). Prove that
the barycenter of any n > 3 points can be determined by repeated computations of
barycenters of two points. Prove that a nonempty subset V of E is an affine subspace
iff whenever V contains any two points x,y € V, then V contains the entire line
(1-2A)x+Ay,A €K.

Hint. When2=0,A;+---+A,=1and A; = 1, for 1 <i < n, show that n must
be odd, and that the problem reduces to computing the barycenter of three points in
two steps involving two barycenters. Since there is some y € K such that u ## 0 and
u # 1, note that ! and (1 — p)~! both exist, and use the fact that

—u 1

1—p 1o uo

2.16. (i) Let (a, b, c) be three points in AZ?, and assume that (a,b,c) are not collinear.
For any point x € A2, if x = Aga + A1b + Ayc, where (Ao, A1, Ay) are the barycentric
coordinates of x with respect to (a,b,c), show that

2o det(xh, be) L _de@at) det(ab, @)
Cdet@ha) | de@bat)  C detaba)

Conclude that A9, A, A, are certain signed ratios of the areas of the triangles (a, b, c),
(x,a,b), (x,a,c), and (x,b,c).

(ii) Let (a,b,c) be three points in A3, and assume that (a,b,¢) are not collinear.
For any point x in the plane determined by (a,b,¢), if x = Aga + A1b + Arc, where
(A0,A1,A2) are the barycentric coordinates of x with respect to (a,b,c), show that

_)
Exbc at x at %xﬁ
h==—, h==5—  h==—.
ab x at ab x at ab x at

Given any point O not in the plane of the triangle (a, b, ¢), prove that

B det(@i,a, 52) B det(@,oj,a)

A«l = 5 )LZ - ’
det(Oa, OZ, Oc) det(Oa, OZ, Oc)

and
B det(a)c, 07, 52’)

det(Oa, 0b, 0¢)

(iii) Let (a,b, c,d) be four points in A3, and assume that (a,b,c,d) are not coplanar.
For any point x € A3, if x = Aga + A1b + Ay + Azd, where (A, A1, A2, A3) are the
barycentric coordinates of x with respect to (a,b,c,d), show that

det(ab, @, ad) N det(ab, at, @)
b 3: )

det(ax, at,ad)
_ ) —
det(az,ac,ad) det(ab,at,ad)

A‘l - )
det(cz,a_)c,c?l)

A

8l
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and
' det(xb, be, bd)

det(az, at,ad) .

Conclude that A9, A1, A,, A3 are certain signed ratios of the volumes of the five tetra-
hedra (a,b,c,d), (x,a,b,c), (x,a,b,d), (x,a,c,d), and (x,b,c,d).

(iv) Let (ag,...,am) be m+ 1 points in A™, and assume that they are affinely
independent. For any point x € A™, if x = Apag + - - - + Amam, where (Ag, ..., Ay) are
the barycentric coordinates of x with respect to (ag, ... ,a), show that

—
o det(aoay - .. ,aoi—1, a0k, @oGiy - - - a0t
i =
det(apai,...,aoa;—1,a0d;, oG 1, - - . ,aodm)

forevery i, 1 <i<m, and

det(m,alaz, ey A1ap)
det(apaf,... .aod,, ... ,a00m)

AO =
Conclude that 4; is the signed ratio of the volumes of the simplexes (a, . . ., X, ... dm)
and (ag,...,a;,...an), where 0 < i < m.

2.17. With respect to the standard affine frame for the plane A”, consider the three
geometric transformations fi, f>, f3 defined by

S SO SV ST
I I
PR R SO SRV NS TNV
ST Ty OV
X =ax Y 1eré-
2 272

(a) Prove that these maps are affine. Can you describe geometrically what their
action is (rotation, translation, scaling)?
(b) Given any polygonal line L, define the following sequence of polygonal lines:

So =L,
St = f1(Sn) U f2(Sn) U f3(Sn)-
Construct Sy starting from the line segment L = ((—1,0),(1,0)).

Can you figure out what S, looks like in general? (You may want to write a
computer program.) Do you think that S, has a limit?

2.18. In the plane A, with respect to the standard affine frame, a point of coordi-
nates (x,y) can be represented as the complex number z = x + iy. Consider the set
of geometric transformations of the form

z+—az+b,
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where a, b are complex numbers such that a # 0.
(a) Prove that these maps are affine. Describe what these maps do geometrically.
(b) Prove that the above set of maps is a group under composition.
(c) Consider the set of geometric transformations of the form

z—az+b or zw—az+b,

where a,b are complex numbers such that a # 0, and where 7 = x — iy if z = x +iy.
Describe what these maps do geometrically. Prove that these maps are affine and
that this set of maps is a group under composition.

2.19. Given a group G, a subgroup H of G is called a normal subgroup of G iff
xHx~' = H forall x € G (where xHx ' = {xhx~! | h € H}).
(i) Given any two subgroups H and K of a group G, let

HK ={hk|he H, k€ K}.

Prove that every x € HK can be written in a unique way as x = hk for h € H and
k€ Kiff HNK = {1}, where 1 is the identity element of G.

(ii) If H and K are subgroups of G, and H is a normal subgroup of G, prove that
HK is a subgroup of G. Furthermore, if G = HK and HNK = {1}, prove that G is
isomorphic to H x K under the multiplication operation

(k) - (ho,ko) = (hikihaky !, kiko).

When G = HK, where H,K are subgroups of G, H is a normal subgroup of G,
and HNK = {1}, we say that G is the semidirect product of H and K.

(iii) Let (E, ?) be an affine space. Recall that the affine group of E, denoted by
GA(E), is the set of affine bijections of E, and that the linear group of ?, denoted
by GL(?), is the group of bijective linear maps of ? The map f +— 7 defines

a group homomorphism L: GA(E) — GL(?), and the kernel of this map is the
set of translations on E, denoted as T (E). Prove that T(E) is a normal subgroup of
GA(E).

(iv) Forany a € E, let

GA4(E) ={f € GA(E) | f(a) = a},

the set of affine bijections leaving a fixed. Prove that that GA,(E) is a subgroup of

GA(E), and that GA,(E) is isomorphic to GL(?). Prove that GA (E) is isomorphic
to the direct product of 7'(E) and GA,(E).

Hint. Note that if u = f(a)a and ¢, is the translation associated with the vector u,
then 7, o f € GA4(E) (where the translation 7, is defined such that #,(a) = a + u for
everya € E).

(v) Given a group G, let Aut(G) denote the set of isomorphisms f: G — G. Prove
that the set Aut(G) is a group under composition (called the group of automorphisms
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of G). Given any two groups H and K and a homomorphism 6: K — Aut(H), we
define H x ¢ K as the set H x K under the multiplication operation

(hy k1) - (ha, ko) = (h16(ky)(ha), kiky).

Prove that H x g K is a group.
Hint. The inverse of (h,k) is (8(k~')(h~ 1), k).

Prove that the group H X g K is the semidirect product of the subgroups
{(h,1)|he H} and {(1,k) | k € K}. The group H X ¢ K is also called the semidirect
product of H and K relative to 6.

Note. 1t is natural to identify {(h,1) | h € H} with H and {(1,k) | k € K} with K.

If G is the semidirect product of two subgroups H and K as defined in (ii), prove
that the map y: K — Aut(H) defined by conjugation such that

v(k)(h) = khk™!

is a homomorphism, and that G is isomorphic to H X, K.

(vi) Define the map 6: GL(?) — Aut(?) as follows: 0(f) = f, where f €
GL(?) (note that 6 can be viewed as an inclusion map). Prove that GA(E) is
isomorphic to the semidirect product E x P GL(?).

(vii) Let SL(?) be the subgroup of GL(?) consisting of the linear maps such
that det(f) = 1 (the special linear group of ?), and let SA(E) be the subgroup of
GA(E) (the special affine group of E) consisting of the affine maps f such that 7 €
SL(?). Prove that SA(E) is isomorphic to the semidirect product £ Xg SL(?),
where 6 SL(?) — Aut(?) is defined as in (vi).

(viii) Assume that (E, f) is a Euclidean affine space, as defined in Chapter 6.
Let SO(?) be the special orthogonal group of ?, as defined in Definition 6.6
(the isometries with determinant +1), and let SE(E) be the subgroup of SA(E) (the
special Euclidean group of E) consisting of the affine isometries f such that ? €
SO(?). Prove that SE(E) is isomorphic to the semidirect product E Xg SO(?),

where 6 SO(?) — Aut(f) is defined as in (vi).

2.20. The purpose of this problem is to study certain affine maps of A
(1) Consider affine maps of the form

X1 cosO —sinB\ [x by
<x2> — <sin6 cos O > <x2) + <b2> '
Prove that such maps have a unique fixed point ¢ if 6 # 2k, for all integers k.
Show that these are rotations of center ¢, which means that with respect to a frame
with origin ¢ (the unique fixed point), these affine maps are represented by rotation

matrices.
(2) Consider affine maps of the form
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X1 Acos@ —Asin@) [x; by
— . + .
X usin@ pcos X2 by
Prove that such maps have a unique fixed point iff (1 + pt)cos6 # 1+ Ap. Prove
that if Ag = 1 and A > 0, there is some angle 6 for which either there is no fixed

point, or there are infinitely many fixed points.
(3) Prove that the affine map

()= (@ 25) () ()
has no fixed point.

(4) Prove that an arbitrary affine map

)= (e )=

has a unique fixed point iff the matrix
a) — 1 ar
asz a4 — 1

2.21. Let (E, ?) be any affine space of finite dimension. For every affine map
[+ E— E,letFix(f) = {a € E | f(a) = a} be the set of fixed points of f.

(i) Prove that if Fix(f) # @, then Fix(f) is an affine subspace of E such that for
every b € Fix(f),

is invertible.

Fix(f) = b+ Ker(f —id).
(ii) Prove that Fix(f) contains a unique fixed point iff

Ker (7 —id) = {0}, ice., f (1) = u iffu=0.

Hint. Show that
Qf(a)— Qa=Qf(@)+ T (Qa) - Qa,

for any two points Q,a € E.

2.22. Given two affine spaces (E, ?) and (F, ?), let o7 (E, F) be the set of all affine
maps f: E— F.

(i) Prove that the set <7 (E, ?) (viewing ? as an affine space) is a vector space
under the operations f 4+ g and A f defined such that

(f +8)(a) = fla) +(a),
(Af)(a) = Af(a),

foralla € E.
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(i1) Define an action
+: A (E,F)x A(E, F)— o (E,F)

of &/ (E, ?) on &/ (E,F) as follows: Forevery a € E, every f € o/ (E,F), and every
he o (E,F),
(f +h)(a) = f(a) + h(a).

Prove that (& (E,F), &/ (E, ?), +) is an affine space.

Hint. Show that for any two affine maps f,g € &7 (E,F), the map ]Tg> defined such
that

ﬁ
fela) = fla)g(a
(for every a € E) is affine, and thus fg € <7 (E, ?) Furthermore, fg is the unique
map in < (E, ?) such that R
frrfe=s

(ii1) If f has dimension m and ? has dimension n, prove that <7 (E, ?) has
dimension n+mn = n(m+1).

2.23. Let (cy,...,cy) be n >3 points in A™ (where m > 2). Investigate whether there
is a closed polygon with n vertices (ajy,...,a,) such that ¢; is the middle of the edge
(aj, aj+1) forevery i with 1 <i<n— 1, and ¢, is the middle of the edge (an, ap).
Hint. The parity (odd or even) of n plays an important role. When n is odd, there
is a unique solution, and when 7 is even, there are no solutions or infinitely many
solutions. Clarify under which conditions there are infinitely many solutions.

2.24. Given an affine space E of dimension n and an affine frame (ay, ...,a,) for E,
let f: E— E and g: E — E be two affine maps represented by the two (n+ 1) x

(n+ 1) matrices
Ab d B¢
0o1) % \o1

w.r.t. the frame (ay,...,a,). We also say that f and g are represented by (A,b) and
(B,c).
(1) Prove that the composition f o g is represented by the matrix

AB Ac+b
0 1 ’
We also say that f o g is represented by (A,b)(B,c) = (AB,Ac+b).
(2) Prove that f is invertible iff A is invertible and that the matrix representing

flis
A"l —A"1p
0 1 '
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We also say that £~ is represented by (A,5) ™' = (A=!, —~A~!b). Prove that if A is
an orthogonal matrix, the matrix associated with £~ is

AT —ATb
0 1 ’
Furthermore, denoting the columns of A by Ay, ...,A,, prove that the vector ATb is
the column vector of components

(A1 -b,...,Ay-D)

(where - denotes the standard inner product of vectors).
(3) Given two affine frames (a,...,a,) and (ay,...,a,) for E, any affine map
f: E — E has a matrix representation (A,b) w.r.t. (ag,...,a,) and (ay,...,a,) de-

TRY . ; .
fined such that b = aj, f(ag) is expressed over the basis (aga),...,aya,), and a;; is

the ith coefficient of f(agaj) over the basis (ajay,. . .,aya,). Given any three frames
(ao,...,an), (ay,...,a,), and (aj,...,a)), for any two affine maps f: E — E and
g: E — E, if f has the matrix representation (A,b) w.r.t. (ao, .. .,a,) and (ag, ..., a),)

and g has the matrix representation (B,c) w.r.t. (a,...,a,) and (ag,...,a,), prove
that g o f has the matrix representation (B, c)(A,b) w.r.t.(ao, .. .,a,) and (ag, ... ,a)).
(4) Given two affine frames (ao,...,a,) and (aj,...,a,) for E, there is a unique

affine map h: E — E such that i(a;) = d, fori =0,...,n, and we let (P, ) be its as-
sociated matrix representation with respect to the frame (ao, .. .,a,). Note that @ =
c@g, and that p;; is the ith coefficient of aya’; over the basis (avas, ... aoay). Ob-
serve that (P, ®) is also the matrix representation of idg w.r.t. the frames (ay, . .., a),)
and (ao,...,a,), in that order. For any affine map f: E — E, if f has the ma-
trix representation (A,b) over the frame (ay,...,a,) and the matrix representation
(A’,b) over the frame (aj, ... ,aj,), prove that

(Alvb,) = (Pv w)il(Avb)(Pv CO).

Given any two affine maps f: E— FE and g: E — E, where f is invertible, for any
affine frame (a, ..., a,) for E, if (aj, ... ,a),) is the affine frame image of (o, . .. ,ax)
under f (i.e., f(a;) =d fori=0,...,n), letting (A,b) be the matrix representation
of f w.r.t. the frame (ao,...,a,) and (B,c) be the matrix representation of g w.r.t.
the frame (ay, ... ,d,,) (not the frame (ay,...,a,)), prove that g o f is represented by
the matrix (A,b)(B,c) w.r.t. the frame (ay, . ..,a,).

Remark: Note that this is the opposite of what happens if f and g are both repre-
sented by matrices w.r.t. the “fixed” frame (a, ...,a,), where go f is represented by
the matrix (B,c)(A,b). The frame (aj, ...,a,) can be viewed as a “moving” frame.
The above has applications in robotics, for example to rotation matrices expressed
in terms of Euler angles, or “roll, pitch, and yaw.”
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2.25. (a) Let E be a vector space, and let U and V be two subspaces of E such that
they form a direct sum £ = U @ V. Recall that this means that every vector x € E
can be written as x = u 4 v, for some unique # € U and some unique v € V. Define
the function py: E — U (resp. py: E — V) so that py(x) = u (resp. py(x) =v),
where x = u + v, as explained above. Check that that py and py are linear.

(b) Now assume that E is an affine space (nontrivial), and let U and V be affine

subspaces such that ? = ﬁ &) ? Pick any Q €V, and define gy : E — ﬁ (resp.
qgv: E— 7, with Q € U) so that

qu(a) = pﬁ(.(Ta)) (resp. gqy(a)= p?(m)), forevery a € E.

Prove that gy does not depend on the choice of 2 € V (resp. gy does not depend on
the choice of Q € U). Define the map py: E — U (resp. py: E — V) so that

pu(a)=a—gqy(a) (resp. pv(a)=a—qu(a)), foreverya€E.

Prove that py (resp. py) is affine.

The map py (resp. py) is called the projection onto U parallel to V (resp. pro-
Jjection onto 'V parallel to U).

(c)Let (ag, . . .,a,) be n+ 1 affinely independent points in A" and let A (ay, . . . ,ay)
denote the convex hull of (ag,...,a,) (an n-simplex). Prove that if f: A" — A" is
an affine map sending A(ay, . . .,a,) inside itself, i.e.,

f(A(ag,...,an)) C A(ag, ... an),

then f has some fixed point b € A(ay,...,a), i.e., f(b) =b.

Hint: Proceed by induction on n. First, treat the case n = 1. The affine map is deter-
mined by f(ag) and f(a;), which are affine combinations of ag and a;. There is an
explicit formula for some fixed point of f. For the induction step, compose f with
some suitable projections.
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Chapter 3
Basic Properties of Convex Sets

3.1 Convex Sets

Convex sets play a very important role in geometry. In this chapter we state and
prove some of the “classics” of convex affine geometry: Carathéodory’s theorem,
Radon’s theorem, Helly’s theorem, and Krein and Millman’s theorem. These the-
orems share the property that they are easy to state, but they are deep, and their
proof, although rather short, requires a lot of creativity. We introduce the notions of
separating and supporting hyperplanes, of vertices, and of extreme points. We also
define centerpoints and prove their existence.

Given an affine space E, recall that a subset V of E is convex if for any two points
a,b €V, wehave c €V forevery pointc = (1 —A)a+ Ab, with0 < A <1 (A €R).
Given any two points a, b, the notation [a, b] is often used to denote the line segment
between a and b, that is,

la,b] ={c€E|c=(1—A)a+Ab,0<A <1},

and thus a set V is convex if [a,b] C V for any two points a,b € V (a = b is allowed).
The empty set is trivially convex, every one-point set {a} is convex, and the entire
affine space E is, of course, convex.

It is obvious that the intersection of any family (finite or infinite) of convex sets
is convex. Then, given any (nonempty) subset S of E, there is a smallest convex set
containing S, denoted by %(S) or conv(S) and called the convex hull of S (namely,
the intersection of all convex sets containing ). The affine hull of a subset S of E is
the smallest affine set containing S, and it will be denoted by (S) or aff(s).

Definition 3.1. Given any affine space E the dimension of a nonempty convex sub-
set S of E, denoted by dim S, is the dimension of the smallest affine subset aff(S)
containing S.

A good understanding of what €(S) is, and good methods for computing it, are
essential. First, we have the following simple but crucial lemma:

65
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(a) (b)

Fig. 3.1 (a) A convex set; (b) A nonconvex set.

Lemma 3.1. Given an affine space <E ,?,+>, for any family (a;)ics of points in
E, the set V of convex combinations Y ;c; Adia; (where Y;c; Ai =1 and A; > 0) is the
convex hull of (a;)icy.

Proof. 1f (a;);er is empty, then V = 0, because of the condition };; 4; = 1. As in the
case of affine combinations, it is easily shown by induction that any convex combi-
nation can be obtained by computing convex combinations of two points at a time.
As a consequence, if (a;);es is nonempty, then the smallest convex subspace contain-
ing (a;)ie; must contain the set V of all convex combinations Y ;c; Aja;. Thus, it is
enough to show that V is closed under convex combinations, which is immediately
verified. O

In view of Lemma 3.1, it is obvious that any affine subspace of E is convex.
Convex sets also arise in terms of hyperplanes. Given a hyperplane H, if f: E — R
is any nonconstant affine form defining H (i.e., H = Ker f), we can define the two
subsets

H(f)={acE[f(a) >0} and H_(f)={acE]f(a) <0},

called (closed) half-spaces associated with f.
Observe that if A > 0, then Hy (Af) = HL(f), but if A < 0, then H, (Af) =
H_(f), and similarly for H_(A f). However, the set

{H (), H-(f)}

depends only on the hyperplane H, and the choice of a specific f defining H amounts
to the choice of one of the two half-spaces. For this reason, we will also say that
H,(f) and H_(f) are the closed half-spaces associated with H. Clearly, H (f)U
H_(f) =E and H,(f) "H_(f) = H. It is immediately verified that H, (f) and
H_(f) are convex. Bounded convex sets arising as the intersection of a finite family



3.2 Carathéodory’s Theorem 67

Fig. 3.2 The two half-spaces determined by a hyperplane H.

of half-spaces associated with hyperplanes play a major role in convex geometry
and topology (they are called convex polytopes).

It is natural to wonder whether Lemma 3.1 can be sharpened in two directions:
(1) Is it possible to have a fixed bound on the number of points involved in the
convex combinations? (2) Is it necessary to consider convex combinations of all
points, or is it possible to consider only a subset with special properties?

The answer is yes in both cases. In case 1, assuming that the affine space E has
dimension m, Carathéodory’s theorem asserts that it is enough to consider convex
combinations of m + 1 points. For example, in the plane A2, the convex hull of a
set S of points is the union of all triangles (interior points included) with vertices in
S. In case 2, the theorem of Krein and Milman asserts that a convex set that is also
compact is the convex hull of its extremal points (given a convex set S, a pointa € S
is extremal if S — {a} is also convex; see Berger [2] or Lang [4]). Next, we prove
Carathéodory’s theorem.

3.2 Carathéodory’s Theorem

The proof of Carathéodory’s theorem is really beautiful. It proceeds by contradiction
and uses a minimality argument.

Theorem 3.1. (Carathéodory, 1907) Given any affine space E of dimension m, for
any (nonvoid) family S = (a;)icr in E, the convex hull € (S) of S is equal to the set
of convex combinations of families of m+ 1 points of S.

Proof. By Lemma3.1,

%(S) = {Z)”ai | a; ES,Z),,‘Z 1,;\,,' ZO,IQL,IﬁHite}.

icl icl
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We would like to prove that

E(S) = {ZA,-aJa,-ES,Z?L,'— 1,4 >0,1CL || —m—l—l}.

icl icl

We proceed by contradiction. If the theorem is false, there is some point b € €(S)
such that b can be expressed as a convex combination b = ¥ ;c; A;a;, where I C L is
a finite set of cardinality |I| = g with ¢ > m+ 2, and b cannot be expressed as any
convex combination b =Y ;c; ija; of strictly fewer than g points in S, that is, where
|/] < g. Such a point b € %'(S) is a convex combination

b:?Lla1+~~~+7anq,

where A; +---+ A, =1and A; > 0 (1 <i < g). We shall prove that b can be written
as a convex combination of g — 1 of the g;. Pick any origin O in E. Since there are
g > m+ 1 points ay, ... ,a,, these points are affinely dependent, and by Lemma 2.6,
there is a family (u1,...,1,) of scalars not all null, such that y; + - - -+, = 0 and

Q

—
[,L,‘Oa,‘ =0.
1

Consider the set T C R defined by
T={teR|Ai+r;>0,; #0,1 <i<q}.

The set T is nonempty, since it contains 0. Since Zf.’:l U; = 0 and the y; are not
all null, there are some Wy, such that g, < 0 and py > 0, which implies that
T = [a, B], where

o= lnsll?gq{—li/ﬂi |wi>0} and = min {—Ai/p;|pi <O}

(T is the intersection of the closed half-spaces {r € R | A; +ty; > 0, y; # 0}). Ob-
serve that & < 0 < B, since A; >0 foralli=1,...,q.
We claim that there is some j (1 < j < g) such that

Ai+ou;=0.

Indeed, since
o= gggq{—?ti/ Mi | 4 >0},

and since the set on the right-hand side is finite, the maximum is achieved and there
is some index j such that & = —A;/u;. If j is some index such that A; + au; =0,

_ =
since Y7, jOa; = 0, we have
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q q
b= ;Aiai:0+;li0—>ai+0,

q q
— 0+Zki@+a(2ui@>,

=1 i=1

< .

0+ (Ai + o) Oa,,

—_

|
™=

(A’l + a,ul)ata

1

q

Z (A + api)a;,
i=1,i]

since A;+ i =0. Since Y7 11; =0, Y7, A; = 1, and A; + a; = 0, we have

q
Y Ai+api=1,
i=1,i#]j

and since A; + ay; >0 fori=1,...,q, the above shows that b can be expressed as a
convex combination of g — 1 points from S. However, this contradicts the assumption
that b cannot be expressed as a convex combination of strictly fewer than ¢ points
from S, and the theorem is proved. O

If S is a finite (of infinite) set of points in the affine plane A2, Theorem 3.1
confirms our intuition that €’ (S) is the union of triangles (including interior points)
whose vertices belong to S. Similarly, the convex hull of a set S of points in A3 is
the union of tetrahedra (including interior points) whose vertices belong to S. We
get the feeling that triangulations play a crucial role, which is of course true!

An interesting consequence of Carathéodory’s theorem is the following result:

Proposition 3.1. If K is any compact subset of A™, then the convex hull conv(K) of
K is also compact.

Proposition 3.1 can be proved by showing that conv(K) is the image of some
compact subset of R"*! x (A™)"*! under some well-chosen continuous map.

A closer examination of the proof of Theorem 3.1 reveals that the fact that the
U;’s add up to zero is actually not needed in the proof. This fact ensures that T is a
closed interval, but all we need is that 7 be bounded from below, and this requires
only that some p; be strictly positive. As a consequence, we can prove a version
of Theorem 3.1 for convex cones. This is a useful result, since cones play such an
important role in convex optimization. Let us recall some basic definitions about
cones.

Definition 3.2. Given any vector space E a subset C C E is a convex cone iff C is
closed under positive linear combinations, that is, linear combinations of the form
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Z?Livi, with v,eC and A;>0 forall iel,
il

where I has finite support (all A; = 0 except for finitely many i € I). Given any set
of vectors S, the positive hull of S, or cone spanned by S, denoted by cone(S), is the
set of all positive linear combinations of vectors in S,

cone(S) = {Z?Livi lvieS, A > 0} .

i€l

Note that a cone always contains 0. When § consists of a finite number of vectors,
the convex cone cone(S) is called a polyhedral cone. We have the following version
of Carathéodory’s theorem for convex cones:

Theorem 3.2. Given any vector space E of dimension m, for any (nonvoid) family
S = (vi)ier of vectors in E, the cone cone(S) spanned by S is equal to the set of
positive combinations of families of m vectors in S.

The proof of Theorem 3.2 can be easily adapted from the proof of Theorem 3.1
and is left as an exercise.

There is an interesting generalization of Carathéodory’s theorem known as the
colorful Carathéodory theorem. This theorem, due to Bardny and proved in 1982,
can be used to give a fairly short proof of a generalization of Helly’s theorem known
as Tverberg’s theorem (see Section 3.4).

Theorem 3.3. (Colorful Carathéodory theorem) Let E be any affine space of di-
mension m. For any point b € E and for any sequence of m+ 1 nonempty subsets
(Sty.--,Smr1) Of E, if b € conv(S;) fori =1,...,m+ 1, then there exists a sequence
of m+ 1 points (ay,...,am+1) with a; € S;, such that b € conv(ay,...,ay11), that is,
b is a convex combination of the a;’s.

Although Theorem 3.3 is not hard to prove, we will not prove it here. Instead,
we refer the reader to Matousek [6], Chapter 8, Section 8.2. There is also a stronger
version of Theorem 3.3, in which it is enough to assume that b € conv(S; US;) for
alli,jwith1 <i<j<m+1.

Now that we have given an answer to the first question posed at the end of Section
3.1, we give an answer to the second question.

3.3 Vertices, Extremal Points, and Krein and Milman’s Theorem

First, we define the notions of separation and of separating hyperplanes. For this,

recall the definition of the closed (or open) half-spaces determined by a hyperplane.
Given a hyperplane H, if f: E — R is any nonconstant affine form defining H

(i.e., H = Ker f), recall that we define the closed half-spaces associated with f by
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H.(f) ={acE|f(a) =0},
H-(f) ={acE|f(a) <0}.

We also define the open half-spaces associated with f as the two sets

+(f) ={acE[f(a) >0},
~(f) ={acE|f(a) <0}.

mo mo

The set {Ifl L (f ),IO-I _(f)} depends only on the hyperplane H. Clearly, we have
H. (f) = Hi(f)— Hand H_ () = H_(f) ~ H.

Definition 3.3. Given an affine space X and two nonempty subsets A and B of X, we
say that a hyperplane H separates (resp. strictly separates) A and B if A is in one
and B is in the other of the two half-spaces (resp. open half-spaces) determined by
H.

() (b)

Fig. 3.3 (a) A separating hyperplane H. (b) Strictly separating hyperplanes H and H’.

In Figure 3.3 (a), the two closed convex sets A and B are unbounded and B has
the hyperplane H for its boundary, while A is asymptotic to H. The hyperplane H
is a separating hyperplane for A and B but A and B can’t be strictly separated. In
Figure 3.3 (b), both A and B are convex and closed, B is unbounded and asymptotic
to the hyperplane, H', but A is bounded. Both hyperplanes H and H’ strictly separate
A and B.

The special case of separation in which A is convex and B = {a} for some point
a in A is of particular importance.

Definition 3.4. Let X be an affine space and let A be any nonempty subset of X. A
supporting hyperplane of A is any hyperplane H containing some point a of A and
separating {a} and A. We say that H is a supporting hyperplane of A at a.
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Observe that if H is a supporting hyperplane of A at a, then we must have a € dA.
Otherwise, there would be some open ball B(a,€) of center a contained in A, and
so there would be points of A (in B(a,€)) in both half-spaces determined by H,
contradicting the fact that H is a supporting hyperplane of A at a. Furthermore,

HNA=0.

One should experiment with various pictures and realize that supporting hyper-
planes at a point may not exist (for example, if A is not convex), may not be unique,
and may have several distinct supporting points! (See Figure 3.4).

AN

Fig. 3.4 Examples of supporting hyperplanes.

Next, we need to define various types of boundary points of closed convex sets.

Definition 3.5. Let X be an affine space of dimension d. For any nonempty closed
and convex subset A of dimension d, a point a € A has order k(a) if the intersection
of all the supporting hyperplanes of A at a is an affine subspace of dimension k(a).
We say that a € dA is a vertex if k(a) = 0; we say that a is smooth if k(a) =d — 1,
i.e., if the supporting hyperplane at a is unique.

A vertex is a boundary point a such that there are d independent supporting
hyperplanes at a. A d-simplex has boundary points of order 0,1,...,d — 1. The
following proposition is proved in Berger [2] (Proposition 11.6.2):

Proposition 3.2. The set of vertices of a closed and convex subset is countable.
Another important concept is that of an extremal point.

Definition 3.6. Let X be an affine space. For any nonempty convex subset A a point
a € dA is extremal (or extreme) if A — {a} is still convex.

It is fairly obvious that a point a € JA is extremal if it does not belong to the
interior of any closed nontrivial line segment [x,y] C A (x # y, a # x and a # y).

Observe that a vertex is extremal, but the converse is false. For example, in Figure
3.5, all the points on the arc of the parabola, including v| and v;, are extreme points.
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(%1 U2

Fig. 3.5 Examples of vertices and extreme points.

However, only v; and v, are vertices. Also, if dimX > 3, the set of extremal points
of a compact convex may not be closed.

Actually, it is not at all obvious that a nonempty compact convex set possesses
extremal points. In fact, a stronger results holds (Krein and Milman’s theorem).
In preparation for the proof of this important theorem, observe that any compact
(nontrivial) interval of A! has two extremal points, its two endpoints. We need the
following lemma:

Lemma 3.2. Let X be an affine space of dimension n, and let A be a nonempty
compact and convex set. Then A = € (dA), i.e., A is equal to the convex hull of its
boundary.

Proof. Pick any a in A, and consider any line D through a. Then, DN A is closed
and convex. However, since A is compact, it follows that D N A is a closed interval
[u,V] containing a, and u,v € JA. Therefore, a € € (dA), as desired. O

The following important theorem shows that only extremal points matter in de-
termining a compact and convex subset from its boundary. The proof of Theorem
3.4 makes use of a proposition due to Minkowski (Proposition 7.4), which will be
proved in Section 7.2.

Theorem 3.4. (Krein and Milman, 1940) Let X be an affine space of dimension n.
Every compact and convex nonempty subset A is equal to the convex hull of its set
of extremal points.

Proof. Denote the set of extremal points of A by Extrem(A). We proceed by in-
duction on d = dimX. When d = 1, the convex and compact subset A must be a
closed interval [u,v] or a single point. In either case, the theorem holds trivially.
Now assume d > 2, and assume that the theorem holds for d — 1. It is easily verified
that

Extrem(ANH) = (Extrem(A)) NH,

for every supporting hyperplane H of A (such hyperplanes exist, by Minkowski’s
proposition (Proposition 7.4)). Observe that Lemma 3.2 implies that if we can prove
that
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dA C € (Extrem(A)),
then, since A = € (dA), we will have established that

A = € (Extrem(A)).

Let a € dA, and let H be a supporting hyperplane of A at a (which exists, by
Minkowski’s proposition). Now A and H are convex, so AN H is convex; H is
closed and A is compact, so HNA is a closed subset of a compact subset A, and
thus AN H is also compact. Since AN H is a compact and convex subset of H and H
has dimension d — 1, by the induction hypothesis, we have

ANH =% (Extrem(ANH)).
However,

€ (Extrem(ANH)) = € ((Extrem(A))NH)
= % (Extrem(A)) NH C % (Extrem(A)),

and so a € ANH C % (Extrem(A)). Therefore, we have proved that
dA C € (Extrem(A)),

from which we deduce that A = @ (Extrem(A)), as explained earlier. O

Remark: Observe that Krein and Milman’s theorem implies that any nonempty
compact and convex set has a nonempty subset of extremal points. This is intuitively
obvious, but hard to prove! Krein and Milman’s theorem also applies to infinite-
dimensional affine spaces, provided that they are locally convex; see Valentine [7],
Chapter 11, Bourbaki [3], Chapter II, Barvinok [1], Chapter 3, or Lax [5], Chapter
13.

An important consequence of Krein and Milman’s theorem is that every convex
function on a convex and compact set achieves its maximum at some extremal point.

Definition 3.7. Let A be a nonempty convex subset of A”. A function f: A — R is
convex if

F((1=A)at Ab) < (1 - ) f(a) + Af(b)
forall a,b € A and for all A € [0,1]. The function f: A — R is strictly convex if
F{(1=A)a+Ab) < (1=A)f(a)+Af(b)
for all a,b € A with a # b and for all A with 0 < A < 1. A function f: A — R is
concave (resp. strictly concave) iff —f is convex (resp. — f is strictly convex).
If f is convex, a simple induction shows that

f (Z;Liai> <Y Aif (@)

icl icl



3.3 Vertices, Extremal Points, and Krein and Milman’s Theorem 75

for every finite convex combination in A, i.e., for any finite family (a;);c; of points
in A and any family (A;);c; with Y;c;4; = land A; > O foralli € I.

Proposition 3.3. Let A be a nonempty convex and compact subset of A" and let
f: A —= R be any function. If f is convex and continuous, then f achieves its maxi-
mum at some extreme point of A.

Proof. Since A is compact and f is continuous, f(A) is a closed interval [m,M] in
R, and so f achieves its minimum m and its maximum M. Say f(c) = M, for some
¢ € A. By Krein and Milman’s theorem, c¢ is some convex combination of extreme
points of A,

k
Cc= Z/’Lia,',
i=1

with ):5'{:1 Ai =1, A; > 0, and each a; an extreme point in A. But then, since f is
convex,

k k
M=fe)=f| Y hai | <Y Nif(a),
i=1 i=1

and if we let
f(ai,) = max {f(a;)}

1<i<k

for some iy such that 1 < iy < k, then we get

M= f(c) <

-

k
Aif(ai) < ;7% flaiy) = flaiy),

1

l

since Z{;l A; = 1. Since M is the maximum value of the function f over A, we have
f(ai,) <M, and so
M = f(aiy),

and f achieves its maximum at the extreme point a;,, as claimed. 0O

Proposition 3.3 plays an important role in convex optimization: It guarantees that
the maximum value of a convex objective function on a compact and convex set is
achieved at some extreme point. Thus, it is enough to look for a maximum at some
extreme point of the domain.

Proposition 3.3 fails for minimal values of a convex function. For example, the
function x — f(x) = x* defined on the compact interval [—1, 1] achieves it minimum
at x = 0, which is not an extreme point of [—1,1]. However, if f is concave, then f
achieves its minimum value at some extreme point of A. In particular, if f is affine,
it achieves its minimum and its maximum at some extreme points of A.

We conclude this chapter with three further classics of convex geometry.
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3.4 Radon’s, Helly’s, Tverberg’s Theorems and Centerpoints

We begin with Radon’s theorem.

Theorem 3.5. (Radon, 1921) Given any affine space E of dimension m, for every
subset X of E, if X has at least m+ 2 points, then there is a partition of X into two
nonempty disjoint subsets X1 and X, such that the convex hulls of X; and X, have a
nonempty intersection.

Proof. Pick some origin O in E. Write X = (x;);e;, for some index set L (we can
let L = X). Since by assumption |[X| > m + 2, where m = dim(E), X is affinely
dependent, and by Lemma 2.6, there is a family (g )xey, (of finite support) of scalars,
not all null, such that

Y =0 and Y wOx =0.
kel kel

Since Yozt = 0, the iy are not all null, and (L )y has finite support, the sets
I={ieL|w>0} and J={jeL|uj<0}
are nonempty, finite, and obviously disjoint. Let
Xp={xeX|pu>0} and Xo={xe€X|w<0}.

Again, since the i are notall null and Y ; <, t; = 0, the sets X; and X, are nonempty,
and obviously
XiNX, =0 and X UX, =X.

Furthermore, the definition of I and J implies that (x;)ic; C X; and (x;)jes C Xp. It
remains to prove that €' (X;) N6 (X,) # 0. The definition of / and J implies that

Z ukO—xZ =0
kel

can be written as
— —
Z[.L[O)Ci-i- Z,ujOXj =0,

icl jel
that is, as N N
Y wiOx; =Y —u,;0xj,
iel jel
where
Y=Y —uj=4u
iel jel

with y > 0. Thus, we have

Hi == Hj ==
— Ox; = ) —— Ox;,
iez,u ,;, o
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with

Ui M
—_— = _——_— = 1,
L L u
proving that Yc; (u;/1)x; € €'(X1) and ¥ jc; —(1;/p)x; € € (X;) are identical, and
thus that (X)) NE(X2) #0. O

A partition (X;,X,) of X satisfying the conditions of Theorem 3.5 is sometimes
called a Radon partition of X, and any point in conv(X;) Nconv(X,) is called a
Radon point of X. Figure 3.6 shows two Radon partitions of five points in the plane.

T

I

Fig. 3.6 Examples of Radon partitions.

It can be shown that a finite set X C E has a unique Radon partition iff it has
m—+ 2 elements and any m 4+ 1 points of X are affinely independent. For example,
there are exactly two possible cases in the plane, as shown in Figure 3.7.

Fig. 3.7 The Radon partitions of four points (in A?).

There is also a version of Radon’s theorem for the class of cones with an apex.
Say that a convex cone C C E has an apex (or is a pointed cone) iff there is some
hyperplane H such that C C H. and HNC = {0}. For example, the cone obtained
as the intersection of two half-spaces in R? is not pointed, since it is a wedge with
a line as part of its boundary. Here is the version of Radon’s theorem for convex
cones:
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Theorem 3.6. Given any vector space E of dimension m, for every subset X of E, if
cone(X) is a pointed cone such that X has at least m+ 1 nonzero vectors, then there
is a partition of X into two nonempty disjoint subsets X| and X, such that the cones
cone(X) and cone(X,) have a nonempty intersection not reduced to {0}.

The proof of Theorem 3.6 is left as an exercise.
There is a beautiful generalization of Radon’s theorem known as Tverberg’s the-
orem.

Theorem 3.7. (Tverberg’s theorem, 1966) Let E be any affine space of dimension m.
For any natural number r > 2 and every subset X of E, if X has at least (m+1)(r —
1) + 1 points, then there is a partition (X1,...,X,) of X into r nonempty pairwise
disjoint subsets such that (;_; conv(X;) # 0.

A partition as in Theorem 3.7 is called a Tverberg partition, and a point in
Ni=;conv(X;) is called a Tverberg point. Theorem 3.7 was conjectured by Birch
and proved by Tverberg in 1966. Tverberg’s original proof was technically quite
complicated. Tverberg then gave a simpler proof in 1981, and other simpler proofs
were given later, notably by Sarkaria (1992) and Onn (1997), using the colorful
Carathéodory theorem. A proof along those lines can be found in Matousek [6],
Chapter 8, Section 8.3. A colored Tverberg theorem and more can also be found in
Matousek [6] (Section 8.3).

Next, we prove a version of Helly’s theorem.

Theorem 3.8. (Helly, 1913) Given any affine space E of dimension m, for every
Sfamily {K\,...,K,} of n convex subsets of E, if n > m+2 and the intersection (;c; K;
of any m+ 1 of the K; is nonempty (where I C {1,...,n}, |I| =m+1), then N} K;
is nonempty.

Proof. The proof is by induction on n > m + 1 and uses Radon’s theorem in the
induction step. For n = m+ 1, the assumption of the theorem is that the intersection
of any family of m+ 1 of the K;’s is nonempty, and the theorem holds trivially.
Next, let L ={1,2,...,n+ 1}, where n+ 1 > m + 2. By the induction hypothesis,
Ci= ﬂje(lf{i}) K; is nonempty for every i € L.

We claim that C;NC; # 0 for some i # j. If so, since C;NCj = ﬂZi}Kk, we
are done. So let us assume that the C;’s are disjoint. Then we can pick a set X =
{ai,...,an+1} such that a; € C;, for every i € L. By Radon’s theorem, there are two
nonempty disjoint sets X;,X, C X such that X = X; UX, and € (X)) N € (X,) # 0.
However, X; C K| for every j with a; ¢ X;. This is because a; ¢ K for every j, and
so we get

X; C ﬂ K;.
a;¢X
Symmetrically, we also have
X< () K.
aj¢Xp
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Since the K;’s are convex and

n+1

i=1

aj$X1 aﬁéXz

it follows that €'(X1) N € (X2) € ! K;, so that (!,! K; is nonempty, contradicting
the fact that C;NCj=0foralli# j. O

A more general version of Helly’s theorem is proved in Berger [2]. An amusing
corollary of Helly’s theorem is the following result: Consider n > 4 parallel line
segments in the affine plane A”. If every three of these line segments meet a line,
then all of these line segments meet a common line.

We conclude this chapter with a nice application of Helly’s theorem to the ex-
istence of centerpoints. Centerpoints generalize the notion of median to higher di-
mensions. Recall that if we have a set of n data points S = {ay,...,a,} on the real
line, a median for S is a point x such that both intervals [x,o0) and (—oe,x] contain
at least n/2 of the points in S (by n/2, we mean the largest integer greater than or
equal to n/2).

Given any hyperplane H, recall that the closed half-spaces determined by H are

denoted by H and H_ and that H C Hy and H C H_. We let Hy= H, — H and
H_= H_ — H be the open half-spaces determined by H.

Definition 3.8. Let S = {ay,...,a,} be a set of n points in A?. A point ¢ € A9 is
a centerpoint of S iff for every hyperplane H, whenever the closed half-space H
(resp H_) contains c, then H (resp. H_) contains at least 1 points from S (by

we mean the largest integer greater than or equal to z7, namely the ceiling

dl
(”] d+1)

So for d = 2, for each line D, if the closed half-plane D, (resp. D_) contains
¢, then Dy (resp. D_) contains at least a third of the points from S. For d = 3, for
each plane H, if the closed half-space H (resp. H_) contains c, then H (resp. H_)
contains at least a fourth of the points from S, etc. Figure 3.8 shows nine points in
the plane and one of their centerpoints (in red). This example shows that the bound
1 is tight.

Observe that a point cecAlisa centerpoint of S iff ¢ belongs to every open

half-space H+ (resp. H ) containing at least -4 T +1 + 1 points from S (again, we mean
[+ D
Indeed, if cis a centerpomt of § and H is any hyperplane such that H+ (resp.

H ) contains at least d +1 + 1 points from S, then H+ (resp. H ) must contain c,
s1nce 0therw1se the closed half-space H_ (resp. H1) would contain ¢ and at most

n— d i — 1 points from S, a contradiction. Conversely, assume that ¢
belongs to every open half-space H+ (resp. H,) containing at least d”l + 1 points

from S. Then for any hyperplane H, if ¢ € H; (resp. ¢ € H_) but H, contains at
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Fig. 3.8 Example of a centerpoint.

most # — 1 points from S, then the open half-space H_ (resp. H) would contain

at least n — dLH +1= dd—fl + 1 points from S but not ¢, a contradiction.
We are now ready to prove the existence of centerpoints.

Theorem 3.9. (Existence of centerpoints) Every finite set S = {ay,..., ay} of n
points in A? has some centerpoint.

Proof. We will use the second characterization of centerpoints involving open half-
spaces containing at least dd—fl + 1 points.
Consider the family of sets

%ﬁ_{umWSﬁﬁ;)HEH)OSQé;|>3%%>}

u{conv(sm H.)| (3H) <|sm H |> d‘fﬂ) }

where H is a hyperplane.

Since S is finite, € consists of a finite number of convex sets, say {Ci,...,Cy}.
If we prove that (2, C; # 0, we are done, because (/2 C; is the set of centerpoints
of S.

First, we prove by induction on k (with 1 <k < d+ 1) that any intersection of k of

the C;’s has at least W + k elements from S. For k = 1, this holds by definition
of the C;’s.

Next, consider the intersection of k+1 < d + 1 of the C;’s, say G;; N---NC;, N
Cik+1 . Let

A=8N(C,N---NC,NGCy,,),
B=SN(C;,N---NGCy),
C =SNG

k+1°
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(d+1—K)n

Note that A = BNC. By the induction hypothesis, B contains at least “—;7-— +k
elements from S. Since C contains at least dd—fl + 1 points from S, and since
|BUC| = |B|+|C|—|BNC|= [B| +|C| — |A]
and |BUC| < n, we getn > |B|+|C| — |A|, that is,
Al = |B|+|C| —n.
It follows that d+1-k) J
+1—Kk)n n
Al > k 1—
Az =ttt
that is,
d+1—k dn—(d+1 d+1—(k+1
Az i zntdn =y Un )y dFIZGED)n gy
d+1 d+1

establishing the induction hypothesis.

Now if m < d + 1, the above claim for k = m shows that (L, C; # 0, and we
are done. If m > d + 2, the above claim for k = d + 1 shows that any intersection
of d + 1 of the C;’s is nonempty. Consequently, the conditions for applying Helly’s
theorem are satisfied, and therefore

Neci+o

i=1

However, (i C; is the set of centerpoints of S, and we are done. O

Remark: The above proof actually shows that the set of centerpoints of S is a con-
vex set. In fact, it is a finite intersection of convex hulls of finitely many points, so it
is the convex hull of finitely many points, in other words, a polytope. It should also
be noted that Theorem 3.9 can be proved easily using Tverberg’s theorem (Theorem
3.7). Indeed, for a judicious choice of r, any Tverberg point is a centerpoint!

Jadhav and Mukhopadhyay have given a linear-time algorithm for computing a
centerpoint of a finite set of points in the plane. For d > 3, it appears that the best
that can be done (using linear programming) is O(n?). However, there are good
approximation algorithms (Clarkson, Eppstein, Miller, Sturtivant, and Teng), and
in E? there is a near-quadratic algorithm (Agarwal, Sharir, and Welzl). Recently,
Miller and Sheehy (2009) gave an algorithm for finding an approximate centerpoint
in subexponential time together with a polynomial-checkable proof of the approxi-
mation guarantee.
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3.5 Problems

3.1. Let a,b,c, be any distinct points in A3, and assume that they are not collinear.
Let H be the plane of the equation

ox+By+7yz+6=0.

(i) What is the intersection of the plane H and the solid triangle determined by
a,b,c (the convex hull of a,b,c)?
(i1) Give an algorithm to find the intersection of the plane H and the triangle deter-
mined by a,b,c.
(iii) (extra credit) Implement the above algorithm so that the intersection can be
visualized (you may use Maple, Mathematica, Matlab, etc.).

3.2. Given any two affine spaces E and F, for any affine map f: E — F, any convex
set U in E, and any convex set V in F, prove that f(U) is convex and that £~ (V) is
convex. Recall that

fU)={beF|JaclU,b=f(a)}
is the direct image of U under f, and that
f'V)={acE|IeV,b=f(a)}
is the inverse image of V under f.

3.3. Consider the subset S of A? consisting the points belonging to the right branch
of the hyperbola of the equation x> —y> = 1, i.e.,

S={(xy) €eR* | ¥ =)y’ >1,x>0}.

Prove that S is convex. What is the convex hull of SU{(0,0)}? Is the convex hull of
a closed subset of A” necessarily a closed set?

3.4. Use the theorem of Carathéodory to prove that if S is a compact subset of A™,
then its convex hull conv(S) is also compact.

3.5. Let S be any nonempty subset of an affine space E. Given some pointa € S, we
say that S is star-shaped with respect to a if the line segment [a, x] is contained in S
foreveryx € S, i.e., (1 —A)a+ Ax € S for all A such that 0 < A < 1. We say that S
is star-shaped if it is star-shaped w.z.t. to some pointa € S.

(1) Prove that every nonempty convex set is star-shaped.

(2) Show that there are star-shaped subsets that are not convex. Show that there are
nonempty subsets that are not star-shaped (give an example in A", n = 1,2, 3).

(3) Given a star-shaped subset S of E, let N(S) be the set of all points a € S such
that S is star-shaped with respect to a. Prove that N(S) is convex.
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3.6. Consider n > 4 parallel line segments in the affine plane A2. If every three of
these line segments meet a line, then all of these line segments meet a common line.
Hint. Choose a coordinate system such that the y-axis is parallel to the common
direction of the line segments. For any line segment S, let

CS = {(a, B) € R?, the line y = otx+ B meets S}.
Show that CS is convex and apply Helly’s theorem.

3.7. Given any two convex sets S and 7 in the affine space A™, and given A,u € R
such that A + y = 1, the Minkowski sum AS+ uT is the set

AS+uT ={Ap+uq|peS,qeT}.

(i) Prove that AS+ uT is convex. Draw some Minkowski sums, in particular when
S and T are tetrahedra (with 7" upside down).
(i1) Show that the Minkowski sum does not preserve the center of gravity.

3.8. Prove the version of Carathéodory’s theorem for cones (Theorem 3.2), that is:
Given any vector space E of dimension m, for any (nonvoid) family S = (vi)icr of
vectors in E, the cone cone(S) spanned by S is equal to the set of positive combina-
tions of families of m vectors in S.

3.9. (i) Show that if E is an affine space of dimension m and § is a finite subset of E
with n elements, if either n > m+ 3 or n = m + 2 and some family of m + 1 points
of § is affinely dependent, then § has at least two Radon partitions.

(ii) Prove the version of Radon’s theorem for cones (Theorem 3.6), namely:
Given any vector space E of dimension m, for every subset X of E, if cone(X) is a
pointed cone such that X has at least m+ 1 nonzero vectors, then there is a partition
of X into two nonempty disjoint subsets X, and X, such that the cones cone(X;) and
cone(Xy) have a nonempty intersection not reduced to {0}.

(iii) (Extra Credit) Does the converse of (i) hold?
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Chapter 4
Embedding an Affine Space in a Vector Space

4.1 The “Hat Construction,” or Homogenizing

For all practical purposes, curves and surfaces live in affine spaces. A disadvantage
of the affine world is that points and vectors live in disjoint universes. It is often
more convenient, at least mathematically, to deal with linear objects (vector spaces,
linear combinations, linear maps), rather than affine objects (affine spaces, affine
combinations, affine maps). Actually, it would also be advantageous if we could
manipulate points and vectors as if they lived in a common universe, using perhaps
an extra bit of information to distinguish between them if necessary.

Such a “homogenization” (or “hat construction”) can be achieved. As a matter
of fact, such a homogenization of an affine space and its associated vector space
will be very useful to define and manipulate rational curves and surfaces. Indeed,
the hat construction yields a canonical construction of the projective completion
of an affine space. It also leads to a very elegant method for obtaining the various
formulae giving the derivatives of a polynomial curve, or the directional derivatives
of polynomial surfaces. However, these formulae are not needed in the main text.
Thus we omit this topic, referring the readers to Gallier [2].

This chapter proceeds as follows. First, the construction of a vector space E in

which both E and ? are embedded as (affine) hyperplanes is described. It is shown
how affine frames in E become bases in E. It turns out that E is characterized by a
universality property: Affine maps to vector spaces extend uniquely to linear maps.
As a consequence, affine maps between affine spaces E and F' extend to linear maps
between E and F.

Let us first explain how to distinguish between points and vectors practically,
using what amounts to a “hacking trick”. Then, we will show that such a procedure
can be put on firm mathematical grounds.

Assume that we consider the real affine space E of dimension 3, and that we have
some affine frame (ag, (vi,v2,v2)). With respect to this affine frame, every point
x € E is represented by its coordinates (x;,xy,x3), where a = ag +x1v| + X2V +x3v3.

A vector u € ? is also represented by its coordinates (uj,u;,u3) over the basis

85
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(vi,v2,v2). One way to distinguish between points and vectors is to add a fourth
coordinate, and to agree that points are represented by (row) vectors (xj,x,x3,1)
whose fourth coordinate is 1, and that vectors are represented by (row) vectors
(vi,v2,v3,0) whose fourth coordinate is 0. This “programming trick” actually
works very well. Of course, we are opening the door for strange elements such
as (x1,x2,x3,5), where the fourth coordinate is neither 1 nor 0.

The question is, can we make sense of such elements, and of such a construc-
tion? The answer is yes. We will present a construction in which an affine space

(E , f) is embedded in a vector space E, in which f is embedded as a hyperplane
passing through the origin, and E itself is embedded as an affine hyperplane, de-
fined as @~ !(1), for some linear form @: E — R. In the case of an affine space E
of dimension 2, we can think of E as the vector space R3 of dimension 3 in which

? corresponds to the xy-plane, and E corresponds to the plane of equation z = 1,
parallel to the xy-plane and passing through the point on the z-axis of coordinates
(0,0, 1). The construction of the vector space Eis presented in some detail in Berger
[1]. Berger explains the construction in terms of vector fields. Ramshaw explains the
construction using the symmetric tensor power of an affine space. We prefer a more
geometric and simpler description in terms of simple geometric transformations,
translations, and dilatations.

Remark: Readers with a good knowledge of geometry will recognize the first step
in embedding an affine space into a projective space. We will also show that the

homogenization E of an affine space (E , ?), satisfies a universal property with
respect to the extension of affine maps to linear maps. As a consequence, the vector
space Eis unique up to isomorphism, and its actual construction is not so important.
However, it is quite useful to visualize the space E , in order to understand well
rational curves and rational surfaces.

As usual, for simplicity, it is assumed that all vector spaces are defined over
the field R of real numbers, and that all families of scalars (points and vectors) are
finite. The extension to arbitrary fields and to families of finite support is immediate.
We begin by defining two very simple kinds of geometric (affine) transformations.

Given an affine space (E , ?) ,every u € ? induces a mapping t,,: E — E, called a
translation, and defined such that 7,(a) = a + u for every a € E. Clearly, the set of

translations is a vector space isomorphic to ? Thus, we will use the same notation
u for both the vector u and the translation #,. Given any point a and any scalar
A € R, we define the mapping H,p E—E, called dilatation (or central dilatation,
or homothety) of center a and ratio A, and defined such that

H, ) (x) = a—l—kﬁ,

for every x € E. We have H, 3 (a) = a, and when A # 0 and x # a, H, 3 (x) is on the
line defined by a and x, and is obtained by “scaling” ak by A. The effect is a uniform
dilatation (or contraction, if A < 1). When A =0, H, o(x) = a forallx € E, and H, o
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is the constant affine map sending every point to a. If we assume A # 1, note that
H, ; is never the identity, and since a is a fixed point, H,, , is never a translation.

We now consider the set E of geometric transformations from E to E, consisting
of the union of the (disjoint) sets of translations and dilatations of ratio A # 1. We
would like to give this set the structure of a vector space, in such a way that both E

and ? can be naturally embedded into E. In fact, it will turn out that barycenters
show up quite naturally too!

In order to “add” two dilatations H,, 3, and H,, ,,, it turns out that it is more
convenient to consider dilatations of the form H, |, where A # 0. To see this, let
us see the effect of such a dilatation on a point x € E: We have

Hyp a(x)=a+(1—A)ak=a+ak—Aak=x+Axd.
For simplicity of notation, let us denote H, ;_j by (a,A). Then, we have

(a,A)(x) = x+ AXd.

Remarks:
(1) Note that H, ; 5 (x) = H, ;(a).

(2) Berger defines a map h: E — E as a vector field. Thus, each (a,A) can be
viewed as the vector field x — A Xd. Similarly, a translation u can be viewed as
the constant vector field x — u. Thus, we could define E as the (disjoint) union
of these two vector fields. We prefer our view in terms of geometric transforma-
tions.

Then, since
(aj, M) (x) =x+Mxa; and (a2, A2)(x) = x + Ayxas,

if we want to define (aj, A1) F (a2, 42), we see that we have to distinguish between
two cases:
(1) A1 + A, = 0. In this case, since

Jxa; + ApXas = Mxa; — Axas = Maza,

we let
(ar, M) T (a2, M) = Myazat,

where Ajasai denotes the translation associated with the vector A azaj.
(2) A1 + A2 # 0. In this case, the points a; and a, assigned the weights A; /(A +
A2) and A, /(A1 + A,) have a barycenter

M n A
e a a
MAA A

b

such that



88 4 Embedding an Affine Space in a Vector Space

PN
b= o +7sza1 YR
Since
Axai 4 Aoxas = (A +lz)xz,
we let Y Y
~ B ! 2
(a1, M) + (a2, 42) = <A1 LY + p» _i_lzaz,?tl +12>,

the dilatation associated with the point b and the scalar A1 + 4.
Given a translation defined by u and a dilatation (a,A), since A # 0, we have

AXG+u=A(xd+2""u),
and so, letting b = a+ A~ 'u, since ab— A~ 'u, we have
AT+ u= AT+ A" u) = A (% +ab) = Axb,

and we let

(@A) Fu={a+2"u2),

the dilatation of center a + A ~'u and ratio A.
The sum of two translations u# and v is of course defined as the translation u + v.
It is also natural to define multiplication by a scalar as follows:

p-{a,A)= (a,lu),

and

A-u=Au,

where Au is the product by a scalar in ?
We can now use the definition of the above operations to state the following
lemma, showing that the “hat construction” described above has allowed us to

achieve our goal of embedding both £ and ? in the vector space E.

Lemma 4.1. The set E consisting of the disjoint union of the translations and the
dilatations H,_) = (a,A), A € R,A # 0, is a vector space under the following
operations of addition and multiplication by a scalar: If A; + A, = 0, then

(ar, M) F (a2, M) = haaat;

if M+ Ay #0, then

(a1, M) F (a2, Aa) = </’L +7Lz 1+)Lza2,l1+lz>,

(a, ) Fu=uF( a7L> (a+2""u M),
uFv=u+v
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if u#0, then

and

A-u=Au.

Furthermore, the map ®: E—=R defined such that

o((a,A)) = A,
o(u) =0,

is a linear form, ®~1(0) is a hyperplane isomorphic to ? under the injective linear
map i: E — E such that i(u) = t, (the translation associated with u), and ® "' (1)
is an affine hyperplane isomorphic to E with direction i(?), under the injective
affine map j: E — E, where j(a) = (a, 1) for every a € E. Finally, for every a € E,
we have
E=i(F)eRj().

Proof. The verification that E is a vector space is straightforward. The linear map
mapping a vector u to the translation defined by u is clearly an injection i: ? —E

embedding ? as an hyperplane in E. It is also clear that @ is a linear form. Note
that
jla+u)={a+ul1)={a,1)+u,

where u stands for the translation associated with the vector u, and thus j is an affine
injection with associated linear map i. Thus, @~ (1) is indeed an affine hyperplane

isomorphic to E with direction i(?), under the map j: £ — E. Finally, from the
definition of +, for every a € E and every u € ?, since

i) FA-jla)=uF (a,A) = (a+ A" 'u, 1),

when A # 0, we get any arbitrary v € E by picking A = 0 and u = v, and we get any
arbitrary element (b, 1), i # 0, by picking A = y and u = uaz. Thus,

E=i(E)+Rj(a),
and since z(?) NRj(a) = {0}, we have
E=i(E)®Rj(a),

foreveryac E. O
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__ Figure 4.1 illustrates the embedding of the affine space E into the vector space
E, when E is an affine plane.

Fig. 4.1 Embedding an affine space (E , f) into a vector space E.

Note that E is isomorphic to ? U(E x R*). Other authors, such as Ramshaw, use
the notation E, for E. Ramshaw calls the linear form w: E — R a weight (or flavor),
and he says that an element z € E such that ©(z) = A is A-heavy (or has flavor A)
([3]). The elements of j(E) are 1-heavy and are called points, and the elements

of z(?) are 0-heavy and are called vectors. In general, the A-heavy elements all

belong to the hyperplane @' (A) parallel to z(?) Thus, intuitively, we can think

of E as a stack of parallel hyperplanes, one for each 4, a little bit like an infinite
stack of very thin pancakes! There are two privileged pancakes: one corresponding

to E, for A = 1, and one corresponding to ?, for A =0.

From now on, we will identify j(E) and E, and z(?) and E . We will also write
Aa instead of (a,A), which we will call a weighted point, and write la just as a.
When we want to be more precise, we may also write (a, 1) as @ (as Ramshaw does).
In particular, when we consider the homogenized version A of the affine space A
associated with the field R considered as an affine space, we write A for (A, 1), when
viewing 7L as a point in both A and A and simply A, when viewing A as a vector in
R and in A. The elements of A are called Bézier sites by Ramshaw. As an example,
the expression 2+ 3 denotes the real number 5, in A, (2+ 3)/2 denotes the midpoint
of the segment [2,3], which can be denoted by 2.5, and 2+ 3 does not make sense
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in A, since it is not a barycentric combination. However, in 1&, the expression 243
makes sense: It is the weighted point <2.5, 2>.
Then, in view of the fact that

(a+u,l)= <a,1>—T—u,

and since we are identifying a + u with {a + u, 1) (under the injection j), in the
simplified notation the above reads as a + u = a + u. Thus, we go one step further,
and denote a + u by a + u. However, since

a M) Fu=(a+1""uA),
(

we will refrain from writing Aa + u as Aa + u, because we find it too confusing.
From Lemma 4.1, for every a € E, every element of E can be written uniquely as
uF Aa. We also denote

Aa+(—p)b

by
Aa = ub.

We can now justify rigorously the programming trick of the introduction of an
extra coordinate to distinguish between points and vectors. First, we make a few
observations. Given any family (a;);e; of points in E, and any family (A;);e; of
scalars in R, it is easily shown by induction on the size of I that the following holds:

(1) If Z[e[ Aq' = O, then
—
Y (ai ki) =Y Aiai,

iel icel
where
% H
Zlia,’ = Z A«,’ba,‘
iel iel

for any b € E, which, by Lemma 2.1, is a vector independent of b, or
(2) If Ziel Aq' 7& O, then

Ai ‘
Z<a,’,l[> = <Z ma,,z&>.

icl icl icl

Thus, we see how barycenters reenter the scene quite naturally, and that in E , We
can make sense of Y ;;(a;, A;), regardless of the value of };; A;. When Y, 4; = 1,
the element ¥, ;(a;,A;) belongs to the hyperplane @~!(1), and thus it is a point.
When Y;; A; = 0, the linear combination of points Y ;c; A;a; is a vector, and when
I={1,...,n}, we allow ourselves to write

AarF - F Anay,
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where some of the occurrences of + can be replaced by —, as
May -+ Anay,

where the occurrences of — (if any) are replaced by —.

In fact, we have the following slightly more general property, which is left as an
exercise.
Lemma 4.2. Given any affine space (E7 ?) for any family (a;)ier of points in E,

any family (A;)icr of scalars in R, and any family (v_j>) jer of vectors in ?, with
INJ =0, the following properties hold:

(1) If ;s Ai =0, then

Z(ai,lﬁ T Z vj= Z;Liai + Z Vjs

icl jeJ icl jeJ
where
—) H
Z )y,‘a,' = Z A«,’ba,‘
icl icl

for any b € E, which, by Lemma 2.1, is a vector independent of b, or
(2) If Lier & # 0, then

~ 2 v
is Ai = " —a; ) ).
L{ai M)+ Qv <Zzi€1)’ia +j§z"€1)“ L >

iel jeJ iel i el

Proof. By induction on the size of / and the size of J. O

The above formulae show that we have some kind of extended barycentric calcu-
lus. Operations on weighted points and vectors were introduced by H. Grassmann,
in his book published in 1844! This calculus will be helpful in dealing with rational
curves.

4.2 Affine Frames of E and Bases of E

There is also a nice relationship between affine frames in (E , f) and bases of E. s
stated in the following lemma.

Lemma 4.3. Given any affine space (E, ?), for any affine frame (ay, (apai, ...
— . — —_— . . -

aoanm)) for E, the family (aoai,...,aoam,ao) is a basis for E, and for any affine
Sframe (ao, . .. ,am)for}?, the family (ag, . ..,an) is a basis for E. Furthermore, given
any element (x,A) € E, if

— —
X =aog+xiapail + -+ xnapanm
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over the affine frame (ay, (apai,-..,aoam)) in E, then the coordinates of (x,A) over
the basis (apai, ...,aoam,ap) in E are

(Axi,..., Axm, A).

For any vectorv € ?, if

Vv =viapai + -+ vuaoam

over the basis (apai, . ..,apam) in ?, then over the basis (apai,. .. ,agam, ap) in E,
the coordinates of v are

(Viy--esVm,0).

For any element {a,A), where A # 0, if the barycentric coordinates of a w.r.t. the
affine basis (ao,...,am) in E are (Ao, ..., An) with Ao+ -+ + Ay = 1, then the coor-
dinates of (a,A) w.r.t. the basis (ag,...,an) in E are

(A0see sy M),

If avectorv € ? is expressed as

v=v1a0ai + - +Vmaoam = — (Vi + -+ vm)ao +viar + - + vindm,
with respect to the affine basis (ao, . .. ,ay) in E, then its coordinates w.r.t. the basis
(ao,-..,am) in E are

(=it V) Vi ooy V).

Proof. We sketch parts of the proof, leaving the details as an exercise. Figure 4.2
shows the basis (apaf,apas,ag) corresponding to the affine frame (ag,a;,a;) in E.
If we assume that we have a nontrivial linear combination

/'Llaoal —/I: cee —T—/'Lmaoam —T— Hap = 0,
if p # 0, then we have

Maoai -+ F Amaoam + tao = (ao+ ' Aaoai + -+t Andodn, 1),

which is never null, and thus, g = 0, but since (apat, . . . ,doas,) is a basis of ?, we
must also have A; = 0 for all i, 1<i<m.
Given any element (x,A) € E, if

— ——
X =ag+x1apai + -+ xnapam

over the affine frame (ag, (aoai,...,apdn)) in E, in view of the definition of T, we
have
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~

Fig. 4.2 The basis (a0a1 ,aopds, ao) inE.

(x,A) = (ap+x1a0ai + - - - + xmaoam, A)
= <a0,7L> —T—?Lxlaoal —/|: —T—lxmaoam,

which shows that over the basis (agai, ... ,aoam,dp) in E, the coordinates of (x, 1)
are

(Ax1,. ., Axm, A).
O
If (x1,...,%n) are the coordinates of x w.r.t. the affine frame (ao, (agai, . .. ,aoanm))
in E, then (x1,...,%n, 1) are the coordinates of x in E, i.e., the last coordinate is 1,
and if u has coordinates (uj,...,u,) with respect to the basis (apai,...,doan) in
?, then u has coordinates (uy,...,uy,0) in E, i.e., the last coordinate is 0. Figure

4.3 shows the affine frame (ap,a1,a2) in E viewed as a basis in E.
Now that we have defined E and investigated the relationship between affine
frames in E and bases in E, we can give another construction of a vector space .#

from E and f that will allow us to “visualize” in a much more intuitive fashion the
structure of E and of its operations + and -.
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~

Fig. 4.3 The basis (ag,a;,az) in E.

4.3 Another Construction of £

One would probably wish that we could start with this construction of Z first, and
then define £ using the isomorphism .Q E—Z defined below. Unfortunately, we
first need the vector space structure on E to show that @ is linear!

Definition 4.1. Given any affine space (E ) f), we define the vector space .% as the
direct sum f @ R, where R denotes the field R considered as a vector space (over
itself). Denoting the unit vector in R by 1, since .% = ? @R, every vector v € F

can be written as v = u+ A 1, for some unique u € f and some umque A € R. Then,
for any choice of an origin ; in E, we define the map Q: E — 7, as follows:

.(AZ(G) = {A(I_FQ—“;) if 6 = (a,A), where a € E and A # 0;

u if 6 = u, where u €

The idea is that, once again, viewing .% as an affine space under its canonical
structure, E is embedded in .% as the hyperplane H = 1 + ?, with direction f,
the hyperplane ? in .%. Then, every point a € E is in bijection with the point
A =1+ £a, in the hyperplane H. If we denote the origin 0 of the canonical affine
space Z by Q, the map Q maps a point (a,A) € E to a point in %, as follows:
Q({a,A)) is the point on the line passing through both the origin Q of .# and the
pointA =1+ Q—lgz in the hyperplane H = 1 + ?, such that
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~ — —
Q(a, 1)) =AQA=A(1 + Qja).

The following lemma shows that Qisan isomorphism of vector spaces.

Lemma 4.4. Given any affine space (E, ? ), for any choice Q1 of an origin in E,

the map Q:E—Fisa linear isomorphism between E and the vector space F of
Definition 4.1. The inverse on is given by

51 _ @i+ A7wA) A #0;
Q (u—i—ll)—{ul i 0

Proof. Ttis a straightforward verification. We check that Q is invertible, leaving the
verification that it is linear as an exercise. We have

(@A) = A1+ AD1a 5 (@1 + D1 A) = (a,A)

and
U1 = (Q+ 27w A) = u+ 21,

and since Q is the idgntity on f, we have shown that Q 0 Q! = id, and Qo=
id. This shows that (2 is a bijection. O

Figure 4.4 illustrates the embedding of the affine space E into the vector space
%, when E is an affine plane.

Fig. 4.4 Embedding an affine space (E , ?) into a vector space .7
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Lemma 4.4 gives a nice interpretation of the sum operation + of E. Given two
weighted points (aj,A;) and {(az,2,), we have

(ar, M) F (a2, ) = Q7R ((ar, M) + ({2, 12))).

The operation ﬁ((al,ll)) + ﬁ((az,lz)) has a simple geometric interpretation. If
A1+ Ay # 0, then find the points M; and M, on the lines passing through the origin
Q of Z and the points A} = Q(a;) and Ay = Q(ay) in the hyperplane H, such that
—— — —— —— —— . )
OM, = 11 QA and QM, = 1, QA,, add the vectors QM and QM,, getting a point
N such that QN = .Q—Ml> + QM,, and consider the intersection G of the line passing
through £ and N with the hyperplane H. Then, G is the barycenter of A; and A,
assigned the weights A1 /(A + A2) and A2/ (A + A2), and if g = ﬁ’l(@), then
al@eN=gh+h).

Instead of adding the vectors QM; and QM,, we can take the middle N’ of the
segment M M,, and G is the intersection of the line passing through Q and N’ with
the hyperplane H.

If A + Ay = 0, then (a1, A1) F (a2,A,) is a vector determined as follows. Again,
find the points M) and M, on the lines passing through the origin Q of .% and the

~ ~

points A; = Q(a;) and Ay = Q(ay) in the hyperplane H, such that .Q—Ml> = /Mﬁ
— — — . .
and QM; = A, QA;, and add the vectors QM| and QM,, getting a point N such that
.(7\7 = Q—Ml> + Q—Mg> The desired vector is 2N, which is parallel to the line A;A5.
E&i\;alently, let N" be the middle of the segment M;M>, and the desired vector is
20N'. ~

We can also give a geometric interpretation of (a,A) 4+ u. Let A = Q(a) in the
hyperplane H, let D be the line determined by A and u, let M| be the point such that
= — ) — i
OM; = AQA, and let M, be the point such that QM, = u, that is, M, = Q + u. By
construction, the line D is in the hyperplane H, and it is parallel to Q2M>, so that D,
M, and M, are coplanar. Then, add the vectors 2M; and .Q—Mz), getting a point N
such that QN = .(2—1\/11> + .Q—M;, and let G be the intersection of the line determined by
Q and N with the line D. If g = Q! (Sﬁ), then, Q! (STV) = (g, A). Equivalently,
if N’ is the middle of the segment M M,, then G is the intersection of the line
determined by Q and N’, with the line D.

We now consider the universal property of E mentioned at the beginning of this
section.

4.4 Extending Affine Maps to Linear Maps

Roughly, the vector space E has the property that for any vector space 7 and any
affine map f: E — ?, there is a unique linear map f: E— ? extending f: E —

. As a consequence, given two affine spaces E and F, every affine map f: E — F
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extends uniquely to a linear map f: E — F. Other authors, such as Ramshaw, use
the notation f; for f. First, we define rigorously the notion of homogenization of an
affine space.

Definition 4.2. Given any affine space (E , ?), a homogenization (or linearization)
of (E, ?) is a triple (&, j, ), where & is a vector space, j: E — & is an injective
affine map with associated injective linear map i: ? — &, w: & — Ris a linear
form such that ®~'(0) = i(?), ®~'(1) = j(E), and for every vector space F and

every affine map f: E — ? there is a unique linear map f: & — ? extending f,
ie., f = f o, as in the following diagram:

>\ |7

F

Thus, j(E) = @~ '(1) is an affine hyperplane with direction z(?) = ®~'(0). Note

that we could have defined a homogenization of an affine space (E, ?), as a triple
(&, j,H), where & is a vector space, H is an affine hyperplane in &, and j: E — &
is an injective affine map such that j(E) = H, and such that the universal property
stated above holds. However, Definition 4.2 is more convenient for our purposes,
since it makes the notion of weight more evident.

The obvious candidate for & is the vector space E that we just constructed. The
next lemma will show that E indeed has the required extension property. As usual,
objects defined by a universal property are unique up to isomorphism. This property
is left as an exercise.

Lemma 4.5. Given any affine space (E , ?) and any vector space ? for any affine
map f: E — ? there is a unique linear map f: E— ? extending f such that

f(u—l—/'La +?

forallacE, allu e ? and all A € R, where ? is the linear map associated with
f. In particular, when A # 0, we have

FwFra)=Af(a+1""u).

Proof. Assuming that f exists, recall that from Lemma 4.1, for every a € E, every
element of E can be written uniquely as u+ Aa. By linearity of f and since f extends
f, we have

fwF2a) = f(u)+2Af(a) = flu) + 2 f(a) = Af(a) + f(u).
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If A =1, since at uand a+u are identified, and since fextends f, we must
have

Fla)+ F(u) = Fla)+ F(u) = FlaTu) = fla+u) = f(a)+ F (u)

and thus f(u) = 7(u) forall u € E . Then we have

f(u—i—la +7

which proves the uniqueness of f On the other hand, the map fdeﬁned as above is
clearly a linear map extending f.
When A # 0, we have

FwFra)=FfAla+A" ) =Af(a+A""u)=Af(a+A1""u).
O

Lemma 4.5 shows that <E,j, a)>, is a homogenization of (E, ?) As a corollary,
we obtain the following lemma.

Lemma 4.6. Given two dffine spaces E and F and an affine map f: E — F, there
is a unique linear map f: E — F extending f, as in the diagram below,

~

f
—

-
~.

by <—— by

)

—
7

such that

FwFra)= 7 () FAs(a),

forallacE, alluec ?, and all A € R, where ? is the linear map associated with
f. In particular, when A # 0, we have

FwFra)=Af(a+1""u).

Proof. Consider the vector space F F and the affine map jo f: E — F. By Lemma
4.5, there is a unique linear map f E—F extending jo f, and thus extending f.
O

Note that f: E — F has the property that f(?) - ? More generally, since
fukra) =7 0+ 21 ().

the linear map f is weight-preserving. Also observe that we recover f from f, by
letting A = 1 in f(u+ Aa) = A f(a+ A~ 'u), that is, we have
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fla+u)=f(u+a).

From a practical point of view, Lemma 4.6 shows us how to homogenize an affine
map to turn it into a linear map between the two homogenized spaces. Assume that
E and F are of finite dimension, that (ag, (u1,...,u,)) is an affine frame of E with
origin ag, and (b, (v1,...,vy)) is an affine frame of F with origin by. Then, with
respect to the two bases (uj,...,u,,ap) in E and (Viy-+esVm,bo) in F, a linear map
h: E — F is given by an (m+ 1) x (n+ 1) matrix A. Assume that this linear map h
is equal to the homogenized version fof an affine map f. Since

FwFra)= 7 () FAs(a),

and since over the basis (uj,...,u,,ap) in E, points are represented by vectors whose
last coordinate is 1 and vectors are represented by vectors whose last coordinate is
0, the following properties hold.

~

1. The last row of the matrix A = M(f) with respect to the given bases is
(0,0,...,0,1)

with m occurrences of 0.
2. The last column of A contains the coordinates

(l'Lla"'7l~Lmal)
of f(ap) with respect to the basis (vi,...,vm,bo).

3. The submatrix of A obtained by deleting the last row and the last column
is the matrix of the linear map ? with respect to the bases (uy,...,u,) and
(Vis- s Vm),

Finally, since N
flao+u) = f(u+ao),
given any x € E and y € F with coordinates (xi,...,x,,1) and (yi,...,ym, 1), for
X =(x1,....x, DT and ¥ = (y1,...,ym, 1) 7, we have y = f(x) iff
Y = AX.

For example, consider the following affine map f: A% — A? defined as follows:

y1 = axi +bxy+ Uy,
Y2 = cx1+dxa+ .

The matrix of fis
ab
cdip |,
001
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and we have

1 abu\ [x
nl=|cdi] |x
1 001 1

In E, we have
1 abu\ [x
nl=|(cdwm | |x|,
y3 0 0 1 X3

which means that the homogeneous map f is is obtained from f by “adding the
variable of homogeneity x3”:

y1 = axy +bxy + Hix3,
y2 = cx1 +dxy + Uaxs3,

y3 = X3.

4.5 Problems

4.1. Prove that E as defined in Lemma 4.1 is indeed a vector space.
4.2. Prove Lemma 4.2.
4.3. Fill in the missing details in the proof of Lemma 4.3.

4.4. Fill in the missing details in the proof of Lemma 4.4.
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Chapter 5
Basics of Projective Geometry

Think geometrically, prove algebraically.
—John Tate

5.1 Why Projective Spaces?

For a novice, projective geometry usually appears to be a bit odd, and it is not
obvious to motivate why its introduction is inevitable and in fact fruitful. One of the
main motivations arises from algebraic geometry.

The main goal of algebraic geometry is to study the properties of geometric ob-
jects, such as curves and surfaces, defined implicitly in terms of algebraic equations.
For instance, the equation

P4y’ —1=0

defines a circle in R?. More generally, we can consider the curves defined by general
equations
ax®> +by* +cxy+dx+ey+f=0

of degree 2, known as conics. It is then natural to ask whether it is possible to classify
these curves according to their generic geometric shape. This is indeed possible.
Except for so-called singular cases, we get ellipses, parabolas, and hyperbolas. The
same question can be asked for surfaces defined by quadratic equations, known
as quadrics, and again, a classification is possible. However, these classifications
are a bit artificial. For example, an ellipse and a hyperbola differ by the fact that
a hyperbola has points at infinity, and yet, their geometric properties are identical,
provided that points at infinity are handled properly.

Another important problem is the study of intersection of geometric objects (de-
fined algebraically). For example, given two curves C; and C, of degree m and n,
respectively, what is the number of intersection points of C; and C,? (by degree of
the curve we mean the total degree of the defining polynomial).

103
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Well, it depends! Even in the case of lines (when m = n = 1), there are three
possibilities: either the lines coincide, or they are parallel, or there is a single inter-
section point. In general, we expect mn intersection points, but some of these points
may be missing because they are at infinity, because they coincide, or because they
are imaginary.

What begins to transpire is that “points at infinity” cause trouble. They cause ex-
ceptions that invalidate geometric theorems (for example, consider the more general
versions of the theorems of Pappus and Desargues from Section 2.12), and make it
difficult to classify geometric objects. Projective geometry is designed to deal with
“points at infinity” and regular points in a uniform way, without making a distinc-
tion. Points at infinity are now just ordinary points, and many things become sim-
pler. For example, the classification of conics and quadrics becomes simpler, and
intersection theory becomes cleaner (although, to be honest, we need to consider
complex projective spaces).

Technically, projective geometry can be defined axiomatically, or by buidling
upon linear algebra. Historically, the axiomatic approach came first (see Veblen and
Young [28,29], Emil Artin [1], and Coxeter [7, 8, 5, 6]). Although very beautiful and
elegant, we believe that it is a harder approach than the linear algebraic approach. In
the linear algebraic approach, all notions are considered up to a scalar. For example,
a projective point is really a line through the origin. In terms of coordinates, this
corresponds to “homogenizing.” For example, the homogeneous equation of a conic
is

ax® + by2 +cxy+dxz+ eyz—i—fz2 =0.

Now, regular points are points of coordinates (x,y,z) with z# 0, and points at infinity
are points of coordinates (x,y,0) (with x, y, znot all null, and up to a scalar). There is
a useful model (interpretation) of plane projective geometry in terms of the central
projection in R? from the origin onto the plane z = 1. Another useful model is the
spherical (or the half-spherical) model. In the spherical model, a projective point
corresponds to a pair of antipodal points on the sphere.

As affine geometry is the study of properties invariant under affine bijections,
projective geometry is the study of properties invariant under bijective projective
maps. Roughly speaking, projective maps are linear maps up to a scalar. In analogy
with our presentation of affine geometry, we will define projective spaces, projective
subspaces, projective frames, and projective maps. The analogy will fade away when
we define the projective completion of an affine space, and when we define duality.

One of the virtues of projective geometry is that it yields a very clean presentation
of rational curves and rational surfaces. The general idea is that a plane rational
curve is the projection of a simpler curve in a larger space, a polynomial curve in
RR3, onto the plane z = 1, as we now explain.

Polynomial curves are curves defined parametrically in terms of polynomi-
als. More specifically, if & is an affine space of finite dimension n > 2 and
(ag,(e1,...,e,)) is an affine frame for &, a polynomial curve of degree m is a map
F: A — & such that

F(l‘) = a0+F1(t)e1 +- --—i—F,,(t)e,,,
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forall t € A, where Fi(¢),...,F,(t) are polynomials of degree at most m.

Although many curves can be defined, it is somewhat embarassing that a circle
cannot be defined in such a way. In fact, many interesting curves cannot be defined
this way, for example, ellipses and hyperbolas. A rather simple way to extend the
class of curves defined parametrically is to allow rational functions instead of poly-
nomials. A parametric rational curve of degree m is a function F: A — & such

that 0 0
F(z Fu(t

ey -+ €n;

Fopa (1) : Foia (1) "

for all r € A, where Fi(t),...,F,(t),F,11(¢) are polynomials of degree at most m.
For example, a circle in A% can be defined by the rational map

F(t):ao+

In the above example, the denominator F3(¢) = 1+ never takes the value 0
when ¢ ranges over A, but consider the following curve in A?:
1? 1
G(t) =ag+ 761 + ?ez.

Observe that G(0) is undefined. The curve defined above is a hyperbola, and for ¢
close to 0, the point on the curve goes toward infinity in one of the two asymptotic
directions.

A clean way to handle the situation in which the denominator vanishes is to work
in a projective space. Intuitively, this means viewing a rational curve in A" as some
appropriate projection of a polynomial curve in A”*!, back onto A”.

Given an affine space &, for any hyperplane H in & and any point ag not in H, the
central projection (or conic projection, or perspective projection) of center agp onto
H, is the partial map p defined as follows: For every point x not in the hyperplane
passing through ag and parallel to H, we define p(x) as the intersection of the line
defined by ag and x with the hyperplane H.

For example, we can view G as a rational curve in A given by

Gi(r) = a0+t2e1 +ex+tes.

If we project this curve G (in fact, a parabola in A®) using the central projection
(perspective projection) of center ag onto the plane of equation x3 = 1, we get the
previous hyperbola. For ¢ = 0, the point G{(0) = ag + > in A? is in the plane of
equation x3 = 0, and its projection is undefined. We can consider that G (0) = ag +
ez in A3 is projected to infinity in the direction of e, in the plane x3 = 0. In the setting
of projective spaces, this direction corresponds rigorously to a point at infinity.

Let us verify that the central projection used in the previous example has the de-
sired effect. Let us assume that & has dimension n + 1 and that (ag, (e1,...,eu41))
is an affine frame for &. We want to determine the coordinates of the central projec-
tion p(x) of a point x € & onto the hyperplane H of equation x,11 = 1 (the center of
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projection being ag). If
x=ap+xie;+---+xpen +Xpy1€n+1,

assuming that x,; 7 0; a point on the line passing through a¢ and x has coordinates
of the form (Axy,...,Ax,41); and p(x), the central projection of x onto the hyper-
plane H of equation x,,+| = 1, is the intersection of the line from ag to x and this
hyperplane H. Thus we must have Ax,1 = 1, and the coordinates of p(x) are

X1 Xn
yeens 1.
Xn+1 Xn+1

Note that p(x) is undefined when x,,; = 0. In projective spaces, we can make sense
of such points.

The above calculation confirms that G(¢) is a central projection of Gy (). Simi-
larly, if we define the curve Fj in A3 by

Fi(t) = ap+ (1 —1%)e; +2ter + (1 +1%)e3,

the central projection of the polynomial curve F| (again, a parabola in A%) onto the
plane of equation x3 = 1 is the circle F.

What we just sketched is a general method to deal with rational curves. We can
use our “hat construction” to embed an affine space & into a vector space & having
one more dimension, then construct the projective space P(gA) This turns out to
be the “projective completion” of the affine space &. Then we can define a rational
curve in P(@, basically as the central projection of a polynomial curve in & back

onto P(@g) The same approach can be used to deal with rational surfaces. Due to
the lack of space, such a presentation is omitted from the main text. However, it
can be found in the additional material on the web site; see http://www.cis.
upenn.edu/~jean/gbooks/geom2.html.

More generally, the projective completion of an affine space is a very convenient
tool to handle “points at infinity” in a clean fashion.

This chapter contains a brief presentation of concepts of projective geometry.
The following concepts are presented: projective spaces, projective frames, homo-
geneous coordinates, projective maps, projective hyperplanes, multiprojective maps,
affine patches. The projective completion of an affine space is presented using the
“hat construction.” The theorems of Pappus and Desargues are proved, using the
method in which points are “sent to infinity.” We also discuss the cross-ratio and
duality. The chapter ends with a very brief explanation of the use of the complexifi-
cation of a projective space in order to define the notion of angle and orthogonality
in a projective setting. We also include a short section on applications of projective
geometry, notably to computer vision (camera calibration), efficient communication,
and error-correcting codes.
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5.2 Projective Spaces

As in the case of affine geometry, our presentation of projective geometry is rather
sketchy and biased toward the algorithmic geometry of curves and surfaces. For a
systematic treatment of projective geometry, we recommend Berger [3, 4], Samuel
[23], Pedoe [21], Coxeter [7, 8, 5, 6], Beutelspacher and Rosenbaum [2], Fres-
nel [14], Sidler [24], Tisseron [26], Lehmann and Bkouche [20], Vienne [30],
and the classical treatise by Veblen and Young [28, 29], which, although slightly
old-fashioned, is definitely worth reading. Emil Artin’s famous book [1] contains,
among other things, an axiomatic presentation of projective geometry, and a wealth
of geometric material presented from an algebraic point of view. Other “oldies but
goodies” include the beautiful books by Darboux [9] and Klein [19]. For a devel-
opment of projective geometry addressing the delicate problem of orientation, see
Stolfi [25], and for an approach geared towards computer graphics, see Penna and
Patterson [22].

First, we define projective spaces, allowing the field K to be arbitrary (which
does no harm, and is needed to allow finite and complex projective spaces). Roughly
speaking, every projective concept is a linea—algebraic concept “up to a scalar.” For
spaces, this is made precise as follows

Definition 5.1. Given a vector space E over a field K, the projective space P(E)
induced by E is the set (E —{0})/ ~ of equivalence classes of nonzero vectors in E
under the equivalence relation ~ defined such that for all u,v € E — {0},

u~v iff v=Au, forsome A € K—{0}.

The canonical projection p: (E —{0}) — P(E) is the function associating the
equivalence class [u]. modulo ~ to u # 0. The dimension dim(P(E)) of P(E) is
defined as follows: If E is of infinite dimension, then dim(P(E)) = dim(E), and if
E has finite dimension, dim(E) =n > 1 then dim(P(E)) =n— 1.

Mathematically, a projective space P(E) is a set of equivalence classes of vectors
in E. The spirit of projective geometry is to view an equivalence class p(u) = [u]~
as an “atomic” object, forgetting the internal structure of the equivalence class. For
this reason, it is customary to call an equivalence class a = [u]~. a point (the entire
equivalence class [¢].. is collapsed into a single object viewed as a point).
Remarks:

(1) If we view E as an affine space, then for any nonnull vector u € E, since
[ul~={Au|A €K, A #0},

letting
Ku={Au|A €K}

denote the subspace of dimension 1 spanned by u, the map
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[t]~ — Ku

from P(E) to the set of one-dimensional subspaces of E is clearly a bijection,
and since subspaces of dimension 1 correspond to lines through the origin in
E, we can view P(E) as the set of lines in E passing through the origin. So,
the projective space P(E) can be viewed as the set obtained from E when lines
through the origin are treated as points.
However, this is a somewhat deceptive view. Indeed, depending on the structure
of the vector space E, a line (through the origin) in £ may be a fairly complex
object, and treating a line just as a point is really a mental game. For example,
E may be the vector space of real homogeneous polynomials P(x,y,z) of de-
gree 2 in three variables x,y, z (plus the null polynomial), and a “line” (through
the origin) in E corresponds to an algebraic curve of degree 2. Lots of details
need to be filled in, but roughly speaking, the curve defined by P is the “zero
locus of P,” i.e., the set of points (x,y,z) € P(R?) (or perhaps in P(C?)) for
which P(x,y,z) = 0. We will come back to this point in Section 5.4 after having
introduced homogeneous coordinates.
More generally, E may be a vector space of homogeneous polynomials of de-
gree m in 3 or more variables (plus the null polynomial), and the lines in E
correspond to such objects as algebraic curves, algebraic surfaces, and alge-
braic varieties. The point of view where a complex object such as a curve or a
surface is treated as a point in a (projective) space is actually very fruitful and
is one of the themes of algebraic geometry (see Fulton [15] or Harris [16]).

(2) When dim(E) = 1, we have dim(P(E)) = 0. When E = {0}, we have P(E) = 0.
By convention, we give it the dimension —1.

We denote the projective space P(K"*!) by P%. When K = R, we also denote
PR by RP", and when K = C, we denote P, by CP". The projective space ]P’% isa
(projective) point. The projective space P} is called a projective line. The projective
space IP% is called a projective plane.

The projective space P(E) can be visualized in the following way. For simplicity,
assume that E = R"*!, and thus P(E) = RP" (the same reasoning applies to E =
K™ where K is any field).

Let H be the affine hyperplane consisting of all points (xi,...,x,+1) such that
Xxn+1 = 1. Every nonzero vector u in E determines a line D passing through the ori-
gin, and this line intersects the hyperplane H in a unique point a, unless D is parallel
to H. When D is parallel to H, the line corresponding to the equivalence class of u
can be thought of as a point at infinity, often denoted by u.. Thus, the projective
space P(E) can be viewed as the set of points in the hyperplane H, together with
points at infinity associated with lines in the hyperplane H.. of equation x,; = 0.
We will come back to this point of view when we consider the projective completion
of an affine space. Figure 5.1 illustrates the above representation of the projective
space when E = R3.

We refer to the above model of P(E) as the hyperplane model. In this model some
hyperplane H.. (through the origin) in R"*! is singled out, and the points of P(E)
arising from the hyperplane H.. are declared to be “points at infinity.” The purpose
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Fig. 5.1 A representation of the projective space RP2.

of the affine hyperplane H parallel to H.. and distinct from H.. is to get images for
the other points in P(E) (i.e., those that arise from lines not contained in Hw). It
should be noted that the choice of which points should be considered as infinite is
relative to the choice of H... Viewing certain points of P(E) as points at infinity is
convenient for getting a mental picture of P(E), but there is nothing intrinsic about
that. Points of P(E) are all equal, and unless some additional structure in introduced
in P(E) (such as a hyperplane), a point in P(E) doesn’t know whether it is infinite!
The notion of point at infinity is really an affine notion. This point will be made
precise in Section 5.6.

Again, for RP" = P(R"*1), instead of considering the hyperplane H, we can
consider the n-sphere §” of center 0 and radius 1, i.e., the set of points (x1,...,X,+1)
such that

x%—l—---—i—x%—i—xgﬂ =1.

In this case, every line D through the center of the sphere intersects the sphere S”
in two antipodal points @ and a_. The projective space RP" is the quotient space
obtained from the sphere S” by identifying antipodal points a+ and a_. It is hard to
visualize such an object! Nevertheless, some nice projections in A® of an embedding
of RIP? into A* are given in the surface gallery on the web cite (see http://www.
cis.upenn.edu/~jean/gbooks/geom2.html, Section 24.7). We call this
model of P(E) the spherical model.

A more subtle construction consists in considering the (upper) half-sphere in-
stead of the sphere, where the upper half-sphere S” is set of points on the sphere "
such that x,;; > 0. This time, every line through the center intersects the (upper)
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half-sphere in a single point, except on the boundary of the half-sphere, where it
intersects in two antipodal points ay and a_. Thus, the projective space RP" is the
quotient space obtained from the (upper) half-sphere S by identifying antipodal
points a4 and a_ on the boundary of the half-sphere. We call this model of P(E)
the half-spherical model.

When n =2, we get a circle. When n = 3, the upper half-sphere is homeomorphic
to a closed disk (say, by orthogonal projection onto the xy-plane), and RP? is in
bijection with a closed disk in which antipodal points on its boundary (a unit circle)
have been identified. This is hard to visualize! In this model of the real projective
space, projective lines are great semicircles on the upper half-sphere, with antipodal
points on the boundary identified. Boundary points correspond to points at infinity.
By orthogonal projection, these great semicircles correspond to semiellipses, with
antipodal points on the boundary identified. Traveling along such a projective “line,”
when we reach a boundary point, we “wrap around”! In general, the upper half-
sphere §"} is homeomorphic to the closed unit ball in R”, whose boundary is the (n—
1)-sphere §"~!. For example, the projective space RP? is in bijection with the closed
unit ball in R3, with antipodal points on its boundary (the sphere S?) identified!

Remarks:

(1) A projective space P(E) has been defined as a set without any topological struc-
ture. When the field K is either the field R of reals or the field C of complex
numbers, the vector space E is a topological space. Thus, the projection map
p: (E—{0}) — P(E) induces a topology on the projective space P(E), namely
the quotient topology. This means that a subset V of P(E) is open iff p~!(V) is
an open set in E. Then, for example, it turns out that the real projective space
RP" is homeomorphic to the space obtained by taking the quotient of the (up-
per) half-sphere S” , by the equivalence relation identifying antipodal points a
and a_ on the boundary of the half-sphere. Another interesting fact is that the
complex projective line CP! = P(C?) is homeomorphic to the (real) 2-sphere
S$2, and that the real projective space RP? is homeomorphic to the group of
rotations SO(3) of R3.

(2) If H is a hyperplane in E, recall from Lemma 21.1 that there is some nonnull
linear form f € E* such that H = Ker f. Also, given any nonnull linear form
f €E*,itskernel H=Ker f = f~'(0) is a hyperplane, and if Ker f = Kerg = H,
then g = A f for some A # 0. These facts can be concisely stated by saying that
the map

[f)~ > Ker f

mapping the equivalence class [f]. = {Af | A # 0} of a nonnull linear form
f € E* to the hyperplane H = Ker f in E is a bijection between the projective
space P(E*) and the set of hyperplanes in E. When E is of finite dimension, this
bijection yields a useful duality, which will be investigated in Section 5.9.

We now define projective subspaces.
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5.3 Projective Subspaces

Projective subspaces of a projective space P(E) are induced by subspaces of the
vector space E.

Definition 5.2. Given a nontrivial vector space E, a projective subspace (or linear
projective variety) of P(E) is any subset W of P(E) such that there is some subspace
V # {0} of E with W = p(V — {0}). The dimension dim(W) of W is defined as
follows: If V is of infinite dimension, then dim(W) = dim(V), and if dim(V) =
p > 1, then dim(W) = p — 1. We say that a family (a;);c; of points of P(E) is
projectively independent if there is a linearly independent family (7,?)[61 in E such
that a; = p(u;) forevery i € I.

Remark: If we allow the empty subset to be a projective subspace, then we have
a bijection between the subspaces of E and the projective subspaces of P(E). In
fact, P(V) is the projective space induced by the vector space V, and we also denote
p(V—{0}) by P(V), or even by p(V), even though p(0) is undefined.

A projective subspace of dimension 0 is a called a (projective) point. A projec-
tive subspace of dimension 1 is called a (projective) line, and a projective subspace
of dimension 2 is called a (projective) plane. If H is a hyperplane in E, then P(H)
is called a projective hyperplane. 1t is easily verified that any arbitrary intersection
of projective subspaces is a projective subspace. A single point is projectively inde-
pendent. Two points a,b are projectively independent if a # b. Two distinct points
define a (unique) projective line. Three points a, b, ¢ are projectively independent if
they are distinct, and neither belongs to the projective line defined by the other two.
Three projectively independent points define a (unique) projective plane.

A closer look at projective subspaces will show some of the advantages of pro-
jective geometry: In considering intersection properties, there are no exceptions due
to parallelism, as in affine spaces.

Let E be a nontrivial vector space. Given any nontrivial subset S of E, the subset S
defines a subset U = p(S — {0} ) of the projective space P(E), and if (S) denotes the
subspace of E spanned by S, it is immediately verified that P({S)) is the intersection
of all projective subspaces containing U, and this projective subspace is denoted by
(U). Given any subspaces M and N of E, recall from Lemma 2.14 that we have the
Grassmann relation

dim(M) 4+ dim(N) = dim(M + N) + dim (M NN).
Then the following lemma is easily shown.

Lemma 5.1. Given a projective space P(E), for any two projective subspaces U,V
of P(E), we have

dim(U) +dim(V) = dim((UUV)) +dim(UNV).
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Furthermore, if dim(U) + dim(V) > dim(P(E)), then U NV is nonempty and if
dim(P(E)) = n, then:

(i) The intersection of any n hyperplanes is nonempty.
(ii) For every hyperplane H and every point a ¢ H, every line D containing a inter-
sects H in a unique point.
(iii) In a projective plane, every two distinct lines intersect in a unique point.

As a corollary, in the projective space (dim(P(E)) = 3), for every plane H, every
line not contained in H intersects H in a unique point.

It is often useful to deal with projective hyperplanes in terms of nonnull linear
forms and equations. Recall that the map

[f]~ — Ker f

is a bijection between P(E*) and the set of hyperplanes in E, mapping the equiva-
lence class [f]~ = {Af | A # 0} of a nonnull linear form f € E* to the hyperplane
H = Ker f. Furthermore, if u ~ v, which means that u = Av for some A # 0, we have

fy=0 it f(v)=0,
since f(v) = A f(u) and A # 0. Thus, there is a bijection

{Af | A # 0} — P(Ker f)

mapping points in P(E*) to hyperplanes in P(E). Any nonnull linear form f associ-
ated with some hyperplane P(H) in the above bijection (i.e., H = Ker f) is called an
equation of the projective hyperplane P(H). We also say that f = 0 is the equation
of the hyperplane P(H).

Before ending this section, we give an example of a projective space where lines
have a nontrivial geometric interpretation, namely as “pencils of lines.” If E = R?,
recall that the dual space E* is the set of all linear maps f: R?> — R. As we have
just explained, there is a bijection

p(f) = P(Ker f)

between P(E*) and the set of lines in P(E), mapping every point a = p(f) to the
line D, = P(Ker f).

Is there a way to give a geometric interpretation in P(E) of a line A in P(E*)?
Well, a line A in P(E*) is defined by two distinct points a = p(f) and b = p(g),
where f,g € E* are two linearly independent linear forms. But f and g define two
distinct planes H; = Ker f and H, = Kerg through the origin (in E = R?), and H;
and H, define two distinct lines Dy = p(H;) and D, = p(H) in P(E). The line A in
P(E*) is of the form A = p(V), where

V={Af+uglA,ueR}
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is the plane in E* spanned by f,g. Every nonnull linear form A f + tg € V defines a
plane H =Ker (A f + ng) in E, and since H; and H, (in E) are distinct, they intersect
in a line L that is also contained in every plane H as above. Thus, the set of planes
in E associated with nonnull linear forms in V is just the set of all planes containing
the line L. Passing to P(E) using the projection p, the line L in E corresponds to the
point ¢ = p(L) in P(E), which is just the intersection of the lines D; and D,. Thus,
every point of the line A in P(E*) corresponds to a line in P(E) passing through ¢
(the intersection of the lines D and D»), and this correspondence is bijective.

In summary, a line A in P(E*) corresponds to the set of all lines in P(E) through
some given point. Such sets of lines are called pencils of lines.

The above discussion can be generalized to higher dimensions and is discussed
quite extensively in Section 5.9. In brief, letting E = R"*!, there is a bijection map-
ping points in P(E*) to hyperplanesin P(E). A line in P(E*) corresponds to a pencil
of hyperplanes in P(E), i.e., the set of all hyperplanes containing some given pro-
jective subspace W = p(V) of dimension n — 2. For n = 3, a pencil of planes in
RP? = P(R?) is the set of all planes (in RP*) containing some given line W. Other
examples of unusual projective spaces and pencils will be given in Section 5.4.

Next, we define the projective analogues of bases (or frames) and linear maps.

5.4 Projective Frames

As all good notions in projective geometry, the concept of a projective frame turns
out to be uniquely defined up to a scalar.

Definition 5.3. Given a nontrivial vector space E of dimension n+ 1, a family
(ai)1<i<n+2 of n+ 2 points of the projective space P(E) is a projective frame (or
basis) of P(E) if there exists some basis (e1,...,e,+1) of E such that a; = p(e;) for
1<i<n+1,and a,r = p(e; +---+eut1). Any basis with the above property is
said to be associated with the projective frame (a;)1<i<n+2-

The justification of Definition 5.3 is given by the following lemma.

Lemma 5.2. If (a;)1<i<n+2 Is a projective frame of P(E), for any two bases (uy, ...,
Uni1), (ViyeveyVnt1) Of E such that a; = p(u;) = p(vi) for 1 <i<n+1, and a2 =
plur+ - +uy1) = p(vi + -+ +vup1), there is a nonzero scalar A € K such that
vi=Au, foralli, 1 <i<n+1.

Proof. Since p(u;) = p(v;) for 1 <i <n+1, there exist some nonzero scalars A; € K
such that v; = Aju; for all i, 1 <i<n-+ 1. Since we must have

plur 4+ 1) =pvi+ -+ vay1),
there is some A # 0 such that

Alur +- - Fup1) =vi+-+vppr = Ay + -+ Apyitng 1,
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and thus we have
A—=A)ur+-+ (A —=Ays1)uns1 =0,

and since (uy,...,u,41) is a basis, we have A; = A for all i, 1 <i <n+ 1, which
impliesA; =---=A,0.1=A. O

Lemma 5.2 shows that a projective frame determines a unique basis of E, up to
a (nonzero) scalar. This would not necessarily be the case if we did not have a point
anio such that a, o = p(up + -+ upi).

When n = 0, the projective space consists of a single point a, and there is only
one projective frame, the pair (a,a). When n = 1, the projective space is a line,
and a projective frame consists of any three pairwise distinct points a,b,c on this
line. When n = 2, the projective space is a plane, and a projective frame consists of
any four distinct points a, b, c,d such that a, b, c are the vertices of a nondegenerate
triangle and d is not on any of the lines determined by the sides of this triangle. The
reader can easily generalize to higher dimensions.

Given a projective frame (a;)1<j<n+2 of P(E), let (u1,...,un+1) be a basis of E
associated with (a;)1<i<n+2. For every a € P(E), there is some u € E — {0} such
that

a=[ul~ ={Au|A € K—{0}},

the equivalence class of u, and the set
1
{(x1y. s Xne1) €K™ [v=x1uy + -+ Xy (1, v E [U]~ =a}

of coordinates of all the vectors in the equivalence class [u].. is called the set of
homogeneous coordinates of a over the basis (uy, ..., uyi1).

Note that for each homogeneous coordinate (xi,...,x,+1) we must have x; # 0
for some i, 1 <i<n+ 1, and any two homogeneous coordinates (xp,...,x,+1) and
(¥1,---,Yn+1) for a differ by a nonzero scalar, i.e., there is some A # 0 such that
yi = Ax;, 1 <i < n+ 1. Homogeneous coordinates (xi,...,X,+1) are sometimes
denoted by (x;: ---: x,41), for instance in algebraic geometry.

By Lemma 5.2, any other basis (v, ..., v, 1) associated with the projective frame
(@i)1<i<n+2 differs from (uy,...,u,4+1) by a nonzero scalar, which implies that the
set of homogeneous coordinates of a € P(E) over the basis (v1,...,v,41) is identical
to the set of homogeneous coordinates of a € P(E) over the basis (u1,...,Unt1).
Consequently, we can associate a unique set of homogeneous coordinates to every
point a € P(E) with respect to the projective frame (a;)1<;<n+2. With respect to this
projective frame, note that a,, has homogeneous coordinates (1,...,1), and that
a; has homogeneous coordinates (0,...,1,...,0), where the 1 is in the ith position,
where 1 <i<n-+ 1. We summarize the above discussion in the following definition.

Definition 5.4. Given a nontrivial vector space E of dimension n+ 1, for any projec-
tive frame (a;)1<i<p+2 of P(E) and for any point a € P(E), the set of homogeneous
coordinates of a with respect to (a;)1<i<n+2 is the set of (n+ 1)-tuples
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{(Ax1,..., Axyy1) € K" | x; #0 for some i, A # 0,

a=p(xiur+ - +Xpp1ny1)},
where (uy,...,u,1) is any basis of E associated with (a;)<j<ni2-

Given a projective frame (a;)1<j<pt2 for P(E), if (x1,...,x,41) are homoge-
neous coordinates of a point a € P(E), we write a = (x1,...,%,11), and with a slight
abuse of language, we may even talk about a point (xy,...,%,+1) in P(E) and write
(xl, . ,xn+1) S P(E)

The special case of the projective line ]P’}< is worth examining. The projective line
P} consists of all equivalence classes [x,y] of pairs (x,y) € K? such that (x,y) #
(0,0), under the equivalence relation ~ defined such that

(x1,y1) ~ (x2,y2) iff xp=Ax; and y; = Ay,

for some A € K — {0}. When y # 0, the equivalence class of (x,y) contains the
representative (xy~!, 1), and when y = 0, the equivalence class of (x,0) contains the
representative (1,0). Thus, there is a bijection between K and the set of equivalence
classes containing some representative of the form (x, 1), and we denote the class
[x,1] by x. The equivalence class [1,0] is denoted by o and it is called the point at
infinity. Thus, the projective line P} is in bijection with K U {eo}. The three points
oo = [1,0], 0 = [0, 1], and 1 = [1,1], form a projective frame for PL. The projective
frame (c0,0, 1) is often called the canonical frame of P.

Homogeneous coordinates are also very useful to handle hyperplanes in terms
of equations. If (a;)1<;<u12 is a projective frame for P(E) associated with a ba-
sis (u1,...,up+1) for E, a nonnull linear form f is determined by n+ 1 scalars
o,...,0p41 (not all null), and a point x € P(E) of homogeneous coordinates
(x1,-..,%:,+1) belongs to the projective hyperplane P(H) of equation f iff

X+ -+ O 1 X1 = 0.

In particular, if P(E) is a projective plane, a line is defined by an equation of the form
ox+ By+yz=0.If P(E) is a projective space, a plane is defined by an equation of
the form ax+ By + yz+ ow=0.

We also have the following lemma giving another characterization of projective
frames.

Lemma 5.3. A family (a;)1<i<n+2 of n+ 2 points is a projective frame of P(E) iff
foreveryi, 1 <i < n+2, the subfamily (a;)j+; is projectively independent.

Proof. We leave as an (easy) exercise the fact that if (a;)1<;j<s+2 is a projective
frame, then each subfamily (a;);; is projectively independent. Conversely, pick
some u; € E —{0} such thata; = p(u;), 1 <i <n+2.Since (a;) j1n+2 is projectively
independent, (u,...,u,1) is a basis of E. Thus, we must have

Uppo = Muy + -+ Ayttt
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for some A; € K. However, since for every i, | <i < n+ 1, the family (aj)#,- is
projectively independent, we must have A; # 0, and thus (Ayuy,..., Ay 1t,41) is
also a basis of E, and since

Unt2 = Ay + - Ayttt g1
it induces the projective frame (a;)1<i<pi2. O

Figure 5.2 shows a projective frame (a,b,c,d) in a projective plane. With respect

b (1,0,1)
@)

Fig. 5.2 A projective frame (a,b,c,d).

to this projective frame, the points a, b, ¢,d have homogeneous coordinates (1,0,0),
(0,1,0), (0,0,1),and (1,1,1). Let @’ be the intersection of (d,a) and (b,c), b’ be the
intersection of (d,b) and {(a,c), and ¢’ be the intersection of {d,c) and (a,b). Then
the points @’,’, ¢’ have homogeneous coordinates (0,1,1), (1,0,1), and (1,1,0).
The diagram formed by the line segments {a,c’), (a,b’), (b,b'), {c,c’), {a,d), and
(b,c) is sometimes called a Mdbius net. It is easily verified that the equations of the
lines (a,b), (a,c), (b,c), are z =10, y =0, and x = 0, and the equations of the lines
(a,d), (b,d), and (c,d), are y = z, x = z, and x = y. If we let e be the intersection of
(b,c) and (V',c'), f be the intersection of {a,c) and (a’,c’), and g be the intersection
of {a,b) and (d,b'), then it easily seen that e, f,g have homogeneous coordinates
(0,—1,1), (1,0,—1), and (—1,1,0). These coordinates satisfy the equation x + y +
z = 0, which shows that the points e, f, g are collinear. This is a special case of
the projective version of Desargues’s theorem. This line is called the polar line (or
fundamental line) of d with respect to the triangle (a,b,c). The diagram also shows
the intersection g of (a,b) and (a’,b').
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The projective space of circles provides a nice illustration of homogeneous coor-
dinates. Let E be the vector space (over R) consisting of all homogeneous polyno-
mials of degree 2 in x, y, z of the form

ax® +ay® + bxz+ cyz +dz?

(plus the null polynomial). The projective space P(E) consists of all equivalence
classes

[Pl ={AP[4 #0},

where P(x,y,z) is a nonnull homogeneous polynomial in E. We want to give a ge-
ometric interpretation of the points of the projective space P(E). In order to do so,
pick some projective frame (aj,as,a3,as) for the projective plane RP?, and asso-
ciate to every [P] € P(E) the subset of RP? known as its its zero locus (or zero set,
or variety) V([P]), and defined such that

V([P]) = {a € RP? | P(x,,2) = 0},

where (x,y,z) are homogeneous coordinates for a.
As explained earlier, we also use the simpler notation

V([P]) = {(x,y.z) € RP? | P(x,y,2) = 0}.

Actually, in order for V([P]) to make sense, we have to check that V ([P]) does not
depend on the representative chosen in the equivalence class [P] = {AP | A # 0}.
This is because

P(x,y,z) =0 iff AP(x,y,z) =0 whenA #0.

For simplicity of notation, we also denote V([P]) by V(P). We also have to check
that if (Ax,Ay,Az) are other homogeneous coordinates for a € RP?, where A # 0,
then

P(x,y,z) =0 iff P(Ax,Ay,Az)=0.

However, since P(x,y,z) is homogeneous of degree 2, we have
P(Ax,Ay,Az) = A*P(x,y,2),

and since A # 0,
P(x,y,z) =0 iff AZP(x,y,z) =0.

The above argument applies to any homogeneous polynomial P(xy,...,x,) in n vari-
ables of any degree m, since

P(Ax1,...,Axn) = A"P(x1,...,Xn).

Thus, we can associate to every [P] € P(E) the curve V(P) in RP2. One might
wonder why we are considering only homogeneous polynomials of degree 2, and
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not arbitrary polynomials of degree 2? The first reason is that the polynomials in
x,y,z of degree 2 do not form a vector space. For example, if P = x*> +x and Q =
—x% +, the polynomial P+ Q = x4+ y is not of degree 2. We could consider the set
of polynomials of degree < 2, which is a vector space, but now the problem is that
V(P) is not necessarily well defined!. For example, if P(x,y,z) = —x* + 1, we have

P(1,0,0)=0 and P(2,0,0)=—3,

and yet (2,0,0) = 2(1,0,0), so that P(x,y,z) takes different values depending on the
representative chosen in the equivalence class [1,0,0]. Thus, we are led to restrict
ourselves to homogeneous polynomials. Actually, this is usually an advantage more
than a disadvantage, because homogeneous polynomials tend to be well behaved.
For example, by polarization, they yield multilinear maps.

What are the curves V(P)? One way to “see” such curves is to go back to the
hyperplane model of RP? in terms of the plane H of equation z = 1 in R3. Then the
trace of V(P) on H is the circle of equation

ax®> +ay* + bx+cy+d =0.

Thus, we may think of P(E) as a projective space of circles. However, there are
some problems. For example, V(P) may be empty! This happens, for instance, for
P(x,y,z) = x> +y? + 22, since the equation

f+f+f=0

has only the trivial solution (0,0, 0), which does not correspond to any point in RP?.
Indeed, only nonnull vectors in R? yield points in RIP?. It is also possible that V(P)
is reduced to a single point, for instance when P(x,y,z) = x> 4y, since the only
homogeneous solution of

P +yP=0

is (0,0,1). Also, note that the map
[Pl = V(P)

is not injective. For instance, P = x> +y? and Q = x” 4 2y” define the same degen-
erate circle reduced to the point (0,0, 1). We also accept as circles the union of two
lines, as in the case

(bx+cy+dz)z=0,

where a = 0, and even a double line, as in the case
2= 0,

wherea=b=c=0.

A clean way to resolve most of these problems is to switch to homogeneous
polynomials over the complex field C and to consider curves in CP?. This is what
is done in algebraic geometry (see Fulton [15] or Harris [16]). If P(x,y,z) is a ho-



5.4 Projective Frames 119

mogeneous polynomial over C of degree 2 (plus the null polynomial), it is easy to
show that V(P) is always nonempty, and in fact infinite. It can also be shown that
V(P) = V(Q) implies that Q = AP for some A € C, with A # 0 (see Samuel [23]).
Another advantage of switching to the complex field C is that the theory of inter-
section is cleaner. Thus, any two circles that do not contain a common line always
intersect in four points, some of which might be multiple points (as in the case of
tangent circles). This may seem surprising, since in the real plane, two circles inter-
sect in at most two points. Where are the other two points? They turn out to be the
points (1,1,0) and (1,—i,0), as one can immediately verify. We can think of them
as complex points at infinity! Not only are they at infinity, but they are not real. No
wonder we cannot see them! We will come back to these points, called the circular
points, in Section 5.11.

Going back to the vector space E over R, it is worth saying that it can be shown
that if V(P) = V(Q) contains at least two points (in which case, V(P) is actually
infinite), then Q = AP for some A € R with A # 0. Thus, even over R, the mapping

[Pl = V(P)

is injective whenever V (P) is neither empty nor reduced to a single point. Note that
the projective space P(E) of circles has dimension 3. In fact, it is easy to show that
three distinct points that are not collinear determine a unique circle (see Samuel
[23]).

In a similar vein, we can define the projective space of conics P(E) where E is
the vector space (over R) consisting of all homogeneous polynomials of degree 2 in
X,V 2,

ax® + by2 +cxy+dxz+eyz+ f22

(plus the null polynomial). The curves V (P) are indeed conics, perhaps degenerate.
To see this, we can use the hyperplane model of RP2. The trace of V(P) on the plane
of equation z = 1 is the conic of equation

ax* + by’ +exy+dx+ey+ f=0.
Another way to see that V (P) is a conic is to observe that in R3,
ax® + by* + cxy +dxz + eyz+ f =0

defines a cone with vertex (0,0,0), and since its section by the plane z = 1 is a conic,
all of its sections by planes are conics. The mapping

[P] = V(P)

is still injective when E is defined over the ground field C, or if V(P) has at least
two points when FE is defined over R. Note that the projective space P(E) of conics
has dimension 5. In fact, it is easy to show that five distinct points no four of which
are collinear determine a unique conic (see Samuel [23]).



120 5 Basics of Projective Geometry

It is also interesting to see what are lines in the space of circles or in the space of
conics. In both cases we get pencils (of circles and conics, respectively). For more
details, see Samuel [23], Sidler [24], Tisseron [26], Lehmann and Bkouche [20],
Pedoe [21], Coxeter [7, 8], and Veblen and Young [28, 29].

We could also investigate algebraic plane curves of any degree m, by letting E
be the vector space of homogeneous polynomials of degree m in x,y, z (plus the null
polynomial). The zero locus V (P) of P is defined just as before as

V(P) = {(x,y,2) € RP? | P(x,y,z) = 0}.

Observe that when m = 1, since homogeneous polynomials of degree 1 are linear
forms, we are back to the case where E = (R?)*, the dual space of R, and P(E) can
be identified with the set of lines in RP2. But when m > 3, things are even worse
regarding the injectivity of the map [P] — V(P). For instance, both P = xy* and
Q = x?y define the same union of two lines. It is necessary to consider irreducible
curves, i.e., curves that are defined by irreducible polynomials, and to work over the
field C of complex numbers (recall that a polynomial P is irreducible if it cannot be
written as the product P = Q| 0, of two polynomials Oy, Q; of degree > 1).

We can also investigate algebraic surfaces in RP? (or CP?), by letting E be the
vector space of homogeneous polynomials of degree m in four variables x,y,z,¢
(plus the null polynomial). We can also consider the zero locus of a set of equations

&={P=0,~,=0,...,P, =0},
where Py, ..., P, are homogeneous polynomials of degree m in x,y, z,¢, defined as
V(€) = {(x,3,2,1) €RP? | Pi(x,,2,1) =0, 1 <i<n}.

This way, we can also deal with space curves.

Finally, we can consider homogeneous polynomials P(xj,...,xy+1) in N+ 1
variables and of degree m (plus the null polynomial), and study the subsets of RPY
(or CPV) defined as the zero locus of a set of equations

&={P,=0,P=0,..., P, =0},

where Py, ..., P, are homogeneous polynomials of degree m in the variables x, ...,
xy41. For example, it turns out that the set of lines in RIP? forms a surface of degree
2 in RP (the Klein quadric). However, all this would really take us too far into al-
gebraic geometry, and we simply refer the interested reader to Fulton [15] or Harris
[16].

We now consider projective maps.
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5.5 Projective Maps

Given two nontrivial vector spaces E and F and a linear map f: E — F, observe that
forevery u,v € (E —Kerf), if v=Auforsome A € K —{0}, then f(v) = A f(u), and
thus f restricted to (E — Ker f) induces a function P(f): (P(E) —P(Ker f)) — P(F)
defined such that

P(f)([ul~) = [F ()]~

as in the following commutative diagram:

E-Kerf—' = F—{0)

P(E) ~P(Ker /) ——> P(F)

When f is injective, i.e., when Ker f = {0}, then P(f): P(E) — P(F) is indeed a
well-defined function. The above discussion motivates the following definition.

Definition 5.5. Given two nontrivial vector spaces £ and F, any linear map f: £ —
F induces a partial map P(f): P(E) — P(F) called a projective map, such that if
Ker f ={u€ E| f(u) =0} is the kernel of f, then P(f): (P(E)—P(Kerf)) — P(F)
is a total map defined such that

as in the following commutative diagram:

E-Kerf—' = F—{0)

P(E) ~P(Ker ) ——> P(F)

If f is injective, i.e., when Ker f = {0}, then P(f): P(E) — P(F) is a total func-
tion called a projective transformation, and when f is bijective, we call P(f) a
projectivity, or projective isomorphism, or homography. The set of projectivities
P(f): P(E) — P(E) is a group called the projective (linear) group, and is denoted
by PGL(E).

g% One should realize that if a linear map f: E — F is not injective, then

the projective map P(f): P(E) — P(F) is only a partial map, i.e., it is
undefined on P(Ker f). In particular, if f: E — F is the null map (i.e., Ker f = E),
the domain of P(f) is empty and P(f) is the partial function undefined everywhere.
We might want to require in Definition 5.5 that f not be the null map to avoid this
degenerate case. Projective maps are often defined only when they are induced by
bijective linear maps.
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We take a closer look at the projectivities of the projective line P}(, since they play
a role in the “change of parameters” for projective curves. A projectivity f: ]P’}< —
]P’}< is induced by some bijective linear map g: K> — K? given by some invertible

matrix
ab
i) = (21)

with ad — be # 0. Since the projective line P} is isomorphic to K U {eo}, it is easily
verified that f is defined as follows:

az+b . d
z 7 ifz# ——,
d <t az+b
C#O — — > CZO = d )
C ’ 00 5 00,
a
0t —;
C

If K =R or K = C, note that a/c is the limit of (az+b)/(cz+d), as z approaches
infinity, and the limit of (az+ b)/(cz+d) as z approaches —d /¢ is e (when ¢ # 0).
Projections between hyperplanes form an important example of projectivities.

Definition 5.6. Given a projective space P(E), for any two distinct hyperplanes
P(H) and P(H'), for any point ¢ € P(E) neither in P(H) nor in P(H’), the projection
(or perspectivity) of center ¢ between P(H) and P(H') is the map f: P(H) — P(H')
defined such that for every a € P(H), the point f(a) is the intersection of the line
(c,a) through ¢ and a with P(H").

Let us verify that f is well-defined and a bijective projective transformation.
Since the hyperplanes P(H) and P(H’) are distinct, the hyperplanes H and H' in E
are distinct, and since c is neither in P(H) nor in P(H’), letting ¢ = p(u) for some
nonnull vector u € E, then u ¢ H and u ¢ H’', and thus E = H ® Ku = H' ® Ku. If
7: E — H' is the linear map (projection onto H' parallel to u) defined such that

(w4 Au) =w,

forallwe H and all A € K, since E = H® Ku = H' ® Ku, the restriction g: H — H’
of m: E — H’ to H is a linear bijection between H and H', and clearly f = P(g),
which shows that f is a projectivity.

Remark: Going back to the linear map 7: E — H' (projection onto H' parallel to
u), note that P(r) : P(E) — P(H’) is also a projective map, but it is not injective, and
thus only a partial map. More generally, given a direct sum E =V & W, the projec-
tion w: E — V onto V parallel to W induces a projective map P(): P(E) — P(V),
and given another direct sum E = U @ W, the restriction of 7 to U induces a perspec-
tivity f between P(U) and P(V'). Geometrically, f is defined as follows: Given any
point a € P(U), if (P(W),a) is the smallest projective subspace containing P(W)
and a, the point f(a) is the intersection of (P(W),a) with P(V).
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Figure 5.3 illustrates a projection f of center ¢ between two projective lines A
and A’ (in the real projective plane).

D, D, \ Ds Dy

Fig. 5.3 A projection of center ¢ between two lines A and A’.

If we consider three distinct points dy,d»,d3 on A and their images d{,d5,d} on
A’ under the projection f, then ratios are not preserved, that is,

: .
dydy  dyd,

However, if we consider four distinct points di,d>,d3,ds on A and their images
dy,d,d},d} on A" under the projection f, we will show later that we have the fol-
lowing preservation of the so-called “cross-ratio”

—
d3d1/d4d1 C?dl? m

dsds

dsdy d3d2 —’>

Cross-ratios and projections play an important role in geometry (for some very ele-
gant illustrations of this fact, see Sidler [24]).

We now turn to the issue of determining when two linear maps f,g determine
the same projective map, i.e., when P(f) = P(g). The following lemma gives us a
complete answer.

Lemma 5.4. Given two nontrivial vector spaces E and F, for any two linear maps
ftE—Fandg: E—F,wehave P(f)=P(g) iff there is some scalar A € K — {0}
such that g = A f.

Proof. If g = A f, it is clear that P(f) = P(g). Conversely, in order to have P(f) =
P(g), we must have Ker f = Kerg. If Ker f = Kerg = E, then f and g are both the
null map, and this case is trivial. If E — Ker f # 0, by taking a basis of Im f and
some inverse image of this basis, we obtain a basis B of a subspace G of E such that
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E =Kerf® G. If dim(G) = 1, the restriction of any linear map f: E — F to G is
determined by some nonzero vector u € E and some scalar A € K, and the lemma is
obvious. Thus, assume that dim(G) > 2. For any two distinct basis vectors u,v € B,
since P(f) = P(g), there must be some nonzero scalars A (u), A(v), and A (u+v)
such that

gu)=A(w)f(u), &) =AW)f(), glutv)=A(u+v)f(utv).

Since f and g are linear, we get

g(u) +g(v) = A(u)f(u) + A () f(v) = A(u+v)(f(u) + £(v)),

that is,
(A lutv) = 2. () £ () + (A (u4v) = 2 () f(v) = O.

Since f is injective on G and u,v € B C G are linearly independent, f(u) and f(v)
are also linearly independent, and thus we have

Au+v)=2A(u)=A().

Now we have shown that A (1) = A (v), for any two distinct basis vectors in B, which
proves that A () is independent of u € G, and provesthat g =Af. O

Lemma 5.4 shows that the projective linear group PGL(E) is isomorphic to the
quotient group of the linear group GL(E) modulo the subgroup K*idg (where K* =
K —{0}). Using projective frames, we prove the following useful result.

Lemma 5.5. Given two nontrivial vector spaces E and F of the same dimension
n+ 1, for any two projective frames (a;)1<i<n+2 for P(E) and (b;)1<i<n+2 for P(F),
there is a unique projectivity h: P(E) — P(F) such that h(a;) = b; for 1 <i <n+2.

Proof. Let (uy,...,u,t1) be a basis of E associated with the projective frame
(@i)1<i<n+2, and let (v,...,v,41) be a basis of F associated with the projective
frame (b;)1<i<nt2. Since (uy,...,un+1) is a basis, there is a unique linear bijection
g: E — F such that g(u;) = v;, for 1 <i<n+1.Clearly, h = P(g) is a projectivity
such that h(a;) = b;, for 1 <i<n+2.Let ¥': P(E) — P(F) be any projectivity
such that A’ (a;) = b;, for 1 <i < n+2. By definition, there is a linear isomorphism
f: E — F such that /' = P(f). Since /' (a;) = b;, for 1 <i < n+ 2, we must have
Sf(u;) = A, for some A; € K — {0}, where 1 <i<n-+1,and

Sl +-+unp) =AW+ +vnr),
for some A € K — {0}. By linearity of f, we have
My Ayt r = Avi o Avpg g,
and since (v1,...,v,4+1) is a basis of F, we must have

A== =A
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This shows that f = A g, and thus that

and /% is uniquely determined. O

@ The above lemma and Lemma 5.4 are false if K is a skew field. Also,
Lemma 5.5 fails if (b;)1<i<n+2 is not a projective frame, or if a,, is
dropped.

As a corollary of Lemma 5.5, given a projective space P(E), two distinct projec-
tive lines D and D' in P(E), three distinct points a,b,c on D, and any three distinct
points a’,b’, ¢’ on D', there is a unique projectivity from D to D', mapping a to a’, b
to ', and ¢ to ¢’. This is because, as we mentioned earlier, any three distinct points
on a line form a projective frame.

Remark: As in the affine case, there is “fundamental theorem of projective geom-
etry.” For simplicity, we state this theorem assuming that vector spaces are over the
field K = R. Given any two projective spaces P(E) and P(F) of the same dimen-
sion n > 2, for any bijective function f: P(E) — P(F), if f maps any three distinct
collinear points a,b,c to collinear points f(a), f(b), f(c), then f is a projectivity.
For more general fields, f = P(g) for some “semilinear” bijection g: E — F. A
map such as f (preserving collinearity of any three distinct points) is often called a
collineation. For K = R, collineations and projectivities coincide. For more details,
see Samuel [23].

Before closing this section, we illustrate the power of Lemma 5.5 by proving two
interesting results. We begin by characterizing perspectivities between lines.

Lemma 5.6. Given any two distinct lines D and D' in the real projective plane RP?,
a projectivity f: D — D' is a perspectivity iff f(O) = O, where O is the intersection
of Dand D'.

Proof. If f: D — D' is a perspectivity, then by the very definition of f, we have
f(0) = 0. Conversely, let f: D — D' be a projectivity such that f(O) = O. Leta,b
be any two distinct points on D also distinct from O, and let @’ = f(a) and b’ = f(b)
on D'. Since f is a bijection and since a, b, O are pairwise distinct, a’ # b'. Let ¢ be
the intersection of the lines {(a,a’) and (b,b’), which by the assumptions on a,b, O,
cannot be on D or D'. Then we can define the perspectivity g: D — D’ of center c,
and by the definition of ¢, we have

gla)=d, gb)=0V, g(0)=o0.

However, f agrees with g on O,a,b, and since (0, a,b) is a projective frame for D,
by Lemma 5.5, we must have f =g. O
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Using Lemma 5.6, we can give an elegant proof of a version of Desargues’s
theorem (in the plane).

Lemma 5.7. Given two triangles (a,b,c) and (d',b,c') in RP?, where the points
a,b,c,da' b’ ,c’ are pairwise distinct and the lines A = (b,c), B = (a,c), C = (a,b),
A=), B'=(d ), C' =(db)arepairwise distinct, if the lines (a,a’), (b,b'),
and {c,c') intersect in a common point d distinct from a,b,c, a',b',c, then the inter-
section points p=(b,c)N{b',c'), g={a,c)N{d’,c'), and r = (a,b) N {d',b') belong
to a common line distinct from A,B,C, A’,B',C’.

Proof. In view of the assumptions on a,b,c, a’,b’,c’, and d, the point r is on neither
{(a,a’) nor (b,b’), the point p is on neither (b,b’) nor {c,c’), and the point g is on
neither (a,a’) nor {c,c’). It is also immediately shown that the line (p,q) is distinct
from the lines A, B,C,A’,B',C'. Let f : {a,a’) — (b,b’) be the perspectivity of center
rand g: (b,b’) — (c,c’) be the perspectivity of center p. Let h = go f. Since both
f(d)=d and g(d) = d, we also have h(d) = d. Thus by Lemma 5.6, the projectivity
h: {a,d’) — {c,c’) is a perspectivity. Since

g(f(a)) = g(b) =c,
g(f(d)) =) =<,

the intersection g of (a,c) and (d’,c’) is the center of the perspectivity k. Also note
that the point m = (a,a’) N (p, r) and its image h(m) are both on the line (p, r), since
r is the center of f and p is the center of g. Since £ is a perspectivity of center g, the
line (m,h(m)) = (p,r) passes through g, which proves the lemma. 0O

h(a)
h(d")

Desargues’s theorem is illustrated in Figure 5.4. It can also be shown that every
projectivity between two distinct lines is the composition of two perspectivities (not
in a unique way). An elegant proof of Pappus’s theorem can also be given using
perspectivities. For all this and more, the reader is referred to the problems.

We now consider the projective completion of an affine space.

5.6 Projective Completion of an Affine Space, Affine Patches

Given an affine space E with associated vector space ? we can form the vector
space E, the homogenized version of E, and then, the projective space P( ) induced
by E. This projective space, also denoted by E, has some very interesting properties.
In fact, it satisfies a universal property, but before we can say what it is, we have to
take a closer look at E.

Since the vector space E is the disjoint union of elements of the form (a,A),

wherea € E and A € K — {O},Aand elements of the form u € ?, observe that if ~
is the equivalence relation on E used to define the projective space P(E ), then the
equivalence class [(a,A4)]. of a weighted point contains the special representative
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oy]
IS

Fig. 5.4 Desargues’s theorem (projective version in the plane).

a = {(a,1), and the equivalence class [u]. of a nonzero vector u € T is just a point

of the projective space P(f) Thus, there is a bijection
P(E) «— EUP(E)

between P(E) and the disjoint union E UP(?), which allows us to view E as being
embedded in P(E). The points of P(E) in P(E ) will be called points at infinity,
and the projective hyperplane P(?) is called the hyperplane at infinity. We will

also denote the point [u]... of P(?) (where u # 0) by Ueo.

Thus, we can think of E = P(E ) as the projective completion of the affine space
E obtained by adding points at infinity forming the hyperplane P(?) As we com-
mented in Section 5.2 when we presented the hyperplane model of P(E), the notion
of point at infinity is really an affine notion. But even if a vector space E doesn’t
arise from the completion of an affine space, there is an affine structure on the com-
plement of any hyperplane P(H) in the projective space P(E). In the case of E, the
complement E of the projective hyperplane P(?) is indeed an affine space. This is
a general property that is needed in order to figure out the universal property of E.
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Lemma 5.8. Given a vector space E and a hyperplane H in E, the complement
Ey =P(E) —P(H) of the projective hyperplane P(H) in the projective space P(E)
can be given an affine structure such that the associated vector space of Ey is H.
The affine structure on Ep depends only on H, and under this affine structure, Ey is
isomorphic to an affine hyperplane in E.

Proof. Since H is ahyperplane in E, there is some w € E — H such that E = Kw® H.
Thus, every vector u in E — H can be written in a unique way as Aw+ h, where A # 0
and i € H. As a consequence, for every point [u] in Ep, the equivalence class []
contains a representative of the form w + A~ 1h, with A # 0. Then we see that the
map ¢: (w+ H) — Ey, defined such that

o(w+h)=[w+h],

is a bijection. In order to define an affine structure on Ey, we define +: Ey x H —
Ey as follows: For every point [w+ h] € Ey and every h, € H, we let

WHhi]+hy = [w+hy+ hy).

The axioms of an affine space are immediately verified. Now, w+ H is an affine
hyperplane is E, and under the affine structure just given to Ep, the map ¢@: (w+
H) — Ep is an affine map that is bijective. Thus, Ey is isomorphic to the affine
hyperplane w + H. If we had chosen a different vector w € E — H such that E =
Kw' ® H, then Ey would be isomorphic to the affine hyperplane w' + H parallel to
w+ H. But these two hyperplanes are clearly isomorphic by translation, and thus
the affine structure on Ey dependsonlyon H. 0O

An affine space of the form Ep is called an affine patch on P(E). Lemma 5.8
allows us to view a projective space P(E) as the result of gluing some affine spaces
together, at least when E is of finite dimension. For example, when E is of dimension
2, ahyperplane in E is just a line, and the complement of a point in the projective line
P(E) can be viewed as an affine line. Thus, we can view P(E) as being covered by
two affine lines glued together. When K = R, this shows that topologically, the pro-
jective line RP' is equivalent to a circle. When E is of dimension 3, a hyperplane in
E isjust a plane, and the complement of a projective line in the projective plane P(E)
can be viewed as an affine plane. Thus, we can view P(E) as being covered by three
affine planes glued together. However, even when K = R, it is much more difficult
to come up with a geometric embedding of the projective plane RP? in A3, and in
fact, this is impossible! Nevertheless, there are some fascinating immersions of the
projective space RP? as 3D surfaces with self-intersection, one of which is known as
the Boy surface. We urge our readers to consult the remarkable book by Hilbert and
Cohn-Vossen [17] for drawings of the Boy surface, and more. Some nice projections
in A% of an embedding of RP? into A* are given in the surface gallery on the web
page (see http://www.cis.upenn.edu/~jean/gbooks/geom2.html,
Section 24.7). In fact, we give a control net in A* specifying an explicit rational
surface homeomorphic to RP2. One should also consult Fischer’s books [12, 11],
where many beautiful models of surfaces are displayed, and the commentaries in
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Chapter 6 of [11] regarding models of RP?>. More generally, when E is of dimen-
sion n—+ 1, the projective space P(E) is covered by n+ 1 affine patches (hyperplanes)
glued together. This idea is very fruitful, since it allows the treatment of projective
spaces as manifolds, and it is essential in algebraic geometry.

We can now go back to the projective completion E of an affine space E.

Definition 5.7. Given any affine space E with associated vector space ?, a projec-
tive completion of the affine space E with hyperplane at infinity P(¢) is a triple
(P(&),P(2),i), where & is a vector space, ¢ is a hyperplane in &, i: E — P(&)
is an injective map such that i(E) = &, and i is affine (where & = P(&) — P(5¢)
is an affine patch), and for every projective space P(F), every hyperplane H in F,
and every map f: E — P(F) such that f(E) C Fy and f is affine (where Fy =
P(F) —P(H) is an affine patch), there is a unique projective map f: P(&) — P(F)
such that

f=foi and P(f)=foP()

(where i: f — ¢ and ?: ? — H are the linear maps associated with the affine
maps i: E — P(&) and f: E — P(F)), as in the following diagram:

E—'w &, CP&) 2P() <L P(E)

The points of P(&) in P(5¢) are called points at infinity, and the projective hy-
perplane P(57) is called the hyperplane at infinity. We will also denote the point
[u]~ of P(Z) (where u # 0) by u.. As usual, objects defined by a universal property
are unique up to isomorphism. We leave the proof as an exercise. The importance
of the notion of projective completion stems from the fact that every affine map
f: E — F extends in a unique way to a projective map f: E—F (provided that the

restriction of f to P(?) agrees with P(?)).
We will now show that (E ,P(?),i> is the projective completion of E, where
i: E— E is the injection of E into E=E UP(?). For example, if £ = A}( is an
affine line, its projective completion AV}( is isomorphic to the projective line P(K?),
and they both can be identified with AL U {e}, the result of adding a point at in-
finity (o) to A}(. In general, the onective completion A% of th(/evafﬁne space A¥ is
isomorphic to P(K"*!). Thus, A™ is isomorphic to RP", and Ag is isomorphic to
m
CPFi.rst, let us observe that if E is a vector space and H is a hyperplane in E, then
the homogenization Ey of the affine patch Ex (the complement of the projective

hyperplane P(H) in P(E)) is isomorphic to E. The proof is rather simple and uses
the fact that there is an affine bijection between Ey and the affine hyperplane w+ H
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in E, where w € E — H is any fixed vector. Choosing w as an origin in Ey, we know
that EH =H —|—Kw and since E = H & Kw, it is obvious how to define a linear
bijection between EH H¥ Kwand E = H® Kw. As a consequence the projective
spaces Ey and P(E) are isomorphic, i.e., there is a projectivity between them.

Lemma 5.9. Given any affine space (E, ?), Sor every projective space P(F), every
hyperplane H in F, and every map f: E — P(F) such that f(E) C Fy and f is affine
(Fy being viewed as an affine patch), there is a unique projective map f: E — P(F)
such that

(where i: ? - ? and ?: ? — H are the linear maps associated with the affine
mapsi: E — E and f: E — P(F)), as in the following diagram:

E—' - EcEoP(E)2 p(E)

S b

Fu CP(F) 2 P(H)

Proof. The existence of fis a consequence of Lemma 4.5, where we observe that 771\1
is isomorphic to F. Just take the projective map P(ﬂ : E — P(F), where f: E —
F is the unique linear map extending f. It remains to prove its uniqueness. Since

f: E — Fy is affine, for any a € E and any u € f, we have

fla+u)=fla)+ F (w),

where 7 E — Hisalinear map. If we fix some a € E, then f(a) = [w], for some
weF —Hand F = Kw® H. Assume that f E — P(F) exists with the desired
property. Then there is some linear map g: E — F such that f P(g). Since f =
foi, we must have f(a) = [w] = [g(a)], and thus g(a) = pw, for some p # 0. Also,

for every u €

fla+u) = w+? ): w+7 =[g(la+u))
= [g(a) +g(u)] = [uw+g(u )],

and thus we must have
Aluyw+ () F () = pw+ g w),

for some A (u) # 0. If Ker ? = ?, the linear map ? is the null map, and since we
are requiring that the restriction of fto P(?) be equal to P(?), the linear map g
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must also be the null map on ? Thus, fvis unique, and the restriction of tho P( ?)
is the partial map undefined everywhere.

If ? — Ker? # 0, by taking a basis of Im? and some inverse image of this
basis, we obtain a basis B of a subspace 3 of ? such that ? = Ker 7 @ 3 Since
E = Ker? @ G where dim(ﬁ) > 1, forany x € Ker? and any nonnull vector
y€E 8, we have

Ax)w = pw+g(x),
AW+ A0) T () = mw+g(),

and
AGe+ 2w+ AGe+y) F (x+) = pw+g(x+),
which by linearity yields
(A(r+9) = Ax) = A() + w+ (A (x+y) = A() F (v) = 0.

Since F = Kw® H and ?: E - H, we must have A (x+y) = A(y) and A(x) = pu.
Thus, g agrees with ? on Ker ?
If dim(a) = 1 then forany y € 8 we have

AGWHA) T () = pw+g(y),

and for any v # 0 we have

A(vy)w+A(vy) F (vy) = pw+g(vy),

which by linearity yields

(A(vy) = VA() — 4 Vi) w+ (VA(vy) = VA(Y) F () = 0.

Since F = Kw®H, 7: E — H, and v # 0, we must have A(vy) = A(y). Then we
must also have (A(y) —u)(1—v)=0.

If K = {0, 1}, since the only nonzero scalar is 1, it is immediate that g(y) = ?(y),
and we are done. Otherwise, for v #£ 0,1, we get A(y) = u forall y € 8 Then

g= [,L? on E, and the restriction of f=P(g)to P(?) is equal to P(?) But
now g is completely determined by

g(uF 2a) = Ag(a) +g(u) = Apw+ p f (u).

Thus, we have g = /.Lf.



132 5 Basics of Projective Geometry

Otherwise, if dim(ﬁ) > 2, then for any two distinct basis vectors u and v in B,

A(wyw+ () F () = pw+g(u),
A@WH+AE) F () = pw+g(v),
and .
A+ v)w+ A(u+v) T (+v) = pw+ g(u+v),

and by linearity, we get

(A(u+v) = A(u) = A(v) + )w+ (A (u+v) —MW)?(M)
+ Autv) =AW F (v) =0.

Since F = Kw®H, ?: E—H , and ?(u) and ?(v) are linearly independent

(because 7 in injective on 6), we must have
A(utv) = A(u) = A(v) = i,

which implies that g = LL? on ?, and the restriction of fv: P(g)to P(?) is equal
to P( ?) As in the previous case, g is completely determined by

g(uF 2a) = g(a) + g(u) = Apw+ p f (u).
Again, we have g = uf, and thus fis unique. O

@ The requirement that the restriction of fv: P(g) to P(?) be equal to

P(?) is necessary for the uniqueness of f~ The problem comes up when
f is a constant map. Indeed, if f is the constant map defined such that f(a) = [w]
for some fixed vector w € F, it can be shown that any linear map g: E — F defined

such that g(a) = uw and g(u) = @(u)w for all u € f, for some u # 0, and some
linear form ¢: E = F satisfies f=P(g)oi.

Lemma 5.9 shows that (E ,P(?),i> is the projective completion of the affine
space E. B

The projective completion E of an affine space E is a very handy place in which
to do geometry in, mainly because the following facts can be easily established.

There is a bijection between affine subspaces of E and projective subspaces of E
not contained in P(?) Two affine subspaces of E are parallel iff the corresponding
projective subspaces of E have the same intersection with the hyperplane at infinity
P(?) There is also a bijection between affine maps from E to F' and projective

maps from EtoF mapping the hyperplane at infinity P(?) into the hyperplane at
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infinity P(?) In the projective plane, two distinct lines intersect in a single point
(possibly at infinity, when the lines are parallel). In the projective space, two distinct
planes intersect in a single line (possibly at infinity, when the planes are parallel).
In the projective space, a plane and a line not contained in that plane intersect in a
single point (possibly at infinity, when the plane and the line are parallel).

5.7 Making Good Use of Hyperplanes at Infinity

Given a vector space £ and a hyperplane H in E, we have already observed that
the projective spaces Ey and P(E) are isomorphic. Thus, P(H) can be viewed as
the hyperplane at infinity in P(E), and the considerations applying to the projective
completion of an affine space apply to the affine patch Ey on P(E). This fact yields
a powerful and elegant method for proving theorems in projective geometry. The
general schema is to choose some projective hyperplane P(H) in P(E), view it as
the “hyperplane at infinity,” then prove an affine version of the desired result in the
affine patch Ey (the complement of P(H) in P(E), which has an affine structure),
and then transfer this result back to the projective space P(E). This technique is
often called “sending objects to infinity.” We refer the reader to geometry textbooks
for a comprehensive development of these ideas (for example, Berger [3, 4], Samuel
[23], Sidler [24], Tisseron [26], or Pedoe [21]), but we cannot resist presenting the
projective versions of the theorems of Pappus and Desargues. Indeed, the method
of sending points to infinity provides some strikingly elegant proofs. We begin with
Pappus’s theorem, illustrated in Figure 5.5.

Lemma 5.10. Given any projective plane P(E) and any two distinct lines D and
D', for any distinct points a,b,c,a’,b’,c’, with a,b,c on D and a',b’,c’ on D', if
a,b,c,d b ,c are distinct from the intersection of D and D', then the intersection
points p={b,c'yN (V' c), g={a,/yYN{d ,c), and r = (a,b’) N {d’,b) are collinear.

Proof. First, since any two lines in a projective plane intersect in a single point, the
points p, g, r are well defined. Choose A = (p,r) as the line at infinity, and consider
the affine plane X = P(E) — A. Since {a,b’) and (&', b) intersect at a point at infinity
ron A, (a,b') and (d',b) are parallel, and similarly (b,c’) and (b’,c) are parallel.
Thus, by the affine version of Pappus’s theorem (Lemma 2.11), the lines {a,c’) and
(d,c) are parallel, which means that their intersection g is on the line at infinity
A = {p,r), which means that p, g, r are collinear. O

By working in the projective completion of an affine plane, we can obtain an
improved version of Pappus’s theorem for affine planes. The reader will have to
figure out how to deal with the special cases where some of p, g, r go to infinity.

Now, we prove a projective version of Desargues’s theorem slightly more general
than that given in Lemma 5.7. It is interesting that the proof is radically different,
depending on the dimension of the projective space P(E). This is not surprising.
In axiomatic presentations of projective plane geometry, Desargues’s theorem is
independent of the other axioms. Desargues’s theorem is illustrated in Figure 5.6.
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Fig. 5.5 Pappus’s theorem (projective version).

Q4
IS

Fig. 5.6 Desargues’s theorem (projective version).
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Lemma 5.11. Let P(E) be a projective space. Given two triangles (a,b,c) and
(d',b',c"), where the points a,b,c,a',b',c’ are pairwise distinct and the lines A =
(b,c), B=(a,c), C={a,b), A'=(b',c'), B =(d,c'), C'=(d',b') are pairwise dis-
tinct, if the lines {a,d’), (b,b'), and {(c,c’) intersect in a common point d distinct from
a,b,c, d',b',c, then the intersection points p = (b,c) N (V',c'), g = {a,c)N{d, ),
and r = {a,b) N {d',b') belong to a common line distinct from A,B,C, A',B'.C'.

Proof. First, it is immediately shown that the line (p,q) is distinct from the lines
A,B,C, A’ B',C’. Let us assume that P(FE) has dimension n > 3. If the seven points
d,a,b,c,d b, generate a projective subspace of dimension 3, then by Lemma 5.1,
the intersection of the two planes (a,b,c) and (a’,b’,c’) is a line, and thus p,q, r are
collinear.

If P(E) has dimension n = 2 or the seven points d,a,b,c,a’,b’,c’ generate a
projective subspace of dimension 2, we use the following argument. In the projective
plane X generated by the seven points d,a,b,c,a’,b’,c’, choose the projective line
A = {p,r) as the line at infinity. Then in the affine plane ¥ = X — A, the lines (b, ¢)
and (b',c') are parallel, and the lines {(a,b) and (d’,b’) are parallel, and the lines
(a,d’), (b,b"), and (c,c’) are either parallel or concurrent. Then by the converse of
the affine version of Desargues’s theorem (Lemma 2.12), the lines (a,c) and {(d’,c’)
are parallel, which means that their intersection ¢ belongs to the line at infinity
A = {(p,r), and thus that p,q,r are collinear. O

The converse of Desargues’s theorem also holds (see the problems). Using the
projective completion of an affine space, it is easy to state an improved affine version
of Desargues’s theorem. The reader will have to figure out how to deal with the case
where some of the points p,q,r go to infinity. It can also be shown that Pappus’s
theorem implies Desargues’s theorem. Many results of projective or affine geometry
can be obtained using the method of “sending points to infinity.”

We now discuss briefly the notion of cross-ratio, since it is a major concept of
projective geometry.

5.8 The Cross-Ratio

Recall that affine maps preserve the ratio of three collinear points. In general, projec-
tive maps do not preserve the ratio of three collinear points. However, bijective pro-
jective maps preserve the “ratio of ratios” of any four collinear points (three of which
are distinct). Such ratios are called cross-ratios (in French, “birapport”). There are
several ways of introducing cross-ratios, but since we already have Lemma 5.5 at
our disposal, we can circumvent some of the tedious calculations needed if other
approaches are chosen.

Given a field K, say K = R, recall that the projective line P} consists of all equiv-
alence classes [x,y] of pairs (x,y) € K? such that (x,y) # (0,0), under the equiva-
lence relation ~ defined such that
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(x1,31) ~ (x2,y2) iff x> =2Ax; and y, = Ay,

for some A € K — {0}. Letting oo = [1,0], the projective line P} is in bijection with
K U {oo}. Furthermore, letting 0 = [0,1] and 1 = [1, 1], the triple (e0,0,1) forms a
projective frame for ]P)}<. Using this projective frame and Lemma 5.5, we define the
cross-ratio of four collinear points as follows.

Definition 5.8. Given a projective line A = P(D) over a field K, for any sequence
(a,b,c,d) of four points in A, where a,b, ¢ are distinct (i.e., (a,b,c) is a projective
frame), the cross-ratio [a,b,c,d) is defined as the element 4(d) € Pk, where i: A —
P} is the unique projectivity such that h(a) = oo, h(b) = 0, and h(c) = 1 (which
exists by Lemma 5.5, since (a,b,c) is a projective frame for A and («,0,1) is a
projective frame for ]P’}<). For any projective space P(E) (of dimension > 2) over a
field K and any sequence (a,b,c,d) of four collinear points in P(E), where a,b,c
are distinct, the cross-ratio [a,b,c,d] is defined using the projective line A that the
points a,b,c,d define. For any affine space E and any sequence (a,b,c,d) of four
collinear points in E, where a,b,c are distinct, the cross-ratio [a,b,c,d] is defined
by considering E as embedded in E.

It should be noted that the definition of the cross-ratio [a, b, ¢,d] depends on the
order of the points. Thus, there could be 24 = 4! different possible values depending
on the permutation of {a,b,c,d}. In fact, there are at most 6 distinct values. Also,
note that [a,b,c,d] = iffd = a, [a,b,c,d] =0iff d = b, and [a,b,c,d] = 1 iffd = c.
Thus, [a,b,c,d] € K—{0,1}iff d ¢ {a,b,c}.

The following lemma is almost obvious, but very important. It shows that projec-
tivities between projective lines are characterized by the preservation of the cross-
ratio of any four points (three of which are distinct).

Lemma 5.12. Given any two projective lines A and A', for any sequence (a,b,c,d)
of points in A and any sequence (a',b',c’,d") of points in A', if a,b,c are distinct and
a,b',c are distinct, there is a unique projectivity f: A — A’ such that f(a) = d,
fb)=V, f(c)=C, and f(d) =d' iff [a,b,c,d] = [d,b',c,d'].

Proof. First, assume that f: A — A’ is a projectivity such that f(a) = d/, f(b) =
b, f(c)=c, and f(d) = d'. Let h: A — Pk be the unique projectivity such that
h(a) = o, h(b) = 0, and h(c) = 1, and let h': A’ — Pk be the unique projectivity
such that #'(a’) = oo, K/ (b') = 0, and W' (') = 1. By definition, [a,b,c,d] = h(d)
and [@',b',c’,d'] = I'(d"). However, I/ o f: A — P} is a projectivity such that (h' o
f)(a) = oo, (Wo f)(b) =0, and (' o f)(c) = 1, and by the uniqueness of h, we get
h=H o f.Butthen, [a,b,c,d] = h(d) =K (f(d)) =H(d) =|d b,

Conversely, assume that [a,b,c,d] = [d',b',c/,d']. Since (a,b,c) and (d', ¥, ')
are projective frames, by Lemma 5.5, there is a unique projectivity g: A — A’ such
that g(a) = d', g(b) = b', and g(c) = ¢’. Now, i o g: A — PL is a projectivity such
that (k' og)(a) = oo, (W' 0g)(b) =0, and (W og)(c) =1, and thus, i = h’ o g. However,
W(d')=1d,b,,d]|=]a,b,c,d)=h(d)=h(g(d)), and since /' is injective, we get
d=g(d). O
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As a corollary of Lemma 5.12, given any three distinct points a, b, c on a projec-
tive line A, for every A € Pk there is a unique point d € A such that [a,b,c,d] = A.
In order to compute explicitly the cross-ratio, we show the following easy lemma.

Lemma 5.13. Given any projective line A = P(D), for any three distinct points
a,b,cin A, ifa = p(u), b= p(v), and ¢ = p(u+v), where (u,v) is a basis of D,
and for any [A, U] € Pk and any point d € A, we have

d=pAutpv) iff la,b,c,d]=[A,ul~.

Proof. If (e1,e,) is the basis of K2 such that e; = (1,0) and e» = (0, 1), it is obvious
that p(e;) = oo, p(e2) =0, and p(ej +e;) = 1. Let f: D — K? be the bijective linear
map such that f(u) = e; and f(v) = e>. Then f(u+v) = e| + 7, and thus f induces
the unique projectivity P(f): P(D) — Pk such that P(f)(a) = o, P(f)(b) =0, and
P(f)(c) = 1. Then

P(f)(p(Au+pv)) = [f(Au+pv)]. = [Aer + pes) = [A, u]

that is,
d=pQu+py) iff [a.b,e.d) = [A,u]..

a

We can now compute the cross-ratio explicitly for any given basis (u,v) of D.
Assume that a,b, ¢,d have homogeneous coordinates [A;, it1], [A2, U], [A3, U3], and
[A4, U4] over the projective frame induced by (u,v). Letting w; = A;u + ;v, we have
a=p(wi),b=pwy),c=p(ws), and d = p(wy). Since a and b are distinct, w; and
wy are linearly independent, and we can write w3 = aw + Bwy and wy = yw; + Ows,
which can also be written as

1)
W4=gaw1+—[3wz,

B

and by Lemma 5.13, [a,b,c,d] = [y/o,8/B]. However, since w; and w; are lin-
early independent, it is possible to solve for a, 3,7, § in terms of the homogeneous
coordinates, obtaining expressions involving determinants:

o det(W3,W2) . det(W17W3)
~ det(wy,wy)’ ~ det(wy,wy)’
_det(wg,w») 5 det(wy,wy)
V= det(wy,wa)’ ~ det(wy,wr)’
and thus, assuming that d # a, we get
A3 A A M
Uz Ug

[a7 b7 C7 d] =

/

LA
Uz

A Ay
U4 Ho
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When d = a, we have [a,b,c,d] = o. In particular, if A is the projective completion
of an affine line D, then u; = 1, and we get

13—,11/14—11 @ /da

7b7 7d: = N
la,b,¢,d] -2/ =X b/ db
When d = oo, we get
[a,b, ¢, o] c
a7 7C7°O: 3
b

which is just the usual ratio (although we defined it as —ratio(a, c¢,b)).

We briefly mention some of the properties of the cross-ratio. For example, the
cross-ratio [a,b,c,d] is invariant if any two elements and the complementary two
elements are transposed, and letting 0! = and =1 =0, we have

la,b.c,d] = [b,a,c,d] " = [a,b,d,c]”"

and
[a,b,c,d] =1—|a,c,b,d].

Since the permutations of {a,b,c,d} are generated by the above transpositions, the
cross-ratio takes at most six values. Letting A = [a, b, ¢, d], if A € {e0,0,1}, then any
permutation of {a, b, c,d} yields a cross-ratio in {e,0,1}, and if A ¢ {e0,0,1}, then
there are at most the six values

1 1 1 A
o 1-A 1

A -, —, —.
’ AT 1= A-1

We also define when four points form a harmonic division. For this, we need to
assume that K is not of characteristic 2.

Definition 5.9. Given a projective line A, we say that a sequence of four collinear
points (a,b,c,d) in A (where a,b,c are distinct) forms a harmonic division if
[a,b,c,d] = —1. When [a,b,c,d] = —1, we also say that ¢ and d are harmonic con-
Jjugates of a and b.

If a, b, c are distinct collinear points in some affine space, from

j
[a,b,c,00) = =,
&
we note that ¢ is the midpoint of (a,b) iff [a,b,c,00] = —1, that is, if (a,b,c,)

forms a harmonic division. Figure 5.7 shows a harmonic division (a,b,¢,d) on the
real line, where the coordinates of (a,b,c,d) are (—2,2,1,4).

a c b d

Fig. 5.7 Four points forming a harmonic division.
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There is a nice geometric interpretation of harmonic divisions in terms of quad-
rangles (or complete quadrilaterals). Consider the quadrangle (projective frame)
(a,b,c,d) in a projective plane, and let @’ be the intersection of (d,a) and (b,c),
b’ be the intersection of {(d,b) and (a,c), and ¢’ be the intersection of (d,c) and
(a,b). If we let g be the intersection of {a,b) and (da’,b’), then it is an interesting
exercise to show that (a,b, g,c’) is a harmonic division.

a 4 b d
Fig. 5.8 A quadrangle, and harmonic divisions.

In fact, it can be shown that the following quadruples of lines form harmonic
divisions: ({(c,a),{b’,d’), {d,b), (V' ,c")), ({b,a),{c',d'), (d,c),{c',b')), and ({b,c),
(d',c'Y,(a,d),{d',b')); see Figure 5.8. For more on harmonic divisions, the inter-
ested reader should consult any text on projective geometry (for example, Berger
[3, 4], Samuel [23], Sidler [24], Tisseron [26], or Pedoe [21]).

Having the notion of cross-ratio at our disposal, we can interpret linear interpola-
tion in the homogenization E of an affine space E as determining a cross-ratio in the
projective completion E of E! This simple fact provides a geometric interpretation
of the rational version of the de Casteljau algorithm; see the additional material on
the web site (see http://www.cis.upenn.edu/~jean/gbooks/geom2.
html).

Given any affine space E, let 6 and 6, be two linearly independent vectors in E,
and let r € K be any scalar. Consider

6;=6 16

and
942(1—t)-91+t-62.
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Observe that the conditions for applying Lemma 5.13 are satisfied, and that the
cross-ratio of the points p(6)), p(62), p(63), and p(8y) in the projective space E is
given by

[p(61),p(62),p(63),p(64)] = [1 —1,1]~.

Assuming 7 # 0 (the case where 64 # 6,), this yields

1—t¢

[P(61),(62), p(63), p(64)] = ——.

Thus, determining 64 using the affine interpolation
942(1—t)-91:|\—l‘-92

inE is equivalent to finding the point p(6s) in the projective space E such that the
cross-ratio of the four points (p(6,),p(6),p(63),p(64)) is equal to (1 —¢)/z. In the
particular case where 6; = {(a, &) and 6, = (b, ), where a and b are distinct points
of E,if a+ B #0and (1 —r)a+1f # 0, we know that

93=<$a+ai+ﬁb,a+ﬁ>

_ (1—1‘)06 lﬁ
%= <(1—I)Ol+tﬂa+ 0—na+iPB b, (1 —t)oc+t[3>,

and

and letting

_ p
c= a+ﬁa+a+ﬂb
and
(1-1o B

d= b,

(—na+iB T 0=natp

we also have 1
—t
[a,b,c,d] = T

Readers may have fun in verifying that when ¢t = %, the points (a,d,b,c) form a
harmonic division!

When a+ f =0 or (1 —f)a+t =0, we have to consider points at infinity,
which is better handled in E. In any case, the computation of d can be viewed as
determining the unique point d such that [a,b,c¢,d] = (1 —1)/t, using

a B
= b.
¢ a+Ba+a+B
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5.9 Duality in Projective Geometry

We now consider duality in projective geometry. Given a vector space E of finite
dimension n + 1, recall that its dual space E* is the vector space of all linear forms
f: E — K and that E* is isomorphic to E. We also have a canonical isomorphism
between E and its bidual E**, which allows us to identify E and E**.

Let sZ(E) denote the set of hyperplanes in P(E). In Section 5.3 we observed
that the map

p(f) — P(Ker )

is a bijection between P(E*) and .7 (E), in which the equivalence class p(f) =
{Af| A # 0} of a nonnull linear form f € E* is mapped to the hyperplane P(Ker f).
Using the above bijection between P(E*) and J#(E), a projective subspace P(U)
of P(E*) (where U is a subspace of E*) can be identified with a subset of 77 (E),
namely the family

{P(H) | H =Ker f, f € U—{0}}

consisting of the projective hyperplanes in 5 (E) corresponding to nonnull linear
forms in U. Such subsets of 77 (E) are called linear systems (of hyperplanes).

The bijection between P(E*) and .77 (E) allows us to view 7 (E) as a projective
space, and linear systems as projective subspaces of 5 (E). In the projective space
J(E), a point is a hyperplane in P(E)! The duality between subspaces of E and
subspaces of E* (reviewed below) and the fact that there is a bijection between
P(E*) and 27 (E) yields a powerful duality between the set of projective subspaces
of P(E) and the set of linear systems in JZ(E) (or equivalently, the set of projective
subspaces of P(E*)).

The idea of duality in projective geometry goes back to Gergonne and Poncelet,
in the early nineteenth century. However, Poncelet had a more restricted type of
duality in mind (polarity with respect to a conic or a quadric), whereas Gergonne
had the more general idea of the duality between points and lines (or points and
planes). This more general duality arises from a specific pairing between E and E*
(a nonsingular bilinear form). Here we consider the pairing (—,—): E* X E — K,
defined such that

<f,V> :f(V),

forall f € E* and all v € E. Recall that given a subset V of E (respectively a subset
U of E*), the orthogonal V° of V is the subspace of E* defined such that

VO={fecE"|(f,v)=0, foreveryv €V},
and that the orthogonal U° of U is the subspace of E defined such that
U'={veE|(fv)=0, forevery f € U}.

Then, by a standard theorem (since E and E* have the same finite dimension n+ 1),
U=U%V=v% and the maps
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V=V’ and U—U°

are inverse bijections, where V is a subspace of E, and U is a subspace of E*.

These maps set up a duality between subspaces of E and subspaces of E*. Fur-
thermore, we know that U has dimension k iff UY has dimension n+ 1 — k, and
similarly for V and V°.

Since a linear system P = P(U) of hyperplanes in J#(E) corresponds to a sub-
space U of E*, and since U" is the intersection of all the hyperplanes defined by
nonnull linear forms in U, we can view a linear system P = P(U) in J#(E) as the
family of hyperplanes containing P(U°).

In view of the identification of P(E*) with the set 5#(E) of hyperplanes in P(E),
by passing to projective spaces, the above bijection between the set of subspaces
of E and the set of subspaces of E* yields a bijection between the set of projective
subspaces of P(E) and the set of linear systems in .77 (E) (or equivalently, the set of
projective subspaces of P(E*)).

More specifically, assuming that £ has dimension n + 1, so that P(E) has dimen-
sion n, if Q = P(V) is any projective subspace of P(E) (where V is any subspace of
E)and if P =P(U) is any linear system in ¢ (E) (where U is any subspace of E*),
we get a subspace Q" of /7 (E) defined by

Q0 ={P(H) | Q CP(H), P(H) a hyperplane in .77 (E)},
and a subspace P° of P(E) defined by
P’ = (){P(H) | P(H) € P,P(H) a hyperplane in .7 (E)}.

We have P = P% and Q = 0%. Since Q' is determined by P(V?), if Q = P(V) has
dimension k (i.e., if V has dimension k+ 1), then QO has dimension n — k — 1 (since
V has dimension k+ 1 and diim(E) = n+ 1, then V? has dimension n+ 1 — (k+1) =
n—k). Thus,

dim(Q) 4 dim(Q%) =n—1,

and similarly, dim(P) + dim(P%) =n — 1.

A linear system P = P(U) of hyperplanes in 5 (E) is called a pencil of hy-
perplanes if it corresponds to a projective line in P(E*), which means that U is a
subspace of dimension 2 of E*. From dim(P) +dim(P") = n— 1, a pencil of hyper-
planes P is the family of hyperplanes in #(E) containing some projective subspace
P(V) of dimension n — 2 (where P(V) is a projective subspace of P(E), and P(E)
has dimension n). When n = 2, a pencil of hyperplanes in ¢ (E), also called a pencil
of lines, is the family of lines passing through a given point. When n = 3, a pencil of
hyperplanes in 5 (E), also called a pencil of planes, is the family of planes passing
through a given line.

When n = 2, the above duality takes a rather simple form. In this case (of a
projective plane P(E)), the duality is a bijection between points and lines with the
following properties:
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* A point a maps to a line D, (the pencil of lines in s (E) containing a, also
denoted by a*)

e Aline D maps to a point pp (the line D in SZ(E)!)

e Two points a,b map to lines D,, Dy, such that the intersection of D, and Dy, is
the point p ;) corresponding to the line (a,b) via duality

* A line D containing two points a,b maps to the intersection pp of the lines D,
and Dy,.

e Ifae€ D, whereais apoint and D is a line, then pp € D,,.

The reader will discover that the dual of Desargues’s theorem is its converse.
This is a nice way of getting the converse for free! We will not spoil the reader’s fun
and let him discover the dual of Pappus’s theorem.

To conclude our quick tour of projective geometry, we estabish a connection
between the cross-ratio of hyperplanes in a pencil of hyperplanes with the cross-
ratio of the intersection points of any line not contained in any hyperplane in this
pencil with four hyperplanes in this pencil.

5.10 Cross-Ratios of Hyperplanes

Given a pencil P = P(U) of hyperplanes in J#(E), for any sequence (H;, H,, H,
Hy) of hyperplanes in this pencil, if H, Hp, H3 are distinct, we define the cross-ratio
[Hy,H,,Hs,Hy) as the cross-ratio of the hyperplanes H; considered as points on the
projective line P in P(E*). In particular, in a projective plane P(E), given any four
concurrent lines Dy, Dy, D3, D4, where Dy, D,, D3 are distinct, for any two distinct
lines A and A’ not passing through the common intersection ¢ of the lines D;, letting
di = AND;, and d! = A'ND;, note that the projection of center ¢ from A to A’ maps
each d; to d..

Since such a projection is a projectivity, and since projectivities between lines
preserve cross-ratios, we have

[dlad27d37d4] = [ iadéadf/ivdéll]a

which means that the cross-ratio of the d; is independent of the line A (see Figure
5.9).
In fact, this cross-ratio is equal to [Dy,D;, D3, Dy], as shown in the next lemma.

Lemma 5.14. Let P =P(U) be a pencil of hyperplanes in 7€ (E), and let A =P(D)
be any projective line such that A ¢ H for all H € P. The map h: P — A defined
such that h(H) = HN A for every hyperplane H € P is a projectivity. Furthermore,
Sor any sequence (Hy,H,,Hs,Hs) of hyperplanes in the pencil P, if H\,H,,Hs are
distinct and d; = A N H;, then [dl,d27d3,d4] = [HI,HQ,H3,H4].

Proof. First, the map h: P — A is well-defined, since in a projective space, every
line A = P(D) not contained in a hyperplane intersects this hyperplane in exactly
one point. Since P = P(U) is a pencil of hyperplanes in 5#(E), U has dimension 2,
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Dl D2 \ D3

Fig. 5.9 A pencil of lines and its cross-ratio with intersecting lines.

and let @ and y be two nonnull linear forms in E* that constitute a basis of U, and let
F=¢ '(0)and G=y !(0). Leta=P(F)NA and b = P(G) N A. There are some
vectors u,v € D such that a = p(u) and b = p(v), and since ¢ and y are linearly
independent, we have a # b, and we can choose ¢ and y such that ¢(v) = —1 and
y(u) = 1. Also, (u,v) is a basis of D. Then a point p(au+ v) on A belongs to the
hyperplane H = p(y¢ + S y) of the pencil P iff

(Yo +dy)(au+pv) =0,

which, since @(u) =0, y(v) =0, o(v) = —1, and y(u) = 1, yields y8 = da, which
is equivalent to [, 8] = [y, 8] in P(K?). But then the map /: P — A is a projectivity.
Letting d; = A N H;, since by Lemma 5.12 a projectivity of lines preserves the cross-
ratio, we get [dl,dz,d3,d4] = [HI,H27H3,H4]. O

5.11 Complexification of a Real Projective Space

Notions such as orthogonality, angles, and distance between points are not projec-
tive concepts. In order to define such notions, one needs an inner product on the
underlying vector space. We say that such notions belong to Euclidean geometry.
At first glance, the fact that some important Euclidean concepts are not covered by
projective geometry seems a major drawback of projective geometry. Fortunately,
geometers of the nineteenth century (including Laguerre, Monge, Poncelet, Chasles,
von Staudt, Cayley, and Klein) found an astute way of recovering certain Euclidean
notions such as angles and orthogonality (also circles) by embedding real projec-
tive spaces into complex projective spaces. In the next two sections we will give a
brief account of this method. More details can be found in Berger [3, 4], Pedoe [21],
Samuel [23], Coxeter [5, 6], Sidler [24], Tisseron [26], Lehmann and Bkouche [20],
and, of course, Volume II of Veblen and Young [29]. Readers may want to consult
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Chapter 6, which gives a review of Euclidean geometry, especially Section 8.8, on
angles.

The first step is to embed a real vector space E into a complex vector space Ec.
A quick but somewhat bewildering way to do so is to define the complexification
of E as the tensor product C® E. A more tangible way is to define the following
structure.

Definition 5.10. Given a real vector space E, let Ec be the structure E x E under
the addition operation

(w1, up) + (vi, va) = (ur + vy, up +v2),
and let multiplication by a complex scalar z = x + iy be defined such that
(X+ ly) . (Mu V) = (‘xu —yv,yu +XV).

It is easily shown that the structure E¢ is a complex vector space. It is also im-
mediate that
(0,v) =i(v, 0),

and thus, identifying E with the subspace of E¢ consisting of all vectors of the form
(u, 0), we can write
(u,v) =u+iv

Given a vector w = u+1v, its conjugate w is the vector w = u — iv. Then conjugation
is a map from E to itself that is an involution. If (ey,...,e,) is any basis of E, then
((e1,0),...,(en,0)) is a basis of Ec. We call such a basis a real basis.

Given a linear map f: E — E, the map f can be extended to a linear map
fc: Ec — E¢ defined such that

Je(u+iv) = () +if(v).

We define the complexification of P(E) as P(Ec). If (E, ?) is areal affine space,

we define the complexified projective completion of (E , ?) as P(EC) and denote it

by Ec. Then E is naturally embedded in Ec, and it is called the set of real points of
Ec.

If E has dimension n+ 1 and (ey,...,e,41) is a basis of E, given any homoge-
neous polynomial P(xy,...,x,+1) over C of total degree m, because P is homoge-
neous, it is immediately verified that

P(Xl,... a-anrl) =0
iff
P(Axi,...,Axy41) =0,

forany A # 0. Thus, we can define the hypersurface V (P) of equation P(x1,...,Xn 1)
= 0 as the subset of E¢ consisting of all points of homogeneous coordinates
(x1,-..,%y41) such that P(xy,...,x,41) = 0. We say that the hypersurface V(P)
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of equation P(xy,...,x,+1) = 0 is real whenever P(xy,...,x,+1) = 0 implies that

P(fl,...,x,hq) =0.

g% Note that a real hypersurface may have points other than real points, or
no real points at all. For example,

Xy = =0
contains real and complex points such as (1,1,0) and (1,—1,0), and
4y +2=0

contains only complex points. When m = 2 (where m is the total degree of P), a
hypersurface is called a quadric, and when m = 2 and n = 2, a conic. Whenm =1,
a hypersurface is just a hyperplane.

Given any homogeneous polynomial P(xi,...,x,+1) over R of total degree m,
since R C C, P viewed as a homogeneous polynomial over C defines a hypersurface
V(P)c in Ec, and also a hypersurface V (P) in P(E). It is clear that V (P) is naturally
embedded in V(P)c, and V(P)c is called the complexification of V (P).

We now show how certain real quadrics without real points can be used to define
orthogonality and angles.

5.12 Similarity Structures on a Projective Space

We begin with a real Euclidean plane (E ) f) We will show that the angle of two
lines Dy and D; can be expressed as a certain cross-ratio involving the lines Dy, D;
and also two lines Dy and Djy joining the intersection point D1 N D, of Dy and D, to
two complex points at infinity / and J called the circular points. However, there is
a slight problem, which is that we haven’t yet defined the angle of two lines! Recall
from Section 8.8 that we define the (oriented) angle uju; of two unit vectors uj,
uy as the equivalence class of pairs of unit vectors under the equivalence relation
defined such that
(ul,u2> = <u3,u4>

iff there is some rotation r such that r(u;) = u3 and r(uy) = uy. The set of (oriented)
angles of vectors is a group isomorphic to the group SO(2) of plane rotations. If the
Euclidean plane is oriented, the measure of the angle of two vectors is defined up
to 2km (k € Z). The angle of two vectors has a measure that is either 6 or 27 — 0,
where 6 € [0,27[, depending on the orientation of the plane. The problem with
lines is that they are not oriented: A line is defined by a point a and a vector u, but
also by a and —u. Given any two lines D and D, if r is a rotation of angle 0 such
that (D) = D,, note that the rotation —r of angle 0 + 7 also maps D; onto D,.
Thus, in order to define the (oriented) angle lfﬁz of two lines D, D,, we define an
equivalence relation on pairs of lines as follows:
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<D17D2> = <D37D4>

if there is some rotation r such that r(D{) = D, and r(D3) = Dy.

It can be verified that the set of (oriented) angles of lines is a group isomorphic
to the quotient group SO(2)/{id, —id}, also denoted by PSO(2). In order to define
the measure of the angle of two lines, the Euclidean plane E must be oriented. The
measure of the angle D/l\D2 of two lines is defined up to kx (k € Z). The angle of
two lines has a measure that is either 6 or @ — 0, where 0 € [0, [, depending on the
orientation of the plane. We now go back to the circular points.

Let (ap,a1,a2,a3) be any projective frame for E¢ such that (ag,a;) arises from

an orthonormal basis (u1,uy) of E and the line at infinity H corresponds to z =0
(where (x,y,z) are the homogeneous coordinates of a point w.r.t. (ag,ar,az,a3)).
Consider the points belonging to the intersection of the real conic X of equation

X4y’ = =0
with the line at infinity z = 0. For such points, x> +y? = 0 and z = 0, and since
2 2 . . .
x4y = (y—iv)(y+ix),

we get exactly two points I and J of homogeneous coordinates (1,—i,0) and (1,1,0).
The points I and J are called the circular points, or the absolute points, of EC. They
are complex points at infinity. Any line containing either I or J is called an isotropic
line.

What is remarkable about / and J is that they allow the definition of the angle
of two lines in terms of a certain cross-ratio. Indeed, consider two distinct real lines
D; and D; in E, and let D; and Dy be the isotropic lines joining D1 N D, to I and
J. We will compute the cross-ratio [Dy,D,,D;,D,]. For this, we simply have to
compute the cross-ratio of the four points obtained by intersecting Dy,D,, Dy, Dy
with any line not passing through D; N D,. By changing frame if necessary, so that
Dy N D, = ap, we can assume that the equations of the lines D,D;,Dy,Dy are of
the form

y = mx,
y = max,
y = —ix,
y = ix,

leaving the cases m| = oo and my = oo as a simple exercise. If we choose z =0 as the
intersecting line, we need to compute the cross-ratio of the points (D )e = (1,my,0),
(D2)e = (1,my,0), I = (1,—1,0), and J = (1,i,0), and we get

(—i—ml) (i—mz)
(i—mp) (=i—my)’

[DlvDZlevDJ] = [(Dl)“’v(Dz)“’vlv‘l] =
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that is,
mymy +1 —i—i(}’l’lz —ml)

Dy,Dy,D;,Dy] = : .
[ bEL J] m1m2+1—1(m2—m1)

However, since m; and m; are the slopes of the lines D; and D;, it is well known
that if 0 is the (oriented) angle between D and D», then

my —m
tan@ = —— L
mymy + 1

Thus, we have

m1m2+1+i(m2—m1) B 1+itan@
mymy+1—i(my—m;) 1—itanf’

[D1,D>,D;,Dy] =

that is, ‘
[D1,D3,D1,Dj] = cos26 +isin26 = 20

One can check that the formula still holds when m| = co or my = oo, and also when
Dy = D,. The formula ‘
[D1,D3,D;,Dy] = ®

is known as Laguerre’s formula.
If U denotes the group {e‘e | = < 6 < n} of complex numbers of modulus 1,
recall that the map A : R — U defined such that

Ar)=¢e'
is a group homomorphism such that A ~! (1) = 2kx, where k € Z. The restriction
A )l—m,m[— (U—-{-1})
of A to | — &, ] is a bijection, and its inverse will be denoted by
logy: (U—-{-1})—=]—m, =x[.

For stating Lemma 5.15 more conveniently, we will extend log;;, to U by letting
log;;(—1) = &, even though the resulting function is not continuous at —1!. Then
we can write

1
0= EIOgU([Dl,Dz,DI,Dj]).

If the orientation of the plane E is reversed, 6 becomes 7w — 6, and since

oi2(7—0) _ 2in—i20 _ ,—i26

)

logy, (e2(7=9)) = —log,,(2%), and

1
0 =~ 1ogy ([D1.D2.D1.Dy)).
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In all cases, we have

1
0= §|10gU([D17D23D13DJ])|7

a formula due to Cayley. We summarize the above in the following lemma.

Lemma 5.15. Given any two lines D1,D; in a real Euclidean plane (E, ?), letting
Dy and Dy be the isotropic lines in EC Jjoining the intersection point D1 N\ D, of Dy
and D to the circular points I and J, if 0 is the angle of the two lines Dy, D;, we
have )
[D1,D;,D;,Dy] =e?,
known as Laguerre’s formula, and independently of the orientation of the plane, we
have |
6= §|10gU([D17D2,D1,DJ])|7

known as Cayley’s formula.

In particular, note that 6 = & /2 iff [Dy,D;,,D;,D;] = —1, that is, if (Dy,D,, Dy,
D;) forms a harmonic division. Thus, two lines D; and D; are orthogonal iff they
form a harmonic division with Dy and Dj.

The above considerations show that it is not necessary to assume that (E , ?) is
a real Euclidean plane to define the angle of two lines and orthogonality. Instead, it
is enough to assume that two complex conjugate points /,J on the line H at infinity
are given. We say that (I,J) provides a similarity structure on E¢. Note in passing
that a circle can be defined as a conic in E(c that contains the circular points 7,J.
Indeed, the equation of a conic is of the form

ax* +by* + exy+dxz +eyz+ f22 = 0.

If this conic contains the circular points I = (1,—i,0) and J = (1,1,0), we get the
two equations

a—b—ic=0,
a—b—+ic=0,

from which we get 2ic = 0 and a = b, that is, ¢ = 0 and a = b. The resulting equation
2 2 2 __
ax”“+ay” +dxz+eyz+ fz7=0

is indeed that of a circle.
Instead of using the function log;;: (U —{—1}) — ] — 7, 7| as logarithm, one
may use the complex logarithm function log: C* — B, where C* = C — {0} and

B={x+iy|x,yeR, -t <y<m}.

Indeed, the restriction of the complex exponential function z — e? to B is bijective,
and thus, log is well-defined on C* (note that log is a homeomorphism from C — {x |
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x€eR, x<0}onto {x+iy|x,y € R, —w <y <}, the interior of B). Then Cayley’s
formula reads as

1
0= Elog([Dl,Dz,DI,Dj]),

with a £ in front when the plane is nonoriented. Observe that this formula allows the
definition of the angle of two complex lines (possibly a complex number) and the
notion of orthogonality of complex lines. In this case, note that the isotropic lines
are orthogonal to themselves!

The definition of orthogonality of two lines Dy, D, in terms of (Dy,D,, Dy,D;)
forming a harmonic division can be used to give elegant proofs of various results.
Cayley’s formula can even be used in computer vision to explain modeling and cali-
brating cameras! (see Faugeras [10]). As an illustration, consider a triangle (a,b,¢),
and recall that the line a’ passing through a and orthogonal to (b,c¢) is called the
altitude of a, and similarly for b and c. It is well known that the altitudes a’,b’,c
intersect in a common point called the orthocenter of the triangle (a,b,c). This can
be shown in a number of ways using the circular points. Indeed, letting bceo,@boo,
acw,d.,, bl,, and c., denote the points at infinity of the lines (b,c), {(a,b), {a,c),d’, b,

and ¢/, we have
[bCw,al, 1,J] = —1, [abe,c,1,J] =—1, [ace,bl.,1,J]=—1,

and it is easy to show that there is an involution ¢ of the line at infinity such that

o(l)=1J,

o(J) =1,
o(bcw) = d.,,
o(abe) = .,
o(ace) = bl,.

Then, using the result stated in Problem 5.28, the lines a’,b’, ¢’ are concurrent. For
more details and other results, notably on the conics, see Sidler [24], Berger [4], and
Samuel [23].

The generalization of what we just did to real Euclidean spaces (E , ?) of di-
mension 7 is simple. Let (ao,...,a,+1) be any projective frame for Ec such that

(ag,...,an—1) arises from an orthonormal basis (uy,...,u,) of ? and the hyper-
plane at infinity H corresponds to x,;; = 0 (where (xi,...,x,+1) are the homo-
geneous coordinates of a point with respect to (ag,...,a,1)). Consider the points
belonging to the intersection of the real quadric X of equation

b =2 =0
with the hyperplane at infinity x,,+; = 0. For such points,

x%_|_...+xi:O and x,.1=0.
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Such points belong to a quadric called the absolute quadric of E(c, and denoted
by Q. Any line containing any point on the absolute quadric is called an isotropic
line. Then, given any two coplanar lines D and D; in E, these lines intersect the
hyperplane at infinity H in two points (D})e and (D;)ew, and the line A joining
(D)= and (D3)« intersects the absolute quadric € in two conjugate points I, and
J (also called circular points). It can be shown that the angle 6 between D and D,
is defined by Laguerre’s formula:

[(Dl)wa(DZ)“HIAaJA] = [D11D27D1A1D.’A] = ei297

where Dy, and Dy, are the lines joining the intersection D1 N D, of Dy and D; to
the circular points /4 and J,.
As in the case of a plane, the above considerations show that it is not necessary

to assume that (E , ?) is a real Euclidean space to define the angle of two lines and
orthogonality. Instead, it is enough to assume that a nondegenerate real quadric Q
in the hyperplane at infinity H and without real points is given. In particular, when
n = 3, the absolute quadric €2 is a nondegenerate real conic consisting of complex
points at infinity. We say that Q provides a similarity structure on E@.

It is also possible to show that the real projectivities of E(C that leave both the
hyperplane H at infinity and the absolute quadric 2 (globally) invariant form a
group which is none other than the group of similarities. A similarity is a map that
is the composition of an isometry (a member of O(n)), a central dilatation, and a
translation. For more details on the use of absolute quadrics to obtain some very
sophisticated results, the reader should consult Berger [3, 4], Pedoe [21], Samuel
[23], Coxeter [5], Sidler [24], Tisseron [26], Lehmann and Bkouche [20], and, of
course, Volume II of Veblen and Young [29], which also explains how some non-
Euclidean geometries are obtained by chosing the absolute quadric in an appropriate
fashion (after Cayley and Klein).

5.13 Some Applications of Projective Geometry

Projective geometry is definitely a jewel of pure mathematics and one of the major
mathematical achievements of the nineteenth century. It turns out to be a prerequi-
site for algebraic geometry, but to our surprise (and pleasure), it also turns out to
have applications in engineering. In this short section we summarize some of these
applications.

We first discuss applications of projective geometry to camera calibration, a cru-
cial problem in computer vision. Our brief presentation follows quite closely Trucco
and Verri [27] (Chapter 2 and Chapter 6). One should also consult Faugeras [10], or
Jain, Katsuri, and Schunck [18].

The pinhole (or perspective) model of a camera is a typical example from com-
puter vision that can be explained very simply in terms of projective transformations.
A pinhole camera consists of a point O called the center or focus of projection, and
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a plane 7 (not containing O) called the image plane. The distance f from the image
plane 7 to the center O is called the focal length. The line through O and perpen-
dicular to 7 is called the optical axis, and the point o, intersection of the optical
axis with the image plane is called the principal point or image center. The way the
camera works is that a point P in 3D space is projected onto the image plane (the
film) to a point p via the central projection of center O.

It is assumed that an orthonormal frame .%, is attached to the camera, with its
origin at O and its z-axis parallel to the optical axis. Such a frame is called the
camera reference frame. With respect to the camera reference frame, it is very easy
to write the equations relating the coordinates (x,y) (omitting z = f) of the image p
(in the image plane 7) of a point P of coordinates (X,Y,Z):

x=f5, y=f.

Typically, points in 3D space are defined by their coordinates not with respect to
the camera reference frame, but with respect to another frame .%,,, called the world
reference frame. However, for most computer vision algorithms, it is necessary to
know the coordinates of a point in 3D space with respect to the camera reference
frame. Thus, it is necessary to know the position and orientation of the camera with
respect to the frame .%,,. The position and orientation of the camera are given by
some affine transformation (R, T) mapping the frame .%#, to the frame .%., where
R is a rotation matrix and T is a translation vector. Furthermore, the coordinates
of an image point are typically known in terms of pixel coordinates, and it is also
necessary to transform the coordinates of an image point with respect to the camera
reference frame to pixel coordinates. In summary, it is necessary to know the trans-
formation that maps a point P in world coordinates (w.r.t. .%,) to pixel coordinates.

This transformation of world coordinates to pixel coordinates turns out to be a
projective transformation that depends on the extrinsic and the intrinsic parameters
of the camera. The extrinsic parameters of a camera are the location and orientation
of the camera with respect to the world reference frame .%,,. It is given by an affine
map (in fact, a rigid motion, see Chapter 8, Section 8.4). The intrinsic parameters of
a camera are the parameters needed to link the pixel coordinates of an image point to
the corresponding coordinates in the camera reference frame. If Py = (X,,,¥,,,Z,,)
and Pe = (X,,Y.,Z.) are the coordinates of the 3D point P with respect to the frames
F and Z, respectively, we can write

P.=R(Py—T).

Neglecting distorsions possibly introduced by the optics, the correspondence be-
tween the coordinates (x,y) of the image point with respect to .%. and the pixel
coordinates (xim,yim) is given by

X = _(xim - Ox)sxu

y=—im— Oy)sya
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where (ox,0y) are the pixel coordinates the principal point o and sy, sy are scaling
parameters.

After some simple calculations, the upshot of all this is that the transformation
between the homogeneous coordinates (X, Y, Z,, 1) of a 3D point and its homo-
geneous pixel coordinates (x,x;,x3) is given by

x| }Y(w
_ w

X2 =M Zw

X3 1

where the matrix M, known as the projection matrix, is a 3 X 4 matrix depending on
R, T, oy,0y, f (the focal length), and sy, s, (for the derivation of this equation, see
Trucco and Verri [27], Chapter 2).

The problem of estimating the extrinsic and the instrinsic parameters of a camera
is known as the camera calibration problem. It is an important problem in computer
vision. Now, using the equations

we get
f X,
Xim = —— =~ + 0y,
m stch"
f.
im = —— = t0y,
Yim sy Ze

relating the coordinates w.r.t. the camera reference frame to the pixel coordinates.
This suggests using the parameters f, = f/sy and f, = f /s, instead of the parame-
ters f,sy,sy. In fact, all we need are the parameters f, = f /sy and ¢ = $y/sx, called
the aspect ratio. Without loss of generality, it can also be assumed that (oy,0,) are
known. Then we have a total of eight parameters.

One way of solving the calibration problem is to try estimating f, ¢, the rotation
matrix R, and the translation vector T from N image points (x;,y;), projections of
N suitably chosen world points (X;,Y;,Z;), using the system of equations obtained
from the projection matrix. It turns out that if N > 7 and the points are not coplanar,
the rank of the system is 7, and the system has a nontrivial solution (up to a scalar)
that can be found using SVD methods (see Chapter 13, Trucco and Verri [27], or
Jain, Katsuri, and Schunck [18]).

Another method consists in estimating the whole projection matrix M, which
depends on 11 parameters, and then extracting extrinsic and intrinsic parameters.
Again, SVD methods are used (see Trucco and Verri [27], and Faugeras [10]).

Cayley’s formula can also be used to solve the calibration cameras, as explained
in Faugeras [10]. Other problems in computer vision can be reduced to problems in
projective geometry (see Faugeras [10]).
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In computer graphics, it is also necessary to convert the 3D world coordinates of
a point to a two-dimensional representation on a view plane. This is achieved by a
so-called viewing system using a projective transformation. For details on viewing
systems see Watt [31] or Foley, van Dam, Feiner, and Hughes [13].

Projective spaces are also the right framework to deal with rational curves and
rational surfaces. Indeed, in the projective framework it is easy to deal with vanish-
ing denominators and with “infinite” values of the parameter(s). Such an approach
is presented in Chapter 22 for rational curves, and in Chapter 23 and 24 for rational
surfaces. In fact, working in a projective framework yields a very simple proof of
the method for drawing a rational curve as two Bézier segments (and similarly for
surfaces).

It is much less obvious that projective geometry has applications to efficient com-
munication, error-correcting codes, and cryptography, as very nicely explained by
Beutelspacher and Rosenbaum [2]. We sketch these applications very briefly, refer-
ring our readers to [2] for details. We begin with efficient communication. Suppose
that eight students would like to exchange information to do their homework eco-
nomically. The idea is that each student solves part of the exercises and copies the
rest from the others (which we do not recommend, of course!). It is assumed that
each student solves his part of the homework at home, and that the solutions are
communicated by phone. The problem is to minimize the number of phone calls.
An obvious but expensive method is for each student to call each of the other seven
students. A much better method is to imagine that the eight students are the vertices
of a cube, say with coordinates from {0, 1}3. There are three types of edges:

1. Those parallel to the z-axis, called type 1;
2. Those parallel to the y-axis, called type 2;
3. Those parallel to the x-axis, called fype 3.

The communication can proceed in three rounds as follows: All nodes connected
by type 1 edges exchange solutions; all nodes connected by type 2 edges exchange
solutions; and finally all nodes connected by type 3 edges exchange solutions.

It is easy to see that everybody has all the answers at the end of the three rounds.
Furthermore, each student is involved only in three calls (making a call or receiving
it), and the total number of calls is twelve.

In the general case, N nodes would like to exchange information in such a way
that eventually every node has all the information. A good way to to this is to con-
struct certain finite projective spaces, as explained in Beutelspacher and Rosenbaum
[2]. We pick g to be an integer (for instance, a prime number) such that there is a
finite projective space of any dimension over the finite field of order g. Then, we
pick d such that

<N <

Since q is prime, there is a projective space P(K?*!) of dimension d over the finite
field K of order ¢, and letting .7 be the hyperplane at infinity in P(K4*1), we pick
a frame Py,...,P; in 7. It turns out that the affine space .7 = P(K?*!) — J# has
g points. Then the communication nodes can be identified with points in the affine
space .27. Assuming for simplicity that N = ¢¢, the algorithm proceeds in d rounds.
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During round i, each node Q € <7 sends the information it has received to all nodes
in 2 on the line QP,.

It can be shown that at the end of the d rounds, each node has the total informa-
tion, and that the total number of transactions is at most

(¢—1)log, (NN

Other applications of projective spaces to communication systems with switches
are described in Chapter 2, Section 8, of Beutelspacher and Rosenbaum [2]. Appli-
cations to error-correcting codes are described in Chapter 5 of the same book. In-
troducing even the most elementary notions of coding theory would take too much
space. Let us simply say that the existence of certain types of good codes called lin-
ear [n,n— r|-codes with minimum distance d is equivalent to the existence of certain
sets of points called (n,d — 1)-sets in the finite projective space P({0,1}"). For the
sake of completeness, a set of n points in a projective space is an (n,s)-set if s is
the largest integer such that every subset of s points is projectively independent. For
example, an (n,3)-set is a set of n points no three of which are collinear, but at least
four of them are coplanar.

Other applications of projective geometry to cryptography are given in Chapter
6 of Beutelspacher and Rosenbaum [2].

5.14 Problems

5.1. (a) Prove that for any field K and any n > 0O, there is a bijection between
P(K"*!) and K" UP(K™) (which allows us to identify them).

(b) For K =R or C, prove that RPP" and CP" are connected and compact.
Hint. Recall that RP" = p(R"!) and CP" = p(C"+1). If

S" = {(x1,.. Xny1) c Kl |x%+...+x§+1 =1},

prove that p(S") = p(K"*!) = P(K"*!), and recall that §" is compact for all n > 0
and connected for n > 1. For n = 0, P(K) consists of a single point.

5.2. Recall that R? and C can be identified using the bijection (x,y) — x + iy. Also
recall that the subset U(1) C C consisting of all complex numbers of the form
cos @ +isin@ is homeomorphic to the circle S! = {(x,y) € R? | x> +y* = 1}. If
c: U(1) = U(1) is the map defined such that

c(z) =z,

prove that ¢(z1) = ¢(zp) iff either zp = z; or zp = —z1, and thus that ¢ induces a
bijective map c: RP! — §'. Prove that ¢is a homeomorphism (remember that RP!
is compact).
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5.3. (i) In R?, the sphere S? is the set of points of coordinates (x,y,z) such that
x?> 43>+ 7% = 1. The point N = (0,0,1) is called the north pole, and the point
S =(0,0,—1) is called the south pole. The stereographic projection map oy : (S* —
{N}) — R? is defined as follows: For every point M # N on S2, the point oy (M) is
the intersection of the line through N and M and the plane of equation z = 0. Show
that if M has coordinates (x,y,z) (with x> +y? 4+ z%> = 1), then

GN@@::<T§27T%;>-

Prove that oy is bijective and that its inverse is given by the map ty: R — (52 —
{N}), with

(5.y) s 2x 2y P+yr -1
R R U2y 1)

Similarly, og: (5> — {S}) — R? is defined as follows: For every point M # S on
S$2, the point o5(M) is the intersection of the line through S and M and the plane of
equation z = 0. Show that

x .y
osM)= ——, ——|.
s(M) (1+z’1+z)
2

Prove that oy is bijective and that its inverse is given by the map 75: R? — (52 —
{S}), with

2x 2y 1—x>—y?
Py 41 24y 41 2 +y2+1)°

(x,y) = (

Using the complex number u# = x + iy to represent the point (x,y), the maps
Tv: R? — (82— {N}) and oy : (S* — {N}) — R? can be viewed as maps from C to
(S? — {N}) and from (5> — {N}) to C, defined such that

o (1) 2u  |u*—1
U=|————, ———
N )2+ 17 |u2+1
u
1-7

and similarly for 75 and og. Prove that if we pick two suitable orientations for the
xy-plane, we have

and

GN(M,Z) =

on(M)os(M) =1,

for every M € S> — {N,S}.
(ii) Identifying C? and R?, for z = x+ iy and 7/ = x' +iy’, we define

”(ZaZI)H =22 +y2+x2+y2
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The sphere S is the subset of C? (or R*) consisting of those points (z,z’) such that
I(z,2)1? = 1.

Prove that P(C?) = p(S?), where p: (C* —{(0,0)}) — P(C?) is the projection
map. If we let u = z/7’ (where z,7 € C) in the map

= 2u  |u>—1
lul2+17 Jul2+1
and require that ||(z,7)||*> = 1, show that we get the map HF : §* — S? defined such

that B
HF((z,2)) = (222, |27 = |7 ).

Prove that HF : S — 52 induces a bijection HF : P(C2) — 52, and thus that CP' =
P(C?) is homeomorphic to S2.

(iii) Prove that the inverse image HF ~!(s) of every point s € S is a circle. Thus
$* can be viewed as a union of disjoint circles. The map HF is called the Hopf
fibration.

5.4. (i) Prove that the Veronese map V, : R3 — R defined such that
VZ(xvyvz) = (xza y27 Zza Yz, 2X, Xy)

induces a homeomorphism of RP? onto V5(S?). Show that V(S?) is a subset of the
hyperplane x; +x> +x3 = 1 in R®, and thus that RP? is homeomorphic to a subset
of R>. Prove that this homeomorphism is smooth.

(i1) Prove that the Veronese map Vs : R* — R0 defined such that

2 .2 2 .2
Va(x,y,2,t) = (x°, y°, 27,7, Xy, yZ, X2, Xt, yt, 2t)

induces a homeomorphism of RP* onto V3(S3). Show that V3(S?) is a subset of the
hyperplane x| + x, +x3 + x4 = 1 in R'?, and thus that RP? is homeomorphic to a
subset of R?. Prove that this homeomorphism is smooth.

5.5. (i) Given a projective plane P(E) (over any field K) and any projective frame
(a,b,c,d) in P(E), recall that a line is defined by an equation of the form ux +
vy +wz = 0, where u,v,w are not all zero, and that two lines ux 4 vy +wz = 0 and
w'x+vV'y-+w'z=0 are identical iff ' = Au, V' = Av, and w = Aw, for some A # 0.
Show that any two distinct lines ux + vy + wz = 0 and u'x +v'y + w'z = 0 intersect
in a unique point of homogeneous coordinates

/ / / !/ / !/
(v —wV' wu’ —uw', w" — ).

(ii) Given a projective frame (a,b,c,d), let @’ be the intersection of (d,a) and
(b,c), b’ be the intersection of (d,b) and (a,c), and ¢’ be the intersection of (d,c)
and (a,b). Show that the points a’,b’,c’ have homogeneous coordinates (0,1,1),
(1,0,1), and (1,1,0). Let e be the intersection of (b,c) and (b',c’), f be the inter-
section of (a,c) and (d’,c’), and g be the intersection of (a,b) and (a’,b’). Show that
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e, f, g have homogeneous coordinates (0,—1,1), (1,0,—1), and (—1, 1,0), and thus
that the points e, f, g are on the line of equation x +y 4z =0.

5.6. Prove that if (a;)1<j<n42 is a projective frame, then each subfamily (a;);; is
projectively independent.

5.7. (i) Given a projective space P(E) of dimension 3 (over any field K) and any
projective frame (A, B,C,D,E) in P(E), recall that a plane is defined by an equation
of the form uxy + vx; + wxy + tx3 = 0 where u, v, w,t are not all zero.

Letting (ao,al,az,a3), (bo,bl,bz,b3), (C(),Cl,Cz,C3), and (d(),dl,dz,d3) be the
homogeneous coordinates of some points a,b,c,d with respect to the projective
frame (A,B,C,D,E), prove that a,b,c,d are coplanar iff

ap by co doy
ay by ¢y dy
a by ¢y dy
az by c3 d

=0.

(ii) Two tetrahedra (A,B,C,D) and (A’,B',C',D’) are called Mobius tetrahedra if
A, B, C,D belong respectively to the planes (B',C’',D’), (C',D',A"), (D',A’,B’), and
(A',B', C"), and also if A’,B’,C’,D’ belong respectively to the planes (B,C,D),
(C,D,A), (D,A,B), and (A, B,C).

Prove that if A, B,C,D belong respectively to the planes (B',C’,D’), (C',D’ A’),

(D',A', B), and (A’,B’, C'), and if A’,B’,C’ belong respectively to the planes
(B,C,D), (C,D,A), and (D,A,B), then D’ belongs to (A, B,C). Prove that Mgbius
tetrahedra exist (Mobius, 1828).
Hint. Let (A,B,C,D,E) be a projective frame based on A,B,C,D. Find the con-
ditions expressing that A’,B',C’,D’ belong respectively to the planes (B,C,D),
(C,D,A), (D,A,B),and (A,B,C), that A’ B',C', D’ are not coplanar, and that A, B,C,
D belong respectively to the planes (B',C’,D"), (C',D’,A"), (D',A’,B’), and (A", B/,
C’). Show that these conditions are compatible.

5.8. Show that if we relax the hypotheses of Lemma 5.5 to (a;)1<i<n+2 being a
projective frame in P(E) and (b;)<;<n+2 being any n+ 2 points in P(F), then there
may be no projective map /: P(E) — P(F) such that i(a;) = b; for 1 <i<n+2,
or h may not be necessarily unique or bijective.

5.9. For every i, 1 <i<n+1,let U; be the subset of RP" = P(R”“) consisting of
all points of homogeneous coordinates (xi,...,X;, ..., X,+1) such that x; # 0. Show
that U; is an open subset of RIP". Show that U; N U; # 0 for all i, j. Show that there
is a bijection between U; and A" defined such that

X1 Xi—1 Xitl Xn+1
(-xla"'7xi717xiaxi+1a"'7xn+l)'_> BEEREE ) PR )
Xi Xi Xi Xi

whose inverse is the map

(1,5 Xn) = (e X1, 1y Xy ey ).
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Does the above result extend to P;. where K is any field?

5.10. (i) Given an affine space (E , ?) (over any field K), prove that there is a bi-
jection between affine subspaces of E and projective subspaces of E not contained
inP(E).

(ii) Prove that two affine subspaces of E are parallel iff the corresponding pro-
jective subspaces of E have the same intersection with the hyperplane at infinity

P(E).
(iii) Prove that there is a bijection between affine maps from E to F and projective

maps from EtoF mapping the hyperplane at infinity P(?) into the hyperplane at
infinity P(F').

5.11. (i) Consider the map ¢: RP' x RP! — RP? defined such that

©((x0,x1), (y0,¥1)) = (X0¥0, Xo¥1, X1Y0, X11),

where (xo,x;) and (yo,y;) are homogeneous coordinates on RP!. Prove that ¢ is
well-defined and that ([)(RIE”1 X R]P’l) is equal the algebraic subset of RP? defined
by the homogeneous equation

Wo,0W1,1 = Wo,1 W1,0,

where (wo 0, wo,1,W1,0,w1,1) are homogeneous coordinates on RP3.
Hint. Show that if wo ow1 1 = wo 1wy and for instance wy ¢ # 0, then

©((wo,0, wi1,0), (Wo,0, wo,1)) = wo,0(Wo,0, Wo.1, W1,0, Wi,1),

and since wo,0 (W()’()7 wo,1, W1,0, Wl,l) and (W()’()7 wo,1, W1,0, Wl,l) are equivalent ho-
mogeneous coordinates, the result follows.

Prove that ¢ is injective.

Forx = (xg,x1) € RP!, show that ¢({x} x RP') isaline L! in RP?, that L! NL}, =
0 whenever L! # L)lc,, and that the union of all these lines is equal to (p(}R]P>1 X R]P’l).
Similarly, for y = (yo,y1) € RP', show that @(RP' x {y}) is a line L? in RP?, that
L)z, ﬁLi, = ( whenever L)z, # Li,, and that the union of all these lines is equal to
@(RP' x RP'). Also prove that L! ﬁL% consists of a single point.

The embedding ¢ is called the Segre embedding. It shows that RP! x RP! can be
embedded as a quadric surface in RP*. Do the above results extend to P x Pk and
IP?( where K is any field? Draw as well as possible the affine part of ([)(RIE”1 X R]P’l)
in R? corresponding to wip =1

(ii) Consider the map @: RP™ x RP" — RPY where N = (m+1)(n+1) — 1,
defined such that

(P((-x()a"'vxm)a (yOa"'vyn)) = (-xoyO; R 7‘x0yn)x1y07 "'7x1yn7"'7xmy07 "'7xmyn)’
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where (xo, ..., X%,) and (yo,...,y,) are homogeneous coordinates on RP" and RP".
Prove that ¢ is well-defined and that ¢(RP™ x RP") is equal the algebraic subset of
RP" defined by the set of homogeneous equations

Wij Wil| _
- )
Wk j Wil
where 0 < i,k <m and 0 < j,I <n, and where (Wo0,...,Woms---sWm0> -, Wmn)

are homogeneous coordinates on RPV.
Hint. Show that if

Wij Wij
Wi,j Wkl

where 0 < i,k <mand 0 < j,I <n and for instance wy o # 0, then

(p(xay) = WO7O(WO707' . 7W0,ma e 7Wm705 e 7Wm,n)7

where x = (W 0,...,Wmo) and y = (Wo,0,...,Won).

Prove that ¢ is injective. The embedding ¢ is also called the Segre embedding.
It shows that RP" x RP" can be embedded as an algebraic variety in RPY. Do the
above results extend to P% x P and P{’ where K is any field?

5.12. (i) In the projective space RP?, a line D is determined by two distinct hyper-
planes of equations

ox+By+yz+6t=0,
a'x+By+7yz+ 8t =0,
where (@, 3,7,6) and (o', B’,7,8’) are linearly independent.

Prove that the equations of the two hyperplanes defining D can always be written
either as

X] = ax3 —|—a/x4,
Xy = bxz —I—bIX4,
where {x1,x2,x3,%4} = {x,y,2,1}, {x1,%2} C {x,y,2}, and either a # 0 or b # 0, or
as
t=0,
Ix+my+nz =0,
where [ # 0, m # 0, or n # 0.

In the first case, prove that D is also determined by the intersection of three
hyperplanes whose equations are of the form

cy—bz=1t,
az—cx = mt,
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bx —ay = nt,

where the equation
al+bm+cn=0

holds, and where a £ 0, b #£ 0, or ¢ # 0. We can view (a, b, c,l,m,n) as homogeneous
coordinates in RP3 associated with D. In the case where the equations of D are

t =0,
Ix+my+nz=0,

we let (0,0,0,/,m,n) be the homogeneous coordinates associated with D. Of course,
al+bm+ cn = 0 holds. The homogeneous coordinates (a, b, c,l,m,n) such that al +
bm+ cn = 0 are called the Pliicker coordinates of D.
(ii) Conversely, given some homogeneous coordinates (a,b,c,l,m,n) in RP’ sat-
isfying the equation
al+bm+cn=0,

show that there is a unique line D with Pliicker coordinates (a,b,c,l,m,n).
Hint. If a = b = c = 0, the corresponding line has equations

t=0,
Ix+my+nz=0.

Otherwise, the equations

cy—bz=1t,
az—cx = mt,

bx —ay = nt,

are compatible, and they determine a unique line D with Pliicker coordinates
(a,b,c,l,m,n).

Conclude that the lines in RP* can be viewed as the algebraic subset of RP3
defined by the homogeneous equation

X1X3 + Xx2X5 + x3x6 = 0.

This quadric surface in RPY is an example of a Grassmannian variety. It is often
called the Klein quadric. Do the above results extend to lines in ]P’?( and ]P’% where
K is any field?

5.13. Given any two distinct point a,b € RP* of homogeneous coordinates (ay,an,
a3,a4) and (bl,b27b3,b4), let p12, P13, P14, P34, P42, p23 be the numbers defined as
follows:
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_ |41 a2 _|ar a3 _lar as
P12 = by by’ P13 = by bs|’ P14 = by by|’
_|az aq _|ag az __|a2 a3
p34_ b3 b4 i p42_ b4 bz I p23_ bZ b3 .

(i) Prove that
P12P34 + p13p4az + p1ap2s = 0.
Hint. Expand the determinant
aq bl aq bl
an bz ar bz

az bz az b3
ay b4 ag b4.

Conversely, given any six numbers satisfying the equation

P12P34+ p13pa2 + p1ap2s =0,

prove that two points a = (ay,a3,a3,0) and b = (b1,0,b3,b4) can be determined
such that the p;; are associated with a and b.
Hint. Show that the equations

—axb, = p12,
azby = p3a,

a1bz —azby = pi3,
—acbsy = pa,

aibsy = pia,

axbz = pr3,

are solvable iff
P12DP34 + p13pa2 + p1ap2s = 0.

The tuple (pi12,p13, P14, P34, P42, P23) can be viewed as homogeneous coordi-
nates in RIP° of the line (a,b). They are the Pliicker coordinates of (a,b).
(ii) Prove that two lines of Pliicker coordinates (pi2, p13, P14, P34, P42, P23) and

(Ph2, P53, P'ias Phas Phns Phy) intersect iff
P12P34 + P13Pas + P1aphs + p3apla + paxpis + paspls = 0.

Thus, the set of lines that meet a given line in RP? correspond to a set of points in
RP° belonging to a hyperplane, as well as to the Klein quadric. Do the above results
extend to lines in P} and P} where K is any field?

(iii) Three lines L;,L;,L3 in RP? are mutually skew lines iff no pairs of any two
of these lines are coplanar. Given any three mutually skew lines Ly, L,,L3 and any
four lines M|,M,, M3, M, in RP? such that each line M; meets every line L;, show
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that if any line L meets three of the four lines M, M,, M3, My, then it also meets the
fourth. Does the above result extend to ]P’?( where K is any field? Show that the set
of lines meeting three given mutually skew lines L;,L,,L3 in ]P’?< is a ruled quadric
surface. What do the affine pieces of this quadric look like in R3?

(iv) Four lines L;,Ly,L3,Ls in RP? are mutually skew lines iff no pairs of any
two of these lines are coplanar. Given any four mutually skew lines Ly,L,,L3, L4,
show that there are at most two lines meeting all four of them. In CP?, show that
there are either two distinct lines or a double line meeting all four of them.

5.14. (i) Prove that the cross-ratio [a, b, c,d| is invariant if any two elements and the
complementary two elements are transposed. Prove that

la,b,c,d] = [b,a,c,d] ' =[a,b,d,c]™"
and that
[a,b,c,d] =1—][a,c,b,d].

(ii) Letting A = [a,b,c,d], prove that if L € {e,0,1}, then any permutation of
{a,b,c,d} yields a cross-ratio in {e0,0,1}, and if A ¢ {e0,0,1}, then there are at
most the six values

1 1 1 A
Ay A’ A 11— A—1

(iii) Prove that the function

(A2 =2 +1)3
A A

takes a constant value on the six values listed in part (ii).

5.15. Viewing a point (x,y) in A2 as the complex number z = x + iy, prove that
four points (a,b,c,d) are cocyclic or collinear iff the cross-ratio [a,b,c,d] is a real
number.

5.16. Given any distinct points (x1,x2,x3,x4) in RP!, prove that they form a har-
monic division, i.e., [xy,x2,x3,x4] = — 1 iff

2()61)62 +X3)C4) = (x1 +XQ)(X3 +X4).

Prove that [0,x;,x3,x4] = — 1 iff
2_1.1
Xo X3 X4
Prove that [x},xp,x3,00] = —1 iff
2x3 = x|+ x.

Do the above results extend to P, where K is any field?
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5.17. Consider the quadrangle (projective frame) (a,b,c,d) in a projective plane,
and let @' be the intersection of (d,a) and (b,c), b’ be the intersection of (d,b)
and (a,c), and ¢’ be the intersection of (d,c) and (a,b). Show that the follow-
ing quadruples of lines form harmonic divisions: ((c,a),(b’,a’),{d,b), (b’ ,c'}),
((b,a), (c",d'),(d,c), (b)), and ((b,c), (@', V'), {a,d), (@', c")).

Hint. Send some suitable lines to infinity.

5.18. Let P(E) be a projective space over any field. For any projective map

P(f): P(E) — P(E), apointa = p(u) is a fixed point of P(f) iff P(f)(a) = a. Prove
that a = p(u) is a fixed point of P(f) iff u is an eigenvector of the linear map f: E —
E. Prove that if E = R>**!, then every projective map P(f): RP?" — RP*" has a
fixed point. Prove that if E = C""!, then every projective map P(f): CP" — CP"
has a fixed point.

5.19. A projectivity P(f): RP" — RP" is an involution if P(f) is not the identity
and if P(f) oP(f) = id. Prove that a projectivity P(f): RP! — RP! is an involution
iff the trace of the matrix of f is null. Does the above result extend to ]P’}< where K
is any field?

5.20. Recall Desargues’s theorem in the plane: Given any two triangles (a,b,c) and
(d',b',c") in RP?, where the points a,b,c,a’,b’,c" are distinct and the lines A =
(b,c), B={a,c), C = {a,b), A’ = (V',c), B = {d ), C' = (d,b') are distinct,
if the lines (a,a’), (b,b'), and (c,c’) intersect in a common point d distinct from
a,b,c,ad’ b’ ,c’, then the intersection points p = (b,c) N {b',c’), g = (a,c) N {d’, ),
and r = (a,b) N {(d’,b’) belong to a common line distinct from A, B,C, A',B',C’.

Prove that the dual of the above result is its converse. Deduce Desargues’s the-
orem: Given any two triangles (a,b,c) and (d/,b,¢’) in RIP?, where the points
a,b,c,a’ b’ " are distinct and the lines A = (b, c), B= {a,c),C = {a,b),A' = V', ),
B = {d,c), C' = (d,b') are distinct, the lines (a,a’), (b,b'), and {c,c’) inter-
sect in a common point d distinct from a,b,c,a’,b’,c’ iff the intersection points
p={(b,c)N{' "y, qg={a,c)yNn{d,c'), and r = (a,b) N (d’,b’) belong to a common
line distinct from A,B,C, A’,B’,C’.

Do the above results extend to ]P’%< where K is any field?

5.21. Let D and D' be any two distinct lines in the real projective plane RP?, and let
f: D — D' be a projectivity. Prove the following facts.

(1) If f is a perspectivity, then for any two distinct points m,n on D, the lines
(m, f(n)) and (n, f(m)) intersect on some fixed line passing through DN D’'.
Hint. Consider any three distinct points a,b,c on D and use Desargues’s theorem.

(2) If f is not a perspectivity, then for any two distinct points m,n on D, the
lines (m, f(n)) and (n, f(m)) intersect on the line passing through f(DND’) and
Y DpnD).
Hint. Use some suitable composition of perspectivities. The line passing through
f(DND')and f~(DND') is called the axis of the projectivity.

(iii) Prove that any projectivity f: D — D’ between distinct lines is the composi-
tion of two perspectivities.
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(iv) Use the above facts to give a quick proof of Pappus’s theorem: Given any two
distinct lines D and D’ in a projective plane, for any distinct points a,b,c,a’,b’, ¢’
witha,b,conDandd’,b’,c’ onD',ifa,b,c,a’,b’,c’ are distinct from the intersection
of D and D', then the intersection points p = (b,c'Y N (b ,c), g = {a,c’)N{d’,c), and
r={a,b’)N{(d',b) are collinear.

Do the above results extend to ]P’%< where K is any field?

5.22. Recall that in the real projective plane RP?, by duality, a point a corresponds
to the pencil of lines a* passing through a.

(i) Given any two distinct points a and b in the real projective plane RP? and any
line L containing neither a nor b, the perspectivity of axis L between a* and b* is
the map f: a* — b* defined such that for every line D € a*, the line (D) is the line
through b and the intersection of D and L.

Prove that a projectivity f: a* — b* is a perspectivity iff f({a,b)) = (b,a).

(ii) Prove that a bijection f: a* — b* is a projectivity iff it preserves the cross-
ratios of any four distinct lines in the pencil a*.

(iii) State and prove the dual of Pappus’s theorem.

Do the above results extend to ]P’%< where K is any field?

5.23. (i) Prove that every projectivity f: RP! — RP! has at most 2 fixed points. A
projectivity f: RP! — RP! is called elliptic if it has no fixed points, parabolic if
it has a single fixed point, hyperbolic if it has two distinct fixed points. Prove that
every projectivity f: CP! — CP! has 2 distinct fixed points or a double fixed point.

(ii) Recall that a projectivity f: RP' — RP' is an involution if f is not the iden-
tity and if f o f = id. Prove that f is an involution iff there is some point a € RP!
such that f(a) # a and f(f(a)) = a.

(iii) Given any two distinct points a,b € RP!, prove that there is a unique invo-
lution f: RP' — RP! having a and b as fixed points. Furthermore, for all m # a,b,
we have

[a,b,m, f(m)] = —1.

Conversely, the above formula defines an involution with fixed points a and b.

(iv) Prove that every projectivity f: RP' — RP!' is the composition of at most
two involutions.

Do the above results extend to ]P’}< where K is any field?

5.24. Prove that an involution f: RP! — RP' has zero or two distinct fixed points.
Prove that an involution f: CP! — CP' has two distinct fixed points.

5.25. Prove that a bijection f: RP! — RP! having two distinct fixed points a and b
is a projectivity iff there is some k # 0 in R such that for all m # a, b, we have

[a,b,m, f(m)] = k.
Does the above result extend to ]P’}< where K is any field?

5.26. Prove that every projectivity f: RP! — RP' is the composition of at most
three perspectivities.
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Hint. Consider some appropriate perspectivities.
Does the above result extend to ]P’}< where K is any field?

5.27. Let (a,b,c,d) be a projective frame in RP?, and let D be a line not passing
through any of a,b,c,d. The line D intersects {(a,b) and {(c,d) in p and p/, (b,c)
and (a,d) in g and ¢/, and (b,d) and (a,c) in r and . Prove that there is a unique
involution mapping p to p’, gto ¢’, and r to .
Hint. Consider some appropriate perspectivities.

Does the above result extend to P4 where K is any field?

5.28. Let (a,b,c) be a triangle in RP?, and let D be a line not passing through any
of a,b,c, so that D intersects (b,c) in p, (c,a) in ¢, and {(a,b) in r. Let L,,L;,L. be
three lines passing through a, b, c, respectively, and intersecting D in p’,q’, 7. Prove
that there is a unique involution mapping p to p’, ¢ to ¢/, and r to 7 iff the lines
L,, Ly, L. are concurrent.
Hint. Use Problem 5.27.

Does the above result extend to ]P’%< where K is any field?

5.29. In a projective plane P(E) where E is a vector space of dimension 3 over any
field K, a conic is the set of points of homogeneous coordinates (x,y,z) such that

ox® + By + 2yxy + 28xz 4 2Ayz+ uz> =0,

where (a,f,7,8,4,u1) # (0,0,0,0,0,0). We can write the equation of the conic as

o vd\ [x
ey vyBA|[y] =0,
SAu b4
and letting
oyo X
A= Y ﬁ A ) X=1|y],
SAu b4
the equation of the conic becomes
X'AX =0.

We say that a conic of equation X 'AX = 0 is nondegenerate if det(A) # 0 and
degenerate if det(A) = 0.

(i) For K = R, show that there is only one type of nondegenerate conic, and that
there are three kinds of degenerate conics: two distinct lines, a double line, a point,
and the empty set. For K = C, show that there is only one type of nondegenerate
conic, and that there are two kinds of degenerate conics: two distinct lines or a
double line.

(ii) Given any two distinct points a and b in RP? and any projectivity f: a* — b*
that is not a perspectivity, prove that the set of points of the form LN f(L) is a
nondegenerate conic, where L is any line in the pencil a*.
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What happens when f is a perspectivity? Does the above result hold for any field
K?

(iii) Given a nondegenerate conic C, for any point a € C we can define a bijec-
tion j,: a* — C as follows: For every line L through a, we define j,(L) as the other
intersection of L and C when L is not the tangent to C at a, and j, (L) = a otherwise.
Given any two distinct points a,b € C, show that the map f = jb’1 0 j, 1s a projec-
tivity f: a* — b* that is not a perspectivity. In fact, if O is the intersection of the
tangents to C at a and b, show that f((0,a)) = (b,a), f({a,b)) = (b,0), and for any
point m # a,b on C, f({a,m)) = (b,m). Conclude that C is the set of points of the
form LN f(L), where L is any line in the pencil a*.

Hint. In a projective frame where a = (1,0,0) and b = (0, 1,0), the equation of a
conic is of the form
P+ qxy+ryz+sxz=0.

Remark: The above characterization of the conics is due to Steiner (and Chasles).

(iv) Prove that six points (a,b,c,d,e, f) such that no three of them are collinear
belong to a conic iff

[(a,¢),(a,d),(a,e),(a, )] = [(b;c), (b,d), (b,e), (b, )]

5.30. Given a nondegenerate conic C and any six points a, b, ¢, d, e, f on C such that
no three of them are collinear, prove Pascal’s theorem: The points z = (a,b) N {d,e),
w=(b,c)N{e,f),and t = (c,d) N (f,a) are collinear.
Recall that the line (a,a) is interpreted as the tangent to C at a.

Hint. By Problem 5.29, for any point m on the conic C, the bijection j,,: m* — C
allows the definition of the cross-ratio of four points a,b,c,d on C as the cross ratio
of the lines (m,a), (m,b), (m,c), and (m,d) (which does not depend on m). Also
recall that the cross-ratio of four lines in the pencil m* is equal to the cross-ratio of
the four intersection points with any line not passing through m. Prove that

[Zu-xadae] = [I,C,d,y],
and use the perspectivity of center w between (c,y) and (e, x).

5.31. In a projective plane P(E) where E is a vector space of dimension 3 over any
field K of characteristic different from 2 (say, K = R or K = C), given a conic C of
equation F(x,y,z) = 0 where

F(x,y,2) = 0x* + By? + 2yxy 4+ 28xz+ 2Ayz + uz° =0

(with (e, B8,7,0,A,1) # (0,0,0,0,0,0)), using the notation of Problem 5.29 with
XT = (x,y,z) and Y = (u,v,w), verify that

YTAX = = (uF] +vF| + wF}),

| -
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where F, Fy/, F; denote the partial derivatives of F(x,y,z).
If the conic C of equation X 'AX = 0 is nondegenerate, it is well known (and

easy to prove) that the tangent line to C at (xq,yo,20) is given by the equation
/ / r
xFy +yF +zF,, =0,

and thus by the equation X 'AXy = 0, with X = (x,y,z) and X, = (x0,0,20)-
Therefore, the equation of the tangent to C at (xg,yo,20) is of the form

ux+vy+wz=0,
where
u X0 X0
v|=A[yo| and (x0,0,20)A (0| =0.
w 20 20

(i) If C is a nondegenerate conic of equation X 'AX = 0 in the projective plane
P(E), prove that the set C* of tangent lines to C is a conic of equation Y TA™!Y =0
in the projective plane P(E*), where E* is the dual of the vector space E. Prove that
c* =C.

Remark: The conic C is sometimes called a point conic and the conic C* a line
conic. The set of lines defined by the conic C* is said to be the envelope of the conic
C.

Conclude that duality transforms the points of a nondegenerate conic into the
tangents of the conic, and the tangents of the conic into the points of the conic.

(ii) Given any two distinct lines L and M in RP? and any projectivity f: L — M
that is not a perspectivity, prove that the lines of the form (a, f(a)) are the tangents
enveloping a nondegenerate conic, where a is any point on the line L (use duality).

What happens when f is a perspectivity? Does the above result hold for any field
K?

(iii) Given a nondegenerate conic C, for any two distinct tangents L and M to C
ata and b, if O = LN M, show that the map f: L — M defined such that f(a) = O,
f(O)=b,and f(LNT)=MNT for any tangent T # L, M is a projectivity. Conclude
that C is the envelope of the set of lines of the form (m, f(m)), where m is any point
on L (use duality).

5.32. Given a nondegenerate conic C, prove Brianchon’s theorem: For any hexagon
(a,b,c,d, e, f) circumscribed about C (which means that {(a,b), (b,c), (c,d), (d,e),
(e, f), and (f,a) are tangent to C), the diagonals {(a,d), (b,e), and {c, f) are concur-
rent.

Hint. Use duality.

5.33. (a) Consider the map .7 : R® — R* defined such that

('xvy?Z) = (xy,yz,xz,x2 _yZ)'
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Prove that when it is restricted to the sphere S? (in R3), we have J#(x,y,z) =
(XY 2 ) iff (,y,7) = (x,y,2) or (X',y,Z') = (—x,—y, —2). In other words, the
inverse image of every point in .7#(S5?) consists of two antipodal points.

Prove that the map % induces an injective map from the projective plane onto
##(S?), and that it is a homeomorphism.

(b) The map .7 allows us to realize concretely the projective plane in R* by
choosing any parametrization of the sphere S and applying the map . to it. Actu-
ally, it turns out to be more convenient to use the map 7 defined such that

(x,,2) F (2xy,2yz,2x2,2% —y?),

because it yields nicer parametrizations. For example, using the stereographic rep-
resentation where

(u,v) = 2u
v TR
2v
M) =g
( )7u2+v2—1
Auy) = F

show that the following parametrization of the projective plane in R* is obtained:

8uv
x(u,v) = EAT
y(u,v) = 4(7‘;(;_2’_4‘:;1_1)12) )
Z(u,v) = 4(74(;[_2’_4‘:—2‘)_2’__1)12),
() = 4(u* —v?)

(2 +v2+1)%

Investigate the surfaces in R3 obtained by dropping one of the four coordinates.
Show that there are only two of them (up to a rigid motion).

5.34. Give the details of the proof that the altitudes of a triangle are concurrent.

5.35. Let K be the finite field K = {0,1}. Prove that the projective plane P(K>)
contains 7 points and 7 lines. Draw the configuration formed by these seven points
and lines.

5.36. Prove that if P and Q are two homogeneous polynomials of degree 2 over R
and if V(P) = V(Q) contains at least three elements, then there is some A € R such
that Q = AP, with A # 0.

Hint. Choose some convenient frame.
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5.37. In the Euclidean space E" (where E” is the affine space A" equipped with
its usual inner product on R"), given any k € R with k # 0 and any point a, an
inversion of pole a and power k is a map h: (E" — {a}) — E" defined such that for

every x € E" — {a}, ~
a
h(x) = a—i—k”a TR

For example, when n = 2, choosing any orthonormal frame with origin a, 4 is de-

fined by the map
kx ky
= 5,5
(a) Assuming for simplicity that n = 2, viewing RIP? as the projective completion
of E2, we can extend A to a partial map A: RP? — RP? as follows. Pick any projec-
tive frame (ag,a1,a2,a3) where ag =a+ej, a; =a+ey, ay =a,a3 =a+e;+ey,
and where (e1,e;) is an orthonormal basis for R?, and define 4 such that in homo-
geneous coordinates
(x, 3, 2) = (kaz, kyz, * +7).

Show that / is defined on RIP? — {a}. Show that s o h = id, except for points on
the line at infinity (that are all mapped onto a = (0,0, 1)). Deduce that / is a bijection
except for a and the points on the line at infinity. Show that the fixed points of / are
on the circle of equation

Py =k

(b) We can also extend 4 to a partial map A: CP?> — CP? as in the real case, and
define / such that in homogeneous (complex) coordinates

(x,,2) = (kxz, kyz, x> +y7).

Show that / is defined on CP? — {a,I,J}, where I = (1,—i,0) and J = (1,i,0)
are the circular points. Show that every point of the line (7,J) other than I and J is
mapped to A, every point of the line (A,I) other than A and I is mapped to I, and
every point of the line (A,J) other than A and J is mapped to J. Show that ko h =id
on the complement of the three lines {I,J), (A,I), and (A,J). Show that the fixed
points of & are on the circle of equation

Xyt =k
Say that a circle of equation
2 2 2 _
ax“+ay +bxz+cyz+dz”=0

is a true circle if a # 0. We define the center of a circle as above (true or not) as
the point of homogeneous coordinates (b,c, —2a) and the radius R of a true circle
is defined as follows: If

b*+c* —4ad > 0,
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then R = Vb? + ¢? — 4ad/(2a); otherwise R = iv'4ad — b*> — c?/(2a). Note that R
can be a complex number. Also, when a = 0, we let R = oo,

Verify that in the affine Euclidean plane E? (the complement of the line at infinity
z = 0) the notions of center and radius have the usual meaning (when R is real).

(c) Show that the image of a circle of equation

ax® + ay? + bxz+cyz +dz* =0
is the circle of equation
dx® + dy* 4 kbxz + keyz + kK*az> = 0.

When does a true circle map to a true circle?

(d) Recall the definition of the stereographic projection map o : (S* — {N}) —
R? from Problem 5.3. Prove that the stereographic projection map is the restriction
to $? of an inversion of pole N and power 2R? in E* (where S a sphere of radius R,
N is the north pole of $2, and the plane of projection is a plane through the center of
the sphere).

5.38. As in Problem 5.37, we consider inversions in RP? and (C]P’Z, and we assume
that some projective frame (ag,ay,as,as) is chosen.
(a) Given two distinct real circles C; and C, of equations

X +y2—Rzz2 =0,
)cz—i-y2 —2bxz+dz* =0,

prove that Cy and C; intersect in two real points iff the line
2bx—(d+R*)z=0
intersects C; in two real points iff
(R*+d —2bR)(R*+d +2bR) < 0.

The line 2bx — (d 4 R?)z = 0 is called the radical axis D of the circles C; and C,. If
b =0, then C; and C, have the same center, and the radical axis is the line at infinity.
Otherwise, if b # 0, by chosing a new frame (bg, by, b2, b3) such that

R*+d R*+d R*+d
by = 1 by=(——.1 by=(——,0,1
0 ( 2% + 7070)7 1 < 2 ) 70)5 2 < 2 707 )a

and

show that the equations of the circles C;,C, become



172 5 Basics of Projective Geometry

4b* (o +y?) +4b(R* + d)xz+ A7 = 0,
4b* (x* + ) +4b(R* +d — 2b*)xz+ A7 = 0,

where A = (R?* +d — 2bR)(R?> +d + 2bR).
Letting C = A /(4b?), the above equations are of the form

x —|—y2—2uxz+C12 =0,
x> 4y* = 2wz +CZ =0,

where u # v.
(b) Consider the pencil of circles defined by C| and (5, i.e., the set of all circles
having an equation of the form

(A4 +3*) = 2(Au+pv)xz+ (A +p)C2 =0,

where (4,1) # (0,0).

If C < 0, letting K* = —C where K > 0, prove that the circles in the pencil are
exactly the circles passing through the points A = (0,K,1) and B= (0,—K, 1), called
base points of the pencil. In this case, prove that the image of all the circles in the
pencil by an inversion 4 of center A is the union of the line at infinity together with
the set of all lines through the image #(B) of B under the inversion (pick a convenient
frame).

(¢) If C =0, in which case A = B = (0,0, 1), prove that the circles in the pencil
are exactly the circles tangent to the radical axis D (at the origin). In this case, prove
that the image of all the circles in the pencil by an inversion & of center A is the
union of the line at infinity together with the set of all lines parallel to the radical
axis D.

(d) If C > 0, letting K? = C where K > 0, prove that there exist two circles in
the pencil of radius 0 and of centers P, = (K,0,1) and P, = (—K,0, 1), called the
Poncelet points of the pencil. In this case, prove that the image of all the circles in
the pencil by an inversion of center P is the set of all circles of center i(P,) (pick a
convenient frame).

Conclude that given any two distinct nonconcentric real circles C; and C,, there
is an inversion such that if C| and C; intersect in two real points, then C; and C; are
mapped to two lines (plus the line at infinity), and if C; and C, are disjoint (as real
circles), then C; and C, are mapped to two concentric circles.

(e) Given two C'-curves I', A in E2, if I" and A intersect in p, prove that for any
inversion /& of pole ¢ # p, h preserves the absolute value of the angle of the tangents
to I" and A at p. Conclude that inversions preserve tangency and orthogonality.
Hint. Express I',A, and h in polar coordinates.

(f) Using (e), prove the following beautiful theorem of Steiner. Let C; and C, be
two disjoint real circles such that C, is inside C;. Construct any sequence (I,),>0 of
circles such that I, is any circle interior to Cy, exterior to C, tangent to C; and C;,
and furthermore that I, ;| # I;,_1 and I}, is tangent to I,.



5.14 Problems 173

Given a starting circle I, two cases may arise: Either I, = I for some n > 1, or
I, #A1Ijforalln>1.

Prove that the outcome is independent of the starting circle I. In other words,
either for every Iy we have I, = I for some n > 1, or for every Iy we have I, # I
foralln > 1.

5.39. (a) Let i: RP? — RP? be the projectivity (w.r.t. any projective frame (ag,a,
az,a3)) defined such that

(x,y,2) = (x,y, ax+ by +cz),

where ¢ # 0 and £ is not the identity.
Prove that the fixed points of % (i.e., those points M such that 2(M) = M) are the
origin O = a; = (0,0, 1) and every point on the line A of equation

ax+by+(c—1)z=0.

Prove that every line through the origin is globally invariant under /. Give a geo-
metric construction of 2(M) for every point M distinct from O and not on A, given
any point A distinct from O and not on A and its image A’ = h(A).
Hint. Consider the intersection P of the line (A, M) with the line A.

Such a projectivity is called a homology of center O and of axis A (Poncelet).

Show that in the situation of Desargues’s theorem, the triangles (a,b,c) and
(d',b,c") are homologous. What is the axis of homology?

(b) Let h: RP* — RP? be the projectivity (w.r.t. any projective frame (ag,ai,as,
a3,ay)) defined such that

(x, 5,2, 1) = (x,y, 2, ax+ by + cz +dt),

where d # 0 and £ is not the identity.
Prove that the fixed points of 4 (i.e., those points M such that /(M) = M) are the
origin O = a3 = (0,0,0, 1) and every point on the plane IT of equation

ax+by+cz+(d—1)t=0.

Prove that every line through the origin is globally invariant under 4. Give a geo-
metric construction of (M) for every point M distinct from O and not on IT, given
any point A distinct from O and not on IT and its image A’ = h(A).

Hint. Consider the intersection P of the line (A, M) with the plane IT.

Such a projectivity is called a homology of center O and of plane of homology I1
(Poncelet).

(c) Let h: RP?* — RP? be a projectivity, and assume that & does not preserve
(globally) the line at infinity z = 0. Prove that there is a rotation R and a point at
infinity a; such that 4 o R maps all lines through a; to lines through a;.

Chosing a projective frame (ag,a1,as,a3) (where a; is the point mentioned
above), show that o R is defined by a matrix of the form
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ab c

0 ¢

0 bl/ C/I
where a # 0 and b” # 0. Prove that there exist two translations #{,1, such thatt; o ho
Rot is a homology.

If h preserves globally the line at infinity, show that there is a translation ¢ such
that 7 o i is defined by a matrix of the form

Cc
c

~

[N
o S

1

where ab’ —a'b # 0. Prove that there exist two rotations Ry, R, such that RyotohoR;

has a matrix of the form
AO0O

0BO
001

where AB = ab’ — a’'b. Conclude that Ry ot o ho Ry is a homology only when A = B.

Remark: The above problem is adapted from Darboux.

5.40. Prove that every projectivity #: RP?> — RP? where /& # id and £ is not a ho-
mology is the composition of two homologies.

5.41. Given any two tetrahedra (a,b,c,d) and (a',b',c’,d') in RP* where a,b,c,d,
a',b',c',d" are pairwise distinct and the lines containing the edges of the two tetra-
hedra are pairwise distinct, if the lines {(a,d’), (b,b’), {c,c’), and (d,d") intersect
in a common point O distinct from a,b,c,d, a’,b’,c’,d’, prove that the intersec-
tion points (of lines) p = (b,c) N {V',c'), g = {a,c)N{d,c'), r = (a,b) N {d,b),
s={c,dyn{c,d"), t = {(b,dyN (b ,d"}, u={a,d)N{da’,d'), are coplanar.

Prove that the lines of intersection (of planes) P = (b,c,d) N (b',c',d"), QO =
(a,c,dyn{d,c',d"), R ={a,b,d)N{d',b',d"), S = (a,b,c) N {d b, (), are copla-
nar.

Hint. Show that there is a homology whose center is O and whose plane of homol-
ogy is determined by p,q,r,s,t,u.

5.42. Prove that Pappus’s theorem implies Desargues’s theorem (in the plane).

5.43. If K is a finite field of g elements (¢ > 2), prove that the finite projective space
P(K""!) has ¢" +¢" ' +---+ ¢+ 1 points and

(@ =1D(g"—1)
(g—1)*(g+1)

lines.
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Chapter 6
Basics of Euclidean Geometry

Rien n’est beau que le vrai.
—Hermann Minkowski

6.1 Inner Products, Euclidean Spaces

In affine geometry it is possible to deal with ratios of vectors and barycenters of
points, but there is no way to express the notion of length of a line segment or to
talk about orthogonality of vectors. A Euclidean structure allows us to deal with
metric notions such as orthogonality and length (or distance).

This chapter covers the bare bones of Euclidean geometry. Deeper aspects of
Euclidean geometry are investigated in Chapter 8, in particular the structure of the
orthogonal group and the structure of the group of affine rigid motions. One of
our main goals is to give the basic properties of the transformations that preserve
the Euclidean structure, rotations and reflections, since they play an important role
in practice. As affine geometry is the study of properties invariant under bijective
affine maps and projective geometry is the study of properties invariant under bijec-
tive projective maps, Euclidean geometry is the study of properties invariant under
certain affine maps called rigid motions. Rigid motions are the maps that preserve
the distance between points. Such maps are, in fact, affine and bijective (at least
in the finite-dimensional case; see Lemma 8.8). They form a group Is(n) of affine
maps whose corresponding linear maps form the group O(n) of orthogonal trans-
formations. The subgroup SE(n) of Is(n) corresponds to the orientation preserving
rigid motions, and there is a corresponding subgroup SO(n) of O(n), the group of
rotations. These groups play a very important role in geometry, and we will study
their structure in some detail in Chapter 8.

Before going any further, a potential point of confusion should be cleared up.

Euclidean geometry deals with affine spaces (E , ?), where the associated vector

177



178 6 Basics of Euclidean Geometry

space ? is equipped with an inner product. Such spaces are called Euclidean affine
spaces. However, inner products are defined on vector spaces. Thus, we must first
study the properties of vector spaces equipped with an inner product, and the lin-
ear maps preserving an inner product (the orthogonal group SO(n)). Such spaces
are called Euclidean spaces (omitting the word affine). It should be clear from the
context whether we are dealing with a Euclidean vector space or a Euclidean affine
space, but we will try to be clear about that. For instance, in this chapter, except for
Definition 6.3, we are dealing with Euclidean vector spaces and linear maps.

We begin by defining inner products and Euclidean spaces. The Cauchy—Schwarz
inequality and the Minkowski inequality are shown. We define orthogonality of vec-
tors and of subspaces, orthogonal bases, and orthonormal bases. We offer a glimpse
of Fourier series in terms of the orthogonal families (sin px),>1 U (cosgx),>0 and
(e**)xez. We prove that every finite-dimensional Euclidean space has orthonormal
bases. Orthonormal bases are the Euclidean analogue for affine frames. The first
proof uses duality, and the second one the Gram—Schmidt orthogonalization pro-
cedure. The QR-decomposition for invertible matrices is shown as an application
of the Gram—Schmidt procedure. Linear isometries (also called orthogonal transfor-
mations) are defined and studied briefly. We conclude with a short section in which
some applications of Euclidean geometry are sketched. One of the most important
applications, the method of least squares, is discussed in Chapter 14.

For a more detailed treatment of Euclidean geometry, see Berger [2, 3], Snapper
and Troyer [22], or any other book on geometry, such as Pedoe [18], Coxeter [6],
Fresnel [8], Tisseron [25], or Cagnac, Ramis, and Commeau [4]. Serious readers
should consult Emil Artin’s famous book [1], which contains an in-depth study of
the orthogonal group, as well as other groups arising in geometry. It is still worth
consulting some of the older classics, such as Hadamard [10, 11] and Rouché and
de Comberousse [19]. The first edition of [10] was published in 1898, and finally
reached its thirteenth edition in 1947! In this chapter it is assumed that all vector
spaces are defined over the field R of real numbers unless specified otherwise (in a
few cases, over the complex numbers C).

First, we define a Euclidean structure on a vector space. Technically, a Euclidean
structure over a vector space E is provided by a symmetric bilinear form on the
vector space satisfying some extra properties. Recall that a bilinear form ¢: E X
E — R is definite if for every u € E, u # 0 implies that @(u,u) # 0, and positive if
forevery u € E, ¢(u,u) > 0.

Definition 6.1. A Euclidean space is a real vector space E equipped with a symmet-
ric bilinear form ¢ : E x E — R that is positive definite. More explicitly, ¢ : E X E —
R satisfies the following axioms:
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@(ur +uz,v) = @(u1,v) + @(u2,v),
@(u,vi+v2) = @(u,v1) + @(u,v2),
¢(Au,v) = 29(u,v),
P(u,Av) = 29(u,v),
o (u,v) = @(v,u),

u # Oimplies that @ (u,u) > 0.

The real number @ (u,v) is also called the inner product (or scalar product) of u and
v. We also define the quadratic form associated with ¢ as the function @: E — R
such that

D(u) = ¢ (u,u),

forallu € E.
Since ¢ is bilinear, we have ¢(0,0) = 0, and since it is positive definite, we have

the stronger fact that
o(u,u)=0 iff u=0,

thatis, @(u) =0 iff u = 0.
Given an inner product ¢ : E X E — R on a vector space E, we also denote ¢ (u,v)
by

and /®(u) by ||ull.

Example 6.1. The standard example of a Euclidean space is R", under the inner
product - defined such that

u-v or (u,v) or (ulv),

(X153 Xn) - (V15 + -+ 00) = X191 +X2y2 4+ + XnYn-
There are other examples.

Example 6.2. For instance, let E be a vector space of dimension 2, and let (e, e;)
be a basis of E. If a > 0 and b2 — ac < 0, the bilinear form defined such that

P(xier+y1ez, xae1 +y2e2) = axixa + b(x1y2 +x2y1) + €y1y2
yields a Euclidean structure on E. In this case,
D (xe| + yes) = ax* + 2bxy + ¢y’

Example 6.3. Let €’[a,b] denote the set of continuous functions f: [a,b] — R. It is
easily checked that €’[a,b] is a vector space of infinite dimension. Given any two
functions f,g € €[a,b], let

(f.8)= /  P)e(e)r.
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We leave as an easy exercise that (—,—) is indeed an inner product on €’[a,b]. In
the case where a = —7 and b = 7 (or a = 0 and b = 27, this makes basically no
difference), one should compute

(sin px,singx), (sinpx,cosgx), and (cospx,cosqx),

for all natural numbers p,q > 1. The outcome of these calculations is what makes
Fourier analysis possible!

Let us observe that ¢ can be recovered from @. Indeed, by bilinearity and sym-
metry, we have

D(u+v) = @Qu+v,u+v)

O, u+v) + @0, u+v)
@(u, u) +2¢(u,v) + @(v,v)
D(u)+2¢(u,v)+ D(v).

Thus, we have .
Pu,v) = 5 [P(u+v) — P(u) = P(v)].

We also say that ¢ is the polar form of ®. We will generalize polar forms to poly-
nomials, and we will see that they play a very important role.
One of the very important properties of an inner product ¢ is that the map u —
®(u) is a norm.

Lemma 6.1. Let E be a Euclidean space with inner product ¢, and let ® be the
corresponding quadratic form. For all u,v € E, we have the Cauchy—Schwarz in-
equality

O(u,v)* < P(u)P(v),

the equality holding iff u and v are linearly dependent.
We also have the Minkowski inequality

VO(u+v) </ (u)+/D(v),

the equality holding iff u and v are linearly dependent, where in addition if u # 0
and v # 0, then u = Av for some A > 0.

Proof. For any vectors u,v € E, we define the function 7: R — R such that
T(A) = B(u+Av),

for all A € R. Using bilinearity and symmetry, we have
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D(u+Av) = @u+Av,u+Av)

O, u+Av)+ A9 (v,u+Av)

O (u, u) +210(u,v) + A% (v, v)
D(u) +2A0(u,v) +A2D(v).

Since ¢ is positive definite, & is nonnegative, and thus T (1) > 0 for all A € R.
If @(v) =0, then v =0, and we also have @(u, v) = 0. In this case, the Cauchy—
Schwarz inequality is trivial, and v = 0 and u are linearly dependent.

Now, assume @(v) > 0. Since T(A) > 0, the quadratic equation

A2D(v) +210(u,v) + D(u) =0
cannot have distinct real roots, which means that its discriminant
A =4(p(u, v)* — (u)P(v))
is null or negative, which is precisely the Cauchy—Schwarz inequality
(u,v)* < D(u)P(v).

If
(P(Mvv)z = q)(u)q)(v),

then the above quadratic equation has a double root A, and we have @ (u+ Agv) = 0.
If 0 = 0, then @(u, v) = 0, and since @ (v) > 0, we must have @ (u) = 0, and thus
u = 0. In this case, of course, u = 0 and v are linearly dependent. Finally, if A # 0,
since @(u+ Agv) = 0 implies that u + Agv = 0, then u and v are linearly dependent.
Conversely, it is easy to check that we have equality when u and v are linearly
dependent.

The Minkowski inequality

VO(u+v) < V) ++/@(v)

is equivalent to
Pu+v) < DP(u)+P(v)+21/P(u)D(v).
However, we have shown that
20(u,v) = P(u+v)— Dd(u) — d(v),

and so the above inequality is equivalent to

¢(u,v) </ P(u)P(v),

which is trivial when ¢ (u, v) <0, and follows from the Cauchy—Schwarz inequality
when ¢@(u, v) > 0. Thus, the Minkowski inequality holds. Finally, assume that u # 0
and v # 0, and that
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VO(u+v) =/®u) +/P(v).

When this is the case, we have

¢(u,v) =/ P(u)P(v),

and we know from the discussion of the Cauchy—Schwarz inequality that the equal-
ity holds iff # and v are linearly dependent. The Minkowski inequality is an equality
when u or v is null. Otherwise, if u # 0 and v # 0, then u = Av for some A # 0, and
since

@u,v) = 2@(v,v) =/ P(u)P(v),
by positivity, we must have A > 0. O

Note that the Cauchy—Schwarz inequality can also be written as

l@(u,v)| < VP (u) v/ ().

Remark: It is easy to prove that the Cauchy—Schwarz and the Minkowski inequal-
ities still hold for a symmetric bilinear form that is positive, but not necessarily
definite (i.e., @(u,v) > 0 for all u,v € E). However, u and v need not be linearly
dependent when the equality holds.

The Minkowski inequality
VO(u+v) < V) ++/@(v)

shows that the map u — /P (u) satisfies the convexity inequality (also known as
triangle inequality), condition (N3) of Definition 21.2, and since ¢ is bilinear and
positive definite, it also satisfies conditions (N1) and (N2) of Definition 21.2, and
thus it is a norm on E. The norm induced by ¢ is called the Euclidean norm induced
by .

Note that the Cauchy—Schwarz inequality can be written as

|- v < ullflv]],
and the Minkowski inequality as
[ < fuell + v

Figure 6.1 illustrates the triangle inequality.
We now define orthogonality.
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u+v
Fig. 6.1 The triangle inequality.

6.2 Orthogonality, Duality, Adjoint of a Linear Map

An inner product on a vector space gives the ability to define the notion of orthog-
onality. Families of nonnull pairwise orthogonal vectors must be linearly indepen-
dent. They are called orthogonal families. In a vector space of finite dimension it is
always possible to find orthogonal bases. This is very useful theoretically and prac-
tically. Indeed, in an orthogonal basis, finding the coordinates of a vector is very
cheap: It takes an inner product. Fourier series make crucial use of this fact. When
E has finite dimension, we prove that the inner product on E induces a natural iso-
morphism between E and its dual space E*. This allows us to define the adjoint of
a linear map in an intrinsic fashion (i.e., independently of bases). It is also possi-
ble to orthonormalize any basis (certainly when the dimension is finite). We give
two proofs, one using duality, the other more constructive using the Gram—Schmidt
orthonormalization procedure.

Definition 6.2. Given a Euclidean space E, any two vectors u,v € E are orthogonal,
or perpendicular, if u-v = 0. Given a family (u;);c; of vectors in E, we say that
(ui)icr is orthogonal if u;-uj = 0 for all i, j € I, where i # j. We say that the family
(ui)icr is orthonormal if u;-uj = 0 for all i, j € I, where i # j, and ||u;|| = u;-u; =1,
for all i € I. For any subset F of E, the set

Ft={veE|u-v=0,forallucF},

of all vectors orthogonal to all vectors in F, is called the orthogonal complement of
F.

Since inner products are positive definite, observe that for any vector u € E, we
have
u-v=0 forallveE iff u=0.

It is immediately verified that the orthogonal complement F of F is a subspace of
E.

Example 6.4. Going back to Example 6.3 and to the inner product

o) = [ rwgar

on the vector space €'|—, 7|, it is easily checked that
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o [mifp=q,pg>1,
<51anC,Slnqx>—{() ifp#q,p,qg>1,

_Jm iftp=qpqg=>1,
(cospx,cosqx>—{0 itpLgpag>0

and
(sin px,cosgx) = 0,

forall p > 1 and g > 0, and of course, (1,1) = ffﬂ dx =2m.
As a consequence, the family (sin px),>1 U (cosgx),>0 is orthogonal. It is not
orthonormal, but becomes so if we divide every trigonometric function by /7, and

1 by v27.

Remark: Observe that if we allow complex—valued functions, we obtain simpler
proofs. For example, it is immediately checked that

T 2n iftk=0
ikx _ )
/,,,e dx_{o if k # 0,
because the derivative of e is ikel*.

@ However, beware that something strange is going on. Indeed, unless k =
0, we have o
<elkx’ elkx> -0

3

since

ek ey — /”

J—T

. T .
() 2dx = / e dx = 0.

-

The inner product (e'**,e!¥*) should be strictly positive. What went wrong?

The problem is that we are using the wrong inner product. When we use complex-
valued functions, we must use the Hermitian inner product

)= [ szt

where g(x) is the conjugate of g(x). The Hermitian inner product is not symmetric.
Instead,

(8. f)=(f.8)

(Recall that if z = a+1b, where a,b € R, then 7 = a —ib. Also, el® = cos O +isin 0).
With the Hermitian inner product, everything works out beautifully! In particular,
the family (e**).cz is orthogonal. Hermitian spaces and some basics of Fourier
series will be discussed more rigorously in Chapter 11.

We leave the following simple two results as exercises.
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Lemma 6.2. Given a Euclidean space E, for any family (u;)ic of nonnull vectors
in E, if (u;)ics is orthogonal, then it is linearly independent.

Lemma 6.3. Given a Euclidean space E, any two vectors u,v € E are orthogonal
if
2 2 2
[l v[7 = llull” 4 [Iv]]~
One of the most useful features of orthonormal bases is that they afford a very

simple method for computing the coordinates of a vector over any basis vector.
Indeed, assume that (e, ..., e,;) is an orthonormal basis. For any vector

X=Xx1€] 4+ Xplm,
if we compute the inner product x - ¢;, we get
X-ej=2x1e1-e+---+xiei-ei+ -+ xpem - i = Xi,

since
e 1 ifi=},
PTT0 ifi# g

is the property characterizing an orthonormal family. Thus,

Xi=x-ej,

which means that x;e; = (x- ¢;)e; is the orthogonal projection of x onto the sub-
space generated by the basis vector e;. If the basis is orthogonal but not necessarily
orthonormal, then

X €; X+ €;

Xj=—— = —.
"oeirer eil?

All this is true even for an infinite orthonormal (or orthogonal) basis (e;);c;.

@ However, remember that every vector x is expressed as a linear combina-
tion
X = inei
il

where the family of scalars (x;);cs has finite support, which means that x; = 0 for
all i € I —J, where J is a finite set. Thus, even though the family (sinpx),>; U
(cosgx)y>0 is orthogonal (it is not orthonormal, but becomes so if we divide every
trigonometric function by /7, and 1 by v/27; we won’t because it looks messy!),
the fact that a function f € ¥°[—x, 7] can be written as a Fourier series as

s

f(x) =ao+ ) (axcoskx+ bysinkx)

k

1

does not mean that (sin px),>1 U (cos gx),>¢ is a basis of this vector space of func-
tions, because in general, the families (a;) and (b;) do not have finite support! In
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order for this infinite linear combination to make sense, it is necessary to prove that
the partial sums

n
ap+ Z (axcoskx + by sinkx)
k=1

of the series converge to a limit when n goes to infinity. This requires a topology on
the space.

Still, a small miracle happens. If f € €[—n, 7] can indeed be expressed as a
Fourier series

gk

f(x)=ap+ ) (axcoskx—+ bysinkx),

k

1

the coefficients ag and ay, by, k > 1, can be computed by projecting f over the basis
functions, i.e., by taking inner products with the basis functions in (sin px),>; U
(cosgx)g>0. Indeed, for all k > 1, we have

(£, 1)
ag = — s
1112
and
o= (f,coskx) _ (f,sinkx)
K7 coskx2” K7 | sinkx]2”
that is,
1 T
a=r5 | S
and

1= L[
a, = —/ f(x) coskxdx, b, = —/ f(x) sinkxdx.
TJ)-nm TJ-zm

If we allow f to be complex-valued and use the family (e%*¥);cz, which is is
indeed orthogonal w.r.t. the Hermitian inner product

T
(8= | g,
we consider functions f € €[—, 7| that can be expressed as the sum of a series

fo =Y cxe®.
keZ
Note that the index k is allowed to be a negative integer. Then, the formula giving
the ¢y is very nice: '
(f.e)

||eika2’

C =

that is,
1 /” £(%) —ike g
Cl, — — X)E X.
k 21 )z
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Note the presence of the negative sign in e “**, which is due to the fact that the inner
product is Hermitian. Of course, the real case can be recovered from the complex
case. If f is a real-valued function, then we must have

a, =cy+c_; and bk:i(ck—c,k).

Also note that |
Elﬂf(x)e*i“dx

is defined not only for all discrete values k € Z, but for all k£ € R, and that if f is
continuous over R, the integral makes sense. This suggests defining

o= [ rtoe

called the Fourier transform of f. The Fourier transform analyzes the function f in
the “frequency domain” in terms of its spectrum of harmonics. Amazingly, there is
an inverse Fourier transform (change e ** to e™** and divide by the scale factor
2r) that reconstructs f (under certain assumptions on f).

Some basics of Fourier series will be discussed more rigorously in Chapter 11.
For more on Fourier analysis, we highly recommend Strang [23] for a lucid intro-
duction with lots of practical examples, and then move on to a good real analysis
text, for instance Lang [15, 16], or [20].

A very important property of Euclidean spaces of finite dimension is that the
inner product induces a canonical bijection (i.e., independent of the choice of bases)
between the vector space E and its dual E*.

Given a Euclidean space E, for any vector u € E, let ¢,: E — R be the map
defined such that

Pu(v) =u-v,

forallv e E.
Since the inner product is bilinear, the map ¢, is a linear form in E*. Thus, we
have amap b: E — E*, defined such that

b(u) = @,.

Lemma 6.4. Given a Euclidean space E, the map b: E — E* defined such that

b(u) = @u

is linear and injective. When E is also of finite dimension, the map b: E — E* is a
canonical isomorphism.

Proof. Thatb: E — E* is a linear map follows immediately from the fact that the
inner product is bilinear. If ¢, = ¢,, then @,(w) = ¢,(w) for all w € E, which by
definition of ¢, means that
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u-w=v-w

for all w € E, which by bilinearity is equivalent to
(v—u)-w=0

for all w € E, which implies that u = v, since the inner product is positive definite.
Thus, b: E — E* is injective. Finally, when E is of finite dimension n, we know that
E* is also of dimension n, and then b: E — E* is bijective. O

The inverse of the isomorphismb: E — E* is denoted by ff: E* — E.
As a consequence of Lemma 6.4, if E is a Euclidean space of finite dimension,
every linear form f € E* corresponds to a unique u € E such that

fv)=u-v,

for every v € E. In particular, if f is not the null form, the kernel of f, which is a
hyperplane H, is precisely the set of vectors that are orthogonal to u.

Remarks:

(1) The “musical map”b: E — E* is not surjective when E has infinite dimension.
The result can be salvaged by restricting our attention to continuous linear maps,
and by assuming that the vector space E is a Hilbert space (i.e., E is a complete
normed vector space w.r.t. the Euclidean norm). This is the famous “little” Riesz
theorem (or Riesz representation theorem).

(2) Lemma 6.4 still holds if the inner product on E is replaced by a nondegenerate
symmetric bilinear form ¢. We say that a symmetric bilinear form ¢: E X E —
R is nondegenerate if for every u € E,

if @(u,v)=0 forallveE, then u=0.

For example, the symmetric bilinear form on R* defined such that

O((x1,x2,x3,x4), (V1,2,¥3,¥4)) = X1Y1 +X2y2 + X3y3 — X4y4

is nondegenerate. However, there are nonnull vectors u € R* such that ¢ (u, u) =
0, which is impossible in a Euclidean space. Such vectors are called isotropic.

The existence of the isomorphism b: E — E* is crucial to the existence of ad-
joint maps. The importance of adjoint maps stems from the fact that the linear maps
arising in physical problems are often self-adjoint, which means that f = f*. More-
over, self-adjoint maps can be diagonalized over orthonormal bases of eigenvectors.
This is the key to the solution of many problems in mechanics, and engineering in
general (see Strang [23]).

Let E be a Euclidean space of finite dimension n, and let f: E — E be a linear
map. For every u € E, the map

v u- f(v)
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is clearly a linear form in E*, and by Lemma 6.4, there is a unique vector in E
denoted by f*(u) such that

frw)-v=u-f),

for every v € E. The following simple lemma shows that the map f* is linear.

Lemma 6.5. Given a Euclidean space E of finite dimension, for every linear map
f: E — E, there is a unique linear map [*: E — E such that

frw)-v=u-f),
Sforallu,v € E. The map f* is called the adjoint of f (w.r.t. to the inner product).
Proof. Given uy,u; € E, since the inner product is bilinear, we have
(1 4uz) - f(v) = - f(v) +uz- f(v),
forall v € E, and
(") + 7 (u2)) v =f*(ur) - v+ ¥ (u2) -v,

for all v € E, and since by assumption,

JHur) - v=ur-f(v)
and

[ru2) - v=uz-f(v),
forallv € E, we get

(f* (1) + [ (u2)) -v = (w1 +u2) - f(v),

for all v € E. Since b is bijective, this implies that
[ ur+u2) = f*(ur) + £ (u2).

Similarly,
(Au)- f(v)=A(u-f(v)),
forallv € E, and

(RS (W) -v=A(f" () -v),

for all v € E, and since by assumption,

fru)-v=u-f),

forallv € E, we get
(Af (W) -v=(Au)- f(v),

for all v € E. Since b is bijective, this implies that
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I (Au) = Af"(u).
Thus, f* is indeed a linear map, and it is unique, since b is a bijection. O

Linear maps f: E — E such that f = f* are called self-adjoint maps. They play
a very important role because they have real eigenvalues, and because orthonormal
bases arise from their eigenvectors. Furthermore, many physical problems lead to
self-adjoint linear maps (in the form of symmetric matrices).

Remark: Lemma 6.5 still holds if the inner product on E is replaced by a nonde-
generate symmetric bilinear form ¢.

Linear maps such that f~! = f*, or equivalently
frof=fof =id

also play an important role. They are linear isometries, or isometries. Rotations are
special kinds of isometries. Another important class of linear maps are the linear
maps satisfying the property

frof=rfof,
called normal linear maps. We will see later on that normal maps can always be
diagonalized over orthonormal bases of eigenvectors, but this will require using a
Hermitian inner product (over C).

Given two Euclidean spaces E and F, where the inner product on E is denoted
by (—,—)1 and the inner product on F is denoted by (—,—),, given any linear map
f: E — F,itis immediately verified that the proof of Lemma 6.5 can be adapted to
show that there is a unique linear map f*: F — E such that

(f(w),v)a = (u, f* (V)1

for all u € E and all v € F. The linear map f* is also called the adjoint of f.

Remark: Given any basis for E and any basis for F, it is possible to characterize the
matrix of the adjoint f* of f in terms of the matrix of f, and the symmetric matrices
defining the inner products. We will do so with respect to orthonormal bases. Also,
since inner products are symmetric, the adjoint f* of f is also characterized by

fw)-v=u-f*(v),
forallu,v € E.

We can also use Lemma 6.4 to show that any Euclidean space of finite dimension
has an orthonormal basis.

Lemma 6.6. Given any nontrivial Euclidean space E of finite dimensionn > 1, there
is an orthonormal basis (uy,...,u,) for E.
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Proof. We proceed by induction on #n. When n = 1, take any nonnull vector v € E,
which exists, since we assumed E nontrivial, and let

v

U=-—r.
Il

If n > 2, again take any nonnull vector v € E, and let

gV
ST

Consider the linear form ¢,, associated with ;. Since u; # 0, by Lemma 6.4, the
linear form ¢y, is nonnull, and its kernel is a hyperplane H. Since ¢,, (w) = 0 iff
uj -w = 0, the hyperplane H is the orthogonal complement of {u }. Furthermore,
since 1) # 0 and the inner product is positive definite, u; - u; # 0, and thus, u; ¢ H,
which implies that £ = H & Ru;. However, since E is of finite dimension n, the
hyperplane H has dimension n — 1, and by the induction hypothesis, we can find an
orthonormal basis (u, . .. ,u,) for H. Now, because H and the one dimensional space
Ru; are orthogonal and E = H ® Ruy, it is clear that (u1,...,u,) is an orthonormal
basis for E. O

There is a more constructive way of proving Lemma 6.6, using a procedure
known as the Gram—Schmidt orthonormalization procedure. Among other things,
the Gram—Schmidt orthonormalization procedure yields the QR-decomposition for
matrices, an important tool in numerical methods.

Lemma 6.7. Given any nontrivial Euclidean space E of finite dimensionn > 1, from
any basis (ey,...,e,) for E we can construct an orthonormal basis (uy,...,uy)
for E, with the property that for every k, 1 < k < n, the families (e1,...,e;) and
(u1,...,ux) generate the same subspace.

Proof. We proceed by induction on n. Forn =1, let

€]
Uy =-—:.
len]
For n > 2, we also let
€]
U=,
e
and assuming that (uy,...,u;) is an orthonormal system that generates the same
subspace as (ey,...,e), for every k with 1 < k < n, we note that the vector
k

Uy = €k — Y (€t - i) U
i=1
is nonnull, since otherwise, because (u1,...,u;) and (ey,...,e;) generate the same
subspace, (e, .. .,err1) would be linearly dependent, which is absurd, since (ey, ...,
e,) is a basis. Thus, the norm of the vector ”2 1 being nonzero, we use the following
construction of the vectors u; and uﬁcz
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u/I = €] uy = M/l
’ [z
and for the inductive step
: Wy
/
Wpp) = €1 — Y (€ u) Uiy, Uy =
i=1 ||uk+1 [
where 1 <k <n—1.1tis clear that ||uz || = 1, and since (uy,...,u) is an orthonor-

mal system, we have
! R . Nyg: e 10 — . =0
Up ) Ui = €1 Ui (ek+1'ut)ut'ul—ek+l'”l Ck+1 Ui =V,

for all i with 1 <i < k. This shows that the family (u,...,u;, 1) is orthonormal, and
since (ug,...,u;) and (eq,...,e;) generates the same subspace, it is clear from the
definition of w1 that (u1,...,ux1) and (ey,...,ex41) generate the same subspace.
This completes the induction step and the proof of the lemma. O

Note that 1), 1 1s obtained by subtracting from ey the projection of ey itself
onto the orthonormal vectors uj, . ..., uy that have already been computed. Then, u;}, 41
is normalized. The Gram—Schmidt orthonormalization procedure is illustrated in
Figure 6.2.

S —— 2
4 \\\ ///l
/7 \\\ 77 |
7/ u3 \\\/// I
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I o \
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[ s 44 \
1 \ e v
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| 2 \|
Z
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up /
/
/s
(e2-up)uy ’
€

€1

Fig. 6.2 The Gram—Schmidt orthonormalization procedure.

Remarks:

(1) The QR-decomposition can now be obtained very easily, but we postpone this
until Section 6.4.
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(2) We could compute u/ , , using the formula
P k+1 g

L eyl U]
/ ] /
Up1 = Ck+1 — Z ( ||u{||2 ') Uj,
1

i=1

and normalize the vectors u at the end. This time, we are subtracting from ey,
the projection of e itself onto the orthogonal vectors u},...,u,. This might
be preferable when writing a computer program.

(3) The proof of Lemma 6.7 also works for a countably infinite basis for E, produc-
ing a countably infinite orthonormal basis.

Example 6.5. If we consider polynomials and the inner product

1
(g = [ Fs(r,

applying the Gram—Schmidt orthonormalization procedure to the polynomials

which form a basis of the polynomials in one variable with real coefficients, we get
a family of orthonormal polynomials O, (x) related to the Legendre polynomials.

The Legendre polynomials P,(x) have many nice properties. They are orthogo-
nal, but their norm is not always 1. The Legendre polynomials P,(x) can be defined
as follows. Letting f;, be the function

fox) = (2 = 1)",

we define P,(x) as follows:

[
Py(x)=1, and P,(x)= 2"n'f'§ >(x),

where 7" is the nth derivative of f,.
They can also be defined inductively as follows:

Po(x) = 1,
Py (x) = x,
2n+1 n
P,,+1(x) = n+1 xPn(x)—n—HP,,,l(x).

It turns out that the polynomials @, are related to the Legendre polynomials P,

as follows:
2n+1
On(x) =1/ 3 P, (x).

As a consequence of Lemma 6.6 (or Lemma 6.7), given any Euclidean space of
finite dimension n, if (ey,...,e,) is an orthonormal basis for E, then for any two
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vectors u = uje; + -+ + upe, and v = vyey + - -+ 4+ vyep, the inner product u - v is
expressed as

n
u-v=(urer+-- +upen) - (viey+---+vpen) = Y upi,
i=1

n
ull = [Jurer +- -+ upen| = 4 | Zulz
i=1

We can also prove the following lemma regarding orthogonal spaces.

and the norm ||u|| as

Lemma 6.8. Given any nontrivial Euclidean space E of finite dimension n > 1, for
any subspace F of dimension k, the orthogonal complement F of F has dimension
n—k, and E = F & F+. Furthermore, we have F++ =F.

Proof. From Lemma 6.6, the subspace F' has some orthonormal basis (u1,...,u).
This linearly independent family (i, ...,u;) can be extended to a basis (uy,...,u,
Vk+l,---,Vn), and by Lemma 6.7, it can be converted to an orthonormal basis
(u1,...,uy), which contains (uy,...,u;) as an orthonormal basis of F. Now, any
vector w = wyuy + --- + wpu, € E is orthogonal to F iff w-u; = 0, for every i,
where 1 <i <k, iff w; = 0 for every i, where 1 < i < k. Clearly, this shows that
(Ury1,---,uy) is a basis of F, and thus E = F @ F*, and F* has dimension n — k.
Similarly, any vector w = wjuj + - -- +wyu, € E is orthogonal to FLiffw.-u; =0,
for every i, where k+ 1 < i < n, iff w; = 0 for every i, where k+ 1 < i < n. Thus,
(u,...,ux) is abasis of F*+ and F*+ =F. 0O

We now define Euclidean affine spaces.

Definition 6.3. An affine space (E, ?) is a Euclidean affine space if its underlying

vector space ? is a Euclidean vector space. Given any two points a,b € E, we define
the distance between a and b, or length of the segment (a,b), as || iH the Euclidean
norm of ab. Given any two pairs of points (a,b) and (c,d), we define their inner
product as ab - cd. We say that (a,b) and (c,d) are orthogonal, or perpendicular, if

%
CZ -cd = 0. We say that two affine subspaces F; and F; of E are orthogonal if their
directions F| and F; are orthogonal.

The verification that the distance defined in Definition 6.3 satisfies the axioms of
Definition 21.1 is immediate. Note that a Euclidean affine space is a normed affine
space, in the sense of Definition 21.3. We denote by E™ the Euclidean affine space
obtained from the affine space A” by defining on the vector space R the standard
inner product

(13 X%m) s V15 eesVm) = X101+ -+ + XmYVm-

The corresponding Euclidean norm is
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1ty x| = \/x%—i—---—i—x,zn.

6.3 Linear Isometries (Orthogonal Transformations)

In this section we consider linear maps between Euclidean spaces that preserve the
Euclidean norm. These transformations, sometimes called rigid motions, play an
important role in geometry.

Definition 6.4. Given any two nontrivial Euclidean spaces £ and F of the same
finite dimension 7, a function f: E — F is an orthogonal transformation, or a linear
isometry, if it is linear and

£ )]l = [lull,

forallu € E.

Remarks:

(1) A linear isometry is often defined as a linear map such that

1) = f)]| = [y —ull,

forall u,v € E. Since the map f is linear, the two definitions are equivalent. The
second definition just focuses on preserving the distance between vectors.

(2) Sometimes, a linear map satisfying the condition of Definition 6.4 is called a
metric map, and a linear isometry is defined as a bijective metric map.

An isometry (without the word linear) is sometimes defined as a function f: E —
F (not necessarily linear) such that

1F) = F @)l = [lv = ull,

forall u,v € E, i.e., as a function that preserves the distance. This requirement turns
out to be very strong. Indeed, the next lemma shows that all these definitions are
equivalent when E and F are of finite dimension, and for functions such that f(0) =
0.

Lemma 6.9. Given any two nontrivial Euclidean spaces E and F of the same finite
dimension n, for every function f: E — F, the following properties are equivalent:

(1) f is a linear map and || f (w)|| = ||u||, for all u € E;
) Ifv) = f)|| = ||v—ul|, for all u,v € E, and f(0) = 0;
(3) f(u)- f(v)=wu-v, forallu,v € E.

Furthermore, such a map is bijective.
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Proof. Clearly, (1) implies (2), since in (1) it is assumed that f is linear.
Assume that (2) holds. In fact, we shall prove a slightly stronger result. We prove
that if

[f) = f@)]| = [lv—ull
for all u,v € E, then for any vector 7 € E, the function g: E — F defined such that

glu) = f(r+u) = f(7)

for all u € E is a linear map such that g(0) = 0 and (3) holds. Clearly, g(0) =
f(7) = f(7) =0.

Note that from the hypothesis

1F) = F @)l = [lv —ull

for all u,v € E, we conclude that

18(v) =g = lf (z+v) = f(7) = (f(z+u) = F(D)],
(

= f(z+v) = flz+u)l,
=lt+v—(z+u)l,
= [[v—ull,

for all u,v € E. Since g(0) = 0, by setting u =0 in

l8(v) = g ()] = [lv—ull,

we get
18I = [Iv]

for all v € E. In other words, g preserves both the distance and the norm.
To prove that g preserves the inner product, we use the simple fact that

2 2 2
2u-v=[ul|*+ [[v]|* = [lu—v|]
for all u,v € E. Then, since g preserves distance and norm, we have

2g(u) - 8(v) = llg@)I* + llgW)I* = llg(w) — g 0)|>
= [ael® + vl = [l v]|?

=2u-v,

and thus g(u) - g(v) = u-v, for all u,v € E, which is (3).

In particular, if f(0) = 0, by letting T = 0, we have g = f, and f preserves the
scalar product, i.e., (3) holds.

Now assume that (3) holds. Since E is of finite dimension, we can pick an or-
thonormal basis (ey,...,e,) for E. Since f preserves inner products, (f(e;),...,
f(ey)) is also orthonormal, and since F also has dimension n, it is a basis of F.
Then note that for any u = uye; + - - - + uye,, we have
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Ui =u-éej,

for all i, 1 <i < n. Thus, we have

™

f(u) =) (f(u)-flei)f(ei),

i=1

and since f preserves inner products, this shows that

=

flu)=) (u-e)f(e;) = iluif(ei)a

1

which shows that f is linear. Obviously, f preserves the Euclidean norm, and (3)
implies (1).

Finally, if f(u) = f(v), then by linearity f(v—u) =0, so that ||f(v —u)| =0,
and since f preserves norms, we must have ||v — u|| = 0, and thus u = v. Thus, f is
injective, and since E and F have the same finite dimension, f is bijective. O

Remarks:

(i) The dimension assumption is needed only to prove that (3) implies (1) when f
is not known to be linear, and to prove that f is surjective, but the proof shows
that (1) implies that f is injective.

(ii) In (2), when f does not satisfy the condition f(0) = 0, the proof shows that f
is an affine map. Indeed, taking any vector T as an origin, the map g is linear,
and

fr+u)=f(7)+8(u)

for all u € E, proving that f is affine with associated linear map g.

(iii) Paul Hughett showed me a nice proof of the following interesting fact: The
implication that (3) implies (1) holds if we also assume that f is surjective,
even if E has infinite dimension. Indeed, observe that

(f (A pv) = Af(u) =1 f(v)) - f(w)
=fAutpv)- fw) = Af () f(w) —ufv)- fw)
=Au+uv) - w—Au-w—puv-w=0,

since f preserves the inner product. However, if f is surjective, every z € F is
of the form z = f(w) for some w € E, and the above equation implies that

(F(ut 1) = Af ()~ 1 f(v) 2= 0

for all z € E, which implies that

FAu+pv) = Af(u) —pf(v) =0,

proving that f is linear.
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In view of Lemma 6.9, we will drop the word “linear” in “linear isometry,” unless
we wish to emphasize that we are dealing with a map between vector spaces.

We are now going to take a closer look at the isometries f: E — E of a Euclidean
space of finite dimension.

6.4 The Orthogonal Group, Orthogonal Matrices
In this section we explore some of the basic properties of the orthogonal group and

of orthogonal matrices.

Lemma 6.10. Let E be any Euclidean space of finite dimension n, and let f: E — E
be any linear map. The following properties hold:

(1) The linear map f: E — E is an isometry iff
foff=fof=id.

(2) For every orthonormal basis (e, ...,e,) of E, if the matrix of f is A, then the
matrix of f* is the transpose AT of A, and f is an isometry iff A satisfies the
identities

AAT =ATA=1,
where I, denotes the identity matrix of order n, iff the columns of A form an
orthonormal basis of E, iff the rows of A form an orthonormal basis of E.

Proof. (1) The linear map f: E — E is an isometry iff
fu)-fv) =u-,

forall u,v € E, iff
F(fw)-v=fu)-fv)=u-v
for all u,v € E, which implies

(F* ()~ u) v =0

for all u,v € E. Since the inner product is positive definite, we must have

S () —u=0

for all u € E, that is,
frof=fof =id

(2)If (ey,...,e,) is an orthonormal basis for E, let A = (a;, ;) be the matrix of f,
and let B = (b; ;) be the matrix of f*. Since f* is characterized by

F(w) v =u )
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for all u,v € E, using the fact that if w = wye; +--- +wye, we have wy, = w - ¢; for
allk, 1 <k <n, letting u = ¢; and v = ¢, we get

bji=f"(e:) ej=eiflej) =aij,

foralli,j, 1 <i,j <n.Thus, B= AT. Now, if X and Y are arbitrary matrices over
the basis (ey,...,e,), denoting as usual the jth column of X by X;, and similarly for
Y, a simple calculation shows that

XY = (X;-Yp)i<ij<n-
Then it is immediately verified that if X =Y = A, then
ATA=AAT =1,

iff the column vectors (Ay,...,A,) form an orthonormal basis. Thus, from (1), we
see that (2) is clear (also because the rows of A are the columnsof AT). O

Lemma 6.10 shows that the inverse of an isometry f is its adjoint f*. Lemma
6.10 also motivates the following definition. The set of all real n x n matrices is
denoted by M, (R).

Definition 6.5. A real n x n matrix is an orthogonal matrix if

AAT=ATA=1,.

Remark: Itis easy to show that the conditions AAT =1, ATA=1, andA" ' =AT,
are equivalent. Given any two orthonormal bases (uj,...,u,) and (vi,...,vy), if
P is the change of basis matrix from (u,...,u,) to (vi,...,v,) (i.e., the columns
of P are the coordinates of the v; w.r.t. (u1,...,u,)), since the columns of P are
the coordinates of the vectors v; with respect to the basis (uy,...,u,), and since
(V1,...,vy) is orthonormal, the columns of P are orthonormal, and by Lemma 6.10
(2), the matrix P is orthogonal.

The proof of Lemma 6.9 (3) also shows that if f is an isometry, then the image
of an orthonormal basis (u7,...,u,) is an orthonormal basis. Students often ask why
orthogonal matrices are not called orthonormal matrices, since their columns (and
rows) are orthonormal bases! I have no good answer, but isometries do preserve
orthogonality, and orthogonal matrices correspond to isometries.

Recall that the determinant det(f) of a linear map f: E — E is independent of the
choice of a basis in E. Also, for every matrix A € M,,(R), we have det(A) =det(A "),
and for any two n x n matrices A and B, we have det(AB) = det(A) det(B) (for all
these basic results, see Lang [14]). Then, if f is an isometry, and A is its matrix with
respect to any orthonormal basis, AAT =ATA=1, implies that det(A)2 =1, that is,
either det(A) = 1, or det(A) = —1. It is also clear that the isometries of a Euclidean
space of dimension n form a group, and that the isometries of determinant +1 form
a subgroup. This leads to the following definition.
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Definition 6.6. Given a Euclidean space E of dimension #n, the set of isometries
f: E — E forms a subgroup of GL(E) denoted by O(E), or O(n) when E = R",
called the orthogonal group (of E). For every isometry f, we have det(f) = £1,
where det(f) denotes the determinant of f. The isometries such that det(f) = 1 are
called rotations, or proper isometries, or proper orthogonal transformations, and
they form a subgroup of the special linear group SL(E) (and of O(E)), denoted
by SO(E), or SO(n) when E = R", called the special orthogonal group (of E).
The isometries such that det(f) = —1 are called improper isometries, or improper
orthogonal transformations, or flip transformations.

As an immediate corollary of the Gram—Schmidt orthonormalization procedure,
we obtain the QR-decomposition for invertible matrices.

6.5 QR-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix, we can explain how the
Gram—Schmidt orthonormalization procedure immediately yields the QR-decompo-
sition for matrices.

Lemma 6.11. Given any real n x n matrix A, if A is invertible, then there is an or-
thogonal matrix Q and an upper triangular matrix R with positive diagonal entries
such that A = QR.

Proof. We can view the columns of A as vectors Ay, ...,A, in E". If A is invertible,
then they are linearly independent, and we can apply Lemma 6.7 to produce an
orthonormal basis using the Gram—Schmidt orthonormalization procedure. Recall
that we construct vectors Q; and Q;c as follows:

Q)
Q/l :Ala Ql =T A
11l
and for the inductive step
S Qi1
/
Q1 = A1 — Y (Acr1 - Q1) Qi Ok = T,
i 1k

where 1 <k <n— 1. If we express the vectors Ay in terms of the Q; and Q?, we get
the triangular system
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Ay = ||011101,
Aj=(A;- Q)01+ +(A;-0) Qi+ + Q)0

Ap=(An-01) 01+ + (An On1) Qu1 + 10| On.

Letting ryx = ||Qyl|, and r; j = A - Q; (the reversal of i and j on the right-hand
side is intentional!), where 1 <k <n,2 < j<n,and 1 <i< j—1, and letting g; ;
be the ith component of Q;, we note that a; ;, the ith component of A}, is given by

Qi j =T1qi e TG G = it it e g ry

If we let Q = (q,', j), the matrix whose columns are the components of the Q;, and
R = (r;;), the above equations show that A = QR, where R is upper triangular. The
diagonal entries ry x = ||Q} || = Ak - Oy are indeed positive. O

The reader should try the above procedure on some concrete examples for 2 x 2
and 3 x 3 matrices.

Remarks:

(1) Because the diagonal entries of R are positive, it can be shown that Q and R are
unique.

(2) The QR-decomposition holds even when A is not invertible. In this case, R has
some zero on the diagonal. However, a different proof is needed. We will give
a nice proof using Householder matrices (see Lemma 8.6, and also Strang [23,
24], Golub and Van Loan [9], Trefethen and Bau [26], Demmel [7],
Kincaid and Cheney [13], or Ciarlet [5]).

Example 6.6. Consider the matrix

005
A=(041
111

We leave as an exercise to show that A = QR, with

001 111
o=1|o10 and R=[041
100 005

Example 6.7. Another example of QR-decomposition is

112 1/V2 1/V2 0\ [V21/V2V2
A=(001]=| o0 0 1 0 1/vV2V2
100 1/vV2-1/v/20) \0 0 1
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The QR-decomposition yields a rather efficient and numerically stable method
for solving systems of linear equations. Indeed, given a system Ax = b, where A is
an n X n invertible matrix, writing A = QR, since Q is orthogonal, we get

Rx=0Q'b,

and since R is upper triangular, we can solve it by Gaussian elimination, by solving
for the last variable x,, first, substituting its value into the system, then solving for
Xn—1, etc. The QR-decomposition is also very useful in solving least squares prob-
lems (we will come back to this later on), and for finding eigenvalues. It can be
easily adapted to the case where A is a rectangular m x n matrix with independent
columns (thus, n < m). In this case, Q is not quite orthogonal. It is an m X n matrix
whose columns are orthogonal, and R is an invertible n X n upper diagonal matrix
with positive diagonal entries. For more on OR, see Strang [23, 24], Golub and Van
Loan [9], Demmel [7], Trefethen and Bau [26], or Serre [21].

It should also be said that the Gram—Schmidt orthonormalization procedure that
we have presented is not very stable numerically, and instead, one should use
the modified Gram—Schmidt method. To compute Oy 1 instead of projecting Ay
onto Q1,...,0 in a single step, it is better to perform k projections. We compute

1 2 k .
Or 1,915,y as follows:

Oti1 = A1 — (Aes1-01) Q1
Q}:fl = Qi1 — (Qy1-Qiv1) Qiv1,s

where 1 <i < k— 1. It is easily shown that Q;<+1 = Qﬁﬂ. The reader is urged to
code this method.

6.6 Some Applications of Euclidean Geometry

Euclidean geometry has applications in computational geometry, in particular Voro-
noi diagrams and Delaunay triangulations, discussed in Chapter 10. In turn, Voronoi
diagrams have applications in motion planning (see O’Rourke [17]).

Euclidean geometry also has applications to matrix analysis. Recall that a real n x
n matrix A is symmetric if it is equal to its transpose A . One of the most important
properties of symmetric matrices is that they have real eigenvalues and that they can
be diagonalized by an orthogonal matrix (see Chapter 12). This means that for every
symmetric matrix A, there is a diagonal matrix D and an orthogonal matrix P such
that

A=PDP'.

Even though it is not always possible to diagonalize an arbitrary matrix, there are
various decompositions involving orthogonal matrices that are of great practical
interest. For example, for every real matrix A, there is the QR-decomposition, which
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says that a real matrix A can be expressed as
A= OR,

where Q is orthogonal and R is an upper triangular matrix. This can be obtained
from the Gram—Schmidt orthonormalization procedure, as we saw in Section 6.5, or
better, using Householder matrices, as shown in Section 8.3. There is also the polar
decomposition, which says that a real matrix A can be expressed as

A=0S,

where Q is orthogonal and S is symmetric positive semidefinite (which means that
the eigenvalues of S are nonnegative; see Chapter 12). Such a decomposition is
important in continuum mechanics and in robotics, since it separates stretching from
rotation. Finally, there is the wonderful singular value decomposition, abbreviated
as SVD, which says that a real matrix A can be expressed as

A=VDU',

where U and V are orthogonal and D is a diagonal matrix with nonnegative entries
(see Chapter 13). This decomposition leads to the notion of pseudo-inverse, which
has many applications in engineering (least squares solutions, etc). For an excellent
presentation of all these notions, we highly recommend Strang [24, 23], Golub and
Van Loan [9], Demmel [7], Serre [21], and Trefethen and Bau [26].

The method of least squares, invented by Gauss and Legendre around 1800, is
another great application of Euclidean geometry. Roughly speaking, the method is
used to solve inconsistent linear systems Ax = b, where the number of equations is
greater than the number of variables. Since this is generally impossible, the method
of least squares consists in finding a solution x minimizing the Euclidean norm
|Ax — b||?, that is, the sum of the squares of the “errors.” It turns out that there is
always a unique solution x* of smallest norm minimizing ||Ax — b, and that it is a
solution of the square system

ATAx=ATb,

called the system of normal equations. The solution x* can be found either by using

the QR-decomposition in terms of Householder transformations, or by using the
notion of pseudo-inverse of a matrix. The pseudo-inverse can be computed using
the SVD decomposition. Least squares methods are used extensively in computer
vision; see Trucco and Verri [27], or Jain, Katsuri, and Schunck [12]. More details
on the method of least squares and pseudo-inverses can be found in Chapter 14.

6.7 Problems

6.1. Prove Lemma 6.2.
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6.2. Prove Lemma 6.3.

6.3. Let (eq,...,e,) be an orthonormal basis for E. If X and Y are arbitrary n x n
matrices, denoting as usual the jth column of X by X;, and similarly for ¥, show
that

XY = (X;-Y)i<ij<n-

Use this to prove that
ATA=AAT =1,

iff the column vectors (Ay,...,A,) form an orthonormal basis. Show that the condi-
tionsAAT =1,,ATA=1,,and A" =AT are equivalent.

6.4. Given any two linear maps f: E — F and g: F — E, where dim(E) = n and
dim(F) = m, prove that

(=A)"det(go f—AL,) = (—A)'det(fog— Aly),

and thus that go f and f o g have the same nonnull eigenvalues.
Hint. If A is an m X n matrix and B is an n X m matrix, observe that

AB—X1ly Omn | _|A XLu|| B —XI,
B —XL| L Opw||—Ln A
and
B —XI,||A XI,| |BA—-XI, XB
—In A |[|LiOwm| | Ompn —XIn|’

where X is a variable.

6.5. (a) Let ) = (C1,R;) and % = (C,R;) be two distinct circles in the plane F?
(where C; is the center and R; is the radius). What is the locus of the centers of all
circles tangent to both %] and %,?

Hint. When is it one conic, when is it two conics?

(b) Repeat question (a) in the case where % is a line.

(c) Given three pairwise distinct circles €1 = (C1,R1), 6> = (C2,R;), and 63 =
(C3,R3) in the plane E?, prove that there are at most eight circles simultaneously
tangent to 61, %7, and %3 (this is known as the problem of Apollonius). What hap-
pens if the centers Cy,C;, C3 of the circles are collinear? In the latter case, show that
there are at most two circles exterior and tangent to &, 63, and %3.

Hint. You may want to use a carefully chosen inversion (see the problems in Section
5.14, especially Problem 5.37).

(d) Prove that the problem of question (c) reduces to the problem of finding the
circles passing through a fixed point and tangent to two given circles. In turn, by
inversion, this problem reduces to finding all lines tangent to two circles.

(e) Given four pairwise distinct spheres 61 = (C1,R}), 6 = (C2,R2), 63 =
(C3,R3), and 64 = (C4,R4), prove that there are at most sixteen spheres simulta-
neously tangent to 41, %2, €3, and 64. Prove that this problem reduces to the prob-
lem of finding the spheres passing through a fixed point and tangent to three given
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spheres. In turn, by inversion, this problem reduces to finding all planes tangent to
three spheres.

6.6. (a) Given any two circles % and %> in E? of equations
¥ +y*—2ax—2by+c=0 and x*+y*>—2dx—2'by+c =0,

we say that 4] and %, are orthogonal if they intersect and if the tangents at the
intersection points are orthogonal. Prove that ¥} and %, are orthogonal iff

2(ad’ +bb') =c+c.
(b) For any given ¢ € R (c # 0), there is a pencil .Z of circles of equations
¥ +y—2ux—c=0,

where u € R is arbitrary. Show that the set of circles orthogonal to all circles in the
pencil .Z is the pencil .Z* of circles of equations

P4y —2vy+c=0,
where v € R is arbitrary.

6.7.Let P = {py,..., pn} be a finite set of points in E3. Show that there is a unique
point ¢ such that the sum of the squares of the distances from c to each p; is minimal.
Find this point in terms of the p;.

6.8. (1) Compute the real Fourier coefficients of the function id(x) = x over [— 7, 7]

and prove that
< sinx sin2x  sin3x )
x=2 — — — ).

1 2 + 3
What is the value of the Fourier series at =77 What is the value of the Fourier
near =72 Do you find this surprising?

(2) Plot the functions obtained by keeping 1,2,4,5, and 10 terms. What do you
observe around +7?

6.9. The Dirac delta function (which is net a function!) is the spike function s.t.
6(k2m) = +oo for all k € Z, and § (x) = 0 everywhere else. It has the property that for
“well-behaved” functions f (including constant functions and trigonometric func-
tions),

| #03()d = £(0).

-

(1) Compute the real Fourier coefficients of 6 over [—m, 7], and prove that
1
o(x) = o (14+2cosx+2cos2x+2cos3x+---+2cosnx+---).

Also compute the complex Fourier coefficients of § over [—, ], and prove that
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1 . . . . . .
6()6):ﬁ(1—l—elx—l—eﬂx—i-elzx—l—eﬂzx—l—----i—emx—i-eﬂ”x—l—---).

(2) Prove that the partial sum of the first 2n + 1 complex terms is

_ sin ((2n+1)(x/2))
2msin(x/2)

O (x)

What is §,(0)?
(3) Plot &,(x) for n = 10,20 (over [—x, x]). Prove that the area under the curve
Oy, is independent of n. What is it?

6.10. (1) If an upper triangular n X n matrix R is invertible, prove that its inverse is
also upper triangular.

(2) If an upper triangular matrix is orthogonal, prove that it must be a diagonal
matrix.

If A is an invertible n X n matrix and if A = Q|R; = Q»R,, where R; and R; are
upper triangular with positive diagonal entries and Q1, Q; are orthogonal, prove that
Or=0rand R =R».

6.11. (1) Review the modified Gram—Schmidt method. Recall that to compute Q;{ e
instead of projecting Ay onto Qy,..., 0y in a single step, it is better to perform k
projections. We compute Q; 1,07, ,-.-» Qf, as follows:

Qiy1 = Ak — (As1- Q1) 01,
O = Qi1 — (Qiy - Qit1) Qi1

where 1 <i<k-—1.

Prove that Q) | = Q£+1'

(2) Write two computer programs to compute the QR-decomposition of an invert-
ible matrix. The first one should use the standard Gram—Schmidt method, and the
second one the modified Gram—Schmidt method. Run both on a number of matrices,
up to dimension at least 10. Do you observe any difference in their performance in
terms of numerical stability?

Run your programs on the Hilbert matrix H, = (1/(i+ j—1))1<i j<n. What hap-
pens?

Extra Credit. Write a program to solve linear systems of equations Ax = b, using
your version of the QR-decomposition program, where A is an n X n matrix.

6.12. Let E be a Euclidean space of finite dimension n, and let (ey,...,e,) be an
orthonormal basis for E. For any two vectors u,v € E, the linear map u ® v is defined
such that

uv(x)=(v-x)u,

forall x € E. If U and V are the column vectors of coordinates of # and v w.r.t. the
basis (e, ...,e,), prove that u ® v is represented by the matrix

U'v.
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What sort of linear map is # ® u when u« is a unit vector?

6.13. Let ¢ : E x E — R be a bilinear form on a real vector space E of finite dimen-
sion n. Given any basis (ej,...,e,) of E, let A = (¢ ;) be the matrix defined such
that

aij = ¢(ei,e;),

1 <, j <n.We call A the matrix of ¢ w.r.t. the basis (ei,...,ey).
(a) For any two vectors x and y, if X and Y denote the column vectors of coordi-
nates of x and y w.r.t. the basis (ey,...,e,), prove that

o(x,y) = X "AY.

(b) Recall that A is a symmetric matrix if A = AT . Prove that ¢ is symmetric if A
is a symmetric matrix.

(©) If (f1,...,fn) is another basis of E and P is the change of basis matrix from
(e1,-..,en) to (f1,-..,fn), prove that the matrix of ¢ w.r.t. the basis (f1,...,f,) is

PTAP.
The common rank of all matrices representing ¢ is called the rank of ¢.

6.14. Let ¢: E x E — R be a symmetric bilinear form on a real vector space E of
finite dimension n. Two vectors x and y are said to be conjugate w.r.t. @ if (x,y) =0.
The main purpose of this problem is to prove that there is a basis of vectors that are
pairwise conjugate w.r.t. Q.

(a) Prove that if ¢(x,x) = 0 for all x € E, then ¢ is identically null on E.

Otherwise, we can assume that there is some vector x € E such that ¢ (x,x) # 0.
Use induction to prove that there is a basis of vectors that are pairwise conjugate
w.r.t. Q.

For the induction step, proceed as follows. Let (ey, €3, . .., e,) be a basis of E, with
¢(e1,e1) # 0. Prove that there are scalars A, ..., A, such that each of the vectors

v, =e;+ Aeg
is conjugate to e; w.r.t. ¢, where 2 < i < n, and that (e, vy,...,v,) is a basis.
(b) Let (eq,...,e,) be a basis of vectors that are pairwise conjugate w.r.t. ¢, and

assume that they are ordered such that

L fe#0 if1<i<r
<p<ene>—{0 ifrel<i<n,

where r is the rank of @. Show that the matrix of ¢ w.r.t. (eq,...,e,) is a diagonal
matrix, and that

.
o(x,y) =Y Oixiyi,
i=1

where x =Y7 | xje; and y = Y1 | yie;.
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Prove that for every symmetric matrix A, there is an invertible matrix P such that
PTAP =D,

where D is a diagonal matrix.
(c) Prove that there is an integer p, 0 < p < r (where r is the rank of @), such

that @ (u;,u;) > 0 for exactly p vectors of every basis (u1,...,u,) of vectors that are
pairwise conjugate w.r.t. @ (Sylvester’s inertia theorem).
Proceed as follows. Assume that in the basis (uy,...,u,), for any x € E, we have
2 2 2 2
(P(xvx) =Xy 4o+ OpXyy — Op1 X — -0 — Oy,
where x = Y7 | x;u;, and that in the basis (vy,...,vy), for any x € E, we have
2 2 2 2
(p(xa-x) = Blyl + - +ﬁqu - ﬁq+1yq+l - ﬁryrv

where x =Y yvi, with o >0, 3, >0, 1 <i<r.
Assume that p > ¢ and derive a contradiction. First, consider x in the subspace F
spanned by
(U1, U U1,y Un),

and observe that ¢ (x,x) > 0 if x # 0. Next, consider x in the subspace G spanned by

(VL]Jrlv"' avr)a

and observe that @(x,x) < 0 if x # 0. Prove that F NG is nontrivial (i.e., contains
some nonnull vector), and derive a contradiction. This implies that p < g. Finish the
proof.

The pair (p,r— p) is called the signature of @.

(d) A symmetric bilinear form ¢ is definite if for every x € E, if ¢(x,x) = 0, then
x=0.

Prove that a symmetric bilinear form is definite iff its signature is either (n,0)
or (0,n). In other words, a symmetric definite bilinear form has rank # and is either
positive or negative.

(e) The kernel of a symmetric bilinear form ¢ is the subspace consisting of the
vectors that are conjugate to all vectors in E. We say that a symmetric bilinear form
@ is nondegenerate if its kernel is trivial (i.e., equal to {0}).

Prove that a symmetric bilinear form ¢ is nondegenerate iff its rank is n, the
dimension of E. Is a definite symmetric bilinear form ¢ nondegenerate? What about
the converse?

Prove that if ¢ is nondegenerate, then there is a basis of vectors that are pairwise
conjugate w.r.t. @ and such that ¢ is represented by the matrix

1, 0
0 —1,

where (p,q) is the signature of ¢.
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(f) Given a nondegenerate symmetric bilinear form ¢ on E, prove that for every
linear map f: E — E, there is a unique linear map f*: E — E such that

o(f(u),v) = o(u, f*(v),

for all u,v € E. The map f* is called the adjoint of f (w.r.t. to ¢). Given any basis
(u1,...,up), if 2 is the matrix representing ¢ and A is the matrix representing f,
prove that f* is represented by Q1A T Q.

Prove that Lemma 6.4 also holds, i.e., the map b: E — E* is a canonical isomor-
phism.

A linear map f: E — E is an isometry w.r.t. @ if

e(f(x), f(¥) = @(x, )

for all x,y € E. Prove that a linear map f is an isometry w.r.t. ¢ iff
frof=fof =id.

Prove that the set of isometries w.r.t. @ is a group. This group is denoted by O(¢),
and its subgroup consisting of isometries having determinant +1 by SO(¢). Given
any basis of E, if Q is the matrix representing ¢ and A is the matrix representing f,
prove that f € O(o) iff

ATQA= Q.

Given another nondegenerate symmetric bilinear form y on E, we say that ¢ and
y are equivalent if there is a bijective linear map h: E — E such that

y(x,y) = @(h(x), h(y)),

for all x,y € E. Prove that the groups of isometries O(¢) and O(y) are isomomor-
phic (use the map f — ho foh~! from O(y) to O(¢)).

If ¢ is a nondegenerate symmetric bilinear form of signature (p,q), prove that
the group O(¢) is isomorphic to the group of n x n matrices A such that

(1, 0\, (1,0
A <O—Iq A=\o0-1,)

Remark: In view of question (f), the groups O(¢) and SO(¢) are also denoted by
O(p,q) and SO(p, q) when @ has signature (p,q). They are Lie groups. In particular,
the group SO(3,1), known as the Lorentz group, plays an important role in the
theory of special relativity.

6.15. (a) Let C be a circle of radius R and center O, and let P be any point in the Eu-
clidean plane E2. Consider the lines A through P that intersect the circle C, generally
in two points A and B. Prove that for all such lines,

PA-PB=|PO|? — R
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Hint. If Pis noton C, let B be the antipodal of B (i.e., OB’ = —0?). Then@ -AB' =

0 and
PA.Pb=PB -Ph= (PO OB)- (PO +0B) = | PO — R,

The quantity ||1‘%||2 — R? is called the power of P w.r.t. C, and it is denoted by
2(P,C).
Show that if A is tangent to C, then A = B and

_>
|PA|12 = | PO|2 - R2.

Show that P is inside C iff Z(P,C) <0, on C iff Z(P,C) = 0, outside C if
P(P,C)>0.
If the equation of C is

x> +y* —2ax—2by+c=0,
prove that the power of P = (x,y) w.r.t. C is given by
P(P,C) = x> +y* —2ax—2by+c.

(b) Given two nonconcentric circles C and C’, show that the set of points having
equal power w.r.t. C and C’ is a line orthogonal to the line through the centers of C
and C'. If the equations of C and C' are

K +y?—2ax—2by+c=0 and x*+y*—2dx—2by+c =0,
show that the equation of this line is
2a—d)x+2(b—b)y+c —c=0.

This line is called the radical axis of C and C'.

(¢) Given three distinct nonconcentric circles C, C’, and C”, prove that either the
three pairwise radical axes of these circles are parallel or that they intersect in a
single point @ that has equal power w.r.t. C, C’, and C”. In the first case, the centers
of C, C’, and C" are collinear. In the second case, if the power of @ is positive, prove
that @ is the center of a circle I” orthogonal to C, C’, and C”, and if the power of ®
is negative, @ is inside C, C’, and C".

(d) Given any k € R with k # 0 and any point a, recall that an inversion of pole a
and power k is amap h: (E" — {a}) — E" defined such that for every x € E" — {a},

ak
h(x) = a—l—km.

For example, when n = 2, chosing any orthonormal frame with origin a, & is defined

by the map
kx ky
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When the centers of C, C' and C” are not collinear and the power of @ is positive,
prove that by a suitable inversion, C, C' and C” are mapped to three circles whose
centers are collinear.

Prove that if three distinct nonconcentric circles C, C’, and C” have collinear
centers, then there are at most eight circles simultaneously tangent to C, C’, and C”,
and at most two for those exterior to C, C’, and C".

(e) Prove that an inversion in E3 maps a sphere to a sphere or to a plane. Prove
that inversions preserve tangency and orthogonality of planes and spheres.
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Chapter 7
Separating and Supporting Hyperplanes

7.1 Separation Theorems and Farkas’s Lemma

Now that we have a solid background in Euclidean geometry, we can go deeper into
our study of convex sets begun in Chapter 3. This chapter is devoted to a thorough
study of separating and supporting hyperplanes. We prove two geometric versions
of the Hahn—Banach theorem, from which we derive separation results for various
kinds of pairs of convex sets (open, closed, compact). We prove various versions of
Farkas’s lemma, a basic result in the theory of linear programming. We also discuss
supporting hyperplanes and prove an important proposition due to Minkowski.

It seems intuitively rather obvious that if A and B are two nonempty disjoint
convex sets in A2, then there is a line H separating them, in the sense that A and B
belong to the two (disjoint) open half-planes determined by H. However, this is not
always true! For example, this fails if both A and B are closed and unbounded (find
an example). Nevertheless, the result is true if both A and B are open, or if the notion
of separation is weakened a little bit. The key result, from which most separation
results follow, is a geometric version of the Hahn—Banach theorem. In the sequel,
we restrict our attention to real affine spaces of finite dimension. Then, if X is an
affine space of dimension d, there is an affine bijection f between X and A.

Now, A? is a topological space, under the usual topology on R? (in fact, A? is a
metric space). Recall that if a = (ay,...,a,) and b = (by,...,b,) are any two points
in A?, their Euclidean distance, d(a,b), is given by

d(a,b) = \/(bl —ap)* 4+ (ba —aq)?,

which is also the norm Ha?H of the vector a?, and that for any € > 0, the open ball
B(a,€) of center a and radius € is given by

B(a,e) = {bc A?|d(a,b) < £}.

213
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A subset U C A? is open (in the norm topology) if either U is empty or for every
pointa € U, there is some (small) open ball B(a, &) contained in U. A subset C C A4
is closed iff A? — C is open. For example, the closed balls B(a, €), where

B(a,e) = {bec A?|d(a,b) <€},

are closed. A subset W C A9 is bounded iff there is some ball (open or closed) B
such that W C B. A subset W C A? is compact iff every family {U;};c; that is an
open cover of W (which means that W = {J;c;(W NU;), with each U; an open set)
possesses a finite subcover (which means that there is a finite subset F' C [ such that
W = U;erp(WNU)). In A4, it can be shown that a subset W is compact iff W is
closed and bounded. Given a function f: A” — A", we say that f is continuous if
f~1(V) is open in A™ whenever V is open in A". If f: A” — A" is a continuous
function, although it is generally false that f(U) is open if U C A™ is open, it is
easily checked that f(K) is compact if K C A™ is compact.

An affine space X of dimension d becomes a topological space if we give it the
topology for which the open subsets are of the form f~!(U), where U is any open
subset of AY and f: X — A is an affine bijection.

Given any subset A of a topological space X, the smallest closed set containing
A is denoted by A, and is called the closure or adherence of A. A subset A of X is

dense in X if A = X. The largest open set contained in A is denoted by A, and is
called the interior of A. The set FrA = A NX — A is called the boundary (or frontier)
of A. We also denote the boundary of A by JA.

In order to prove the Hahn—Banach theorem, we will need two lemmas. Given
any two distinct points x,y € X, we let

ryl={(1=A)x+AyeX [0< A <1},

Our first lemma (Lemma 7.1) is intuitively quite obvious, so the reader might be
puzzled by the length of its proof. However, after proposing several wrong proofs,
we realized that its proof is more subtle than it might appear. The proof below is due
to Valentine [7]. See whether you can find a shorter (and correct) proof!

Lemma 7.1. Let S be a nonempty convex set and let x €S and y € S. Then we have
Jxy[CS.

Proof. Let z € |x,y[, thatis, z= (1 — A)x+ Ay, with 0 < A < 1. Since x € S, we

can find some open subset U contained in S such that x € U. It is easy to check that

the central magnification of center z, H_ j_1, maps x to y. Then V = H 1 (U) is
7 7

an open subset containing y, and since y € S, we have VNS # 0. Let v € VNS be

a point of S in this intersection. Now, there is a unique point # € U C § such that

H_,_1(u) =v, and since S is convex, we deduce that z = (1 —A)u+Av € S. Since
T

U is open, the set

W=1-A)U+Av={1-A)w+Av|weU}CS
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is also open and z € W, which shows thatz €S. O

v
U W v
T Z Y

Fig. 7.1 Illustration for the proof of Lemma 7.1.

Corollary 7.1. If .g is convex, then S is also convex, and we have S=S. Furthermore,
ifS#0, then S = S.

Beware that if S is a closed set, then the convex hull, conv(S), of S is not
necessarily closed! (Find a counterexample.) However, if S is compact, then
conv(S) is also compact and thus closed (see Proposition 3.1).

There is a simple criterion to test whether a convex set has an empty interior,
based on the notion of dimension of a convex set (recall that the dimension of a
nonempty convex subset is the dimension of its affine hull).

Proposition 7.1. A nonempty convex set S has a nonempty interior iff dimS = dim X.

Proof. Let d = dimX. First, assume that S# 0. Then, S contains some open ball of
center ag, and in it, we can find a frame (ag,ay,...,a,) for X. Thus, dim§ = dim X.
Conversely, let (ag,ay,...,ay) be a frame of X, with a; € S, for i =0,...,d. Then

we have
a0+...+ad o

€s,
d+1
and S is nonempty. O
Proposition 7.1 is false in infinite dimension.
We leave the following property as an exercise:
Proposition 7.2. If S is convex, then S is also convex.

One can also easily prove that convexity is preserved under direct image and
inverse image by an affine map.

The next lemma, which seems intuitively obvious, is the core of the proof of the
Hahn—Banach theorem. This is the case in which the affine space has dimension
two. First, we need to define a convex cone with vertex x.
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Definition 7.1. A convex set C is a convex cone with vertex x if C is invariant under
all central magnifications H, ; of center x and ratio A, with A > 0 (i.e., H, 3 (C) = O).

Given a convex set S and a point x ¢ S, we can define

cone(S) = | J Hia(S).
A>0

It is easy to check that this is a convex cone with vertex x.

Lemma 7.2. Let B be a nonempty open and convex subset of A%, and let O be a
point of A% such that that O ¢ B. Then there is some line L through O such that
LNB=0.

@)

Fig. 7.2 Hahn-Banach theorem in the plane (Lemma 7.2).

Proof. Define the convex cone C = conep(B). Since B is open, it is easy to check
that each Hy ; (B) is open, and since C is the union of the H 3 (B) (for 2 > 0),
which are open, C itself is open. Also, O ¢ C. We claim that at least one point x of
the boundary dC of C is distinct from O. Otherwise, dC = {O}, and we claim that
C=A%— {0}, which is not convex, a contradiction. Indeed, since C is convex, it
is connected, A% — {0} itself is connected, and C C A% — {0}. If C # A% — {0},
pick some point a # O in A? — C and some point ¢ € C. Now, a basic property of
connectivity asserts that every continuous path from a (in the exterior of C) to ¢ (in
the interior of C) must intersect the boundary of C, namely {O}. However, there are
plenty of paths from a to ¢ that avoid O, a contradiction. Therefore, C = A% — {0}.

Since C is open and x € dC, we have x ¢ C. Furthermore, we claim that y =
20 — x (the symmetric of x with respect to O) does not belong to C either. Otherwise,

we would have y e C=C and x € C, and by Lemma 7.1, we would get O € C, a
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contradiction. Therefore, the line through O and x misses C entirely (since C is a
cone),andthus BC C. O

Finally, we come to the Hahn—Banach theorem.

Theorem 7.1. (Hahn—Banach theorem, geometric form) Let X be a (finite-dimen-
sional) affine space, A a nonempty open and convex subset of X, and L an affine
subspace of X such that ANL = 0. Then there is some hyperplane H containing L
that is disjoint from A.

Fig. 7.3 Hahn-Banach theorem, geometric form (Theorem 7.1).

Proof. The case dim X =1 is trivial. Thus, we may assume that dimX > 2. We
reduce the proof to the case dimX = 2. Let V be an affine subspace of X of max-
imal dimension containing L and such that V N A = 0. Pick an origin O € L in
X, and consider the vector space Xp. We would like to prove that V is a hyper-
plane, i.e., dimV = dim X — 1. We proceed by contradiction. Thus, assume that
dimV < dimX — 2. In this case, the quotient space X /V has dimension at least 2.
We also know that X /V is isomorphic to the orthogonal complement V+ of V, so we
may identify X /V and V. The (orthogonal) projection map 7: X — V- is linear
and continuous, and we can show that 7 maps the open subset A to an open subset
7(A), which is also convex (one way to prove that 7(A) is open is to observe that for
any point a € A, a small open ball of center a contained in A is projected by 7 to an
open ball contained in 7(A), and since 7 is surjective, T(A) is open). Furthermore,
0 ¢ m(A). Since V* has dimension at least 2, there is some plane P (a subspace of
dimension 2) intersecting 7(A), and thus we obtain a nonempty open and convex
subset B = m(A) NP in the plane P =2 A2, So we can apply Lemma 7.2 to B and
the point O = 0 in P = A? to find a line / (in P) through O with /N B = 0. But
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then /N 7(A) =0 and W = ' (/) is an affine subspace such that W NA = 0 and W
properly contains V, contradicting the maximality of V. O

Remark: The geometric form of the Hahn—Banach theorem also holds when the
dimension of X is infinite, but a slightly more sophisticated proof is required. Actu-
ally, all that is needed is to prove that a maximal affine subspace containing L and
disjoint from A exists. This can be done using Zorn’s lemma. For other proofs, see
Bourbaki [3], Chapter 2, Valentine [7], Chapter 2, Barvinok [1], Chapter 2, or Lax
[4], Chapter 3.

Theorem 7.1 is false if we omit the assumption that A is open. For a counter-

example, let A C A2 be the union of the half-space y < 0 with the closed seg-
ment [0, 1] on the x-axis and let L be the point (2,0) on the boundary of A. It is also
false if A is closed! (Find a counterexample).

Theorem 7.1 has many important corollaries. For example, we will eventually
prove that for any two nonempty disjoint convex sets A and B, there is a hyperplane
separating A and B, but this will take some work (recall the definition of a separating
hyperplane given in Definition 3.3). We begin with the following version of the
Hahn-Banach theorem:

Theorem 7.2. (Hahn—Banach, second version) Let X be a (finite-dimensional) affine
space, A a nonempty convex subset of X with nonempty interior, and L an affine sub-
space of X such that ANL = 0. Then there is some hyperplane H containing L and
separating L and A.

Proof. Since A is convex, by Corollary 7.1, A is also convex. By hypothesis, A is
nonempty. So we can apply Theorem 7.1 to the nonempty open and convex A and
to the affine subspace L. We get a hyperplane H containing L such that ANH =

0. However, AC A = A and A is contained in the closed half-space (H; or H_)

containing A, so H separates A and L. O

Corollary 7.2. Given an affine space X, let A and B be two nonempty disjoint convex

subsets and assume that A has nonempty interior (A% 0). Then there is a hyperplane
separating A and B.

Proof. Pick some origin O and consider the vector space Xp. Define C =A — B (a
special case of the Minkowski sum) as follows:

A-B={a—blacA beB}=JA-b).
beB

It is easily verified that C = A — B is convex and has nonempty interior (as a union
of subsets having a nonempty interior). Furthermore O ¢ C, since ANB = 0.! (Note

! Readers who prefer a purely affine argument may define C = A — B as the affine subset
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A H

Fig. 7.4 Hahn—-Banach theorem, second version (Theorem 7.2).

A H

Fig. 7.5 Separation theorem, version 1 (Corollary 7.2).

that the definition depends on the choice of O, but this has no effect on the proof.)

Since C is nonempty, we can apply Theorem 7.2 to C and to the affine subspace
{0}, and we get a hyperplane H separating C and {O}. Let f be any linear form
defining the hyperplane H. We may assume that f(a — b) < 0, for all a € A and
all b € B, i.e., f(a) < f(b). Consequently, if we let o = sup{f(a) | a € A} (which

A—B={0O+a—blacA,beB}.

Again, O ¢ C and C is convex. We can pick the affine form f defining a separating hyperplane H
of C and {O} such that f(O+a—b) < f(0),foralla € Aand all b € B, i.e., f(a) < f(b).
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makes sense, since the set {f(a) | a € A} is bounded), we have f(a) < a for all
a€Aand f(b) > a for all b € B, which shows that the affine hyperplane defined by
f— o separates A and B. O

Remark: Theorem 7.2 and Corollary 7.2 also hold in the infinite-dimensional case;
see Lax [4], Chapter 3, or Barvinok, Chapter 3.

Since a hyperplane H separating A and B as in Corollary 7.2 is the boundary of
each of the two half-spaces that it determines, we also obtain the following corollary:

Corollary 7.3. Given an affine space X, let A and B be two nonempty disjoint open
and convex subsets. Then there is a hyperplane strictly separating A and B.

@ Beware that Corollary 7.3 fails for closed convex sets. However, Corollary 7.3
holds if we also assume that A (or B) is compact.

We need to review the notion of distance from a point to a subset. Let X be a
metric space with distance function d. Given any point a € X and any nonempty
subset B of X, we let

d(a,B) = infd(a,b)
beB

(where inf is the notation for least upper bound).

Now, if X is an affine space of dimension d, it can be given a metric structure
by giving the corresponding vector space a metric structure, for instance, the metric
induced by a Euclidean structure. We have the following important property: For
any nonempty closed subset S C X (not necessarily convex) and any point a € X,
there is some point s € § “achieving the distance from a to S,” i.e., such that

d(a,S)=d(a,s).

The proof uses the fact that the distance function is continuous and that a continuous
function attains its minimum on a compact set, and is left as an exercise.

Corollary 7.4. Given an affine space X let A and B be two nonempty disjoint closed
and convex subsets, with A compact. Then there is a hyperplane strictly separating
A and B.

Proof. Here is a sketch of the proof. First, we pick an origin O and we give Xp = A"
a Euclidean structure. Let d denote the associated distance. Given any subsets A of
X, let
A+B(0,e)={xe X |d(x,A) <€},
where B(a, €) denotes the open ball B(a,&) = {x € X | d(a,x) < €} of center a and
radius € > 0. Note that
A+B(0,e)= | B(a.e),
acA

which shows that A 4+ B(O, €) is open; furthermore, it is easy to see that if A is
convex, then A + B(O,¢€) is also convex. Now, the function a — d(a,B) (where
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a € A) is continuous, and since A is compact, it achieves its minimum, d(A,B) =
mingeq d(a,B), at some point a of A. Say d(A,B) = d. Since B is closed, there is
some b € B such thatd(A,B) = d(a,B) =d(a,b), and since ANB = 0, we must have
8 > 0. Thus, if we pick € < §/2, we see that

(A+B(0,€)) N (B+B(0,€)) = 0.

Now, A + B(0,¢€) and B+ B(O, €) are open, convex, and disjoint, and we conclude
by applying Corollary 7.3. O

A “cute” application of Corollary 7.4 is one of the many versions of “Farkas’s
lemma” (1893-1894, 1902), a basic result in the theory of linear programming. For
any vector x = (x1,...,x,) € R" and any real o € R, write x > « iff x; > «, for
i=1,...,n.

Lemma 7.3. (Farkas’s lemma, version 1) Given any d x n real matrix A and any
vector 7 € RY, exactly one of the following alternatives occurs:

(a) The linear system Ax = z has a solution x = (xi,...,x,) such that x > 0 and
xi+--+x, =1
(b) There is some ¢ € R and some o € R such that ¢'z < a and ¢"A > «.

Proof. LetAy,...,A, € R? be the n points corresponding to the columns of A. Then,
either z € conv({Ay,...,A,}) or z ¢ conv({Ay,...,A,}). In the first case, we have a
convex combination
2=x141+ -+ XA,

where x; > 0and x; +---+x, = 1, so x = (x1,...,x,) is a solution satisfying (a).

In the second case, by Corollary 7.4, there is a hyperplane H strictly separating
{z} and conv({Ay,...,A,}), which is obviously closed. In fact, observe that z ¢
conv({Ay,...,A,}) iff there is a hyperplane H such that z €H_ and A; € H,, or

z€H, andA; € H_,fori=1,...,n. Since the affine hyperplane H is the zero locus
of an equation of the form

c1y1+--+caya = @,

either ¢ 'z < ot and ¢'A; > « for i = 1,...,n, that is, c"TA>a,orc'z>a and
cTA < . In the second case, (—c) Tz < —a and (—c) A > —a, so (b) is satisfied
by either c and & or by —cand —¢. O

Remark: If we relax the requirements on solutions of Ax = z and require only x >0
(x1 + ---+x, = 1 is no longer required), then in condition (b), we can take o = 0.
This is another version of Farkas’s Lemma. In this case, instead of considering the
convex hull of {Aj,...,A,} we are considering the convex cone

cone(Ay,...,Ay) ={AA1+ -+ LA, | 4 > 0,1 <i<n},
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that is, we are dropping the condition A; + - -- + A,, = 1. For this version of Farkas’s
lemma we need the following separation lemma:

Proposition 7.3. Let C C E? be any closed convex cone with vertex O. Then for

every point a not in C, there is a hyperplane H passing through O separating a and
Cwitha ¢ H.

Proof. Since C is closed and convex and {a} is compact and convex, by Corollary
7.4 there is a hyperplane H' strictly separating a and C. Let H be the hyperplane
through O parallel to H’'. Since C and a lie in the two disjoint open half-spaces
determined by H’, the point a cannot belong to H. Suppose that some point b € C
lies in the open half-space determined by H and a. Then the line L through O and
b intersects H' in some point ¢, and since C is a cone, the half-line determined by
O and b is contained in C. So ¢ € C would belong to H’, a contradiction. Therefore,
C is contained in the closed half-space determined by H that does not contain a, as
claimed. O

H' H

o

Fig. 7.6 Illustration for the proof of Proposition 7.3.

Lemma 7.4. (Farkas’s lemma, version Il) Given any d X n real matrix A and any
vector z € RY, exactly one of the following alternatives occurs:

(a) The linear system Ax = z has a solution x such that x > 0.
(b) There is some ¢ € R? such that c"z < 0 and c¢"A > 0.

Proof. The proof is analogous to the proof of Lemma 7.3 except that it uses
Proposition 7.3 instead of Corollary 7.4 and either z € cone(Ay,...,A,) or z ¢
cone(Ay,...,A,). O

One can show that Farkas Il implies Farkas I. Here is another version of Farkas’s
lemma having to do with a system of inequalities Ax < z. Although, this version
may seem weaker that Farkas II, it is actually equivalent to it!
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Lemma 7.5. (Farkas’s lemma, version IIl) Given any d X n real matrix A and any
vector z € RY, exactly one of the following alternatives occurs:

(a) The system of inequalities Ax < z has a solution x.
(b) There is some ¢ € RY such that ¢ >0, c'z<0,andc"A=0.

Proof. We use two tricks from linear programming:

1. We convert the system of inequalities Ax < z into a system of equations by
introducing a vector of “slack variables” y = (1, ...,7% ), where the system of

equations is
X
Al =z,
an ()
with y > 0.
2. We replace each “unconstrained variable” x; by x; = X; — Y;, with X;, ¥; > 0.

Then the original system Ax < z has a solution x (unconstrained) iff the system of
equations
X
A,-AD|Y | =z
Y

has a solution with X,Y,y > 0. By Farkas II, this system has no solution iff there
exists some ¢ € R? with ¢z < 0 and

CT(Aa_AaI) Z 07

thatis, c'A >0, —cTA > 0, and ¢ > 0. However, these four conditions reduce to
c'z<0,c"TA=0,andc>0. O

These versions of Farkas’s lemma are statements of the form (PV Q) A—(PAQ),
which is easily seen to be equivalent to —P = Q, namely, the logical equivalence
of =P and Q. Therefore, Farkas-type lemmas can be interpreted as criteria for the
unsolvablity of various kinds of systems of linear equations or systems of linear
inequalities, in the form of a separation property.

For example, Farkas II (Lemma 7.4) says that a system of linear equations Ax = z
does not have any solution x > 0 iff there is some ¢ € R4 such that ¢"z < 0 and
c"A > 0. This means that there is a hyperplane H of equation ¢ "y = 0 such that the
column vectors A; forming the matrix A all lie in the positive closed half-space H
but z lies in the interior of the other half-space, H_, determined by H. Therefore, z
can’t be in the cone spanned by the A;’s.

Farkas III says that a system of linear inequalities Ax < z does not have any
solution (at all) iff there is some ¢ € R such that ¢ >0, ¢z < 0, and ¢TA = 0.
This time, there is also a hyperplane of equation cTy =0, with ¢ > 0, such that the
column vectors A ; forming the matrix A all lie in H but z lies in the interior of the
half-space H_ determined by H. In the “easy” direction, if there are such a vector
c and some x satisfying Ax < z, since ¢ > 0, we get ¢ Ax < ¢z, but ¢ Ax = 0 and
¢"z <0, a contradiction.
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What is the crirerion for the unsolvability of a system of inequalities Ax < z with
x > 0? This problem is equivalent to the unsolvability of the set of inequalities

(%)== (5).

and by Farkas III, this system has no solution iff there is some vector (cy,c;) with
(c1,¢2) 20,

(CIT,CZT) (fl> =0, and (clT,czT) (é) <0.

The above conditions are equivalent to ¢; >0, ¢ >0, ¢{A—c) =0, and ¢{ z <0,
which reduce to ¢; >0, ¢/ A >0, and ¢{ z < 0.

We can put all these versions together to prove the following version of Farkas’s
lemma:

Lemma 7.6. (Farkas’s lemma, version 11Ib) For any d x n real matrix A and any
vector 7 € RY, the following statements are equivalent:

(1) The system Ax = z has no solution x > 0 iff there is some ¢ € RY such that
¢c"A>0andc"z<0.

(2) The system Ax < z has no solution iff there is some c € RY such that ¢ > 0,
c"A=0,andc"z<0.

(3) The system Ax < z has no solution x > 0 iff there is some ¢ € R4 such that ¢ > 0,
cTA>0,andc"z<0.

Proof. We already proved that (1) implies (2) and that (2) implies (3). The proof
that (3) implies (1) is left as an easy exercise. 0O

The reader might wonder whether there is a criterion for the unsolvability of a
system Ax = z without any condition on x. However, since the unsolvability of the
system Ax = b is equivalent to the unsolvability of the system

(%a)==(%)

using (2), the above system is unsolvable iff there is some (¢, c3) > (0,0) such that
T VA T TV Z
) (B) =0 wma (o (5) <o

and these are equivalentto c] A—cJ A=0and ¢ z—c, z < 0, namely, ¢’ A = 0 and
¢z <0, where ¢ = ¢| — ¢» € RY. However, this simply says that ¢ is orthogonal to
the columns A',... A" of A and that z is not orthogonal to ¢, so z cannot belong to
the column space of A, a criterion that we already knew from linear algebra.

As in Matousek and Gartner [6], we can summarize these various criteria in the
following table:
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The system The system
Ax <z Ax =127
has no solution|3c € R, such that ¢ > 0, [J¢ € R?, such that
x > 0iff cTA>0andc'z<0 |cTA>0andc'z<0
has no solution|3c € R, such that, ¢ > 0,|3¢ € RY, such that
x € R iff cTA=0andc"z<0 c"TA=0andcTz<0

Remark: The strong duality theorem in linear programming can be proved using
Lemma 7.6(c).

Finally, we have the separation theorem announced earlier for arbitrary nonempty
convex subsets.

Theorem 7.3. (Separation of disjoint convex sets) Given an affine space X, let A and
B be two nonempty disjoint convex subsets. Then there is a hyperplane separating A
and B.

A+

A—=x

Fig. 7.7 Separation theorem, final version (Theorem 7.3).

Proof. The proof is by descending induction on n = dimA. If dimA = dim X, we
know from Proposition 7.1 that A has nonempty interior, and we conclude using
Corollary 7.2. Next, asssume that the induction hypothesis holds if dimA > n and
assume dimA = n — 1. Pick an origin O € A and let H be a hyperplane containing
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A. Pick x € X outside H and define C = conv(AU{A +x}), where A+x= {a+x|
a€A}and D =conv(AU{A —x}), where A—x= {a—x|a € A}. Note that CUD
is convex. If BNC # 0 and BN D # 0, then the convexity of B and C U D implies
that AN B # 0, a contradiction. Without loss of generality, assume that BNC = 0.
Since x is outside H, we have dimC = n, and by the induction hypothesis, there is
a hyperplane H; separating C and B. Since A C C, we see that H also separates A
and B. O

The reader should compare this proof (from Valentine [7], Chapter II) with
Berger’s proof using compactness of the projective space P4 [2] (Corollary 11.4.7).

Remarks:

(1) Rather than using the Hahn—Banach theorem to deduce separation results, one
may proceed differently and use the following intuitively obvious lemma, as in
Valentine [7] (Theorem 2.4):

Lemma 7.7. If A and B are two nonempty convex sets such that AUB = X and
ANB=0, thenV = ANB is a hyperplane.

One can then deduce Corollary 7.2 and Theorem 7.3. Yet another approach is
followed in Barvinok [1].

(2) How can some of the above results be generalized to infinite-dimensional affine
spaces, especially Theorem 7.1 and Corollary 7.2? One approach is to simulta-
neously relax the notion of interior and tighten a little the notion of closure, in
a more “linear and less topological” fashion, as in Valentine [7].

Given any subset A C X (where X may be infinite-dimensional, but is a Haus-
dorff topological vector space), say that a point x € X is linearly accessible from
A if there is some a € A with a # x and Ja,x[ C A. We let linaA be the set of all
points linearly accessible from A and linA = A UlinaA.

A point a € A is a core point of A if for every y € X, with y # q, there is some
z €]a,y| such that [a,z] C A. The set of all core points is denoted by core A.

It is not difficult to prove that linA C A and A C core A. If A has nonempty

interior, then linA = A and A = core A. Also, if A is convex, then core A and
linA are convex. Then Lemma 7.7 still holds (where X is not necessarily finite-
dimensional) if we redefine V as V =1inA Nlin B and allow the possibility that
V could be X itself. Corollary 7.2 also holds in the general case if we assume
that core A is nonempty. For details, see Valentine [7], Chapters I and II.

(3) Yet another approach is to define the notion of an algebraically open convex
set, as in Barvinok [1]. A convex set A is algebraically open if the intersection
of A with every line L is an open interval, possibly empty or infinite at either
end (or all of L). An open convex set is algebraically open. Then the Hahn—
Banach theorem holds, provided that A is an algebraically open convex set,
and similarly, Corollary 7.2 also holds, provided A is algebraically open. For
details, see Barvinok [1], Chapters 2 and 3. We do not know how the notion
“algebraically open” relates to the concept of core.
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(4) Theorems 7.1, 7.2 and Corollary 7.2 are proved in Lax [4] using the notion of
gauge function in the more general case that A has some core point (but beware
that Lax uses the terminology interior point instead of core point!).

An important special case of separation is the case that A is convex and B = {a},
for some point a in A.

7.2 Supporting Hyperplanes and Minkowski’s Proposition

Recall the definition of a supporting hyperplane given in Definition 3.4. We have
the following important proposition, first proved by Minkowski (1896):

Proposition 7.4. (Minkowski) Let A be a nonempty, closed, and convex subset. Then
for every point a € dA, there is a supporting hyperplane to A through a.

Proof. Letd =dimA. If d < dimX (i.e., A has empty interior), then A is contained
in some affine subspace V of dimension d < dim X, and any hyperplane containing
V is a supporting hyperplane for every a € A. Now, assume d = dimX, so thatA #* (Z)
If a € dA, then {a} ﬁA 0. By Theorem 7.1, there is a hyperplane H separating A
and L = {a}. However, by Corollary 7.1, since A # (Q and A is closed, we have

ol

A=A=

Now, the half-space containing A is closed, and thus it contains A = A. Therefore,
H separates A and {a}. O

Remark: The assumption that A is closed is convenient but unnecessary. Indeed,
the proof of Proposition 7.4 shows that the proposition holds for every boundary
point a € JA (assuming JA # 0).

@ Beware that Proposition 7.4 is false when the dimension of X is infinite and
when A= 0.

The proposition below gives a sufficient condition for a closed subset to be con-
vex.

Proposition 7.5. Let A be a closed subset with nonempty interior. If there is a sup-
porting hyperplane for every point a € dA, then A is convex.

Proof. We leave it as an exercise (see Berger [2], Proposition 11.5.4). O

@ The condition that A have nonempty interior is crucial!
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The proposition below characterizes closed convex sets in terms of (closed) half-
spaces. It is another intuitive fact whose rigorous proof is nontrivial.

Proposition 7.6. Let A be a nonempty closed and convex subset. Then A is the in-
tersection of all the closed half-spaces containing it.

Proof. Let A’ be the intersection of all the closed half-spaces containing A. It is
immediately checked that A’ is closed and convex and that A C A’. Assume that
A’ # A, and pick a € A’ — A. Then we can apply Corollary 7.4 to {a} and A and
we find a hyperplane H strictly separating A and {a}; this shows that A belongs
to one of the two half-spaces determined by H, yet a does not belong to the same
half-space, contradicting the definition of A’. O

7.3 Problems

7.1. Prove Proposition 7.2.
7.2. Find two closed convex sets such that Corollary 7.3 fails.

7.3. In E3, consider the closed convex set (cone) A defined by the inequalities
x>0, y>0, z>0, z*<uxy,

and let D be the line given by x =0, z = 1. Prove that DNA = 0, both A and D
are convex and closed, yet every plane containing D meets A. Therefore, A and D
give another counterexample to the Hahn—Banach theorem in which A is closed (one
cannot relax the hypothesis that A is open).

7.4. Prove Proposition 7.5.

7.5. Let (v1,...,v,) be a sequence of n vectors in R? and let V be the d x n matrix
whose jth column is v;. Prove the equivalence of the following two statements:

(a) There is no nontrivial positive linear dependence among the v;, which means
that there is no nonzero vector y = (yi,...,y,) € R" withy; >0for j=1,...,n,
so that

yivi+ -+ ynvn =0,
or equivalently, Vy = 0.

(b) There is some vector ¢ € R? such that ¢"V > 0, which means that ¢ v ;i >0, for

j=1,...,n.
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Chapter 8
The Cartan-Dieudonné Theorem

8.1 Orthogonal Reflections

In this chapter the structure of the orthogonal group is studied in more depth. In
particular, we prove that every isometry in O(n) is the composition of at most n
reflections about hyperplanes (for n > 2, see Theorem 8.1). This important result
is a special case of the “Cartan—Dieudonné theorem” (Cartan [4], Dieudonné [6]).
We also prove that every rotation in SO(n) is the composition of at most n flips (for
n>3).

Hyperplane reflections are represented by matrices called Householder matrices.
These matrices play an important role in numerical methods, for instance for solving
systems of linear equations, solving least squares problems, for computing eigenval-
ues, and for transforming a symmetric matrix into a tridiagonal matrix. We prove a
simple geometric lemma that immediately yields the QR-decomposition of arbitrary
matrices in terms of Householder matrices.

Affine isometries are defined, and their fixed points are investigated. First, we
characterize the set of fixed points of an affine map. Using this characterization, we
prove that every affine isometry f can be written uniquely as

f=tog, with fog=gort,

where g is an isometry having a fixed point, and ¢ is a translation by a vector T

such that 7(1’) = 7, and with some additional nice properties (see Lemma 8.3).
This is a generalization of a classical result of Chasles about (proper) rigid motions
in R3 (screw motions). We also show that the Cartan—Dieudonné theorem can be
generalized to affine isometries: Every rigid motion in Is(n) is the composition of
at most n affine reflections if it has a fixed point, or else of at most n+ 2 affine
reflections. We prove that every rigid motion in SE(n) is the composition of at most
n flips (for n > 3). Finally, the orientation of a Euclidean space is defined, and we
discuss volume forms and cross products.

231
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Orthogonal symmetries are a very important example of isometries. First let us
review the definition of projections. Given a vector space E, let F' and G be sub-
spaces of E that form a direct sum E = F @& G. Since every u € E can be written
uniquely as u = v+ w, where v € F and w € G, we can define the two projec-
tions pr: E — F and pg: E — G such that pr(u) = v and pg(u) = w. It is im-
mediately verified that pg and pr are linear maps, and that p%- = pr, pé = PG,
propc = pcopr =0,and pr+ pg =id.

Definition 8.1. Given a vector space E, for any two subspaces F' and G that form a
direct sum E = F @ G, the symmetry (or reflection) with respect to F and parallel
to G is the linear map s: E — E defined such that

s(u) =2pr(u) —u,
foreveryu € E.

Because pr + pg = id, note that we also have

s(u) = pr(u) = pc(u)

and

s(u) =u—2pc(u),
s =1id, s is the identity on F, and s = —id on G. We now assume that £ is a
Euclidean space of finite dimension.

Definition 8.2. Let E be a Euclidean space of finite dimension n. For any two sub-
spaces F and G, if F and G form a direct sum £ = F @ G and F and G are orthogonal,
i.e., F = G, the orthogonal symmetry (or reflection) with respect to F and parallel
to G is the linear map s: E — E defined such that

s(u) =2pr(u) —u,

for every u € E. When F is a hyperplane, we call s a hyperplane symmetry with
respect to F (or reflection about F), and when G is a plane (and thus dim(F) =
n—2),we call s a flip about F .

A reflection about a hyperplane F is shown in Figure 8.1.

For any two vectors u,v € E, it is easily verified using the bilinearity of the inner
product that

i+ v)* = flu = v]]> = 4(u-v).
Then, since
u=pr(u)+pcu)
and
s(u) = pr(u) = p(u),

since F' and G are orthogonal, it follows that
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pc(u)

Fig. 8.1 A reflection about a hyperplane F.

pr(u)-pc(v) =0,

and thus,

s ()

| = [l

so that s is an isometry.

Using Lemma 6.7, it is possible to find an orthonormal basis (ey,...,e,) of E
consisting of an orthonormal basis of F' and an orthonormal basis of G. Assume that
F has dimension p, so that G has dimension n — p. With respect to the orthonormal
basis (e, ...,e,), the symmetry s has a matrix of the form

I, ©
01 )

Thus, det(s) = (—1)""7, and s is a rotation iff n — p is even. In particular, when F is
ahyperplane H, we have p =n—1 and n— p = 1, so that s is an improper orthogonal
transformation. When F = {0}, we have s = —id, which is called the symmetry with
respect to the origin. The symmetry with respect to the origin is a rotation iff n
is even, and an improper orthogonal transformation iff n is odd. When # is odd,
we observe that every improper orthogonal transformation is the composition of a
rotation with the symmetry with respect to the origin. When G is a plane, p =n—2,
and det(s) = (—1)? = 1, so that a flip about F is a rotation. In particular, when n = 3,
F is aline, and a flip about the line F' is indeed a rotation of measure 7.

Remark: Given any two orthogonal subspaces F, G forming a direct sum E = F @
G, let f be the symmetry with respect to F' and parallel to G, and let g be the
symmetry with respect to G and parallel to F'. We leave as an exercise to show that
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fog=gof=—id.

When F = H is a hyperplane, we can give an explicit formula for s(u) in terms
of any nonnull vector w orthogonal to H. Indeed, from

u= pu(u)+pcu),
since pg(u) € G and G is spanned by w, which is orthogonal to H, we have
pc(u) =2Aw

for some A € R, and we get
w-w= 2w,

and thus ( )
u-w
pc(u) = ~——=w.
[[wl|?
Since
s(u) =u—2pg(u),
we get

(u-w)w
[[wl|?

Such reflections are represented by matrices called Householder matrices, and they
play an important role in numerical matrix analysis (see Kincaid and Cheney [8]
or Ciarlet [5]). Householder matrices are symmetric and orthogonal. It is easily
checked that over an orthonormal basis (ei,...,e,), a hyperplane reflection about
a hyperplane H orthogonal to a nonnull vector w is represented by the matrix

s(u)=u-2

ww' ww'
H=l-2——= =2 —=—,
Wl wiw
where W is the column vector of the coordinates of w over the basis (ey,...,e,), and

I, is the identity n X n matrix. Since

(u-w)

P = o™

the matrix representing pg is
ww'
WTw’
and since py + pg = id, the matrix representing pp is

wwT

In—W.
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These formulae will be used in Section 9.1 to derive a formula for a rotation of R3,
given the direction w of its axis of rotation and given the angle 8 of rotation.

The following fact is the key to the proof that every isometry can be decomposed
as a product of reflections.

Lemma 8.1. Let E be any nontrivial Euclidean space. For any two vectors u,v € E,
if ||u|l = ||v||, then there is a hyperplane H such that the reflection s about H maps
u to v, and if u # v, then this reflection is unique.

Proof. 1f u = v, then any hyperplane containing u# does the job. Otherwise, we must
have H = {v —u}*, and by the above formula,

(u-(v—u))

_5 2u|*> —2u-v
(v —u)]?

(v —w)]?

s(u)=u (v—u)=u+ (v—u),
and since
(v —=u)||> = lull*+ ||v|[* = 2u-v

and ||u|| = ||v||, we have
I =) =2 ul* ~2u-v,
and thus, s(u) =v. O

g% If E is a complex vector space and the inner product is Hermitian, Lemma

8.1 is false. The problem is that the vector v — u does not work unless the
inner product u - v is real! We will see in the next chapter that the lemma can be
salvaged enough to yield the QR-decomposition in terms of Householder transfor-
mations.

Using the above property, we can prove a fundamental property of isometries:
They are generated by reflections about hyperplanes.

8.2 The Cartan-Dieudonné Theorem for Linear Isometries

The fact that the group O(n) of linear isometries is generated by the reflections is
a special case of a theorem known as the Cartan—-Dieudonné theorem. Elie Cartan
proved a version of this theorem early in the twentieth century. A proof can be found
in his book on spinors [4], which appeared in 1937 (Chapter I, Section 10, pages 10—
12). Cartan’s version applies to nondegenerate quadratic forms over R or C. The
theorem was generalized to quadratic forms over arbitrary fields by Dieudonné [6].
One should also consult Emil Artin’s book [1], which contains an in-depth study of
the orthogonal group and another proof of the Cartan—-Dieudonné theorem.

First, let us review the notions of eigenvalues and eigenvectors. Recall that given
any linear map f: E — E, a vector u € E is called an eigenvector, or proper vector,
or characteristic vector, of f if there is some A € K such that
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fu) =Au.

In this case, we say that u € E is an eigenvector associated with A. A scalar A € K is
called an eigenvalue, or proper value, or characteristic value, of f if there is some
nonnull vector u # 0 in E such that

S(u) = Au,

or equivalently if Ker (f — Aid) # {0}. Given any scalar A € K, the set of all eigen-
vectors associated with A is the subspace Ker (f — Aid), also denoted by E; (f) or
E(A,f), called the eigenspace associated with A, or proper subspace associated
with .

Theorem 8.1. Let E be a Euclidean space of dimension n > 1. Every isometry f €
O(E) that is not the identity is the composition of at most n reflections. Whenn > 2,
the identity is the composition of any reflection with itself.

Proof. We proceed by induction on n. When n = 1, every isometry f € O(E) is
either the identity or —id, but —id is a reflection about H = {0}. When n > 2, we
have id = s o s for every reflection s. Let us now consider the case where n > 2 and
f is not the identity. There are two subcases.

Case 1. f admits 1 as an eigenvalue, i.e., there is some nonnull vector w such that
f(w) =w. In this case, let H be the hyperplane orthogonal to w, so that E = H & Rw.
We claim that f(H) C H. Indeed, if

v-w=0
for any v € H, since f is an isometry, we get

fO)-f(w)=v-w=0,

and since f(w) = w, we get

fW)-w=fv)-fw) =0,

and thus f(v) € H. Furthermore, since f is not the identity, f is not the identity of
H. Since H has dimension n — 1, by the induction hypothesis applied to H, there
are at most k < n— 1 reflections s1,...,s; about some hyperplanes Hy,...,H; in
H, such that the restriction of f to H is the composition s; o --- o s;. Each s; can
be extended to a reflection in E as follows: If H = H; ® L; (where L; = Hﬁ, the
orthogonal complement of H; in H), L = Rw, and F; = H; & L, since H and L are
orthogonal, F; is indeed a hyperplane, E = F; & L; = H; & L& L;, and for every
u=h+Awe H®L=E,since

si(h) = pr,(h) = pr;(h),

we can define s; on E such that
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si(h+2Aw) = pg,(h) + Aw — pr,(h),
andsinceh€e Howe L, F;=H;®L,and H=H; ® L;, we have
si(h+2Aw) = pr,(h+ Aw) — pr,(h+Aw),

which defines a reflection about F; = H; & L. Now, since f is the identity on L = Rw,
it is immediately verified that f = s;0---0s1, withk <n— 1.

Case 2. f does not admit 1 as an eigenvalue, i.e., f(u) # u for all u # 0. Pick any
w # 0 in E, and let H be the hyperplane orthogonal to f(w) —w. Since f is an
isometry, we have || f(w)|| = ||w]||, and by Lemma 8.1, we know that s(w) = f(w),
where s is the reflection about H, and we claim that so f leaves w invariant. Indeed,
since s2 = id, we have

s(f(w)) = s(s(w)) = w.

Since s? = id, we cannot have so f =id, since this would imply that f = s, where
s is the identity on H, contradicting the fact that f is not the identity on any vector.
Thus, we are back to Case 1. Thus, there are k < n — 1 hyperplane reflections such
that so f = s, 0---osy, from which we get

f=sosgo---0s],

with at most k + 1 < n reflections. 0O

Remarks:

(1) A slightly different proof can be given. Either f is the identity, or there is some
nonnull vector u such that f(u) # u. In the second case, proceed as in the second
part of the proof, to get back to the case where f admits 1 as an eigenvalue.

(2) Theorem 8.1 still holds if the inner product on E is replaced by a nondegenerate
symmetric bilinear form ¢, but the proof is a lot harder.

(3) The proof of Theorem 8.1 shows more than stated. If 1 is an eigenvalue of

f, for any eigenvector w associated with 1 (i.e., f(w) = w, w # 0), then f is
the composition of k£ < n — 1 reflections about hyperplanes F; such that F; =
H; ® L, where L is the line Rw and the H; are subspaces of dimension n — 2 all
orthogonal to L (the H; are hyperplanes in H). This situation is illustrated in
Figure 8.2.
If 1 is not an eigenvalue of f, then f is the composition of k < n reflections about
hyperplanes H, F1,. .., F;_1, such that F; = H; & L, where L is a line intersecting
H, and the H; are subspaces of dimension n — 2 all orthogonal to L (the H; are
hyperplanes in L'). This situation is illustrated in Figure 8.3.

(4) Itis natural to ask what is the minimal number of hyperplane reflections needed
to obtain an isometry f. This has to do with the dimension of the eigenspace
Ker(f —id) associated with the eigenvalue 1. We will prove later that every
isometry is the composition of k hyperplane reflections, where
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Aw

Hy

/
\Hl

Fig. 8.2 An isometry f as a composition of reflections, when 1 is an eigenvalue of f.

LL

Fig. 8.3 An isometry f as a composition of reflections when 1 is not an eigenvalue of f.
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k =n—dim(Ker(f —id)),

and that this number is minimal (where n = dim(E)).

When n = 2, a reflection is a reflection about a line, and Theorem 8.1 shows
that every isometry in O(2) is either a reflection about a line or a rotation, and that
every rotation is the product of two reflections about some lines. In general, since
det(s) = —1 for a reflection s, when n > 3 is odd, every rotation is the product of
an even number less than or equal to n — 1 of reflections, and when n is even, every
improper orthogonal transformation is the product of an odd number less than or
equal to n — 1 of reflections.

In particular, for n = 3, every rotation is the product of two reflections about
planes. When r is odd, we can say more about improper isometries. Indeed, when
n is odd, every improper isometry admits the eigenvalue —1. This is because if E
is a Euclidean space of finite dimension and f: E — E is an isometry, because
Il f (u)]] = ||u|| for every u € E, if A is any eigenvalue of f and u is an eigenvector
associated with A, then

1@l = 1Aull = [Alae]] = [Jul,

which implies |A| = 1, since u # 0. Thus, the real eigenvalues of an isometry are
either 4+1 or —1. However, it is well known that polynomials of odd degree always
have some real root. As a consequence, the characteristic polynomial det(f — Aid)
of f has some real root, which is either 4-1 or —1. Since f is an improper isometry,
det(f) = —1, and since det(f) is the product of the eigenvalues, the real roots cannot
all be +1, and thus —1 is an eigenvalue of f. Going back to the proof of Theorem
8.1, since —1 is an eigenvalue of f, there is some nonnull eigenvector w such that
f(w) = —w. Using the second part of the proof, we see that the hyperplane H or-
thogonal to f(w) —w = —2w is in fact orthogonal to w, and thus f is the product
of k < n reflections about hyperplanes H, F1,...,F;_1 such that F; = H; & L, where
L is a line orthogonal to H, and the H; are hyperplanes in H = L' orthogonal to L.
However, k must be odd, and so k — 1 is even, and thus the composition of the re-
flections about F, ..., Fy_ is a rotation. Thus, when 7 is odd, an improper isometry
is the composition of a reflection about a hyperplane H with a rotation consisting of
reflections about hyperplanes Fi,...,F;_; containing a line, L, orthogonal to H. In
particular, when n = 3, every improper orthogonal transformation is the product of
a rotation with a reflection about a plane orthogonal to the axis of rotation.

Using Theorem 8.1, we can also give a rather simple proof of the classical fact
that in a Euclidean space of odd dimension, every rotation leaves some nonnull
vector invariant, and thus a line invariant.

If A is an eigenvalue of f, then the following lemma shows that the orthogonal
complement E; (f)* of the eigenspace associated with A is closed under f.

Lemma 8.2. Let E be a Euclidean space of finite dimension n, and let f: E — E
be an isometry. For any subspace F of E, if f(F) =F, then f(F*) CF* and E =
F@®F-
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Proof. We just have to prove that if w € E is orthogonal to every u € F, then f(w)
is also orthogonal to every u € F. However, since f(F) = F, for every v € F, there
is some u € F such that f(u) = v, and we have

since f is an isometry. Since we assumed that w € E is orthogonal to every u € F,
we have
w-u=0,

and thus
fw)-v=0,

and this for every v € F. Thus, f(F+) C F*. The fact that E = F @& F* follows from
Lemma 6.8. O

Lemma 8.2 is the starting point of the proof that every orthogonal matrix can
be diagonalized over the field of complex numbers. Indeed, if A is any eigenvalue
of f, then f(E;(f)) = Ex(f), where E; (f) is the eigenspace associated with A,
and thus the orthogonal Ej (f)* is closed under f, and E = E; (f) ® E; (f)*. The
problem over R is that there may not be any real eigenvalues. However, when # is
odd, the following lemma shows that every rotation admits 1 as an eigenvalue (and
similarly, when 7 is even, every improper orthogonal transformation admits 1 as an
eigenvalue).

Lemma 8.3. Let E be a Euclidean space.

(1) If E has odd dimension n = 2m+- 1, then every rotation f admits 1 as an eigen-
value and the eigenspace F of all eigenvectors left invariant under f has an odd
dimension 2p + 1. Furthermore, there is an orthonormal basis of E, in which f
is represented by a matrix of the form

<R2(mp) 0 >
0 12p+1 7

where Ry(,,_p) is a rotation matrix that does not have 1 as an eigenvalue.

(2) IfE has even dimension n = 2m, then every improper orthogonal transformation
f admits 1 as an eigenvalue and the eigenspace F of all eigenvectors left invari-
ant under f has an odd dimension 2p + 1. Furthermore, there is an orthonormal
basis of E, in which f is represented by a matrix of the form

(52<mp>1 0 >
0 Dhpu)’

where Sy, )1 is an improper orthogonal matrix that does not have 1 as an

eigenvalue.

Proof. We prove only (1), the proof of (2) being similar. Since f is a rotation and
n=2m+ 1 is odd, by Theorem 8.1, f is the composition of an even number less
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than or equal to 2m of reflections. From Lemma 2.14, recall the Grassmann relation
dim(M) + dim(N) = dim(M + N) + dim (M NN),

where M and N are subspaces of E. Now, if M and N are hyperplanes, their dimen-
sion is n— 1, and thus dim (M NN) > n— 2. Thus, if we intersect k < n hyperplanes,
we see that the dimension of their intersection is at least n — k. Since each of the
reflections is the identity on the hyperplane defining it, and since there are at most
2m = n — 1 reflections, their composition is the identity on a subspace of dimension
at least 1. This proves that 1 is an eigenvalue of f. Let F be the eigenspace associ-
ated with 1, and assume that its dimensionis g. Let G=F L be the orthogonal of F.
By Lemma 8.2, G is stable under f, and E = F & G. Using Lemma 6.7, we can find
an orthonormal basis of E consisting of an orthonormal basis for G and orthonormal
basis for F. In this basis, the matrix of f is of the form

R2m+17q0
0 1)

Thus, det(f) = det(R), and R must be a rotation, since f is a rotation and det(f) = 1.
Now, if f left some vector u # 0 in G invariant, this vector would be an eigenvector
for 1, and we would have u € F, the eigenspace associated with 1, which contradicts
E = F & G. Thus, by the first part of the proof, the dimension of G must be even,
since otherwise, the restriction of f to G would admit 1 as an eigenvalue. Conse-
quently, g must be odd, and R does not admit 1 as an eigenvalue. Letting g =2p+1,
the lemma is established. O

An example showing that Lemma 8.3 fails for n even is the following rotation
matrix (when n = 2):
R (€08 0 —sin0
~ \sin6 cos6 )’

The above matrix does not have real eigenvalues for 6 # k7.
It is easily shown that for n = 2, with respect to any chosen orthonormal basis
(e1, e2), every rotation is represented by a matrix of form

R (cos 0 —sin6
~ \sinf® cos6
where 6 € [0,27x], and that every improper orthogonal transformation is represented
by a matrix of the form
_ [cos@ sin6
~ \sin® —cos6 /"
In the first case, we call 8 € [0, 27[ the measure of the angle of rotation of R w.r.t. the
orthonormal basis (e, e2). In the second case, we have a reflection about a line, and

it is easy to determine what this line is. It is also easy to see that S is the composition
of a reflection about the x-axis with a rotation (of matrix R).
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@ We refrained from calling 6 “the angle of rotation,” because there are

some subtleties involved in defining rigorously the notion of angle of two
vectors (or two lines). For example, note that with respect to the “opposite basis”
(e2, e1), the measure 6 must be changed to 27t — 6 (or — 6 if we consider the quotient
set R/2x of the real numbers modulo 27). We will come back to this point after
having defined the notion of orientation (see Section 8.8).

It is easily shown that the group SO(2) of rotations in the plane is abelian. First,
recall that every plane rotation is the product of two reflections (about lines), and that
every isometry in O(2) is either a reflection or a rotation. To alleviate the notation,
we will omit the composition operator o, and write rs instead of ros. Now, if ris a
rotation and s is a reflection, rs being in O(2) must be a reflection (since det(rs) =
det(r)det(s) = —1), and thus (rs)?> = id, since a reflection is an involution, which
implies that

srs=r"".
Then, given two rotations ry and ry, writing r1 as r; = s»s1 for two reflections sy, s>,
we have

—1 -1 -1 -1 —1
ryrnry =S2S1V2(S2S1) = 82811281 Sy = 8281128182 = 820 $2 =12,

since srs = r~! for all reflections s and rotations r, and thus 7,7y = rpr;.
We can also perform the following calculation, using some elementary trigonom-
etry:

cos@ sing \ (cosy siny \  [cos(p+y) sin(Q+y)
sing —cos@ ) \siny —cosy )~ \sin(¢+y) —cos(p+y) /"
The above also shows that the inverse of a rotation matrix

R (€08 6 —sin6

a (sin 6 cosH )

is obtained by changing 0 to —0 (or 27 — 0). Incidentally, note that in writing a
rotation r as the product of two reflections r = s,s1, the first reflection s; can be
chosen arbitrarily, since s% =1id, r = (rs1)s1, and rs; is a reflection.

For n = 3, the only two choices for p are p = 1, which corresponds to the identity,
or p =0, in which case f is a rotation leaving a line invariant. This line D is called
the axis of rotation. The rotation R behaves like a two-dimensional rotation around
the axis of rotation. Thus, the rotation R is the composition of two reflections about
planes containing the axis of rotation D and forming an angle 6 /2. This is illustrated
in Figure 8.4.

The measure of the angle of rotation 6 can be determined through its cosine via

the formula
cos@ =u-R(u),
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0/2

/

Fig. 8.4 3D rotation as the composition of two reflections.

where u is any unit vector orthogonal to the direction of the axis of rotation. How-
ever, this does not determine 6 € [0,27[ uniquely, since both 6 and 27w — 0 are
possible candidates. What is missing is an orientation of the plane (through the ori-
gin) orthogonal to the axis of rotation. We will come back to this point in Section
8.8.

In the orthonormal basis of the lemma, a rotation is represented by a matrix of
the form

cosO —sinf 0
R=|sinB cosO 0
0 0 1

Remark: For an arbitrary rotation matrix A, since aj | + ass + as3 (the trace of A)
is the sum of the eigenvalues of A, and since these eigenvalues are cos8 + isin 6,
cos @ —isin @, and 1, for some 0 € [0,27], we can compute cos 0 from

1+2cosO =aj|+ar; +ass.
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It is also possible to determine the axis of rotation (see the problems).

An improper transformation is either a reflection about a plane or the product
of three reflections, or equivalently the product of a reflection about a plane with a
rotation, and we noted in the discussion following Theorem 8.1 that the axis of ro-
tation is orthogonal to the plane of the reflection. Thus, an improper transformation
is represented by a matrix of the form

cos® —sinf 0
S=|sin@ cos6 O
0 0o -1

When n > 3, the group of rotations SO(n) is not only generated by hyperplane
reflections, but also by flips (about subspaces of dimension n — 2). We will also
see, in Section 8.4, that every proper affine rigid motion can be expressed as the
composition of at most # flips, which is perhaps even more surprising! The proof of
these results uses the following key lemma.

Lemma 8.4. Given any Euclidean space E of dimension n > 3, for any two reflec-
tions hy and hy about some hyperplanes H) and H,, there exist two flips f| and f,
such that hyoh; = f> o f1.

Proof. 1If hy = hy, it is obvious that
hiohy=hjoh;=id = fio fj

for any flip fi. If hy # hy, then Hi N H, = F, where dim(F) = n—2 (by the
Grassmann relation). We can pick an orthonormal basis (ey,...,e,) of E such that
(e1,...,e4—2) is an orthonormal basis of F. We can also extend (ey,...,e,—2) to an
orthonormal basis (eq,...,e,_2,u;,v1) of E, where (e1,...,e,_2,u;) is an orthonor-
mal basis of H;, in which case

e,_1 = cosOyu;+sinb vy,

e, = sinBju; —cos O vy,

for some 6, € [0,2x]. Since A is the identity on H; and v; is orthogonal to Hj, it
follows that Ay (u;) = uy, h1(vi) = —vi, and we get

hi(en—1) = cos 0y uy —sin By vy,
hl(en) = sin61 uj +COSGl Vi.

After some simple calculations, we get

hy (enfl) = c0826, ¢, _1+sin26; ¢,,
hi(en) = sin26; e, 1 —cos26; ey,.

As a consequence, the matrix A; of & over the basis (ey,...,e,) is of the form
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I, 0 0
Al = 0 cos26; sin26y
0 sin26; —cos26;
Similarly, the matrix A, of &y over the basis (e, ...,e,) is of the form
I, 0 0

Ay = 0 cos26, sin26,
0 sin26, —cos26,

Observe that both A| and A, have the eigenvalues —1 and +1 with multiplicity n— 1.
The trick is to observe that if we change the last entry in I,,_» from +1 to —1 (which
is possible since n > 3), we have the following product A>A;:

I,3 0 0 0 I,5 0 0 0
0 -1 0 0 0 -1 0 0
0 O cos26, sin26, 0 0 cos20; sin26;

0 O sin26, —cos26, 0 O sin20; —cos26;

Now, the two matrices above are clearly orthogonal, and they have the eigenval-
ues —1,—1, and +1 with multiplicity n — 2, which implies that the corresponding
isometries leave invariant a subspace of dimension n — 2 and act as —id on its orthog-
onal complement (which has dimension 2). This means that the above two matrices
represent two flips fi and f, such that hpyohy = foo0 f;. O

Using Lemma 8.4 and the Cartan—-Dieudonné theorem, we obtain the following
characterization of rotations when n > 3.

Theorem 8.2. Let E be a Euclidean space of dimension n > 3. Every rotation f €
SO(E) is the composition of an even number of flips f = far 0o fi, where 2k < n.
Furthermore, ifu # 0 is invariant under f (i.e., u € Ker (f —id)), we can pick the last
Mip for such that u € in, where Fyy is the subspace of dimension n — 2 determining

Sk

Proof. By Theorem 8.1, the rotation f can be expressed as an even number of hy-
perplane reflections f = sy, 0591 0---0sp 05, with 2k < n. By Lemma 8.4, every
composition of two reflections s;; 0 s5;_1 can be replaced by the composition of two
flips f;0 fri—1 (1 <i < k), which yields f = fo;0---0 fi, where 2k < n.

Assume that f(u) = u, with u # 0. We have already made the remark that in
the case where 1 is an eigenvalue of f, the proof of Theorem 8.1 shows that the
reflections s; can be chosen so that s;(u) = u. In particular, if each reflection s; is a
reflection about the hyperplane H;, we have u € Hy;_| N Hy. Letting F = Hp— 1 N
Hpy, pick an orthonormal basis (ey,...,e,_3,e,_2) of F, where

u
€H_n = —.
"2 ]

The proof of Lemma 8.4 yields two flips f>;— and f;; such that
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folen—2) = —ey—n and sy 0821 = for © fok—1,

since the (n — 2)th diagonal entry in both matrices is —1, which means that
ey € in, where Fy; is the subspace of dimension n — 2 determining f5;. Since
u = ||ulle,—o, we also have u € F5;. O

Remarks:

(1) Tt is easy to prove that if f is a rotation in SO(3) and if D is its axis and 0 is its
angle of rotation, then f is the composition of two flips about lines D; and D,
orthogonal to D and making an angle 6 /2.

(2) It is natural to ask what is the minimal number of flips needed to obtain a rota-
tion f (when n > 3). As for arbitrary isometries, we will prove later that every
rotation is the composition of & flips, where

k= n—dim(Ker (f —id)),

and that this number is minimal (where n = dim(E)).

We now show that hyperplane reflections can be used to obtain another proof of
the QR-decomposition.

8.3 OR-Decomposition Using Householder Matrices

First, we state the result geometrically. When translated in terms of Householder
matrices, we obtain the fact advertised earlier that every matrix (not necessarily
invertible) has a QR-decomposition.

Lemma 8.5. Let E be a nontrivial Euclidean space of dimension n. For any or-

thonormal basis (ey, ..., e,) and for any n-tuple of vectors (v, ..., vy), there is a
sequence of n isometries hy,... h, such that h; is a hyperplane reflection or the
identity, and if (ry,...,r,) are the vectors given by

ri=hyo---ohyohi(vj),

then every rj is a linear combination of the vectors (ey,...,ej), 1 < j < n. Equiv-
alently, the matrix R whose columns are the components of the r; over the basis
(e1,...,ey) is an upper triangular matrix. Furthermore, the h; can be chosen so that
the diagonal entries of R are nonnegative.

Proof. We proceed by induction on n. For n = 1, we have vi = Ae; for some A € R.
If A >0, we let i =id, else if A < 0, we let h; = —id, the reflection about the
origin.

For n > 2, we first have to find /. Let

rig = vl
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If vi = ry 1e1, we let by = id. Otherwise, there is a unique hyperplane reflection
such that

hi(vi) =rie1,
defined such that
(I/l . Wl)

hi(u)=u-2
w2

wi

for all u € E, where
wyp=ry1€1—Vi.
The map A is the reflection about the hyperplane H; orthogonal to the vector w; =
ryper—Vvi. Letting
ri=hi(vi) =rieq,

it is obvious that r belongs to the subspace spanned by ey, and rj ;| = ||v;]| is non-
negative.

Next, assume that we have found k linear maps 41, ..., h;, hyperplane reflections
or the identity, where 1 <k <n— 1, such that if (ry,...,r) are the vectors given by

rj :hkO”-O/’lehl(Vj),

then every r; is a linear combination of the vectors (e1,...,e j), 1 < j <k The
vectors (ej,...,e;) form a basis for the subspace denoted by U/, the vectors
(€xs1,--.,en) form a basis for the subspace denoted by U,’, the subspaces U, and
U/ are orthogonal, and E = U] ® U] Let

Uy = hgo---ohyohy(viyy).
We can write
/ "
Up1 = Up 1 + Uy 1,

where u;(H € U} and u;(’H e U} Let

Tk+1k+1 = ||”Z+1H-

If uZ 1= Tk L1 €1 we let ;1 = id. Otherwise, there is a unique hyperplane
reflection /4| such that

"
M ("‘k+l) = Tk 1,k+1 €k+-15

defined such that
(u-wig1)

hiy1 (1) = u — 2 ~———5 Wy
||Wk+1||2

+1
for all u € E, where
!
Wi+1 = Vk+1 k+1 €k+1 — Uy 1-

The map 5y is the reflection about the hyperplane Hy | orthogonal to the vector
Wikl = Tk 1k 1 €k 1 — Uy, . However, since uy/, |, ey € Uy and U} is orthogonal
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to U/, the subspace U] is contained in Hy, 1, and thus, the vectors (ri,...,rx) and
uj, _1» Which belong to U, +» are invariant under /. This proves that

i1 (i 1) = hysy (e )+ hact (1) = Wy + T g1 €kt

is a linear combination of (ey,...,ex,1). Letting

!
Tirt = M (We1) = Uy + T Lkr1 €kt

since gy = hgo---ohyohy(viy), the vector

Fir1 = hjp10---0hp o hy(viyr)

is a linear combination of (ej,...,exy1). The coefficient of riy; over ey is
Tir1k+1 = |lug ||, which is nonnegative. This concludes the induction step, and
thus the proof. 0O

Remarks:

(1) Since every h; is a hyperplane reflection or the identity,
p=hyo---ohyoh

is an isometry.
(2) If we allow negative diagonal entries in R, the last isometry /4, may be omitted.
(3) Instead of picking ry x = ||u}||, which means that

"
Wi = Fg g€k — Uy,

where 1 <k < n, it might be preferable to pick r ; = —||u || if this makes [lwy]|?
larger, in which case
Wi = Ik €k =+ uz.

Indeed, since the definition of 4 involves division by ||wy||?, it is desirable to
avoid division by very small numbers.

(4) The method also applies to any m-tuple of vectors (vy,...,v,,), where m is not
necessarily equal to n (the dimension of E). In this case, R is an upper triangular
n X m matrix we leave the minor adjustments to the method as an exercise to the
reader (if m > n, the last m — n vectors are unchanged).

Lemma 8.5 directly yields the QR-decomposition in terms of Householder trans-
formations (see Strang [11, 12], Golub and Van Loan [7], Trefethen and Bau [14],
Kincaid and Cheney [8], or Ciarlet [5]).

Lemma 8.6. For every real n X n matrix A, there is a sequence Hy,..., H, of ma-
trices, where each H; is either a Householder matrix or the identity, and an upper
triangular matrix R such that

R=H, --HHA.
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As a corollary, there is a pair of matrices Q,R, where Q is orthogonal and R is
upper triangular, such that A = QR (a QR-decomposition of A). Furthermore, R can
be chosen so that its diagonal entries are nonnegative.

Proof. The jth column of A can be viewed as a vector v; over the canonical basis
(e1,...,en) of E" (where (ej); = 1 if i = j, and 0 otherwise, 1 < i, j < n). Applying
Lemma 8.5 to (vy,...,v,), there is a sequence of n isometries Ay, ..., h, such that h;
is a hyperplane reflection or the identity, and if (r,...,r,) are the vectors given by

ri=hyo---ohyohi(vj),

then every r; is a linear combination of the vectors (e1,...,e;), 1 < j <n.Letting R
be the matrix whose columns are the vectors r;, and H; the matrix associated with
h;, it is clear that

R=H,---HH|A,

where R is upper triangular and every H; is either a Householder matrix or the iden-
tity. However, hjo h; =id for all i, 1 <i < n, and so

vi=hiohyo---oh,(rj)

forall j, 1 <j<n. Butp=~hjohyo---oh,is an isometry, and by Lemma 6.10, p
is represented by an orthogonal matrix Q. It is clear that A = QR, where R is upper
triangular. As we noted in Lemma 8.5, the diagonal entries of R can be chosen to be
nonnegative. O

Remarks:

(1) Letting
Apy1 = Hi---HoHIA,

with A = A, 1 <k < n, the proof of Lemma 8.5 can be interpreted in terms of
the computation of the sequence of matrices Ay,...,A,+1 = R. The matrix Az
has the shape

k+1

X X X Uy X X X X

0 x :

00 xu™ x x
k+1

000uk+1><><

k+1 )
000uk+2><><

X X
X X

A1 =

X
X

000uﬁfi><><><><
00 0 ukt! x x x x

where the (k+ 1)th column of the matrix is the vector

Uks1 = hgo---ohyohi(viy1),
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and thus
1kt k-+1
Mk+l—(l/l1 ,...7uk )
and
/A k+1  k+1 k+1
U1 = (“k+1’“k+27""“n )

If the last n — k — 1 entries in column k + 1 are all zero, there is nothing to do,
and we let Hy,| = I. Otherwise, we kill these n — k — 1 entries by multiplying
A1 on the left by the Householder matrix Hy, | sending

k+1 k+1
(O,...,O,ukH,...,u” ) 0 (0,...,0,741441,0,...,0),

where 71 k11 = ||(ul,§ﬂ,=’4§+l)||

(2) If A is invertible and the diagonal entries of R are positive, it can be shown that
Q and R are unique.

(3) If we allow negative diagonal entries in R, the matrix H, may be omitted (H,, =
I).

(4) The method allows the computation of the determinant of A. We have

det(A) = (—l)mrlyl “ T,

where m is the number of Householder matrices (not the identity) among the H;.
(5) The “condition number” of the matrix A is preserved (see Strang [12], Golub
and Van Loan [7], Trefethen and Bau [14], Kincaid and Cheney [8], or Ciarlet
[S]). This is very good for numerical stability.
(6) The method also applies to a rectangular m x n matrix. In this case, R is also an
m X n matrix (and it is upper triangular).

We now turn to affine isometries.

8.4 Affine Isometries (Rigid Motions)

In the remaining sections we study affine isometries. First, we characterize the set of
fixed points of an affine map. Using this characterization, we prove that every affine
isometry f can be written uniquely as

f=tog, with fog=gort,

where g is an isometry having a fixed point, and 7 is a translation by a vector T such

that 7(7) = 7, and with some additional nice properties (see Theorem 8.3). This
is a generalization of a classical result of Chasles about (proper) rigid motions in
R? (screw motions). We prove a generalization of the Cartan-Dieudonné theorem
for the affine isometries: Every isometry in Is(n) can be written as the composition
of at most n reflections if it has a fixed point, or else as the composition of at most
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n+ 2 reflections. We also prove that every rigid motion in SE(n) is the composition
of at most n flips (for n > 3). This is somewhat surprising, in view of the previous
theorem.

Definition 8.3. Given any two nontrivial Euclidean affine spaces E and F of the
same finite dimension n, a function f: E — F is an affine isometry (or rigid map)

if it is an affine map and
@@ = bl

for all a,b € E. When E = F, an affine isometry f: E — E is also called a rigid
motion.

Thus, an affine isometry is an affine map that preserves the distance. This is a
rather strong requirement. In fact, we will show that for any function f: E — F, the

assumption that R
|.£(@)f(B)]| = |labl].

for all a,b € E, forces f to be an affine map.

Remark: Sometimes, an affine isometry is defined as a bijective affine isometry.
When E and F are of finite dimension, the definitions are equivalent.

The following simple lemma is left as an exercise.

Lemma 8.7. Given any two nontrivial Euclidean affine spaces E and F of the same
finite dimension n, an affine map f: E — F is an affine isometry iff its associated

linear map 7: ? — ? is an isometry. An affine isometry is a bijection.

Let us now consider affine isometries f: E — E. If 7 is a rotation, we call

f a proper (or direct) affine isometry, and if ? is an improper linear isometry,
we call f an improper (or skew) affine isometry. It is easily shown that the set of

affine isometries f: E — E forms a group, and those for which ? is a rotation
is a subgroup. The group of affine isometries, or rigid motions, is a subgroup of
the affine group GA(E), denoted by Is(E) (or Is(n) when E = E"). In Snapper
and Troyer [10] the group of rigid motions is denoted by Mo(E). Since we denote
the group of affine bijections as GA(E), perhaps we should denote the group of
affine isometries by IA(E) (or EA(E)!). The subgroup of Is(E) consisting of the
direct rigid motions is also a subgroup of SA(E), and it is denoted by SE(E) (or

SE(n), when E = E"). The translations are the affine isometries f for which ? =1id,

the identity map on f The following lemma is the counterpart of Lemma 6.9 for
isometries between Euclidean vector spaces.

Lemma 8.8. Given any two nontrivial Euclidean affine spaces E and F of the same
finite dimension n, for every function f: E — F, the following properties are equiv-
alent:
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(1) f is an affine map and | f(a)f (b)) = | ab
(2) /(@ f )] = l[ab]. for ail a,b € E.

Proof. Obviously, (1) implies (2). In order to prove that (2) implies (1), we proceed

,foralla,b € E.

as follows. First, we pick some arbitrary point 2 € E. We define the map g: f —
? such that
8u) = f(2)f(2+u

for all u € E. Since
F(Q)+ () = £(Q) + F(Q)F(Q+u) = £(Q+u)

forall u € f, f will be affine if we can show that g is linear, and f will be an affine
isometry if we can show that g is a linear isometry.
Observe that

g(v) —g(u) = f(Q)f(Q+v)— f(2)(Q+u)
= f(Q+u)f(2+).

17(@) £ (5| = lab]

Then, the hypothesis

for all a,b € E, implies that

lg(v) = g()ll = [ £(Q+u) f(Q +)|| = [|(Q +u)(Q +v)[| = v —u].
Thus, g preserves the distance. Also, by definition, we have
8(0)=0.

Thus, we can apply Lemma 6.9, which shows that g is indeed a linear isometry, and
thus f is an affine isometry. O

In order to understand the structure of affine isometries, it is important to inves-
tigate the fixed points of an affine map.

8.5 Fixed Points of Affine Maps

Recall that £ (1, ?) denotes the eigenspace of the linear map ? associated with the

scalar 1, that is, the subspace consisting of all vectors u € ? such that 7(u) =u.
Clearly, Ker (? — id) = E(l, 7) Given some origin 2 € E, since

Fla) = £(2 + Qa) = F(Q)+ [ (Qa)
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we have f(Q)f(a; = 7(@), and thus
Qf(d) = (@) + T (Qa).

From the above, we get

Q@) —Qa=Qf @)+ F (Qa) - 2a.

Using this, we show the following lemma, which holds for arbitrary affine spaces of
finite dimension and for arbitrary affine maps.

Lemma 8.9. Let E be any affine space of finite dimension. For every affine map
[ E = E, let Fix(f) = {a € E | f(a) = a} be the set of fixed points of f. The
following properties hold:

(1) If f has some fixed point a, so that Fix(f) # 0, then Fix(f) is an affine subspace
of E such that

Fix(f) =a+E(1, ) =a+Ker(f —id),

where E (1, ?) is the eigenspace of the linear map ? for the eigenvalue 1.
(2) The affine map f has a unique fixed point iff E (1, ?) = Ker (? —id) ={0}.

Proof. (1) Since the identity
—
Qb - Qb= @)+ F(@b)—ab

holds for all Q,b € E, if f(a) = a, then af(a; =0, and thus, letting Q = a, for any
beE,

FB)=b
iff
1 af ) —ab=0
iff
F(ab)y—ab=0
iff

abeE(1, ) =Ker (F —id),

which proves that

Fix(f) =a+E(1, 7 ) =a+Ker(f —id).

(2) Again, fix some origin Q. Some « satisfies f(a) = a iff

Q@ —0a=0
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iff

which can be rewritten as
(7 —id)(Qa) = —Qf (2.

We have E(1, ?) = Ker (? —id) = {0} iff ? —id is injective, and since E has

finite dimension, ? —id is also surjective, and thus, there is indeed some a € E such
that

(7 —id)(@a) = (@,

and it is unique, since ? —1id is injective. Conversely, if f has a unique fixed point,
say a, from

(7 —id)(Qa) = —Qf(2,

H
we have (? —id)(Qa) = 0iff f(Q) = 2, and since a is the unique fixed point of

f, we must have a = Q, which shows that 7 —id is injective. O

Remark: The fact that E has finite dimension is used only to prove (2), and (1)
holds in general.

If an isometry f leaves some point fixed, we can take such a point 2 as the ori-
gin, and then f(Q) = Q and we can view f as a rotation or an improper orthogonal

transformation, depending on the nature of ? Note that it is quite possible that
Fix(f) = 0. For example, nontrivial translations have no fixed points. A more in-
teresting example is provided by the composition of a plane reflection about a line
composed with a a nontrivial translation parallel to this line.

Otherwise, we will see in Theorem 8.3 that every affine isometry is the (commu-
tative) composition of a translation with an isometry that always has a fixed point.

8.6 Affine Isometries and Fixed Points

Let E be an affine space. Given any two affine subspaces F,G, if F and G are or-
thogonal complements in £, which means that ? and 6 are orthogonal subspaces
of ? such that ? = ? D ﬁ, for any point Q2 € F, we define g: E — ﬁ such that

H
q(a) = pz (Qa).
Note that ¢(a) is independent of the choice of 2 € F, since we have

Qa=pp(Qa)+ p(Qa),
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and for any 2, € F, we have

mZ-(erp?(.(Ta))er?(!Ta)),

and since .(2123 IS ?, this shows that
— —
pg (ia) = pg(Qa).

Then the map g: E — E such that g(a) = a — 2¢(a), or equivalently
_>
ag(a) = —2q(a) = —2p(Qa),

does not depend on the choice of Q € F. If we identify E to ? by choosing any
origin 2 in F, we note that g is identified with the symmetry with respect to ? and

parallel to 8 Thus, the map g is an affine isometry, and it is called the orthogonal
symmetry about F. Since

g(a) = @+ Qa—2p3(Qa)

for all 2 € F and for all a € E, we note that the linear map ? associated with g is

the (linear) symmetry about the subspace ? (the direction of F), and parallel to 6
(the direction of G).

Remark: The map p: E — F such that p(a) = a — g(a), or equivalently

ap(a) = —q(a) = —p=(Qa),

is also independent of 2 € F, and it is called the orthogonal projection onto F .

The following amusing lemma shows the extra power afforded by affine orthog-
onal symmetries: Translations are subsumed! Given two parallel affine subspaces Fj

1
and F; in E, letting ? be the common direction of F} and F> and E) = ? be its

orthogonal complement, for any a € Fj, the affine subspace a + 3 intersects F, in a

single point b (see Lemma 2.15). We define the distance between Fy and F; as HazH
It is easily seen that the distance between F| and F, is independent of the choice of
ain Fy, and that it is the minimum of || xy|| for all x € F; and all y € F>.

Lemma 8.10. Given any affine space E, if f: E — E and g: E — E are orthogonal
symmetries about parallel affine subspaces F\ and F,, then go f is a translation

defined by the vector 2ab, where ab is any vector perpendicular to the common
direction F of Fi and F, such that H%H is the distance between Fy and F,, with

a € Fy and b € F,. Conversely, every translation by a vector T is obtained as the
composition of two orthogonal symmetries about parallel affine subspaces F, and
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F, whose common direction is orthogonal to T = cz, for some a € F| and some
b € F, such that the distance between F and F; is H%H/Z

Proof. We observed earlier that the linear maps 7 and ? associated with f and
g are the linear reflections about the directions of F; and F;. However, F; and F,

—
have the same direction, and so 7 = ? Since go f = ? o ? and since ? o ? =

—,
? ) ? = id, because every reflection is an involution, we have g o f = id, proving
that g o f is a translation. If we pick a € Fj, then go f(a) = g(a), the reflection of
a € Fy about F,, and it is easily checked that go f is the translation by the vector

T = ag(a) whose norm is twice the distance between Fj and F,. The second part of
the lemma is left as an easy exercise. O

We conclude our quick study of affine isometries by proving a result that plays
a major role in characterizing the affine isometries. This result may be viewed as a
generalization of Chasles’s theorem about the direct rigid motions in 3.

Theorem 8.3. Let E be a Euclidean affine space of finite dimension n. For every
affine isometry f: E — E, there is a unique isometry g: E — E and a unique trans-

lationt = t, with ?(’L’) =1(ie, T€Ker (? —id)), such that the set Fix(g) = {a €
E | g(a) = a} of fixed points of g is a nonempty affine subspace of E of direction

G =Ker(F—id)=E(1,7),
and such that
f=tog and tog=got.
Furthermore, we have the following additional properties:
(a) f = g and T = 0 iff f has some fixed point, i.e., iff Fix(f) # 0.
(b) If f has no fixed points, i.e., Fix(f) = 0, then dim(Ker (7 —id)) > L.

Proof. The proof rests on the following two key facts:

(1) If we can find some x € E such that xf(x; = 7 belongs to Ker (? — id), we get
the existence of g and 7.

@) E =Ker (7 —id) & Im (7 —id), and the spaces Ker (7 —id) and
Im (7 — id) are orthogonal. This implies the uniqueness of g and 7.

First, we prove that for every isometry h: o ?, Ker (h —id) and Im (h — id) are
orthogonal and that

E =Ker(h—id)®Im(h— id).

Recall that
dim(f) = dim(Ker ¢) + dim(Im ¢),
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for any linear map ¢: ? — ? (for instance, see Lang [9], or Strang [12]). To
show that we have a direct sum, we prove orthogonality. Let u € Ker(h —id), so

that h(u) =u, letv € ?, and compute
u-(h(v)—=v)=u-h(v)—u-v="n(u) -h(v) —u-v=0,

since i(u) = u and A is an isometry.
Next, assume that there is some x € E such that xf(x) = 7 belongs to the space
Ker (7 —id). If we define g: E — E such that
g=tgof,

we have

g =f¥)—1=x
since xf (x; = 7T is equivalent to x = f(x) — 7. As a composition of isometries, g is

an isometry, x is a fixed point of g, and since 7 € Ker (7 —id), we have

F=r

and since

g(b) =f(b)—7

for all b € E, we have ? = 7 Since g has some fixed point x, by Lemma 8.9,

Fix(g) is an affine subspace of E with direction Ker (g —id) = Ker (? —id). We
also have f(b) = g(b) + 7 for all b € E, and thus

(gote)(b) = g(b+17) = g(b) + (1) = g(b) + J (v) = g(b) + 7= f(b),

and
(tz0g)(b) = g(b) + = f(b),

which proves thattog=gozr.
To prove the existence of x as above, pick any arbitrary point a € E. Since

E =Ker(f —id) @Im(F —id),

there is a unique vector T € Ker (? - id) and some v € ? such that

mzr—i—?(\z)—v.

For any x € E, since we also have

() = T+ af (@) + fla) f() = % +af(a)+ T (@),
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we get
Q) =Tttt T —v+ @),

which can be rewritten as

mzf+(?—id)(v+a).

If we let at = —v, that is, x = a — v, we get

X6 =7,

with 7 € Ker ( —id).
Finally, we show that T is unique. Assume two decompositions (g;,7;) and

(g2,72). Since ? = g1, we have Ker (g{ —id) = Ker (? —id). Since g; has some
fixed point b, we get

fb)=gib)+n=>b+m,
that is, b/ (b) = 7. and b (b) € Ker (7 —id), since 7, € Ker ( — id). Similarly,
for some fixed point ¢ of g, we get cf(c; =1 and ¢f(c) € Ker (7 - id). Then we

have
&= = cf (c) ~ bf (b) = cb— () f(b) = cb— 7 (cb),

which shows that

& — 7 € Ker (7 —id) nim (7 —id),

and thus that 7o = 71, since we have shown that

E =Ker (7 —id) @Im (7 —id).

The fact that (a) holds is a consequence of the uniqueness of g and 7, since f and
0 clearly satisfy the required conditions. That (b) holds follows from Lemma 8.9 (2),

since the affine map f has a unique fixed point iff £(1, ?) = Ker (? —id) = {0}.
O

The determination of x is illustrated in Figure 8.5.

Remarks:

(1) Note that Ker (7 —id) = {0} iff 7 = 0, iff Fix(g) consists of a single element,
which is the unique fixed point of f. However, even if f is not a translation, f
may not have any fixed points. For example, this happens when E is the affine
Euclidean plane and f is the composition of a reflection about a line composed
with a nontrivial translation parallel to this line.

(2) The fact that E has finite dimension is used only to prove (b).
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<I>f ® f(a)+Ker (F —id)

T a+1Im (7 —id)

a+ ?(V)*V

)
I
1
I

Fig. 8.5 Rigid motion as f =170 g, where g has some fixed point x.

(3) Ttis easily checked that Fix(g) consists of the set of points x such that ||xf (x}||
is minimal.

In the affine Euclidean plane it is easy to see that the affine isometries (besides the
identity) are classified as follows. An isometry f that has a fixed point is a rotation
if it is a direct isometry; otherwise, it is a reflection about a line. If f has no fixed
point, then it is either a nontrivial translation or the composition of a reflection about
a line with a nontrivial translation parallel to this line.

In an affine space of dimension 3 it is easy to see that the affine isometries (be-
sides the identity) are classified as follows. There are three kinds of isometries that
have a fixed point. A proper isometry with a fixed point is a rotation around a line
D (its set of fixed points), as illustrated in Figure 8.6.

An improper isometry with a fixed point is either a reflection about a plane H (the
set of fixed points) or the composition of a rotation followed by a reflection about a
plane H orthogonal to the axis of rotation D, as illustrated in Figures 8.7 and 8.8. In
the second case, there is a single fixed point O = DNH.

There are three types of isometries with no fixed point. The first kind is a non-
trivial translation. The second kind is the composition of a rotation followed by a
nontrivial translation parallel to the axis of rotation D. Such a rigid motion is proper,
and is called a screw motion. A screw motion is illustrated in Figure 8.9.

The third kind is the composition of a reflection about a plane followed by a non-
trivial translation by a vector parallel to the direction of the plane of the reflection,
as illustrated in Figure 8.10.

This last transformation is an improper isometry.
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fla)

Fig. 8.6 3D proper rigid motion with line D of fixed points (rotation).

fla)

I
I
I
I
I
I
H %
1
I
1

Fig. 8.7 3D improper rigid motion with a plane H of fixed points (reflection).

8.7 The Cartan-Dieudonné Theorem for Affine Isometries

The Cartan—Dieudonné theorem also holds for affine isometries, with a small twist
due to translations. The reader is referred to Berger [2], Snapper and Troyer [10],
or Tisseron [13] for a detailed treatment of the Cartan—Dieudonné theorem and its
variants.

Theorem 8.4. Let E be an affine Euclidean space of dimension n > 1. Every isom-
etry f € Is(E) that has a fixed point and is not the identity is the composition of at
most n reflections. Every isometry f € IS(E) that has no fixed point is the composi-
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D
19) a
Q

I 1

1 1

! 1

! ]

' ! fa)

1 a

H 1 O

1

1

1

Fig. 8.8 3D improper rigid motion with a unique fixed point.
D
f(a)
T
a+7
8(a)
a

Fig. 8.9 3D proper rigid motion with no fixed point (screw motion).



262 8 The Cartan—Dieudonné Theorem

a a-+7T

Fig. 8.10 3D improper rigid motion with no fixed points.

tion of at most n+ 2 reflections. When n > 2, the identity is the composition of any
reflection with itself.

Proof. First, we use Theorem 8.3. If f has a fixed point £2, we choose Q as an
origin and work in the vector space Eq. Since f behaves as a linear isometry, the
result follows from Theorem 8.1. More specifically, we can write ? =73go--05]
for k < n hyperplane reflections 57 . We define the affine reflections s; such that

_>
si(a) = Q + 57 (Qa)
for all a € E, and we note that f = s;0--- 051, since
_>
fla)=Q+ 5005 (2a)

for all @ € E. If f has no fixed point, then f =t o g for some isometry g that has

a fixed point £2 and some translation ¢ = t;, with 7(1) = 7. By the argument just
given, we can write g = s o--- 051 for some affine reflections (at most n). However,
by Lemma 8.10, the translation ¢t = #; can be achieved by two reflections about
parallel hyperplanes, and thus f = s, 0---osy, for some affine reflections (at most
n+2). O

When n > 3, we can also characterize the affine isometries in SE(n) in terms of
flips. Remarkably, not only we can do without translations, but we can even bound
the number of flips by 7.

Theorem 8.5. Let E be a Euclidean affine space of dimension n > 3. Every rigid
motion f € SE(E) is the composition of an even number of flips f = fap0-- 0 fi,
where 2k < n.
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Proof. As in the proof of Theorem 8.4, we distinguish between the two cases where
f has some fixed point or not. If f has a fixed point £2, we apply Theorem 8.2. More

specifically, we can write ? = ﬁ 0---0 ﬁ for some flips 7 We define the affine
flips f; such that

fila)=Q+ 7 (Qa)

for all a € E, and we note that f = f5;0--- 0 fi, since

Fla) = Q+ fapo--o i (Qa)

foralla € E.
If f does not have a fixed point, as in the proof of Theorem 8.4, we get

f=trofopo--of,

for some affine flips f;. We need to get rid of the translation. However, ?(1) =T,

—t —
and by the second part of Theorem 8.2, we can assume that T € Fp; , where Fy is

the direction of the affine subspace defining the affine flip f;. Finally, appealing to
1
Lemma 8.10, since T € F_>2k , the translation #; can be expressed as the composition

o fo_y of two flips f3,  and f3, about the two parallel subspaces Q2 + Py, and
Q+1/2+ F—>2k whose distance is || 7|| /2. However, since f3, _, and fa; are both the

. . —
identity on £ + F»;, we must have fékfl = fo, and thus

f=tofyofu_10--0fi
= for 0 for_10 S0 for—10--0 fi
= fox 0 fak—10---0 fi,

since f3, | = fa and f};, | © fox = far © far = id, since fo is a symmetry. O

Remark: It is easy to prove that if f is a screw motion in SE(3), D its axis, 0 is
its angle of rotation, and 7 the translation along the direction of D, then f is the
composition of two flips about lines D and D, orthogonal to D, at a distance ||7|| /2
and making an angle 6 /2.

There is one more topic that we would like to cover, since it is often useful in
practice: The concept of cross product of vectors, also called vector product. But
first, we need to discuss the question of orientation of bases.
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8.8 Orientations of a Euclidean Space, Angles

In this section we return to vector spaces. In order to deal with the notion of orien-
tation correctly, it is important to assume that every family (uy,...,u,) of vectors is
ordered (by the natural ordering on {1,2,...,n}). Thus, we will assume that all fam-
ilies (uy,...,u,) of vectors, in particular bases and orthonormal bases, are ordered.

Let E be a vector space of finite dimension n over R, and let (uy,...,u,) and
(v1,...,v,) be any two bases for E. Recall that the change of basis matrix from
(u1y...,up) to (vi,...,v,) is the matrix P whose columns are the coordinates of
the vectors v; over the basis (uy,...,u,). It is immediately verified that the set of
alternating n-linear forms on E is a vector space, which we denote by A(E) (see
Lang [9]).

We now show that A(E) has dimension 1. For any alternating n-linear form
@: Ex---x E— K and any two sequences of vectors (uj,...,u,) and (vi,...,v,),
if

(Viyevesvn) = (U1,...,un)P,
then
O(Viy...,vp) =det(P)o(uy,. .. up).

In particular, if we consider nonnull alternating n-linear forms @: E X --- X E —
K, we must have @(uy,...,u,) # 0 for every basis (uy,...,uy). Since for any two
alternating n-linear forms ¢ and y we have

O(vi,...,vy) =det(P)o(uy,...,up)

and
W(Vlv"-avn) :det(P)l[/(ul,,,.,un),
we get
Oty u) WV, yvn) — Wlug, . y) @ (v, .. vy) = 0.

Fixing (u1,...,u,) and letting (vy,...,v,) vary, this shows that ¢ and y are linearly
dependent, and since A (E) is nontrivial, it has dimension 1.

We now define an equivalence relation on A (E) — {0} (where we let 0 denote the
null alternating n-linear form):

¢ and y are equivalent if y = A ¢ for some A > 0.

It is immediately verified that the above relation is an equivalence relation. Fur-
thermore, it has exactly two equivalence classes O and O;.

The first way of defining an orientation of E is to pick one of these two equiva-
lence classes, say O (O € {O0},0,}). Given such a choice of a class O, we say that a
basis (wy,...,wy) has positive orientation iff @(wy,...,w,) > 0 for any alternating
n-linear form @ € O. Note that this makes sense, since for any other y € O, ¢ = Ay
for some A > 0.
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According to the previous definition, two bases (uj,...,u,) and (vi,..., v,) have
the same orientation iff @(uy,...,u,) and @(vy,...,v,) have the same sign for all
@ € A(E)—{0}. From

O(vi,...,vy) =det(P)o(uy,. .., up)

we must have det(P) > 0. Conversely, if det(P) > 0, the same argument shows that
(u1,...,un) and (vq,...,v,) have the same orientation. This leads us to an equiva-
lent and slightly less contorted definition of the notion of orientation. We define a
relation between bases of E as follows: Two bases (u,...,u,) and (vy,...,v,) are
related if det(P) > 0, where P is the change of basis matrix from (uy,...,u,) to

(Viyevesvn).

Since det(PQ) = det(P) det(Q), and since change of basis matrices are invertible,
the relation just defined is indeed an equivalence relation, and it has two equivalence
classes. Furthermore, from the discussion above, any nonnull alternating n-linear
form ¢ will have the same sign on any two equivalent bases.

The above discussion motivates the following definition.

Definition 8.4. Given any vector space E of finite dimension over R, we define an
orientation of E as the choice of one of the two equivalence classes of the equiv-
alence relation on the set of bases defined such that (uy,...,u,) and (vi,...,v,)
have the same orientation iff det(P) > 0, where P is the change of basis matrix
from (uy,...,uy) to (vi,...,vy). A basis in the chosen class is said to have positive
orientation, or to be positive. An orientation of a Euclidean affine space E is an

orientation of its underlying vector space ?

In practice, to give an orientation, one simply picks a fixed basis considered as
having positive orientation. The orientation of every other basis is determined by
the sign of the determinant of the change of basis matrix.

Having the notation of orientation at hand, we wish to go back briefly to the
concept of (oriented) angle. Let E be a Euclidean space of dimension n = 2, and
assume a given orientation. In any given positive orthonormal basis for E, every
rotation r is represented by a matrix

R (€08 0 —sin0
" \sin® cos6 )’
Actually, we claim that the matrix R representing the rotation r is the same in all
orthonormal positive bases. This is because the change of basis matrix from one

positive orthonormal basis to another positive orthonormal basis is a rotation repre-
sented by some matrix of the form

p— cosy —siny
T \siny  cosy

and that we have
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- (—y) —sin(—y)
P = (i) owl):

and after calculations, we find that PRP~! is the rotation matrix associated with
¥+ 60—y = 0. We can choose 0 € [0,27], and we call 6 the measure of the angle
of rotation of r (and R). If the orientation is changed, the measure changes to 27 — 6.

We now let E be a Euclidean space of dimension n = 2, but we do not assume any
orientation. It is easy to see that given any two unit vectors u,u; € E (unit means
that ||uy|| = ||uz|| = 1), there is a unique rotation r such that

r(uy) = up.
It is also possible to define an equivalence relation of pairs of unit vectors such that

(ul,u2> = <u3,u4>

iff there is some rotation r such that r(u;) = u3 and r(uy) = us.

Then the equivalence class of (uj,u;) can be taken as the definition of the (ori-
ented) angle of {(u1,uy), which is denoted by iutju5.

Furthermore, it can be shown that there is a rotation mapping the pair (u,u3) to
the pair (u3,us) iff there is a rotation mapping the pair (u;,u3) to the pair (uy,us)
(all vectors being unit vectors), as illustrated in Figure 8.11.

Uq uy

Fig. 8.11 Defining angles.

As a consequence of all this, since for any pair (u;,u,) of unit vectors there is a
unique rotation r mapping u; to u,, the angle iyu; of (u,us) corresponds bijectively
to the rotation r, and there is a bijection between the set of angles of pairs of unit
vectors and the set of rotations in the plane. As a matter of fact, the set of angles
forms an abelian group isomorphic to the (abelian) group of rotations in the plane.

Thus, even though we can consider angles as oriented, note that the notion of
orientation is not necessary to define angles. However, to define the measure of an
angle, the notion of orientation is needed.
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If we now assume that an orientation of E (still a Euclidean plane) is given, the
unique rotation r associated with an angle ir; > corresponds to a unique matrix

R (€08 0 —sin0
"~ \sin® cosO )’
The number 0 is defined up to 2kx (with k € Z) and is called a measure of the angle
irup. There is a unique 8 € [0,27[ that is a measure of the angle wu5. It is also

immediately seen that
cosO = uy - up.

In fact, since cos® = cos(2w — 6) = cos(—0), the quantity cos 6 does not depend
on the orientation.

Now, still considering a Euclidean plane, given any pair (u,u;) of nonnull vec-
tors, we define their angle as the angle of the unit vectors u; /||u;|| and uy/||u>||, and
if E is oriented, we define the measure 0 of this angle as the measure of the angle
of these unit vectors. Note that

ui-up

cosf = ———
(e || |2

and this independently of the orientation.

Finally, if £ is a Euclidean space of dimension n > 2, we define the angle of a pair
(u1,uz) of nonnull vectors as the angle of this pair in the Euclidean plane spanned
by (uy,uy) if they are linearly independent, or any Euclidean plane containing u; if
they are collinear.

If E is a Euclidean affine space of dimension n > 2, for any two pairs {(aj,b)
and {(ay,b;) of points in E, where a; # by and ay # by, we define the angle of the
pair ((ay,b1),{az,by)) as the angle of the pair <chl>,a2b2>.

As for the issue of measure of an angle when n > 3, all we can do is to define the
measure of the angle uju as either 6 or 27 — 6, where 6 € [0,27[. For a detailed
treatment, see Berger [2] or Cagnac, Ramis, and Commeau [3]. In particular, when
n = 3, one should note that it is not enough to give a line D through the origin (the
axis of rotation) and an angle 0 to specify a rotation! The problem is that depending
on the orientation of the plane H (through the origin) orthogonal to D, we get two
different rotations: one of angle 6, the other of angle 2z — 6. Thus, to specify a
rotation, we also need to give an orientation of the plane orthogonal to the axis of
rotation. This can be done by specifying an orientation of the axis of rotation by
some unit vector @, and chosing the basis (e1,e,, ®) (where (e;,e,) is a basis of H)
such that it has positive orientation w.r.t. the chosen orientation of E.

We now return to alternating multilinear forms on a Euclidean space.

When E is a Euclidean space, we have an interesting situation regarding the value
of determinants over orthornormal bases described by the following lemma. Given
any basis B = (uj,...,u,) for E, for any sequence (wy,...,w,) of n vectors, we
denote by detg(wy,...,w,) the determinant of the matrix whose columns are the
coordinates of the w; over the basis B = (uy,...,uy,).
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Lemma 8.11. Let E be a Euclidean space of dimension n, and assume that an orien-

tation of E has been chosen. For any sequence (w1, ...,wy) of n vectors and any two
orthonormal bases By = (uy,...,u,) and By = (v1,...,v,) of positive orientation,
we have

detBl(le"'uWn) = deth(Wl,...,W”).

Proof. Let P be the change of basis matrix from By = (uy,...,u,) to By = (v1,...,
vy). Since By = (uy,...,u,) and B, = (vy,...,v,) are orthonormal, P is orthogonal,
and we must have det(P) = +1, since the bases have positive orientation. Let U}
be the matrix whose columns are the coordinates of the w; over the basis By =

(u1,...,up), and let U, be the matrix whose columns are the coordinates of the w |
over the basis By = (vy,...,v,). Then, we have
Vi up wi Ui wi Vi
T . T T
= P B = Ul 5 = U2
Vn Un Wn Un Wn Vn
and because (u1,...,u,) is a basis, we must have
U, = PU,.

Then, we have

detgl (W1 yeun ,Wn) = det(Ul) = det(PUz) = det(P) det(Uz)

= deth (Wl yeen ,W,,)
since det(P) = +1. O

By Lemma 8.11, the determinant detg(wy,...,w,) is independent of the basis
B, provided that B is orthonormal and of positive orientation. Thus, Lemma 8.11
suggests the following definition.

8.9 Volume Forms, Cross Products

In this section we generalize the familiar notion of cross product of vectors in R3
to Euclidean spaces of any finite dimension. First, we define the mixed product, or
volume form.

Definition 8.5. Given any Euclidean space E of finite dimension n over R and any
orientation of E, for any sequence (wy,...,w;,) of n vectors in E, the common value
Ag(wi,...,wy) of the determinant detg(wy,...,w,) over all positive orthonormal
bases B of E is called the mixed product (or volume form) of (w1,...,wy).

The mixed product Ag(wy,...,w,) will also be denoted by (wy,...,wy), even
though the notation is overloaded. The following properties hold.
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e The mixed product Ag(wy,...,w,) changes sign when the orientation changes.

¢ The mixed product Ag(wy,...,w,) is a scalar, and Definition 8.5 really defines
an alternating multilinear form from e” to R.

o Ag(wi,...,wy) =0iff (wy,...,wy,) is linearly dependent.

* Abasis (uy,...,uy) is positive or negative iff Ag(uy,...,u,) is positive or nega-
tive.
o Ag(wi,...,wy) is invariant under every isometry f such that det(f) = 1.
The terminology “volume form” is justified because Ag(wy,...,w,) is indeed

the volume of some geometric object. Indeed, viewing E as an affine space, the
parallelotope defined by (wy,...,w,) is the set of points

{/'LlW1+"'+/'Lan|0§7L[§1,1§i§n}.

Then, it can be shown (see Berger [2], Section 9.12) that the volume of the paral-

lelotope defined by (wy,...,wy) is indeed Ag(wy,...,w,). If (E, ?) is a Euclidean
affine space of dimension n, given any n+ 1 affinely independent points (ay, . . . ,a,),
the set

{ao+ Maoa; + -+ Anaoay | where 0 < A; < 1,1 <i<n}

is called the parallelotope spanned by (ay,...,a,). Then the volume of the paral-
lelotope spanned by (ao,...,a) is A5 (@oa, ..., aoay). It can also be shown that

the volume vol(ay, . . .,ay) of the n-simplex (ao,...,ay) is
1 N N
vol(ag,...,an) = n!l?(aoal,...,aoan).
Now, given a sequence (wy,...,w,_1) of n— 1 vectors in E, the map

x—=Ag(wi, ..o, wy—1,%)
is a linear form. Thus, by Lemma 6.4, there is a unique vector u € E such that
AE(Wiyeo o Wy 1,X) =u-x

for all x € E. The vector u has some interesting properties that motivate the next
definition.

Definition 8.6. Given any Euclidean space E of finite dimension n over R, for any
orientation of E and any sequence (wy,...,w,_1) of n— 1 vectors in E, the unique
vector wy X --- X w,_1 such that

AE(WIL, ooy Wy 1,X) =W X X Wy - X
for all x € E is the cross product, or vector product, of (wy,...,wy—1).

The following properties hold.

e The cross product wy x --- X w,_1 changes sign when the orientation changes.
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e The cross product wy X --- X w,_1 is a vector, and Definition 8.6 really defines
an alternating multilinear map from "~ ! to E.
o wy X Xwy_1 =0iff (wy,...,w,_1) is linearly dependent. This is because

Wi X o X Wy =0

iff

/'LE(Wl,...,W,,,I,x) =0
for all x € E, and thus if (wy,...,w,_1) were linearly independent, we could
find a vector x € E to complete (wy,...,w,_1) into a basis of E, and we would
have

lE(wl,...,wn,l,x) 750.

*  The cross product wy X --- X w,_1 is orthogonal to each of the w;.
e If (wy,...,w,_1) is linearly independent, then the sequence

(Wi, ooy Wy 1, W1 X X Wy )
is a positive basis of E.

We now show how to compute the coordinates of u; X --- X u,_| over an or-
thonormal basis.
Given an orthonormal basis (ey,...,e,), for any sequence (uj,...,u,—1) of n—1

vectors in E, if
n
uj =Yy uijei,
i=1

where 1 < j <n—1,forany x =xje; + - - - + x,e,, consider the determinant

urg ... Uip—-1 X1
Ul ... Uap—1 X2
QLE(MI,...,M,,,l,x):

Upl - .- Upp—1 Xn

Calling the underlying matrix above A, we can expand det(A) according to the last
column, using the Laplace formula (see Strang [12]), where A; ; is the (n—=1)x(n—
1) matrix obtained from A by deleting row i and column j, and we get

upg -.. Urp—1 X1
Upg «.. Ugp—1 X2 il
=(—=1)""x1det(A1,) + - +xpdet(An,).

Unl - Upp—1 Xn

Each (—1)*"det(A;,) is called the cofactor of x;. We note that det(A) is in fact
the inner product
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det(A) = ((—1)’”rl det(A1,)er + -+ (—1)""det(A,)e,) - x.
Since the cross product u; X --- X u,_ is the unique vector u such that
w-x=Ag(uy,... uy_1,x),
for all x € E, the coordinates of the cross product u; X - - X u,_; must be
((=1)""det(Ay,),...,(=1)"""det(A,,)),

the sequence of cofactors of the x; in the determinant det(A).
For example, when n = 3, the coordinates of the cross product u x v are given by
the cofactors of x;,x;,x3, in the determinant

up vy xi
Uz vz X2/,
usz vz x3
or, more explicitly, by
341 |U2 V2 342 |U1 V1 343 U1 V1
(_1) ) (_1) ’ (_1) ’
usz v3 u3z v3 uz vo

that is,
(U2v3 — u3va, U3VI — U1V3, U1V2 — UaVY ).

It is also useful to observe that if we let U be the matrix

0 —Uuz Uup
U= u3 0 —u |,
—Uuy Uuj 0

then the coordinates of the cross product u X v are given by

0 —uz up Vi Uuzv3 — u3vyp
us 0 —Uul %) = | Uz3vy —uv3
—uy Uuj 0 V3 uivy —uzvy

We finish our discussion of cross products by mentioning without proof a few
more of their properties, in the case n = 3. Firstly, the following so-called Lagrange
identity holds:

2 2 2014112
(=)™ [l vl = = [la][ 7] V]]*

If u and v are linearly independent, and if 6 (or 27 — 0) is a measure of the angle
uv, then
[lux v

[sin@| = +———.
[l V]
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It can also be shown that u X v is the only vector w such that the following prop-
erties hold:

(1) weu=0,andw-v=0.
2) Ag(u,v,w) > 0.
(3) (u-v)> 4 [[wll* = [ful > [[v]|*.
Recall that the mixed product Az (wy,w;,ws) is also denoted by (w;,ws, w3), and

that
wi - (w2 X w3) = (w1, w2,w3).

8.10 Problems

8.1. Prove Lemma 8.7.
8.2. This problem is a warm-up for the next problem. Consider the set of matrices
of the form
0—a
a0)’
where a € R.

(a) Show that these matrices are invertible when a # 0 (give the inverse explic-
itly). Given any two such matrices A, B, show that AB = BA. Describe geometrically
the action of such a matrix on points in the affine plane A2, with its usual Euclidean
inner product. Verify that this set of matrices is a vector space isomorphic to (R,+).

This vector space is denoted by s0(2).
(b) Given an n X n matrix A, we define the exponential et as

Ak

A _
=ht Lo
k>1 7

where I,, denotes the n X n identity matrix. It can be shown rigorously that this power
series is indeed convergent for every A (over R or C), so that e* makes sense (and

you do not have to prove it!).
0-06
(o)

Given any matrix
A 10 . 0—1\ (cos® —sin6
© _COSG(Ol +sin6 1 0/ \sin® cosf J°

Hint. Check that

prove that
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2
0-6\ ,/0-1 0-6\"_ »,(10
6 0)=0(a) = (o) =)
and use the power series for cos 6 and sin 6. Conclude that the exponential map
provides a surjective map exp: s0(2) — SO(2) from so0(2) onto the group SO(2)

of plane rotations. Is this map injective? How do you need to restrict 8 to get an
injective map?

Remark: By the way, s0(2) is the Lie algebra of the (Lie) group SO(2).

(c) Consider the set U(1) of complex numbers of the form cos 8 + isin 6. Check
that this is a group under multiplication. Assuming that we use the standard affine
frame for the affine plane A2, every point (x,y) corresponds to the complex number
7= x+1y, and this correspondence is a bijection. Then, every o = cos0 +isin6 €
U(1) induces the map Ry : A% — A? defined such that

Ru(z) = az.
Prove that R, is the rotation of matrix

cosO —sinf

sin@ cosf J°
Prove that the map R: U(1) — SO(2) defined such that R(¢t) = Ry is an isomor-
phism. Deduce that topologically, SO(Z) is a circle. Using the exponential map from
R to U(1) defined such that 6 + e = cos @ +isin 8, prove that there is a surjective

homomorphism from (R, +) to SO(2). What is the connection with the exponential
map from so0(2) to SO(2)?

8.3. (a) Recall that the coordinates of the cross product u x v of two vectors u =
(uy,uz,u3) and v = (v{,v2,v3) in R? are

(U2v3 — u3va, uzvy — u1v3, U1va — usvy).

Letting U be the matrix

0 —uz up
U= usz 0 —uj |,
—Uy U] 0

check that the coordinates of the cross product u X v are given by

0 —Uu3z up Vi Uujzvi — uzvyp
usz 0 —Uuj V2 | = | Uzvy —ujvs
—Uuy Ul 0 V3 uivy — uxvq

(b) Show that the set of matrices of the form



274 8 The Cartan—Dieudonné Theorem

0 —Uu3z Uup
U= us 0 —Uui
—Uuy Uuj 0

is a vector space isomorphic to (R*+). This vector space is denoted by 50(3). Show
that such matrices are never invertible. Find the kernel of the linear map associated
with a matrix U. Describe geometrically the action of the linear map defined by
a matrix U. Show that when restricted to the plane orthogonal to u = (uy,up,u3)
through the origin, if u is a unit vector, then U behaves like a rotation by 7 /2.

(c) Consider the map y: (R, x) — s0(3) defined by the formula

0 —uz up
Y(uy,uzuz) = | uz 0 —uy
—Upy Ul 0

For any two matrices A, B € 50(3), defining [A, B] as

A, B] = AB — BA,
verify that
y(uxv) = [y(u), y(v)].
Show that [—, —] is not associative. Show that [A, A] = 0, and that the so-called
Jacobi identity holds:

[A, [B, Cl]+[C, [A, B+ [B, [C, A]] = 0.
Show that [A B] is bilinear (linear in both A and B).

Remark: [A, B] is called a Lie bracket, and under this operation, the vector space
$0(3) is called a Lie algebra. In fact, it is the Lie algebra of the (Lie) group SO(3).

(d) For any matrix
0 — b
A= ¢ 0 —a],
—b a 0
letting 0 = v/a? + b+ ¢% and

a? ab ac
B=[ab b? bc |,

ac be ¢?
prove that

A?> = —0%I+B,
AB = BA=0.
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From the above, deduce that

Ad =024,
and for any k > 0,
A4k+1 — 64kA,
A%+ _ 64kA2,
A4k+3 — _94k+2A,
Adk+d _  gdkt2,2

Then prove that the exponential map exp: s0(3) — SO(3) is given by

in 6 1-— 0
epr:eA:cos613+SH$ A—i—( QC;)S )B,

or, equivalently, by
N sin 0 (I —cosB) ,
=1 A A
€ 3+ ) + 02 )

if 6 # 0, with exp(03) = 5.
Remark: This formula is known as Rodrigues’s formula (1840).

(e) Prove that expA is a rotation of axis (a,b,c) and of angle 6 = v/a% + b2+ ¢2.
Hint. Check that e” is an orthogonal matrix of determinant +1, etc., or look up any
textbook on kinematics or classical dynamics!

() Prove that the exponential map exp: s0(3) — SO(3) is surjective. Prove that if
R is a rotation matrix different from I3, letting @ = (a,b, ¢) be a unit vector defining
the axis of rotation, if tr(R) = —1, then

0 —c b
exp '{R)={ 2k+1)x| ¢ 0 —al|,keZy,
—ba O
and if tr(R) # —1, then
-1 6 T
exp (R)_{Zsine(R_R) 1—|—20036—tr(R)}.

(Recall that tr(R) = ry| + a2 + r33, the frace of the matrix R). Show that there is

a unique skew-symmetric B with corresponding 8 satisfying 0 < 6 < & such that
B

e’ =R.

8.4. Prove that for any plane isometry f such that ? is a reflection, f is the com-
position of a reflection about a line with a translation (possibly null) parallel to this
line.

8.5. (1) Given a unit vector (—sin6,cos 0), prove that the Householder matrix de-
termined by the vector (—sin6,cos0) is



276 8 The Cartan—Dieudonné Theorem
cos26 sin286
sin20 —cos26 )’

Give a geometric interpretation (i.e., why the choice (—sin0,cos0)?).

(2) Given any matrix
ab
- (la)

prove that there is a Householder matrix H such that AH is lower triangular, i.e.,
a0
AH - ( C/ d/)

8.6. Given a Euclidean space E of dimension #, if / is a reflection about some hyper-
plane orthogonal to a nonnull vector u and f is any isometry, prove that foho f~!
is the reflection about the hyperplane orthogonal to f(u).

for some a’,c’,d’ € R.

8.7. Let E be a Euclidean space of dimension n = 2. Prove that given any two unit
vectors uj,up € E (unit means that ||u;|| = ||uz|| = 1), there is a unique rotation r
such that
r(uy) = up.
Prove that there is a rotation mapping the pair (u1,u) to the pair (us, u4) iff there

is a rotation mapping the pair {(u;,u3) to the pair (up,us) (all vectors being unit
vectors).

8.8. (1) Recall that

Vi1 V12 ... Vin

V21 V22 ... V2p
det(vi,...,vi)=| . . . .|,

Vul Vn2 -+« Van

where v; has coordinates (v;1,...,vi,) with respect to a basis (ey,...,e,). Prove that
the volume of the parallelotope spanned by (a, ..., a,) is given by

Cl()la()z...a()nl
a11a12...a1n1
AE(ao,...,a,,):(—l)” . .. o

Anl Qp) ... App 1

—
aopdi,. .

and letting Ag(ag, . ..,a,) = l?( .,ao—af,), that

app—dap1 d12 —ap2 --- dip—Adon
az1 —dapy a2 —Aap2 --- da2p —Adon

AE(ao,...,a,,)z . . . : )

dp1 —agpl dp2 —A4p2 --- App — aon
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where a; has coordinates (a;1,...,a;,) with respect to the affine frame (O, (ey, ...,
en)).
(2) Prove that the volume vol(ay, .. .,a,) of the n-simplex (ay,...,a,) is
1
vol(ag,...,an) = ml?(cm, . ,Cl()—cl>,,).

8.9. Prove that the so-called Lagrange identity holds:
(- v)? + flux v = (a2

8.10. Given p vectors (uj,...,u p) in a Euclidean space E of dimension n > p, the
Gram determinant (or Gramian) of the vectors (u1,...,up) is the determinant

[u]? <M1,M§> o {ur,up)
(wa,ur) Nual|™ ... (u2,up)

Gram(uy,...,u,) = i ] s
: : H
(up,ur) (up,uz) ... ||upl|

(1) Prove that
Gram(uy,...,uy) = Ag(uy,. .. ,u,,)z.

Hint. By a previous problem, if (ey,...,e,) is an orthonormal basis of E and A is
the matrix of the vectors (uy,...,u,) over this basis,

det(A)? = det(ATA) = det(A;-A)),

where A; denotes the ith column of the matrix A, and (A;-A;) denotes the n x n
matrix with entries A; - A ;.
(2) Prove that

Hm X X l/tn,1||2 = Gram(ul,...,un,l).

Hint. Letting w = uy X -+ X u,_1, observe that

Ap(up, ... uy—1,w) = (W,w) = ||wH2,
and show that
Iwl* = A (ur, ... up_1,w)* = Gram(uy, ..., uy_1,w)
— Gram(us, ..t _1) |-

8.11. Given a Euclidean space E, let U be a nonempty affine subspace of E, and let
a be any point in E. We define the distance d(a,U) of a to U as

d(a,U) = inf{||ab| | b € U}.
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(a) Prove that the affine subspace U, (j defined such that

i
Ualza—i—ﬁ

intersects U in a single point b such that d(a,U) = ||c@||
Hint. Recall the discussion after Lemma 2.15.
(b) Let (ao, ...,a,) be a frame for U (not necessarily orthonormal). Prove that

d(a,U)z _ Gram(cﬁ,m, ..., aoap)

Gram(aoar, ...,aoa,)

Hint. Gram is unchanged when a linear combination of other vectors is added to
one of the vectors, and thus

_)
Gram(m,aoal, ... apay) = Gram(ba,aopai, . ..,apap),

where b is the unique point defined in question (a).

(c) If D and D' are two lines in E that are not coplanar, a,b € D are distinct points
on D, and d’,b’ € D' are distinct points on D', prove that if d(D,D’) is the shortest
distance between D and D’ (why does it exist?), then

— 3 —
o Gram(aa',%,a'b’)
Gram(cz7 ab)

8.12. Given a hyperplane H in E” of equation
urxy+ -+ upxp —v=0,

for any pointa = (ay,...,ay), prove that the distance d(a, H) of a to H (see problem
8.11) is given by
_way - upan — vl

d(a,H)=
4/M%_F..._i_’,t%

8.13. Given a Euclidean space E, let U and V be two nonempty affine subspaces
such that U NV = 0. We define the distance d(U,V) of U and V as

d(U,V) =inf{||ab|| |a U, be VY.

(a) Prove that dim(ﬁ—i—?) < dim(?) — 1, and that ﬁl N ?L = (ﬁ—i—
V)t £ {0}

Hint. Recall the discussion after Lemma 2.15 in Chapter 2.
1 1
(b) Let W=U nV = (ﬁ—i— V)L Prove that U’ = U + W is an affine
subspace with direction ﬁ @ W, Vi=V+ W is an affine subspace with direction
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Ve W, and that W = U’ NV’ is a nonempty affine subspace with direction (ﬁ N

?)@W such that UNW' = @ and V NW’ # 0. Prove that U NW' and VW' are
parallel affine subspaces such that

UnW =vow =TnV.

— — —
Prove thatif a,c € U, b,d €V, and ab,cd € (T + V)", then ab = cd and @t = bd.
Prove that if ¢ € W/, then ¢ + (7 + 7)l intersects U NW' and V NW’ in unique

pointsa € UNW’ and b € VNW’ such that ab € (ﬁ—i— ?)l
Prove thatforalla e UNW’ and allb e VNW/,

dU,V) =|lab|| itf abe (T +V)".

Prove that a € U and b € V as above are unique iff Unv = {0}.

©Ifm= dim(ﬁ—i— ?), (e1,...,en) is any basis of U+V,and ag € U and
by € V are any two points, prove that

—
d(U,V)2 _ Gram(aobo,e1 g ,em)
Gram(ey,...,en)

8.14. Let E be a real vector space of dimension n, and let ¢: E X E — R be a
symmetric bilinear form. Recall that ¢ is nondegenerate if for every u € E,

if @(u,v)=0 forallveE, then u=0.

A linear map f: E — E is an isometry w.r.t. @ if

o(f(x), f(v) = @(x,y)

for all x,y € E. The purpose of this problem is to prove that the Cartan—Dieudonné
theorem still holds when ¢ is nondegenerate. The difficulty is that there may be
isotropic vectors, i.e., nonnull vectors u such that @(u, u) = 0. A vector u is called
nonisotropic if ¢(u, u) # 0. Of course, a nonisotropic vector is nonnull.

(a) Assume that @ is nonnull and that f is an isometry w.r.t. ¢. Prove that f(u) —u
and f(u)+ u are conjugate w.r.t. @, i.e.,

O(f(u)—u, f(u)+u)=0.

Prove that there is some nonisotropic vector u € E such that either f(u) —u or
f(u) 4 u is nonisotropic.

(b) Let @ be nondegenerate. Prove the following version of the Cartan—Dieudonné
theorem:
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Every isometry f € O(¢) that is not the identity is the composition of at most
2n — 1 reflections w.r.t. hyperplanes. When n > 2, the identity is the composition of
any reflection with itself.

Proceed by induction. In the induction step, consider the following three cases:

(1) f admits 1 as an eigenvalue.
(2) f admits —1 as an eigenvalue.
(3) f(u) # uand f(u) # —u for every nonnull vector u € E.

Argue that there is some nonisotropic vector u such that either f(u) —u or f(u)+
u is nonisotropic, and use a suitable reflection s about the hyperplane orthogonal to
f(u) —uor f(u)+u, such that so f admits 1 or —1 as an eigenvalue.

(c) What goes wrong with the argument in (b) if ¢ is nonnull but possibly degen-
erate? Is O( ) still a group?

Remark: A stronger version of the Cartan—Dieudonné theorem holds: in fact, at
most n reflections are needed, but the proof is much harder (for instance, see
Dieudonné [6]).
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Chapter 9
The Quaternions and the Spaces S°, SU(2),
SO(3), and RP’

9.1 The Algebra H of Quaternions

In this chapter, we discuss the representation of rotations of R? in terms of quater-
nions. Such a representation is not only concise and elegant, it also yields a very
efficient way of handling composition of rotations. It also tends to be numerically
more stable than the representation in terms of orthogonal matrices.

The group of rotations SO(2) is isomorphic to the group U(1) of complex num-
bers el = cos @ +isin O of unit length. This follows immediately from the fact that

the map
RN cosO —sin6
sin@ cos@

is a group isomorphism. Geometrically, observe that U(1) is the unit circle S'. We
can identify the plane R? with the complex plane C, letting z = x +iy € C represent
(x,y) € R2. Then every plane rotation pg by an angle  is represented by multipli-
cation by the complex number ¢!® € U(1), in the sense that for all z,7' € C,

?=polz) iff 7 =e"%

In some sense, the quaternions generalize the complex numbers in such a way that
rotations of R are represented by multiplication by quaternions of unit length. This
is basically true with some twists. For instance, quaternion multiplication is not
commutative, and a rotation in SO(3) requires conjugation with a quaternion for its
representation. Instead of the unit circle S ! we need to consider the sphere 3 in R4,
and U(1) is replaced by SU(2).

Recall that the 3-sphere S° is the set of points (x,y,z,¢) € R* such that

ﬁ+f+f+ﬂ:L

and that the real projective space RP? is the quotient of S* modulo the equivalence
relation that identifies antipodal points (where (x,y,z,#) and (—x,—y, —z,—t) are

281
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antipodal points). The group SO(3) of rotations of R? is intimately related to the 3-
sphere $3 and to the real projective space RP?. The key to this relationship is the fact
that rotations can be represented by quaternions, discovered by Hamilton in 1843.
Historically, the quaternions were the first instance of a skew field. As we shall see,
quaternions represent rotations in R very concisely.

It will be convenient to define the quaternions as certain 2 x 2 complex matrices.
We write a complex number z as z = a + ib, where a,b € R, and the conjugate 7 of
zisZ=a—1ib. Let 1, 1, j, and k be the following matrices:

1— 10 i i0
—\01)”’ —\0—i)”
. (01 (01
J_<—HQ’ k‘(uﬂ‘
Definition 9.1. Let H be the set of all matrices of the form

al + bi+ cj + dKk,

where (a,b,c,d) € R*. Thus, every matrix in H is of the form

A:({Z)
5%

where x = a+1ib and y = ¢+ id. The matrices in H are called quaternions. The null
quaternion is denoted by O (or 0, if confusion may arise). Quaternions of the form
bi+ cj+ dk are called pure quaternions. The set of pure quaternions is denoted by
H,.

Note that the rows (and columns) of matrices in H are vectors in C? that are
orthogonal with respect to the Hermitian inner product of C? given by

(x1,51) - (x2,y2) = x1%2 + Y172

Furthermore, their norm is

\VAX+ Yy = Va* +b>+ 2+ d?,

and the determinant of A is a® + b* + > + d°.
It is easily seen that the following famous identities (discovered by Hamilton)
hold:

i’=j =k*=ijk=—1,
ij=—ji=k,
jk=-kj=i,
ki=—ik =j.
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Using these identities, it can be verified that H is a ring (with multiplicative identity
1) and a real vector space of dimension 4 with basis (1,1, j,k). In fact, the quater-
nions form an associative algebra. For details, see Berger [3], Veblen and Young
[22], Dieudonné [5], Bertin [4].

g% The quaternions H are often defined as the real algebra generated by the

four elements 1, i, j, k, and satisfying the identities just stated above. The
problem with such a definition is that it is not obvious that the algebraic structure
H actually exists. A rigorous justification requires the notions of freely generated
algebra and of quotient of an algebra by an ideal. Our definition in terms of matrices
makes the existence of H trivial (but requires showing that the identities hold, which
is an easy matter).

Given any two quaternions X = al +bi+cj+dkand Y = d'1+b'i +'j+d'k,
it can be verified that

XY = (ad' — bb' — cc' —dd' )1+ (ab' + bd' + cd' —dc')i
+ (ac'+cd' +db' — bd')j+ (ad' + dd' + bc' — cb')k.

It is worth noting that these formulae were discovered independently by Olinde
Rodrigues in 1840, a few years before Hamilton (Veblen and Young [22]). However,
Rodrigues was working with a different formalism, homogeneous transformations,
and he did not discover the quaternions. The map from R to H defined such that
a+— al is an injection that allows us to view R as a subring R1 (in fact, a field) of
H. Similarly, the map from R? to H defined such that (b,c,d) + bi+cj+dk is an
injection that allows us to view R? as a subspace of Hl, in fact, the hyperplane H P
Given a quaternion X = al + bi + cj + dk, we define its conjugate X as

X =al — bi—cj —dk.
It is easily verified that
XX = (a® +b* + 2 +d)1.

The quantity a® + b? 4 ¢? +d?, also denoted by N(X), is called the reduced norm of
X.

Clearly, X is nonnull iff N(X) # 0, in which case X /N(X) is the multiplicative
inverse of X. Thus, H is a skew field. Since X +X = 2al, we also call 24 the reduced
trace of X, and we denote it by Tr(X). A quaternion X is a pure quaternion iff
X = —Xiff Tr(X) = 0.

The following identities can be shown (see Berger [3], Dieudonné [5], Bertin

[4]:



284 9 The Quaternions and the Spaces S°, SU(2), SO(3), and RP?
XY =YX,
Tr(XY) =Tr(YX),
N(XY) =NX)N(Y),
Tr(ZXZ7 ') = Tr(X),

whenever Z # 0.

If X =bi+cj+dkand Y = b'i+ c'j+ d’k are pure quaternions, identifying X
and Y with the corresponding vectors in R3, the inner product X - ¥ and the cross
product X x Y make sense, and letting [0,X x Y] denote the quaternion whose first
component is 0 and whose last three components are those of X x Y, we have the
remarkable identity

XY=—-(X-Y)1+[0,X xY].

More generally, given a quaternion X = al + bi+ cj + dk, we can write it as
X =la,(b,c,d)],

where a is called the scalar part of X and (b,c,d) the pure part of X. Then, if
X =[a,U] and Y = [d@,U’], it is easily seen that the quaternion product XY can be
expressed as

XY =lad —U-U',aU' +dU+U x U'].

The above formula for quaternion multiplication allows us to show the following
fact. Let Z € H, and assume that ZX = XZ for all X € H. We claim that the pure part
of Z is null, i.e., Z = al for some a € R. Indeed, writing Z = [a,U], if U # 0, there
is at least one nonnull pure quaternion X = [0, V] such that U x V # 0 (for example,
take any nonnull vector V in the orthogonal complement of U). Then

ZX =[-U-V,aV+UxV], XZ=[-V-U,aV+V xU],

and since V x U = —(U x V) and U x V # 0, we have XZ # ZX, a contradiction.
Conversely, it is trivial that if Z = [a,0], then XZ = ZX for all X € H. Thus, the set
of quaternions that commute with all quaternions is R1.

Remark: It is easy to check that for arbitrary quaternions X = [a,U] and ¥ =
[, U],
XY —-YX =1[0,2(UxU"),

and that for pure quaternions X,Y € H,,

2(X-Y)1=—(XY+YX).

Since quaternion multiplication is bilinear, for a given X, the map Y — XY is
linear, and similarly for a given Y, the map X +— XY is linear. It is immediate that if
the matrix of the first map is Ly and the matrix of the second map is Ry, then
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a—-b—c—d a
b a —d c b

XY = LyY = cd a —b c
d—c b a d’
and
a —b —c —d a
v d d -¢ b
XV =RyX = d—-d d b c
d ¢ —-b d d

Observe that the columns (and the rows) of the above matrices are orthogonal. Thus,
when X and Y are unit quaternions, both Ly and Ry are orthogonal matrices. Fur-
thermore, it is obvious that Ly = L;, the transpose of Ly, and similarly, Ry = R;r.
Since XX = N(X), the matrix LxL, is the diagonal matrix N(X)I (where [ is the
identity 4 x 4 matrix), and similarly the matrix RyR; is the diagonal matrix N(Y)I.
Since Ly and Ly, have the same determinant, we deduce that det(Lx)* = N(X)*, and
thus det(Ly) = +N(X)?. However, it is obvious that one of the terms in det(Ly) is
a*, and thus

det(Lx) = (a* +b* +c* +d*)*.

This shows that when X is a unit quaternion, Ly is a rotation matrix, and similarly
when Y is a unit quaternion, Ry is a rotation matrix (see Veblen and Young [22]).
Define the map ¢ : H x H — R as follows:

1 —
oX,Y)= 3 Tr(XY) =ad +bb' +cc’' +dd'.

It is easily verified that ¢ is bilinear, symmetric, and definite positive. Thus, the
quaternions form a Euclidean space under the inner product defined by ¢ (see
Berger [3], Dieudonné [5], Bertin [4]).

It is immediate that under this inner product, the norm of a quaternion X is just
\/N(X). As a Euclidean space, H is isomorphic to E*. It is also immediate that the
subspace H, of pure quaternions is orthogonal to the space of “real quaternions”
R1. The subspace I, of pure quaternions inherits a Euclidean structure, and this
subspace is isomorphic to the Euclidean space E3. Since H and E* are isomorphic
Euclidean spaces, their groups of rotations SO(H) and SO(4) are isomorphic, and
we will identify them. Similarly, we will identify SO(H,,) and SO(3).

9.2 Quaternions and Rotations in SO(3)

We have just observed that for any nonnull quaternion X, both maps ¥ — XY and
Y — YX (where Y € H) are linear maps, and that when N(X) = 1, these linear maps
are in SO(4). This suggests looking at maps pyz: H — H of the form X — YXZ,
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where Y,Z € H are any two fixed nonnull quaternions such that N(Y)N(Z) = 1.
Since N(Y)N(Z) = 1, in view of the identity N(UV) = N(U)N(V) forall U,V € H,
we have
prz(X) =YXZ=(y/NY)(Y//NY))X(\/N(Z)(Z/\/N(Z)))
= VN)NZ)(Y/\/N(Y))X(Z/\/N(Z)) = (Y//N(Y))X(Z/\/N(2)),

SO
prz= Py, /nwya) (pl,Z/«/N(Z)))'

Since pY/\/IW,l is the map X — (Y/+/N(Y))X and pLZ/\/Im is the map X
X(Z/\/N(Z), which are both rotations since Y /+/N(Y) and Z/\/N(Z) are unit
quaternions, py z itself is a rotation, i.e., pyz € SO(4). We will prove that every
rotation in SO(4) arises in this fashion.

When Z =Y, the map Pyy-1 is denoted more simply by py. In this case, it is
easy to check that py is the identity on 1R, and maps H, into itself. Indeed (renam-
ing Y as Z), observe that

pz(X +Y) = pz(X) + pz(Y).

It is also easy to check that

pz(X) = pz(X).
Then we have

pz(X +X) = pz(X) + pz(X) = pz(X) + pz(X),

and since if X = [a,U], then X + X = 2al, where a is the real part of X, if X is pure,
ie, X+X =0, then pz(X)+pz(X) =0, i.e., pz(X) is also pure. Thus, pz € SO(3),
i.e., pz is a rotation of E*>. We will prove that every rotation in SO(3) arises in this
fashion.

Remark: If a bijective map p : H — H satisfies the three conditions

PX+Y)=pX)+p(Y),
p(AX) = Ap(X),
pXY)=pX)p(Y),
for all quaternions X,Y € H and all A € R, i.e., p is a linear automorphism of H,

it can be shown that p(X) = p(X) and N(p (X)) = N(X). In fact, p must be of the
form pz for some nonnull Z € H.

The quaternions of norm 1, also called unit quaternions, are in bijection with
points of the real 3-sphere S3. It is easy to verify that the unit quaternions form a
subgroup of the multiplicative group H* of nonnull quaternions. In terms of complex
matrices, the unit quaternions correspond to the group of unitary complex 2 x 2
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matrices of determinant 1 (i.e., xx +yy = 1),

A= (x_X),
5%

with respect to the Hermitian inner product in C2. This group is denoted by SU(2).
The obvious bijection between SU(2) and S is in fact a homeomorphism, and it can
be used to transfer the group structure on SU(2) to S3, which becomes a topological
group isomorphic to the topological group SU(2) of unit quaternions. Incidentally,
it is easy to see that the group U(2) of all unitary complex 2 x 2 matrices consists

of all matrices of the form
_(Axy
A= (—Ay x> ’

with xx +yy = 1, and where A is a complex number of modulus 1 AA =1). 1t
should also be noted that the fact that the sphere S* has a group structure is quite
exceptional. As a matter of fact, the only spheres for which a continuous group
structure is definable are S' and S3. The algebraic structure of the groups SU(2) and
SO(3), and their relationship to 3, is explained very clearly in Chapter 8 of Artin
[1], which we highly recommend as a general reference on algebra.

One of the most important properties of the quaternions is that they can be used
to represent rotations of R?, as stated in the following lemma. Our proof is inspired
by Berger [3], Dieudonné [5], and Bertin [4].

Lemma 9.1. For every quaternion Z # 0, the map
pz: X —ZXZ7!

(where X € H) is a rotation in SO(H) = SO(4) whose restriction to the space H),
of pure quaternions is a rotation in SO(H,) = SO(3). Conversely, every rotation in
SO(3) is of the form

pz: X —ZXZ !,

Sfor some quaternion Z # 0 and for all X € H,. Furthermore, if two nonnull quater-
nions Z and Z' represent the same rotation, then Z' = AZ for some A # 0 in R.

Proof. We have already observed that pz € SO(3). We have to prove that every
rotation is of the form pz. First, it is easily seen that

Pyx = Py °Px.

By Theorem 8.1, every rotation that is not the identity is the composition of an even
number of reflections (in the three-dimensional case, two reflections), and thus it is
enough to show that for every reflection ¢ of H, about a plane H, there is some
pure quaternion Z # 0 such that 6(X) = —ZXZ~! for all X € H,. If Z is a pure
quaternion orthogonal to the plane H, we know that

X-2)
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for all X € H,. However, for pure quaternions Y,Z € H,, we have
2(Y-Z2)1=—(YZ+ZY).

Then (Z-Z)1 = —Z?, and we have

o(X) _X—z%z_)wz(x-z)z1

=X - (XZ+2X)2 '=-zx77",

which shows that o(X) = —ZXZ~! for all X € H,, as desired.
If pz, = pz,, then
VY. VARIEY/9 V%

for all X € H, which is equivalent to
Z,' 721X =Xx7,'7,

for all X € H. However, we showed earlier that Z; lZl = al for some a € R, and
since Z; and Z, are nonnull, we get Z, = (1/a)Z;, wherea #0. O

As a corollary of
Prx = Py ©Px,

it is easy to show that the map p: SU(2) — SO(3) defined such that p(Z) = pz is a
surjective and continuous homomorphism whose kernel is {1, —1}. Since SU(2) and
§3 are homeomorphic as topological spaces, this shows that SO(3) is homeomorphic
to the quotient of the sphere S modulo the antipodal map. But the real projective
space RP? is defined precisely this way in terms of the antipodal map 7: § — RP?,
and thus SO(3) and RP* are homeomorphic. This homeomorphism can then be
used to transfer the group structure on SO(3) to RP?, which becomes a topological
group. Moreover, it can be shown that SO(3) and RP? are diffeomorphic manifolds
(see Marsden and Ratiu [15]). Thus, SO(3) and RP? are at the same time groups,
topological spaces, and manifolds, and in fact they are Lie groups (see Marsden and
Ratiu [15] or Bryant [6]).

The axis and the angle of a rotation can also be extracted from a quaternion
representing that rotation. The proof of the following lemma is adapted from Berger
[3] and Dieudonné [5].

Lemma 9.2. For every quaternion Z = al +t where t is a pure quaternion, pz =1
iff t = 0, otherwise the axis of the rotation pz associated with Z is determined by
the vector in R3 corresponding to t, and the angle of rotation 0 is equal to ™ when
a =0, or when a # 0, given the orientation of the plane orthogonal to the axis of
rotation described below, the angle is given by

0 N(t)
tan— = +——=
an2 P s
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with 0 # w and 0 < 0 < 2m. If t # 0, the plane orthogonal to t is oriented by
choosing a basis (wy,w) in it such that (wy,wa,t) is positively oriented; that is,
det(wy,wy,t) > 0.

Proof. A simple calculation shows that the line of direction 7 is invariant under the
rotation pz, and thus it is the axis of rotation. Note that for any two nonnull vectors
X,Y € R? such that N(X) = N(Y), there is some rotation p such that p(X) =Y. If
X =Y, we use the identity, and if X # Y, we use the rotation of axis determined by
X x Y rotating X to Y in the plane containing X and Y. Thus, given any two non-
null pure quaternions X, Y such that N(X) = N(Y), there is some nonnull quaternion
W such that Y = WXW~!. Furthermore, given any two nonnull quaternions Z, W,
we claim that the angle of the rotation pz is the same as the angle of the rotation
Pwzw-1. This can be shown as follows. First, letting Z = al +¢ where ¢ is a pure non-
null quaternion, we show that the axis of the rotation py 1 is WtW ™! = py (1).
Indeed, it is easily checked that wiw s pure, and

WZW ' =W(al+ )W =Walw '+ Wiw ! =al + wrw ™!

Second, given any pure nonnull quaternion X orthogonal to 7, the angle of the rota-
tion Z is the angle between X and pz(X). Since rotations preserve orientation (since
they preserve the cross product), the angle 6 between two vectors X and Y is pre-
served under rotation. Since rotations preserve the inner product, if X -r = 0, we
have pw (X) - pw(t) = 0, and the angle of the rotation py -1 = pw o pzo (pw) !
is the angle between the two vectors pw (X) and py -1 (pw (X)). Since

Pwzw-1 (Pw (X)) = (pw 0 pzo (pw) ™" o pw)(X)
= (pw o pz)(X) = pw(pz(X)),

the angle of the rotation py,,y -1 is the angle between the two vectors pw (X) and
pw(pz(X)). Since rotations preserve angles, this is also the angle between the two
vectors X and pz(X), which is the angle of the rotation pz, as claimed. Thus, given
any quaternion Z = al +¢, where ¢ is a nonnull pure quaternion, since there is some
nonnull quaternion W such that WeW ! = \/N(t)i and WZW~! = al + /N(¢)1, it
is enough to figure out the angle of rotation for a quaternion Z of the form al + bi
with b > 0 (a rotation of axis e). It suffices to find the angle between j and pz(j), as-
suming that the plane orthogonal to be; (with b > 0) is oriented such that (e, e3,beq)
has positive orientation, equivalently, (e}, ez, e3) has positive orientation. Since

pz(j) = (al + bi)j(al +bi) ",

we get
a?—br.  2ab

. 1 o, .
pz(j) —(al—i—bl)J(al—bl):a2+sz+a2+b2k-

Ta21p?
Then we must have

a?—b? . 2ab

c0sl = ——, = .
a?+b? a’+b?
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If a # 0, we have cos 0 # —1, that is, 8 # 7, so cos(0/2) # 0 (recall that 0 < 6 <
27). Then, using the fact that sin @ = 25sin(6/2) cos(6/2) and cos 8 = 2cos?(8/2) —
1, we have

sin@  2sin(6/2)cos(6/2)  sin(6/2)

cosf+1  2cos2(0/2)—1+1 - cos(6/2) =tan(6/2).
Therefore, since . X
00894-1:22%[;2—!—1:%
and a # 0, we get
0 sin 6 2ab a*+b* b N(@)

tan

2 cosO+1 a+b 2 a  a
If a=0, we get
PZ(j) = _j7
and 6 = 7. In terms of the original quaternion Z = al 4 where ¢ # 0 is arbitrary,

the plane orthogonal to ¢ is oriented by choosing a basis (wj,w;) in it such that
(w1, wo,t) is positively oriented; that is, det(wy,w,,7) >0. O

Note that if Z is a unit quaternion, then since

1 —tan?(6/2)

s = (62

and a> + N(t) = N(Z) = 1, we get cos @ = a*> — N(t) = 2a> — 1, and since cos§ =
2cos? (6/2) — 1, under the orientation defined above, we have

cos — =a.
2

Now, since a®> + N(t) = N(Z) = 1, we can write the unit quaternion Z as

0 0
Z= [cos?sinEV} ,

t

where V is the unit vector i) (with 0 < 8 < 2m). Also note that VV = —1, and

thus, formally, every unit quaternion looks like a complex number cos ¢ + isin @,
except that i is replaced by a unit vector, and multiplication is quaternion multipli-
cation.

In order to explain the homomorphism p : SU(2) — SO(3) more concretely, we
now derive the formula for the rotation matrix of a rotation p whose axis D is de-
termined by the nonnull vector w and whose angle of rotation is 6. For simplicity,
we may assume that w is a unit vector. Letting W = (b, c,d) be the column vector
representing w and H be the plane orthogonal to w, recall from the discussion just
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before Lemma 8.1 that the matrices representing the projections pp and pg are
WW' and I-WW'.

Given any vector u € R3, the vector p(u) can be expressed in terms of the vectors
pp(u), pr(u), and w x pp(u) as

p(u) = pp(u) +cosO pg(u) +sinOw x py(u).
However, it is obvious that
wXx p(u) =wxu,
so that

pp(u) +cos0 py(u) +sinOw X u,

i)
—
<
~—
Il

p(u)=(u-w)w+cosO (u— (u-w)w)+sinfw X u,

and we know from Section 8.9 that the cross product w X u can be expressed in terms
of the multiplication on the left by the matrix

0 —d ¢
A=1|1d 0 —b
—c b 0
Then, letting
b2 be bd
B=WW' = | bc ¢* cd ,
bd cd d*

the matrix R representing the rotation p is

R=WWT 4cosO(I—WWT)+sinbA,
=cosO1+sinBA+ (1 —cos®)WW ',
=cos01+sinBA+ (1 —cos6)B.

It is immediately verified that
A>=B—1,

and thus R is also given by
R=1+sin0A + (1 —cosh)A%

Then the nonnull unit quaternion

Z= [cos%,sin%V} ,
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where V = (b, ¢,d) is a unit vector, corresponds to the rotation pz of matrix

R=1+sin0A + (1 —cosh)A%.

Remark: A related formula known as Rodrigues’s formula (1840) gives an expres-
sion for a rotation matrix in terms of the exponential of a matrix (the exponential
map). Indeed, given (b,c,d) € R?, letting 8 = /b2 + c2 + d2, we have

A sin 6 (I —cosB)
= 01 A
e’ =cos0I+ 0 + 02

B,

with A and B as above, but (b,c,d) not necessarily a unit vector. We will study
exponential maps later on.

Using the matrices Ly and Ry introduced earlier, since XY = LxY = RyX, from
Y =ZXZ ' =ZXZ/N(Z), we get

1
Y=——L;R-X.
N(z) 7

Thus, if we want to see the effect of the rotation specified by the quaternion Z in
terms of matrices, we simply have to compute the matrix

a—b —c—d a b ¢ d

1 b a —d c —b a —d ¢
R(Z)_N(Z)LZRZ_V cd a —b —cd a —-b]|’
d—c b a —d—c b a
where 1
N(Z)=a*+b*+c*+d* and v:ﬁ,
which yields
N(Z) 0 0 0
A+ -2 —d*>  2bc—2ad 2ac +2bd

0
V1 o 2bc+2ad @ —b>+E—d>  —2ab+2cd
0

—2ac+2bd 2ab+2cd  a®—b*—c?+d?

But since every pure quaternion X is a vector whose first component is 0, we see
that the rotation matrix R(Z) associated with the quaternion Z is

A+b:—2—d*  2bc—2ad 2ac +2bd
2bc+2ad  a?—b*+cr—d*  —2ab+2cd

NO ' ouevobd 2ab+2ed @ —b— 2+ d?
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This expression for a rotation matrix is due to Euler (see Veblen and Young [22]). It
is quite remarkable that this matrix contains only quadratic polynomials in a, b, c,d.
This makes it possible to compute easily a quaternion from a rotation matrix.

From a computational point of view, it is worth noting that computing the compo-
sition of two rotations py and pz specified by two quaternions Y, Z using quaternion
multiplication (i.e., py o pz = pyz) is cheaper than using rotation matrices and matrix
multiplication. On the other hand, computing the image of a point X under a rotation
pz is more expensive in terms of quaternions (it requires computing ZXZ~!) than it
is in terms of rotation matrices (where only AX needs to be computed, where A is a
rotation matrix). Thus, if many points need to be rotated and the rotation is specified
by a quaternion, it is advantageous to precompute the Euler matrix.

9.3 Quaternions and Rotations in SO(4)

For every nonnull quaternion Z, the map X — ZXZ~!' (where X is a pure quaternion)
defines a rotation of H,, and conversely, every rotation of H), is of the above form.
What happens if we consider a map of the form

X —YXZ,

where X € H and N(Y)N(Z) = 1? Remarkably, it turns out that we get all the rota-
tions of H. The proof of the following lemma is inspired by Berger [3], Dieudonné
[5], and Tisseron [21].

Lemma 9.3. For every pair (Y,Z) of quaternions such that N(Y)N(Z) = 1, the map
Prz: X—YXZ

(where X € H) is a rotation in SO(H) = SO(4). Conversely, every rotation in SO(4)
is of the form

Pr,z: X—YXZ,
Sfor some quaternions Y, Z such that N(Y)N(Z) = 1. Furthermore, if two nonnull

pairs of quaternions (Y,Z) and (Y',Z') represent the same rotation, then Y' = AY
and 7' = A='Z, for some A #0 in R.

Proof. We have already shown that pyz € SO(4). It remains to prove that every
rotation in SO(4) is of this form.
It is easily seen that

Pw'y,zz'y = Py'z7°Py,z-
Let p € SO(4) be a rotation, and let Zop = p(1) and g = p,1 ;. Since p is an isom-
0
etry, Zo = p(1) is a unit quaternion, and thus g € SO(4). Observe that

g(p(1)) =1,
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which implies that F = R1 is invariant under g o p. Since F- = H,, by Lemma
8.2, gop(H,) C H,, which shows that the restriction of go p to H), is a rotation.
By Lemma 9.1, there is some nonnull quaternion Z such that go p = pz on H,,
but since both g o p and pz are the identity on R1, we must have go p = pz on H.
Finally, a trivial calculation shows that

p =g 'opz=p21Pz=P21P771 = Pryzs1-

If Pryz = pY’,Z” then
YXZ=Y'x7
for all X € H, that is,
Yy lY'xzz7' =X
for all X € H. Letting X = (Y~'Y')~!, we get ZZ~! = (Y ~'Y’)~!. From
vy ly'’x(r-ly')y t=x

for all Z € H, by a previous remark, we must have ¥ 'Y’ = A1 for some A # 0
in R, so that Y/ = AY, and since Z’Z~! = (Y~'Y")"!, we get ZZZ~! = 171, i.e.
Z=2"'2. O

Since
Pw'y,zz') = Py’ .2/ ©Pr,z,

it is easy to show that the map n: §* x §* — SO(4) defined by n(Y,Z) = py 7 is a
surjective homomorphism whose kernel is {(1,1),(—1,-1)}.

Remark: Note that it is necessary to define n: §* x §* — SO(4) such that
n(Y,2)(X) =YXZ,

where the conjugate Z of Z is used rather than Z, to compensate for the switch
between Z and Z' in

Pw'yzz'y = Py'z2°Pr,z-

Otherwise, 1 would not be a homomorphism from the product group S x §° to
SO(4).

We conclude this section on the quaternions with a mention of the exponential
map, since it has applications to quaternion interpolation, which, in turn, has appli-
cations to motion interpolation.

Observe that the quaternions i, j,k can also be written as
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so that if we define the matrices o}, 0>, 03 such that
o — 01 o — 0—i o — 10
=10 27 \io) 7 \0-1)"

Z = al + bi+cj+dk = al +i(do| + cos + boy).

we can write

The matrices 07,03, 03 are called the Pauli spin matrices. Note that their traces are
null and that they are Hermitian (recall that a complex matrix is Hermitian if it is
equal to the transpose of its conjugate, i.e., A* = A). The somewhat unfortunate
order reversal of b, c,d has to do with the traditional convention for listing the Pauli
matrices. If we let eg = a, e; =d, e; = ¢, and e3 = b, then Z can be written as

Z =¢pl +i(6‘161 +e,00+ 6‘3(’73),

and e, ey, ey, ez are called the Euler parameters of the rotation specified by Z. If
N(Z) = 1, then we can also write

Z:cosgl—l-ising (Bos+yor+ 60y),

where |
(ﬁ7%5) ) (b,C,d).
sin 5
Letting A = Bo3 + Y0, + 801, it can be shown that

e'% = cos@1+isinOA,

where the exponential is the usual exponential of matrices, i.e., for a square n X n
matrix M,

k
exp(M) =1, + Z %
k>1 %
Note that since A is Hermitian of null trace, iA is skew Hermitian of null trace.

The above formula turns out to define the exponential map from the Lie algebra
of SU(2) to SU(2). The Lie algebra of SU(2) is a real vector space having ioj, i0,
and io3 as a basis. Now, the vector space R? is a Lie algebra if we define the Lie
bracket on R? as the usual cross product u x v of vectors. Then the Lie algebra of
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SU(2) is isomorphic to (R3, x), and the exponential map can be viewed as a map
exp: (R3, x) — SU(2) given by the formula

6 . 0
exp(0v) = {cos ) v] ,
for every vector v, where v is a unit vector in R and 8 € R.

The exponential map can be used for quaternion interpolation. Given two unit
quaternions X, Y, suppose we want to find a quaternion Z “interpolating” between
X and Y. Of course, we have to clarify what this means. Since SU(2) is topologically
the same as the sphere S, we define an interpolant of X and Y as a quaternion Z
on the great circle (on the sphere S*) determined by the intersection of S with the
(2-)plane defined by the two points X and Y (viewed as points on S3) and the origin
(0,0,0,0).

Then the points (quaternions) on this great circle can be defined by first rotating
X and Y so that X goes to 1 and ¥ goes to X 'Y, by multiplying (on the left) by
X!, Letting

XY = [cosQ, sinQw],

where —7 < Q < 7, the points on the great circle from 1 to X 'Y are given by the

quaternions
(X7'Y)* = [cosAQ, sinAQw],

where A € R. This is because X ~'Y = exp(2Q2w), and since an interpolant between
(0,0,0) and 2Q2w is 24 Qw in the Lie algebra of SU(2), the corresponding quater-
nion is indeed

exp(2AQ) = [cosAQ, sinAQw].

We cannot justify all this here, but it is indeed correct.

If Q # 7, then the shortest arc between X and Y is unique, and it corresponds to
those A such that 0 < A <1 (it is a geodesic arc). However, if Q = 7, then X and Y
are antipodal, and there are infinitely many half circles from X to Y. In this case, w
can be chosen arbitrarily.

Finally, having the arc of great circle between 1 and X 'Y (assuming Q # ), we
get the arc of interpolants Z(A ) between X and Y by performing the inverse rotation
from 1 to X and from X 'Y to Y, i.e., by multiplying (on the left) by X, and we get

Z(A) =Xx(X"'v)*.
Note how the geometric reasoning immediately shows that
ZA) =X(X"'Y)* = (vx H*x.

It is remarkable that a closed-form formula for Z(1) can be given, as shown by
Shoemake [19, 20]. If X = [cos 0, sin O u] and Y = [cos @, sin @ v] (where u and v are
unit vectors in R?), letting

cosQ =cosOcos@+sinOsing (u-v)
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be the inner product of X and Y viewed as vectors in R?, it is a bit laborious to show
that in(1-2)Q . sinAQ
sin(1 — sin
Z(A) = sna T sma U

The above formula is quite remarkable, since if X = cos0 +isin0 and Y =cos¢@ +
isin ¢ are two points on the unit circle S' (given as complex numbers of unit length),
letting Q = @ — 0, the interpolating point cos((1 —A)0 + A @) +isin((1—1)0 +
A @) on S! is given by the same formula

cos((1—=A2)0+A@)+isin((1-A1)0+Ap)= 31n(slirl—!jL)Q X+ s;rilnl!.EZ Y

9.4 Applications of Euclidean Geometry to Motion Interpolation

Euclidean geometry has a number applications including computer vision, computer
graphics, kinematics, and robotics. The motion of a rigid body in space can be de-
scribed using rigid motions. Given a fixed Euclidean frame (O, (e}, ez,e3)), we can
assume that some moving frame (C, (u1,up,u3)) is attached (say glued) to a rigid
body B (for example, at the center of gravity of B) so that the position and orienta-
tion of B in space are completely (and uniquely) determined by some rigid motion
(R,U), where U specifies the position of C w.r.t. O, and R is a rotation matrix spec-
ifying the orientation of B w.r.t. the fixed frame (O, (e;,e2,e3)). For simplicity, we
can separate the motion of the center of gravity C of B from the rotation of B around
its center of gravity. Then a motion of B in space corresponds to two curves: The
trajectory of the center of gravity and a curve in SO(3) representing the various ori-
entations of B. Given a sequence of “snapshots” of B, say By,By,...,B,, we may
want to find an interpolating motion passing through the given snapshots. Further-
more, in most cases, it desirable that the curve be invariant with respect to a change
of coordinates and to rescaling. Often, one looks for an energy minimizing motion.
The problem is not as simple as it looks, because the space of rotations SO(3) is
topologically rather complex, and in particular, it is curved.

The problem of motion interpolation has been studied quite extensively both in
the robotics and computer graphics communities. Since rotations in SO(3) can be
represented by quaternions (see Chapter 9), the problem of quaternion interpola-
tion has been investigated, an approach apparently initiated by Shoemake [19, 20],
who extended the de Casteljau algorithm to the 3-sphere. Related work was done
by Barr, Currin, Gabriel, and Hughes [2]. Kim, M.-J., Kim, M.-S. and Shin [12, 13]
corrected bugs in Shoemake and introduced various kinds of splines on S3, using
the exponential map. Motion interpolation and rational motions have been inves-
tigated by Jiittler [8, 9], Jiittler and Wagner [10, 11], Horsch and lJiittler [7], and
Roschel [18]. Park and Ravani [16, 17] also investigated Bézier curves on Rieman-
nian manifolds and Lie groups, SO(3) in particular. More generally, the problem
of interpolating curves on surfaces or higher-dimensional manifolds in an efficient
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way remains an open problem. A very interesting book on the quaternions and their
applications to a number of engineering problems, including aerospace systems, is
the book by Kuipers [14], which we highly recommend.

9.5 Problems

9.1. Prove the following identities about quaternion multiplication (discovered by
Hamilton):

i’ =j* =K =ijk = —1,

ij = —ji=k.
Jk=—Kkj=i,
ki = —ik = j.

9.2. Given any two quaternions X = al +bi+cj+dkand Y =a'1+bi+c'j+d'k,
prove that
XY = (ad' — bb' — cc' —dd' )1+ (ab' + bd' + cd’' — dc')i
+ (ac'+cd' +db' — bd')j+ (ad' + dd' + bc' — cb')k.
Also prove that if X = [a,U] and Y = [@’,U’], the quaternion product XY can be

expressed as
XY =lad —U-U',aU'+d'U+U xU'].

9.3. Show that there is a very simple method for producing an orthonormal frame in
R* whose first vector is any given nonnull vector (a,b,c,d).

9.4. Prove that
pz(XY) = pz(X)pz(Y),
pz(X +Y) = pz(X) +pz(Y),

for any nonnull quaternion Z and any two quaternions X,Y (i.e., pz is an automor-
phism of H), and that
XY —-YX =[0,2(UxU")]

for arbitrary quaternions X = [a,U] and Y = [, U’].

9.5. Give an algorithm to find a quaternion Z corresponding to a rotation matrix R
using the Euler form of a rotation matrix R(Z):

1 a2+ b2 —c?—d? 2bc —2ad 2ac +2bd
N 2bc+2ad  a*—b*+cr—d*  —2ab+2cd
D\ ouct2bd  2ab+2ed - -+ d?
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What about the choice of the sign of Z?
9.6. Let i, j, and k, be the unit vectors of coordinates (1,0,0), (0,1,0), and (0,0,1)

in R3.
(i) Describe geometrically the rotations defined by the following quaternions:

p=1(0.i), q=1(0,)).
Prove that the interpolant Z(A) = p(p~'q)* is given by
Z(A) = (0,co8(Am/2)i+sin(Ax/2)j).

Describe geometrically what this rotation is.
(i1) Repeat question (i) with the rotations defined by the quaternions

1 V3, o
- <5171>7 C]—(O,])
Prove that the interpolant Z(4) is given by
Z(A) = <%cos(ln/2), ?cos(ln/Z)i—i—sin(ln/Z)j) .

Describe geometrically what this rotation is.
(iii) Repeat question (i) with the rotations defined by the quaternions

() (o)

Prove that the interpolant Z(4) is given by

Z(0) = (%cos(knﬁ) - %sin(?urﬁ),
(1/V2cos(Ar/3) 4 1/V6sin(Ax/3))i+ % sin(?ur/3)j) .

(iv) Prove that
wx (uxv)=(w-vu—(u-w)

Conclude that
ux (uxv)=(u-viu—(u-u)v

(v) Let
p=(cosB,sinOu), g=(cos@,sin@v),

where u and v are unit vectors in R3. If

cos 2 =cosOcos@+sin@sin@ (u-v)
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is the inner product of X and Y viewed as vectors in R*, assuming that Q # kr,

prove that
Z00) = sin(1 —1)Q n sinAQ
B T Y
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Chapter 10

Dirichlet—Voronoi Diagrams and Delaunay
Triangulations

10.1 Dirichlet—Voronoi Diagrams

In this chapter we present the concepts of a Voronoi diagram and of a Delaunay
triangulation. These are important tools in computational geometry, and Delaunay
triangulations are important in problems where it is necessary to fit 3D data using
surface splines. It is usually useful to compute a good mesh for the projection of this
set of data points onto the xy-plane, and a Delaunay triangulation is a good candi-
date. Our presentation will be rather sketchy. We are primarily interested in defining
these concepts and stating their most important properties without proofs. For a
comprehensive exposition of Voronoi diagrams, Delaunay triangulations, and more
topics in computational geometry, our readers may consult O’Rourke [10], Preparata
and Shamos [11], Boissonnat and Yvinec [2], de Berg, Van Kreveld, Overmars, and
Schwarzkopf [1], or Risler [12]. The survey by Graham and Yao [7] contains a
very gentle and lucid introduction to computational geometry. Some practical ap-
plications of Voronoi diagrams and Delaunay triangulations are briefly discussed in
Section 10.5.

Let & be a Euclidean space of finite dimension, that is, an affine space & whose

underlying vector space ? is equipped with an inner product (and has finite dimen-
sion). For concreteness, one may safely assume that & = E™, although what follows
applies to any Euclidean space of finite dimension. Given a set P = {p1,...,p,} of
n points in &, it is often useful to find a partition of the space & into regions each
containing a single point of P and having some nice properties. It is also often useful
to find triangulations of the convex hull of P having some nice properties. We shall
see that this can be done and that the two problems are closely related. In order to
solve the first problem, we need to introduce bisector lines and bisector planes.

For simplicity, let us first assume that & is a plane i.e., has dimension 2. Given
any two distinct points a,b € &, the line orthogonal to the line segment (a,b) and
passing through the midpoint of this segment is the locus of all points having equal
distance to a and b. It is called the bisector line of a and b. The bisector line of two
points is illustrated in Figure 10.1.

301
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Fig. 10.1 The bisector line L of a and b.

Ifh= % a+ % b is the midpoint of the line segment (a, b), letting m be an arbitrary
point on the bisector line, the equation of this line can be found by writing that

hm is orthogonal to ab. In any orthogonal frame, letting m = (x,y), a = (aj,az),
b = (by,b,), the equation of this line is

(b1 —a1)(x— (a1 +b1)/2) + (by—a2)(y — (a2 +b2) /2) =0,
which can also be written as
(b1 —a1)x+ (b —az)y = (b1 +b3)/2 — (a1 +a3) /2.

The closed half-plane H(a,b) containing a and with boundary the bisector line is
the locus of all points such that

(b1 —a1)x+ (by—a2)y < (b +b3) /2 — (ai +a3) /2,

and the closed half-plane H(b,a) containing b and with boundary the bisector line
is the locus of all points such that

(b1 —ar)x+ (by — az)y > (b1 +b3) /2 — (ai +a3) /2.

The closed half-plane H(a,b) is the set of all points whose distance to a is less that
or equal to the distance to b, and vice versa for H(b,a). Thus, points in the closed
half-plane H(a,b) are closer to a than they are to b.

We now consider a problem called the post office problem by Graham and Yao
[7]. Given any set P = {p1,...,p,} of n points in the plane (considered as post
offices or sites), for any arbitrary point x, find out which post office is closest to x.
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Since x can be arbitrary, it seems desirable to precompute the sets V(p;) consisting
of all points that are closer to p; than to any other point p; # p;. Indeed, if the
sets V(p;) are known, the answer is any post office p; such that x € V(p;). Thus,
it remains to compute the sets V (p;). For this, if x is closer to p; than to any other
point p; # p;, then x is on the same side as p; with respect to the bisector line of p;
and p; for every j # i, and thus

V(pi) = (H(pi,p))-
J#i

If & has dimension 3, the locus of all points having equal distance to a and b is
a plane. It is called the bisector plane of a and b. The equation of this plane is also

found by writing that m is orthogonal to ab. The equation of this plane is
(b1 —a1)(x—(a1+b1)/2) + (b — a2)(y — (a2 + b2) /2)
+ (bs—a3)(z— (a3 +b3)/2) =0,
which can also be written as
(b1 —a1)x+ (by—az)y+ (b3 —az)z= (b + b5+ b3) /2 — (ai + a5 + a3) /2.

The closed half-space H(a,b) containing a and with boundary the bisector plane is
the locus of all points such that

(b1 —a1)x+ (by—az)y+ (b3 —a3)z < (b + b3+ b3) /2 — (ai + a3 + a3) /2,

and the closed half-space H (b, a) containing b and with boundary the bisector plane
is the locus of all points such that

(b1 —a1)x+ (by—az)y+ (b3 —az)z > (b + b5+ b3) /2 — (ai + a5+ a3) /2.

The closed half-space H(a,b) is the set of all points whose distance to a is less that
or equal to the distance to b, and vice versa for H(b,a). Again, points in the closed
half-space H(a,b) are closer to a than they are to b.

Given any set P = {py,...,pn} of n points in & (of dimension m = 2,3), it is
often useful to find for every point p; the region consisting of all points that are
closer to p; than to any other point p; # p;, that is, the set

Vipi) ={xe€ & |d(x,pi) <d(x,p,), forall j # i},

where d(x,y) = (x3 - xy)!/2, the Euclidean distance associated with the inner product
- on & . From the definition of the bisector line (or plane), it is immediate that

V(pi) = (H(pi:p))-
J#i
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Families of sets of the form V(p;) were investigated by Dirichlet [4] (1850) and
Voronoi [13] (1908). Voronoi diagrams also arise in crystallography (Gilbert [6]).
Other applications, including facility location and path planning, are discussed in
O’Rourke [10]. For simplicity, we also denote the set V(p;) by V;, and we introduce
the following definition.

Definition 10.1. Let & be a Euclidean space of dimension m = 2,3. Given any set
P ={pi1, ..., pn} of n points in &, the Dirichlet—Voronoi diagram ¥ (P) of P =
{P1,---,pn} is the family of subsets of & consisting of the sets V; = ,2; H(pi, p;)
and of all of their intersections.

Dirichlet—Voronoi diagrams are also called Voronoi diagrams, Voronoi tessella-
tions, or Thiessen polygons. Following common usage, we will use the terminology
Voronoi diagram. As intersections of convex sets (closed half-planes or closed half-
spaces), the Voronoi regions V(p;) are convex sets. In dimension two, the bound-
aries of these regions are convex polygons, and in dimension three, the boundaries
are convex polyhedra.

Whether a region V(p;) is bounded or not depends on the location of p;. If p;
belongs to the boundary of the convex hull of the set P, then V(p;) is unbounded,
and otherwise bounded. In dimension two, the convex hull is a convex polygon, and
in dimension three, the convex hull is a convex polyhedron. As we will see later,
there is an intimate relationship between convex hulls and Voronoi diagrams.

Generally, if & is a Euclidean space of dimension m, given any two distinct points
a,b € &, the locus of all points having equal distance to @ and b is a hyperplane. It
is called the bisector hyperplane of a and b. The equation of this hyperplane is still

found by writing that im is orthogonal to E. The equation of this hyperplane is
(br—a)(x1 — (a1 +b1)/2) + -+ (bm — am) (Xm — (am + bm)/2) = 0,
which can also be written as
(b1 —an)xi+ -+ (bn — am)xm = (b1 +---+bp) /2 — (ai + -+ ap,) /2.

The closed half-space H(a,b) containing a and with boundary the bisector hyper-
plane is the locus of all points such that

(br —a)xi 4+ (bn— am)xm < (b1 + -+ b3) /2= (aj +- - +ay,) /2,

and the closed half-space H(b,a) containing b and with boundary the bisector hy-
perplane is the locus of all points such that

(by—ap)xi+ -+ (bn—am)xm > (b1 + -+ b3,) /2 — (ai + - +ap,) /2.

The closed half-space H(a,b) is the set of all points whose distance to a is less than
or equal to the distance to b, and vice versa for H(b,a).

Figure 10.2 shows the Voronoi diagram of a set of twelve points. In the general
case where & has dimension m, the definition of the Voronoi diagram ¥'(P) of P is
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Fig. 10.2 A Voronoi diagram.

the same as Definition 10.1, except that H (p;, p;) is the closed half-space containing
pi and having the bisector hyperplane of p; and p; as boundary. Also, observe that
the convex hull of P is a convex polytope.

We will now state a lemma listing the main properties of Voronoi diagrams. It
turns out that certain degenerate situations can be avoided if we assume that if P is a
set of points in an affine space of dimension m, then no m + 2 points from P belong
to the same (m — 1)-sphere. We will say that the points of P are in general position.
Thus when m = 2, no 4 points in P are cocyclic, and when m = 3, no 5 points in P
are on the same sphere.

Lemma 10.1. Given a set P={pj,..., pn} of n points in some Euclidean space & of
dimension m (say IE™), if the points in P are in general position and not in a common
hyperplane then the Voronoi diagram of P satisfies the following conditions:

(1) Each region V; is convex and contains p; in its interior.

(2) Each vertex of V; belongs to m+ 1 regions V;j and to m+ 1 edges.

(3) The region V; is unbounded iff p; belongs to the boundary of the convex hull of
P.

(4) If p is a vertex that belongs to the regions Vy,..., V11, then p is the center of
the (m— 1)-sphere S(p) determined by py, ..., pm+1. Furthermore, no point in P
is inside the sphere S(p) (i.e., in the open ball associated with the sphere S(p)).
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(5) If p; is a nearest neighbor of p;, then one of the faces of V; is contained in the
bisector hyperplane of (pi,p;).
(6)

n o o
U\/[:é’, and V;NV;=0, foralli,j withi# j,
i=1

o
where V; denotes the interior of V;.

Proof. We prove only some of the statements, leaving the others as an exercise (or
see Risler [12]).

(1) Since V; = N H(pi, p;) and each half-space H(p;, p;) is convex, as an in-
tersection of convex sets, V; is convex. Also, since p; belongs to the interior of each
H(pi,pj), the point p; belongs to the interior of V;.

(2) Let F; j denote V;NV;. Any vertex p of the Vononoi diagram of P must belong
to r faces F; ;. Now, given a vector space £ and any two subspaces M and N of E,
recall that we have the Grassmann relation (see Lemma 2.14)

dim(M) 4+ dim(N) = dim(M + N) 4+ dim (M NN).

Then since p belongs to the intersection of the hyperplanes that form the bound-
aries of the V;, and since a hyperplane has dimension m — 1, by the Grassmann
relation, we must have » > m. For simplicity of notation, let us denote these faces
by Fl"z,Fzﬁ, ... aFr,r+1~ Since E',j =ViN Vj, we have

Fj={p|d(p,pi)=d(p,p;) <d(p,p), forall k #1i,},

and since p € F1oNFp3MN---NF .41, we have

d(p,p1)=---=d(p,pr1) <d(p,pi) forallk ¢ {1,....r+1}.

This means that p is the center of a sphere passing through p1, ..., p,4+1 and contain-
ing no other point in P. By the assumption that points in P are in general position,
we must have < m, and thus r = m. Thus, p belongs to Vi N---NV,,41, but to no
other V; with j ¢ {1,...,m+ 1}. Furthermore, every edge of the Voronoi diagram
containing p is the intersection of m of the regions Vi,...,V,, 11, and so there are
m+1of them. O

For simplicity, let us again consider the case where & is a plane. It should be
noted that certain Voronoi regions, although closed, may extend very far. Figure
10.3 shows such an example.

It is also possible for certain unbounded regions to have parallel edges.

There are a number of methods for computing Voronoi diagrams. A fairly simple
(although not very efficient) method is to compute each Voronoi region V(p;) by
intersecting the half-planes H(p;, p;). One way to do this is to construct successive
convex polygons that converge to the boundary of the region. At every step we
intersect the current convex polygon with the bisector line of p; and p;. There are at
most two intersection points. We also need a starting polygon, and for this we can
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Fig. 10.3 Another Voronoi diagram.

pick a square containing all the points. A naive implementation will run in O(n?).
However, the intersection of half-planes can be done in O(nlogn), using the fact
that the vertices of a convex polygon can be sorted. Thus, the above method runs
in O(n*logn). Actually, there are faster methods (see Preparata and Shamos [11] or
O’Rourke [10]), and it is possible to design algorithms running in O(nlogn). The
most direct method to obtain fast algorithms is to use the “lifting method” discussed
in Section 10.4, whereby the original set of points is lifted onto a paraboloid, and to
use fast algorithms for finding a convex hull.

A very interesting (undirected) graph can be obtained from the Voronoi diagram
as follows: The vertices of this graph are the points p; (each corresponding to a
unique region of ¥'(P)), and there is an edge between p; and p; iff the regions
Vi and V; share an edge. The resulting graph is called a Delaunay triangulation
of the convex hull of P, after Delaunay, who invented this concept in 1934. Such
triangulations have remarkable properties.

Figure 10.4 shows the Delaunay triangulation associated with the earlier Voronoi
diagram of a set of twelve points.

One has to be careful to make sure that all the Voronoi vertices have been
computed before computing a Delaunay triangulation, since otherwise, some edges
could be missed. In Figure 10.5 illustrating such a situation, if the lowest Voronoi
vertex had not been computed (not shown on the diagram!), the lowest edge of the
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Fig. 10.4 Delaunay triangulation associated with a Voronoi diagram.

Delaunay triangulation would be missing. The concept of a triangulation can be gen-
eralized to dimension 3, or even to any dimension m. But first, we need to define a
triangulation precisely, and for this, we need to review what is a simplicial complex.

10.2 Simplicial Complexes and Triangulations

A simplex is just the convex hull of a finite number of affinely independent points,
but we also need to define faces, the boundary, and the interior of a simplex.

Definition 10.2. Let & be any normed affine space, say & = E” with its usual
Euclidean norm. Given any n + 1 affinely independent points ay,...,a, in &, the
n-simplex (or simplex) ¢ defined by ay,...,a, is the convex hull of the points
ao,...,ay, that is, the set of all convex combinations Agag + --- + A,a,, where
A+--+A, =1and 4; > 0 for all i, 0 < i < n. We call n the dimension of
the n-simplex o, and the points ay,...,a, are the vertices of o. Given any sub-
set {ajy,...,a; } of {ao,...,a,} (where 0 < k < n), the k-simplex generated by
iy, - - -, a;, is called a face of 6. A face s of o is a proper face if s # o (we agree
that the empty set is a face of any simplex). For any vertex a;, the face generated by
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Fig. 10.5 Another Delaunay triangulation associated with a Voronoi diagram.

aog,...,di—1,di+1,.-.,a, (i.e., omitting a;) is called the face opposite a;. Every face
that is an (n— 1)-simplex is called a boundary face. The union of the boundary faces
is the boundary of ¢, denoted by d o, and the complement of d¢ in © is the interior
Into = 6 — do of ¢. The interior Int ¢ of ¢ is sometimes called an open simplex.

It should be noted that for a O-simplex consisting of a single point {ag}, d{ao} =
0, and Int{agp} = {ap}. Of course, a O-simplex is a single point, a 1-simplex is the
line segment (ag,a; ), a 2-simplex is a triangle (ag,a;,ay) (with its interior), and a
3-simplex is a tetrahedron (agp,a;,a;,a3) (with its interior); see Figure 10.6.

We now state a number of properties of simplices, whose proofs are left as an
exercise. Clearly, a point x belongs to the boundary do of o iff at least one of its
barycentric coordinates (Ay,...,A,) is zero, and a point x belongs to the interior
Int o of o iff all of its barycentric coordinates (A, ...,A,) are positive, i.e., A; >0
for all i, 0 <i < n. Then, for every x € 0, there is a unique face s such that x € Ints,
the face generated by those points @; for which A; > 0, where (Ay,...,A,) are the
barycentric coordinates of x.

A simplex o is convex, arcwise connected, compact, and closed. The interior
Int o of a complex is convex, arcwise connected, open, and ¢ is the closure of Intc.

We now need to put simplices together to form more complex shapes, following
Munkres [9].

Definition 10.3. A simplicial complex in E™ (for short, a complex in E™) is a set
K consisting of a (finite or infinite) set of simplices in E” satisfying the following
conditions:
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Fig. 10.6 Examples of simplices.

(1) Every face of a simplex in K also belongs to K.
(2) For any two simplices o] and 03 in K, if 61 N0y # 0, then 61 N 0, is a common
face of both o and o>.

If 0 € K is a simplex of n+ 1 elements, then its dimension is 7, and it is called
an n-simplex. A O-simplex {x} is called a vertex. The dimension of the simplicial
complex K is the maximum of the dimensions of simplices in K.

Condition (2) guarantees that the various simplices forming a complex are glued
nicely. It can be shown that the following condition is equivalent to condition (2):

(2") For any two distinct simplices o1, 02, Int 61 NInt 6, = 0.

The union K}, of all the simplices in K is a subset of ™. We can define a topology on
K, by defining a subset F' of K, to be closed iff F'N & is closed in ¢ for every simplex
o € K. It is immediately verified that the axioms of a topological space are indeed
satisfied. The resulting topological space K, is called the geometric realization of
K. A polytope is the geometric realization of some simplicial complex. A polytope
of dimension 1 is usually called a polygon, and a polytope of dimension 2 is usually
called a polyhedron. It can be checked that each region V; of a Voronoi diagram is a
(convex) polytope.

In the sequel, we will consider only finite simplicial complexes, that is, com-
plexes K consisting of a finite number of simplices. In this case, the topology of
K, defined above is identical to the topology induced from [E™. In this case, for any
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simplex ¢ in K, Into coincides with the interior 6 of o in the topological sense, and
do coincides with the boundary of ¢ in the topological sense. We can now define
triangulations.

First, assume that & = E?. Given a subset S of E2, a triangulation of S is a
finite complex K of dimension 2 such that S is the union of the 2-simplices in K.
Equivalently, S is the union of the (closed) triangles in K. Thus, a triangulation of S
specifies a way of cutting up S into a collection of (closed) triangles that intersect
nicely. Next, if & = E3, given a subset S of E?, a triangulation of S is a finite complex
K of dimension 3 such that S is the union of the 3-simplices in K. Equivalently, S
is the union of the (closed) tetrahedra in K. Thus, a triangulation of S specifies a
way of cutting up § into a collection of (closed) tetrahedra that intersect nicely. In
general, we have the following definition.

Definition 10.4. Given a subset S of E™ (where m > 2), a d-triangulation of S
(where d < m) is a finite complex K such that

s= U o,
ock
dim(c)=d

i.e., such that S is the union of all d-simplices in K.

Given a finite set P of n points in the plane, and given a triangulation of the
convex hull of P having P as its set of vertices, observe that the boundary of P is
a convex polygon. Similarly, given a finite set P of points in 3-space, and given a
triangulation of the convex hull of P having P as its set of vertices, observe that the
boundary of P is a convex polyhedron. It is interesting to know how many triangu-
lations exist for a set of n points (in the plane or in 3-space), and it is also interesting
to know the number of edges and faces in terms of the number of vertices in P.
These questions can be settled using the Euler—Poincaré characteristic. We say that
a polygon in the plane is a simple polygon iff it is a connected closed polygon such
that no two edges intersect (except at a common vertex).

Lemma 10.2.

(1) For any triangulation of a region of the plane whose boundary is a simple poly-
gon, letting v be the number of vertices, e the number of edges, and f the number
of triangles, we have the “Euler formula”

v—e+f=1.
(2) For any polytope S homeomorphic to a closed ball in B* and any triangulation

of S, letting v be the number of vertices, e the number of edges, f the number of
triangles, and t the number of tetrahedra, we have the “Euler formula”

v—e+f—t=1.
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(3) Furthermore, for any triangulation of the polyhedron B(S) that is the boundary
of S, letting V' be the number of vertices, ¢’ the number of edges, and f' the
number of triangles, we have the “Euler formula”

V—e+ =2

Proof. We only sketch the proof. More details can be found in O’Rourke [10], Risler
[12], or books on algebraic topology, such as Massey [8] or Munkres [9]. The proof
of (1) is by induction on the number f of triangles. The proof of (2) is by induction
on the number ¢ of tetrahedra. The proof of (3) consists in first flattening the poly-
hedron into a planar graph in the plane. This can be done by removing some face
and then by deformation. The boundary of this planar graph is a simple polygon,
and the region outside this boundary corresponds to the removed face. Then by (1)
we get the formula, remembering that there is one more face (this is why we get 2
instead of 1). O

It is now easy to see that in case (1), the number of edges and faces is a linear
function of the number of vertices and boundary edges, and that in case (3), the
number of edges and faces is a linear function of the number of vertices. Indeed, in
the case of a planar triangulation, each face has 3 edges, and if there are e, edges in
the boundary and e; edges not in the boundary, each nonboundary edge is shared by
two faces, and thus 3f = ej, + 2e;. Since v—e, —e; + f = 1, we get

v—ep,—eitep/3+2e/3=1,
26},/3—|—6‘,’/3:V—1,

and thus e; = 3v — 3 — 2¢,,. Since f = ¢, /3 +2¢;/3, we have f =2v—2— ¢y,
Similarly, since v/ — ¢’ + f/ =2 and 3f" = 2¢/, we easily get e = 3v — 6 and
f =2v—4.Thus, given a set P of n points, the number of triangles (and edges) for
any triangulation of the convex hull of P using the n points in P for its vertices is
fixed.
Case (2) is trickier, but it can be shown that

v=3<r<(v—-1)(v—-2)/2.

Thus, there can be different numbers of tetrahedra for different triangulations of the
convex hull of P.

Remark: The numbers of the form v —e+ f and v—e+ f —¢ are called Euler—
Poincaré characteristics. They are topological invariants, in the sense that they are
the same for all triangulations of a given polytope. This is a fundamental fact of
algebraic topology.

We shall now investigate triangulations induced by Voronoi diagrams.
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10.3 Delaunay Triangulations

Givenaset P={pj,...,ps} of n points in the plane and the Voronoi diagram ¥ (P)
for P, we explained in Section 10.1 how to define an (undirected) graph: The vertices
of this graph are the points p; (each corresponding to a unique region of ¥'(P)), and
there is an edge between p; and p; iff the regions V; and V; share an edge. The
resulting graph turns out to be a triangulation of the convex hull of P having P
as its set of vertices. Such a complex can be defined in general. For any set P =
{p1,---,pn} of n points in E™, we say that a triangulation of the convex hull of P is
associated with P if its set of vertices is the set P.

Definition 10.5. Let P = {py,..., p,} be a set of n points in E™, and let ¥ (P) be the
Voronoi diagram of P. We define a complex Z(P) as follows. The complex Z(P)
contains the k-simplex {p1,..., prr1 Hiff ViN--- NV £ 0, where 0 < k < m. The
complex Z(P) is called the Delaunay triangulation of the convex hull of P.

Thus, {p;, p;}is anedgeiff ViNV; #0, {pi,p;, pn} is a triangle iff V;NV; NV}, #
0, {pi,pjPn,Pi} is a tetrahedron iff V;NV; NV, NV, # 0, etc.

For simplicity, we often write 2 instead of 2(P). A Delaunay triangulation for
a set of twelve points is shown in Figure 10.7.

Fig. 10.7 A Delaunay triangulation.
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Actually, it is not obvious that Z(P) is a triangulation of the convex hull of P,
but this can be shown, as well as the properties listed in the following lemma.

Lemma 10.3. Let P = {py,...,pu} be a set of n points in E™, and assume that they
are in general position. Then the Delaunay triangulation of the convex hull of P is
indeed a triangulation associated with P, and it satisfies the following properties:

(1) The boundary of 2(P) is the convex hull of P.

(2) A triangulation T associated with P is the Delaunay triangulation 9 (P) iff every
(m—1)-sphere S(0) circumscribed about an m-simplex ¢ of T contains no other
point from P (i.e., the open ball associated with S(G) contains no point from P).

The proof can be found in Risler [12] and O’Rourke [10]. In the case of a planar
set P, it can also be shown that the Delaunay triangulation has the property that it
maximizes the minimum angle of the triangles involved in any triangulation of P.
However, this does not characterize the Delaunay triangulation. Given a connected
graph in the plane, it can also be shown that any minimal spanning tree is contained
in the Delaunay triangulation of the convex hull of the set of vertices of the graph
(O’Rourke [10]).

We will now explore briefly the connection between Delaunay triangulations and
convex hulls.

10.4 Delaunay Triangulations and Convex Hulls

In this section we show that there is an intimate relationship between convex hulls
and Delaunay triangulations. We will see that given a set P of points in the Euclidean
space E™ of dimension m, we can “lift” these points onto a paraboloid living in
the space E”*! of dimension m + 1, and that the Delaunay triangulation of P is
the projection of the downward-facing faces of the convex hull of the set of lifted
points. This remarkable connection was first discovered by Brown [3], and refined
by Edelsbrunner and Seidel [5]. For simplicity, we consider the case of a set P of
points in the plane E?, and we assume that they are in general position.

Consider the paraboloid of revolution of equation z = x> +y?. A point p = (x,)
in the plane is lifted to the point /(p) = (X,Y,Z) in E?, where X = x, Y =y, and
Z=x>+y.

The first crucial observation is that a circle in the plane is lifted into a plane curve
(an ellipse). Indeed, if such a circle C is defined by the equation

¥ +y 4+ax+by+c=0,
since X =x, Y =y, and Z = x> + y?, by eliminating x> + y*> we get
Z=—ax—by—c,

and thus X, Y, Z satisfy the linear equation
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aX+bY+Z+c=0,

which is the equation of a plane. Thus, the intersection of the cylinder of revolution
consisting of the lines parallel to the z-axis and passing through a point of the circle
C with the paraboloid z = x> 4y is a planar curve (an ellipse).

We can compute the convex hull of the set of lifted points. Let us focus on
the downward-facing faces of this convex hull. Let (I(p1),/(p2),I(p3)) be such a
face. The points pi, p2, p3 belong to the set P. We claim that no other point from
P is inside the circle C. Indeed, a point p inside the circle C would lift to a point
{(p) on the paraboloid. Since no four points are cocyclic, one of the four points
P1,D2,p3,p is further from O than the others; say this point is p3. Then, the face
(I(p1),1(p2),1(p)) would be below the face (I(p1),{(p2),1(p3)), contradicting the
fact that (I(p1),1(p2),1(p3)) is one of the downward-facing faces of the convex hull
of P. But then, by property (2) of Lemma 10.3, the triangle (p;, p2, p3) would be-
long to the Delaunay triangulation of P.

Therefore, we have shown that the projection of the part of the convex hull of the
lifted set I(P) consisting of the downward-facing faces is the Delaunay triangulation
of P. Figure 10.8 shows the lifting of the Delaunay triangulation shown earlier.

Fig. 10.8 A Delaunay triangulation and its lifting to a paraboloid.

Another example of the lifting of a Delaunay triangulation is shown in Figure
10.9. The fact that a Delaunay triangulation can be obtained by projecting a lower
convex hull can be used to find efficient algorithms for computing a Delaunay trian-
gulation. It also holds for higher dimensions.



316 10 Dirichlet—Voronoi Diagrams

Fig. 10.9 Another Delaunay triangulation and its lifting to a paraboloid.

The Voronoi diagram itself can also be obtained from the lifted set /(P). However,
this time, we need to consider tangent planes to the paraboloid at the lifted points.
It is fairly obvious that the tangent plane at the lifted point (a,b,a* + b?) is

z=2ax+2by — (a*+b%).

Given two distinct lifted points (a1,by,a? +b?) and (az, by, a3+ b3), the intersection
of the tangent planes at these points is a line belonging to the plane of equation

(b1 —a))x+ (by—az)y = (b] +b3) /2 — (a +a3) /2.

This is precisely the equation of the bisector line of the two points (a;,b;) and
(az,b3). Therefore, if we look at the paraboloid from 7 = +oo (with the paraboloid
transparent), the projection of the tangent planes at the lifted points is the Voronoi
diagram!

It should be noted that the “duality” between the Delaunay triangulation, which is
the projection of the convex hull of the lifted set /(P) viewed from z = —eo, and the
Voronoi diagram, which is the projection of the tangent planes at the lifted set /(P)
viewed from z = oo, is reminiscent of the polar duality with respect to a quadric.

The reader interested in algorithms for finding Voronoi diagrams and Delaunay
triangulations is referred to O’Rourke [10], Preparata and Shamos [11], Boissonnat
and Yvinec [2], de Berg, Van Kreveld, Overmars, and Schwarzkopf [1], and Risler
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[12]. We conclude our brief presentation of Voronoi diagrams and Delaunay trian-
gulations with a short section on applications.

10.5 Applications of Voronoi Diagrams and Delaunay
Triangulations

The examples below are taken from O’Rourke [10]. Other examples can be found in
Preparata and Shamos [11], Boissonnat and Yvinec [2], and de Berg, Van Kreveld,
Overmars, and Schwarzkopf [1].

The first example is the nearest neighbors problem. There are actually two sub-
problems: Nearest neighbor queries and all nearest neighbors.

The nearest neighbor queries problem is as follows. Given a set P of points
and a query point ¢, find the nearest neighbor(s) of ¢ in P. This problem can be
solved by computing the Voronoi diagram of P and determining in which Voronoi
region ¢ falls. This last problem, called point location, has been heavily studied (see
O’Rourke [10]). The all neighbors problem is as follows: Given a set P of points,
find the nearest neighbor(s) to all points in P. This problem can be solved by build-
ing a graph, the nearest neighbor graph, for short nng. The nodes of this undirected
graph are the points in P, and there is an arc from p to g iff p is a nearest neighbor
of g or vice versa. Then it can be shown that this graph is contained in the Delaunay
triangulation of P.

The second example is the largest empty circle. Some practical applications of
this problem are to locate a new store (to avoid competition), or to locate a nuclear
plant as far as possible from a set of towns. More precisely, the problem is as follows.
Given a set P of points, find a largest empty circle whose center is in the (closed)
convex hull of P, empty in that it contains no points from P inside it, and largest
in the sense that there is no other circle with strictly larger radius. The Voronoi
diagram of P can be used to solve this problem. It can be shown that if the center p
of a largest empty circle is strictly inside the convex hull of P, then p coincides with
a Voronoi vertex. However, not every Voronoi vertex is a good candidate. It can also
be shown that if the center p of a largest empty circle lies on the boundary of the
convex hull of P, then p lies on a Voronoi edge.

The third example is the minimum spanning tree. Given a graph G, a minimum
spanning tree of G is a subgraph of G that is a tree, contains every vertex of the
graph G, and minimizes the sum of the lengths of the tree edges. It can be shown
that a minimum spanning tree is a subgraph of the Delaunay triangulation of the
vertices of the graph. This can be used to improve algorithms for finding minimum
spanning trees, for example Kruskal’s algorithm (see O’Rourke [10]).

We conclude by mentioning that Voronoi diagrams have applications to motion
planning. For example, consider the problem of moving a disk on a plane while
avoiding a set of polygonal obstacles. If we “extend” the obstacles by the diameter
of the disk, the problem reduces to finding a collision—free path between two points
in the extended obstacle space. One needs to generalize the notion of a Voronoi
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diagram. Indeed, we need to define the distance to an object, and medial curves
(consisting of points equidistant to two objects) may no longer be straight lines.
A collision—free path with maximal clearance from the obstacles can be found by
moving along the edges of the generalized Voronoi diagram. This is an active area
of research in robotics. For more on this topic, see O’Rourke [10].

10.6 Problems

10.1. Investigate the different shapes of the Voronoi diagram for a set of 3 points,
and then for a set of 4 points.

10.2. Prove (3)—(6) of Lemma 10.1.

10.3. Show that the intersection of n half-planes can be done in O(nlogn), using the
fact that the vertices of a convex polygon can be sorted.

10.4. Write a computer program computing the Voronoi diagram of a set of points
in the plane. Can you do it in time O(n*logn)?

10.5. Let o be a simplex. (i) Prove that a point x belongs to the boundary do of
o iff at least one of its barycentric coordinates (A, ...,A,) is zero, and a point x
belongs to the interior Int o of o iff all of its barycentric coordinates (A, ..., A,)
are positive, i.e., A; > 0 for all /,0 < i < n. Prove that for every x € o, there is a
unique face s such that x € Ints, the face generated by those points a; for which
Ai >0, where (A, ..., A,) are the barycentric coordinates of x.

(ii) Prove that a simplex o is convex, arcwise connected, compact, and closed.
The interior Int ¢ of a complex is convex, arcwise connected, open, and o is the
closure of Intc.

10.6. Prove that condition (2) of Definition 10.3 is equivalent to condition:
(2") For any two distinct simplices o7, 6, Intoy NInto, = 0.

10.7. Complete the proof of (1) in Lemma 10.2 (use induction).

10.8. Prove that a sphere does not have any triangulation in which every vertex
belongs to six triangles. Conclude that a sphere cannot be triangulated by regular
hexagons. Look at a golf ball!

10.9. Given a connected graph in the plane, show that any minimal spanning tree is
contained in the Delaunay triangulation of the convex hull of the set of vertices of
the graph.

10.10. Write a computer program computing the Delaunay triangulation of a finite
set of points in the plane using the method of lifting to a paraboloid.

10.11. Prove Lemma 10.3.
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10.12. Let {py,...,pn} be a finite set of points contained in a given square S. Con-
sider the following path-planning problem. Given an initial position s and a final
position 7 both on the boundary on the given square S, find a C?-continuous path
from s to ¢ staying inside S with the property that at any given time, a point moving
on the path is as far as possible from the nearest point p;. You may think of the
points p; as radar stations and the moving particle as a flying airplane. The airplane
is trying to maximize the minimum distance from the radars.

Solve the above problem as best as you can using Voronoi diagrams and B-
splines.
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Chapter 11
Basics of Hermitian Geometry

11.1 Sesquilinear and Hermitian Forms, Pre-Hilbert Spaces and
Hermitian Spaces

In this chapter we generalize the basic results of Euclidean geometry presented in
Chapter 6 to vector spaces over the complex numbers. Such a generalization is in-
evitable, and not simply a luxury. For example, linear maps may not have real eigen-
values, but they always have complex eigenvalues. Furthermore, some very impor-
tant classes of linear maps can be diagonalized if they are extended to the com-
plexification of a real vector space. This is the case for orthogonal matrices, and,
more generally, normal matrices. Also, complex vector spaces are often the natural
framework in physics or engineering, and they are more convenient for dealing with
Fourier series. However, some complications arise due to complex conjugation. Re-
call that for any complex number z € C, if z = x + iy where x,y € R, we let Rz = x,
the real part of z, and 3z = y, the imaginary part of z. We also denote the conjugate
of z =x+1y by Z=x — iy, and the absolute value (or length, or modulus) of z by
|z|. Recall that |z|?> = zZ = x> 4 y?. There are many natural situations where a map
¢: E x E — Cis linear in its first argument and only semilinear in its second argu-
ment, which means that ¢ (u, uv) = o(u,v), as opposed to @(u,uv) = pe(u,v).
For example, the natural inner product to deal with functions f: R — C, especially
Fourier series, is

()= [ feEear

which is semilinear (but not linear) in g. Thus, when generalizing a result from the
real case of a Euclidean space to the complex case, we always have to check very
carefully that our proofs do not rely on linearity in the second argument. Otherwise,
we need to revise our proofs, and sometimes the result is simply wrong!

Before defining the natural generalization of an inner product, it is convenient to
define semilinear maps.

Definition 11.1. Given two vector spaces E and F over the complex field C, a func-
tion f: E — F is semilinear if

321
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flutv)=fu)+f0),
fAu) = Af(u),
for all u,v € E and all A € C. The set of all semilinear maps f: E — C is denoted
by E".

It is trivially verified that E is a vector space over C. It is not quite the dual space
E* of E.

Remark: Instead of defining semilinear maps, we could have defined the vector
space E as the vector space with the same carrier set £ whose addition is the same
as that of E, but whose multiplication by a complex number is given by

(A,u) — Au.

Then it is easy to check that a function f: E — C is semilinear iff f: E — C is
linear. If E has finite dimension #, it is easy to see that E" has the same dimension
n (if (ey,...,ey) is a basis for E, check that the semilinear maps (e, .. .,e,) defined

such that
(ZA ej) = 17

We can now define sesquilinear forms and Hermitian forms.

form a basis of E".)

Definition 11.2. Given a complex vector space E, a function ¢: E X E — C is a
sesquilinear form if it is linear in its first argument and semilinear in its second
argument, which means that

@1 +uz,v) = @(ur,v) + @(uz,v),
o(u,vi +v2) = ¢(u,vi) + 0(u,v2),
o(Au,v) =2A1¢(u,v),
@(u, uv) =HQ(u,v),

for all u,v, uy,up, vi,v; € E, and all A,u € C. A function ¢: EXE — Cis a
Hermitian form if it is sesquilinear and if

@(v,u) = @(u,v)
for all all u,v € E.

Obviously, ¢(0,v) = ¢(u,0) = 0. Also note that if ¢ : E x E — C is sesquilinear,
we have

Q(Au+ v, A+ ) = (AP (u,u) + ATQ(u,v) + A (v,u) + 1> 9 (v, ),



11.1 Hermitian Spaces, Pre-Hilbert Spaces 323
and if ¢: E x E — C is Hermitian, we have
QA+ v, A+ uv) = [AP@(u,u) + 2RATP(u,v)) + |1 (v, ).

Note that restricted to real coefficients, a sesquilinear form is bilinear (we some-
times say R-bilinear). The function @: E — C defined such that ®(u) = ¢@(u,u) for
all u € E is called the quadratic form associated with ¢.

The standard example of a Hermitian form on C” is the map ¢ defined such that

(P((-xlu cee 7xn)7 ()’17 oo 7yn)) = xl)’_1+x2y_2+ e +xﬂy_ﬂ'
This map is also positive definite, but before dealing with these issues, we show the
following useful lemma.
Lemma 11.1. Given a complex vector space E, the following properties hold:

(1) A sesquilinear form ¢ : E X E — C is a Hermitian form iff ¢(u,u) € R for all
uck.
(2) If ¢: E x E — C is a sesquilinear form, then

49(u,v) = @u+v,utv) = u—v,u—v)
+ipu+ivu+iv) —iQ(u—iv,u—iv),

and
20(u,v) = (14+1)(@u,u) +e(v,v)) —@(u—v,u—v) —iQ(u—iv,u —iv).

These are called polarization identities.

Proof. (1) If ¢ is a Hermitian form, then

@(v,u) = @(u,v)
implies that
@ (u,u) = @(u,u),
and thus @ (u,u) € R. If @ is sesquilinear and @ (u,u) € R for all u € E, then
Plutviutv) = @u,u) + @u,v) +ov,u) + @vv),

which proves that
@(u,v) + @ (v,u) = a,
where « is real, and changing u to iu, we have
i(@(u,v) = o(v,u)) = B,
where f3 is real, and thus

o= 2P ana gu= TP
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proving that ¢ is Hermitian.
(2) These identities are verified by expanding the right-hand side, and we leave
them as an exercise. 0O

Lemma 11.1 shows that a sesquilinear form is completely determined by the
quadratic form ®(u) = @(u,u), even if @ is not Hermitian. This is false for a real
bilinear form, unless it is symmetric. For example, the bilinear form ¢ : R? x R? —
R defined such that

O((x1,51), (x2,¥2)) = x1y2 — X2¥1

is not identically zero, and yet it is null on the diagonal. However, a real symmet-
ric bilinear form is indeed determined by its values on the diagonal, as we saw in
Chapter 6.

As in the Euclidean case, Hermitian forms for which ¢ (u,u) > 0 play an impor-
tant role.

Definition 11.3. Given a complex vector space E, a Hermitian form ¢: E X E — C
is positive if @(u,u) > 0 for all u € E, and positive definite if @(u,u) > 0 for all
u # 0. A pair (E, ) where E is a complex vector space and ¢ is a Hermitian form
on E is called a pre-Hilbert space if ¢ is positive, and a Hermitian (or unitary) space
if @ is positive definite.

We warn our readers that some authors, such as Lang [3], define a pre-Hilbert
space as what we define as a Hermitian space. We prefer following the terminology
used in Schwartz [5] and Bourbaki [1]. The quantity ¢(u,v) is usually called the
Hermitian product of u and v. We will occasionally call it the inner product of u and
V.

Given a pre-Hilbert space (E, @), as in the case of a Euclidean space, we also
denote ¢ (u,v) by

u-v or {uyv) or (uly),

and /P (u) by ||ul|.

Example 11.1. The complex vector space C" under the Hermitian form
(p((xlv s 7-xn)7 (yla cee 7yn)) :xl))_l+x2))_2+ U +xny_n

is a Hermitian space.

Example 11.2. Let [? denote the set of all countably infinite sequences x = (x;);en
of complex numbers such that Y'3°  |x;|? is defined (i.e., the sequence ¥ |x;|* con-
verges as n — o). It can be shown that the map @: [* x [> — C defined such that

¢ ((xi)ien, (Vi)ien) = i)xi)Ti

is well defined, and /> is a Hermitian space under ¢@. Actually, /> is even a
Hilbert space (Chapter 26 on the web site, see http://www.cis.upenn.edu/
~jean/gbooks/geom2.html).
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Example 11.3. Let Gpiece [a, D] be the set of piecewise bounded continuous functions
f+ la,b] = C under the Hermitian form

(f.8) = /:f(ﬂ@dx.

It is easy to check that this Hermitian form is positive, but it is not definite. Thus,
under this Hermitian form, @piece [a, D] is only a pre-Hilbert space.

Example 11.4. Let €|a, b] be the set of complex-valued continuous functions
f: la,b] = C under the Hermitian form

b

(f.8) = / F0)gdx.

Ja

It is easy to check that this Hermitian form is positive definite. Thus, €’[a,b] is a
Hermitian space.

The Cauchy—Schwarz inequality and the Minkowski inequalities extend to pre-
Hilbert spaces and to Hermitian spaces.

Lemma 11.2. Let (E, @) be a pre-Hilbert space with associated quadratic form .
For all u,v € E, we have the Cauchy—Schwarz inequality

[@(u,v)| </ P(u) v/ P(v).

Furthermore, if (E, ) is a Hermitian space, the equality holds iff u and v are lin-
early dependent.
We also have the Minkowski inequality

VO(u+v) </ Pu)+ /().

Furthermore, if (E, Q) is a Hermitian space, the equality holds iff u and v are lin-
early dependent, where in addition, if u # 0 and v # 0, then u = Av for some real A
such that A > 0.

Proof. For all u,v € E and all u € C, we have observed that

@+ pvu+ pv) = @(u,u) + 2R (T (u,v)) + (1> @(v,v).

Let @(u,v) = pe'®, where |@(u,v)| = p (p > 0). Let F: R — R be the function
defined such that _
F(t) = ®(u+1el%),

for all t € R. The above shows that
F(t) = @(u,u) + 2t |@(u,v) |+ 29(v,v) = D(u) + 21| @ (u, )| + D (v).

Since ¢ is assumed to be positive, we have F(¢) > 0 for all t € R. If @(v) =0, we
must have ¢(u,v) = 0, since otherwise, F(r) could be made negative by choosing
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t negative and small enough. If ®@(v) > 0, in order for F(¢) to be nonnegative, the
equation
D (u) +2t|@(u,v)| + PP (v) =0

must not have distinct real roots, which is equivalent to
9 (u,v)]> < (1) D(v).

Taking the square root on both sides yields the Cauchy—Schwarz inequality.

For the second part of the claim, if ¢ is positive definite, we argue as follows.
If u and v are linearly dependent, it is immediately verified that we get an equality.
Conversely, if

|@(u,v)? = D(u)(v),

then the equation
D(u) +2t|@(u,v)| +1*®(v) =0

has a double root 7y, and thus
@ (u+10e'%v) = 0.
Since ¢ is positive definite, we must have
u—+telfy = 0,

which shows that # and v are linearly dependent.
If we square the Minkowski inequality, we get

D(u+v) < D)+ P(W)+2/P(u)/P(v).
However, we observed earlier that
DP(u+v)=P(u)+P(v)+2R(¢(u,v)).
Thus, it is enough to prove that

R((u,v)) <V P(u)v/ P(v),

but this follows from the Cauchy—Schwarz inequality

[@(u,v)| <V P(u) v/ P(v)

and the fact that Rz < |z].

If ¢ is positive definite and u and v are linearly dependent, it is immediately
verified that we get an equality. Conversely, if equality holds in the Minkowski
inequality, we must have

R(p(u,v)) = VO(u)v/ P(v),
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which implies that
[@(u,v)| = v/ (u) v/ P (v),

since otherwise, by the Cauchy—Schwarz inequality, we would have

R((u,v) <|o(u,v)| </ P(u)\/P(v).

Thus, equality holds in the Cauchy—Schwarz inequality, and

R(e(u,v)) = |o(u,v)|-

But then, we proved in the Cauchy—Schwarz case that 1 and v are linearly dependent.
Since we also just proved that ¢@(u,v) is real and nonnegative, the coefficient of
proportionality between u and v is indeed nonnegative. [0

As in the Euclidean case, if (E, ¢) is a Hermitian space, the Minkowski inequality

VO(u+v) < V@) ++/@(v)

shows that the map u — /@ (u) is a norm on E. The norm induced by ¢ is called the

Hermitian norm induced by ¢. We usually denote /@ (u) by ||u|, and the Cauchy—
Schwarz inequality is written as

v < lu [V

Since a Hermitian space is a normed vector space, it is a topological space under
the topology induced by the norm (a basis for this topology is given by the open
balls By(u,p) of center u and radius p > 0, where

Bo(u,p) ={veE||lv—ul <p}.

If E has finite dimension, every linear map is continuous; see Lang [3, 4], Dixmier
[2], or Schwartz [5, 6]. The Cauchy—Schwarz inequality

|- v| < full[[v]]

shows that ¢ : E x E — C is continuous, and thus, that || || is continuous.
If (E, ) is only pre-Hilbertian, ||u|| is called a seminorm. In this case, the condi-
tion
||u]| =0 implies u=0

is not necessarily true. However, the Cauchy—Schwarz inequality shows that if
lu| =0, thenu-v=0forall v € E.

We will now basically mirror the presentation of Euclidean geometry given in
Chapter 6 rather quickly, leaving out most proofs, except when they need to be
seriously amended. This will be the case for the Cartan—Dieudonné theorem.
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11.2 Orthogonality, Duality, Adjoint of a Linear Map

In this section we assume that we are dealing with Hermitian spaces. We denote the
Hermitian inner product by u - v or (u,v). The concepts of orthogonality, orthogonal
family of vectors, orthonormal family of vectors, and orthogonal complement of a
set of vectors are unchanged from the Euclidean case (Definition 6.2).

For example, the set ¢’[—, 7] of continuous functions f: [—x, 7] — C is a Her-
mitian space under the product

)= [ st

and the family (e/**);c7 is orthogonal.
Lemma 6.2 and 6.3 hold without any changes. It is easy to show that

2

n
Y ui

i=1

Yo+ Y 2%R(ui-uy).
i=1

1<i<j<n

Analogously to the case of Euclidean spaces of finite dimension, the Hermitian
product induces a canonical bijection (i.e., independent of the choice of bases) be-
tween the vector space E and the space E*. This is one of the places where conju-
gation shows up, but in this case, troubles are minor.

Given a Hermitian space E, for any vector u € E, let ¢': E — C be the map
defined such that

Quv) =u-v,
for all v € E. Similarly, for any vector v € E, let ¢ : E — C be the map defined such
that

@y (u) =u-v,
forallu € E.

Since the Hermitian product is linear in its first argument u, the map @] is a
linear form in E*, and since it is semilinear in its second argument v, the map (p,i
is a semilinear form in E". Thus, we have two maps . E—-E andb: E — E*,
defined such that

bl(u) =L, and bH"(v)= ¢!

Lemma 11.3. let E be a Hermitian space E.

(1) The map b': E — E" defined such that

is linear and injective.
(2) The map b": E — E* defined such that

(v) =y
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is semilinear and injective.

When E is also of finite dimension, the mapsb' : E — E" andb": E — E* are canon-
ical isomorphisms.

Proof. (1) Thatb': E — E" is a linear map follows immediately from the fact that
the Hermitian product is linear in its first argument. If ¢ = ¢!, then ¢/ (w) = ¢! (w)
for all w € E, which by definition of ¢} means that

u-w=v-w
for all w € E, which by linearity on the left is equivalent to
(v—u)-w=0

for all w € E, which implies that u = v, since the Hermitian product is positive
definite. Thus, b': E — E~ is injective. Finally, when E is of finite dimension n, E "
is also of dimension n, and then b’: E — E'is bijective.

The proof of (2) is essentially the same as the proof of (1), except that the Her-
mitian product is semilinear in its second argument. O

The inverse of the isomorphism b’: E — E” is denoted by #/: E* — E, and the
inverse of the isomorphism b": E — E* is denoted by #: E* — E.

As a corollary of the isomorphism b”: E — E*, if E is a Hermitian space of finite
dimension, then every linear form f € E* corresponds to a unique v € E, such that

Flwy=u-v,

for every u € E. In particular, if f is not the null form, the kernel of f, which is a
hyperplane H, is precisely the set of vectors that are orthogonal to v.

Remark: The “musical map” b": E — E* is not surjective when E has infinite
dimension. This result can be salvaged by restricting our attention to continuous
linear maps, and by assuming that the vector space E is a Hilbert space.

The existence of the isomorphismb’: E — E" is crucial to the existence of adjoint
maps. Indeed, Lemma 11.3 allows us to define the adjoint of a linear map on a
Hermitian space. Let E be a Hermitian space of finite dimension n, and let f: E — E
be a linear map. For every u € E, the map

v u- f(v)

is clearly a semilinear form in E", and by Lemma 11.3, there is a unique vector in
E denoted by f*(u) such that

fru)-v=u-fv),

for every v € E. The following lemma shows that the map f* is linear.
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Lemma 11.4. Given a Hermitian space E of finite dimension, for every linear map
f: E — E there is a unique linear map f*: E — E such that

ffw)-v=u-f(Q),

forallu,v € E. The map f* is called the adjoint of f (w.r.t. to the Hermitian product).

Proof. Careful inspection of the proof of lemma 6.5 reveals that it applies un-
changed. The only potential problem is in proving that f*(1u) = A f*(u), but every-
thing takes place in the first argument of the Hermitian product, and there, we have
linearity. 0O

The fact that
V-Uu=u-v

implies that the adjoint f* of f is also characterized by

f)-v=u-f(v),

for all u,v € E. It is also obvious that f** = f.

Given two Hermitian spaces E and F, where the Hermitian product on E is de-
noted by (—,—), and the Hermitian product on F is denoted by (—, —),, given any
linear map f: E — F, it is immediately verified that the proof of Lemma 11.4 can
be adapted to show that there is a unique linear map f*: F — E such that

(f(),v)y = (u, f ()

forall u € E and all v € F. The linear map f* is also called the adjoint of f.
As in the Euclidean case, Lemma 11.3 can be used to show that any Hermitian
space of finite dimension has an orthonormal basis. The proof is unchanged.

Lemma 11.5. Given any nontrivial Hermitian space E of finite dimension n > 1,
there is an orthonormal basis (uy,. .. ,u,) for E.

The Gram—Schmidt orthonormalization procedure also applies to Hermitian
spaces of finite dimension, without any changes from the Euclidean case!

Lemma 11.6. Given a nontrivial Hermitian space E of finite dimension n > 1, from
any basis (ey,...,ey) for E we can construct an orthonormal basis (uy, ... ,u,) for E
with the property that for every k, 1 <k < n, the families (e, ... ,ex) and (uy,. .., u;)
generate the same subspace.

Remark: The remarks made after Lemma 6.7 also apply here, except that in the
QR-decomposition, Q is a unitary matrix.

As a consequence of Lemma 6.6 (or Lemma 11.6), given any Hermitian space
of finite dimension #, if (ey,...,ey,) is an orthonormal basis for E, then for any two
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vectors u = ujey + - -+ uye, and v =vye; + - - - + vyep, the Hermitian product u - v
is expressed as

n
u-v=_(urer+ - +upen) - (vier + -+ +vney) = Zuiv_i,
i=1

n
lull = luwrer + -+ unenl| = [ Y |-
i=1

Lemma 6.8 also holds unchanged.

and the norm ||u|| as

Lemma 11.7. Given any nontrivial Hermitian space E of finite dimension n > 1, for
any subspace F of dimension k, the orthogonal complement F* of F has dimension
n—k, and E = F ® F+. Furthermore, we have F++ = F.

Affine Hermitian spaces are defined just as affine Euclidean spaces, except that

we modify Definition 6.3 to require that the complex vector space ? be a Hermitian
space. We denote by E{: the Hermitian affine space obtained from the affine space
Af by defining on the vector space C™ the standard Hermitian product

(xlv"'a-xm)'(ylv"'aym) :X1)1_1+"'+.xm_))_m-

The corresponding Hermitian norm is

1Gers s xm) [ = g/ TP 4o .

Lemma 8.2 also holds for Hermitian spaces, and the proof is the same.

Lemma 11.8. Let E be a Hermitian space of finite dimension n, and let f: E — E
be an isometry. For any subspace F of E, if f(F) =F, then f(F*) C F* and E =
FOF-

11.3 Linear Isometries (Also Called Unitary Transformations)

In this section we consider linear maps between Hermitian spaces that preserve the
Hermitian norm. All definitions given for Euclidean spaces in Section 6.3 extend to
Hermitian spaces, except that orthogonal transformations are called unitary trans-
formation, but Lemma 6.9 extends only with a modified condition (2). Indeed, the
old proof that (2) implies (3) does not work, and the implication is in fact false! It
can be repaired by strengthening condition (2). For the sake of completeness, we
state the Hermitian version of Definition 6.4.
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Definition 11.4. Given any two nontrivial Hermitian spaces £ and F of the same
finite dimension n, a function f: E — F is a unitary transformation, or a linear
isometry, if it is linear and

£ (@)l = [lull,

forallu € E.
Lemma 6.9 can be salvaged by strengthening condition (2).

Lemma 11.9. Given any two nontrivial Hermitian spaces E and F of the same finite
dimension n, for every function f: E — F, the following properties are equivalent:
(1) f is a linear map and || f(u)|| = ||ul|, for allu € E;

) If ) = f)|| = |v—u| and f(iu) = if (), for all u,v € E.

(3) f(u)- f(v)=u-v, forallu,v € E.

Furthermore, such a map is bijective.

Proof. The proof that (2) implies (3) given in Lemma 6.9 needs to be revised as
follows. We use the polarization identity

20(u,v) = (1+1) (flael® + [VI2) = e = vI|* ~ i v

Since f(iv) =if(v), we get f(0) = 0 by setting v = 0, so the function f preserves
distance and norm, and we get

20(£(), f(v)) = L+D) LI + W) = [1£() = )
—illf () —if )|
= (L)@ + O = I1f () = FO)?
— il () = f(iv)]?
= (L) (lull + V12 = [l = v =il iv]|?
=2¢(u,v),
which shows that f preserves the Hermitian inner product, as desired. The rest of

the proof is unchanged. O

Remarks:

(1) In the Euclidean case, we proved that the assumption
I1f () =F @) = [lv—ul|  forallu,v € E and f(0) =0 @)
implies (3). For this we used the polarization identity

2u-v = [l + VI~ u—v]>.



11.4 The Unitary Group, Unitary Matrices 333

In the Hermitian case the polarization identity involves the complex number i. In
fact, the implication (2') implies (3) is false in the Hermitian case! Conjugation
7+ 7 satisfies (2') since

22 71| = |22 — 21| = |22 — a1,

and yet, it is not linear!
(i) If we modify (2) by changing the second condition by now requiring that there
be some 7 € E such that

f(r+iu) = f(7) +i(f (e +u) - f(7))

for all u € E, then the function g: E — E defined such that

g(u) = f(t+u) = f(1)

satisfies the old conditions of (2), and the implications (2) — (3) and (3) — (1)
prove that g is linear, and thus that f is affine. In view of the first remark, some
condition involving i is needed on f, in addition to the fact that f is distance-
preserving.

11.4 The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of the isometries of a Euclidean
space, we explore some of the fundamental properties of the unitary group and of
unitary matrices. As an immediate corollary of the Gram—Schmidt orthonormal-
ization procedure, we obtain the QR-decomposition for invertible matrices. In the
Hermitian framework, the matrix of the adjoint of a linear map is not given by the
transpose of the original matrix, but by its conjugate.

Definition 11.5. Given a complex m x n matrix A, the transpose A" of A is the n x m
matrix AT = (aI j) defined such that

T _ ..
a; ;= 4aj,i,

and the conjugate A of A is the m x n matrix A = (b; ;) defined such that
bi.j=ai;
foralli,j, 1 <i<m, 1< j<n.Theadjoint A* of A is the matrix defined such that

A== @)
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Lemma 11.10. Let E be any Hermitian space of finite dimension n, and let f: E —
E be any linear map. The following properties hold:

(1) The linear map f: E — E is an isometry iff
foff=fof=id.

(2) For every orthonormal basis (e, ..., e,) of E, if the matrix of f is A, then the
matrix of * is the adjoint A* of A, and f is an isometry iff A satisfies the identi-
ties

AA* =A*A =1,

where I, denotes the identity matrix of order n, iff the columns of A form an
orthonormal basis of E, iff the rows of A form an orthonormal basis of E.

Proof. (1) The proof is identical to that of Lemma 6.10 (1).
(2)If (ey,...,e,) is an orthonormal basis for E, let A = (a;, ;) be the matrix of f,
and let B = (b; ;) be the matrix of f*. Since f* is characterized by

fru)-v=u-f(v)

for all u,v € E, using the fact that if w = wje; +--- +wye,, we have wy = w- ¢, for
allk, 1 <k <n;letting u =¢; and v = ¢;, we get

bji=f"(e)-ej=ei-f(ej) = flej)-ei =iy,

forall i,j, 1 <i,j <n. Thus, B=A"* Now, if X and Y are arbitrary matrices over
the basis (ey,...,e,), denoting as usual the jth column of X by X;, and similarly for
Y, a simple calculation shows that

Y*X = (X;-Yi)1<ij<n

Then it is immediately verified that if X =Y = A, then A*A = AA* = I, iff the
column vectors (Ay,...,A,) form an orthonormal basis. Thus, from (1), we see that
(2)isclear. 0O

Lemma 6.10 shows that the inverse of an isometry f is its adjoint f*. Lemma
6.10 also motivates the following definition.

Definition 11.6. A complex n X n matrix is a unitary matrix if

AA*=AA=1,.

Remarks:

(1) The conditions AA* = I, A*A = I,, and A~! = A* are equivalent. Given any
two orthonormal bases (u,...,u,) and (vy,...,v,), if P is the change of basis
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matrix from (uy,...,u,) to (vi,...,vy), it is easy to show that the matrix P is
unitary. The proof of Lemma 11.9 (3) also shows that if f is an isometry, then
the image of an orthonormal basis (uy,...,u,) is an orthonormal basis.

(2) If fis unitary and A is its matrix with respect to any orthonormal basis, the char-
acteristic polynomial D(A — AI) of A is a polynomial with complex coefficients,
and thus it has n (complex) roots (counting multiplicities). If u is an eigenvector
of f for A, then from f(u) = Au and the fact that f is an isometry we get

[l = 1Lf )| = | Aull = |A][]ull,

which shows that |[A| = 1. Since the determinant D(A) of f is the product of the
eigenvalues of f, we have [D(A)| = 1. It is clear that the isometries of a Hermi-
tian space of dimension n form a group, and that the isometries of determinant
+1 form a subgroup.

This leads to the following definition.

Definition 11.7. Given a Hermitian space E of dimension #, the set of isometries
f: E — E forms a subgroup of GL(E,C) denoted by U(E), or U(n) when E = C",
called the unitary group (of E). For every isometry f we have |D(f)| = 1, where
D(f) denotes the determinant of f. The isometries such that D(f) = 1 are called
rotations, or proper isometries, or proper unitary transformations, and they form a
subgroup of the special linear group SL(E, C) (and of U(E)), denoted by SU(E), or
SU(n) when E = C", called the special unitary group (of E). The isometries such
that D(f) # 1 are called improper isometries, or improper unitary transformations,
or flip transformations.

A very important example of unitary matrices is provided by Fourier matrices (up
to a factor of /i), matrices that arise in the various versions of the discrete Fourier
transform. For more on this topic, see the problems, and Strang [7, 8].

Now that we have the definition of a unitary matrix, we can explain how the
Gram—Schmidt orthonormalization procedure immediately yields the QR-decompo-
sition for matrices.

Lemma 11.11. Given any n x n complex matrix A, if A is invertible, then there is a
unitary matrix Q and an upper triangular matrix R with positive diagonal entries
such that A = QR.

The proof is absolutely the same as in the real case!

Due to space limitations, we will not study the isometries of a Hermitian space
in this chapter. However, the reader will find such a study in the supplements on the
web site (Chapter 25, see http://www.cis.upenn.edu/~jean/gbooks/
geom2.html).
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11.5 Problems

11.1. Given a complex vector space E of finite dimension #, prove that E~ also has
dimension #.
Hint. If (ey,...,e,) is a basis for E, check that the semilinear maps e; defined such

that )
e—f(Z %’ej) =4
=1

form a basis of E".
11.2. Prove the polarization identities in Lemma 11.1 (2).

11.3. Given a Hermitian space E, for any orthonormal basis (ey,...,ey,), if X and ¥
are arbitrary matrices over the basis (ey,...,e,), denoting as usual the jth column
of X by X, and similarly for Y, prove that

Y*X = (X;-Yi)i<ij<n-

Then prove that
ATA=AA" =1,

iff the column vectors (Ay,...,A,) form an orthonormal basis.

11.4. Given a Hermitian space E, prove that if f is an isometry, then f maps any
orthonormal basis of E to an orthonormal basis.

11.5. Given p vectors (uj,... ,up) in a Hermitian space E of dimension n > p, the
Gram determinant (or Gramian) of the vectors (u1,...,up) is the determinant

(s <M1,M§> o (urup)
(wa,ur) Nual|™ ... (u2,up)

Gram(uy,...,up) =| . ] s
: : o
(up,ur) (up,uz) ... ||upl|

(1) Prove that
Gram(ul, . ,u,,) = )VE(MI, . ,u”)z.

Hint. By Problem 11.3, if (ey,...,e,) is an orthonormal basis of E and A is the
matrix of the vectors (uy,...,u,) over this basis, then

det(A)? = det(A*A) = det(A; - A}),

where A; denotes the ith column of the matrix A, and (4; -Aj) denotes the n X n
matrix with entries A; - A ;.

11.6. Let F;, be the symmetric n X n matrix (with complex coefficients)
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_ (oi2mkl/n
Fn = (e )nggnfl
0<i<n—1

assuming that we index the entries in F, over [0,1,...,n— 1] x [0,1,...,n— 1], the
standard kth row now being indexed by k — 1 and the standard /th column now being
indexed by [ — 1. The matrix F; is called a Fourier matrix.

(1) Letting F,, = (e 27/}, ,,_; be the conjugate of F,, prove that
0<1<n—1

FnFn:FnFn:nIn-

The above shows that F,,/+/n is unitary.
(2) Define the discrete Fourier transform f of a sequence f = (fp, ..., fu—1) €C"
as

f=F.f.

Define the inverse discrete Fourier transform (taking c back to f) as

O

ZF,,C,

where ¢ = (co,...,cn—1) € C". Define the circular shift matrix S,, (of order n) as the
matrix

0000---01
1000---00
0100---00

$n=10010---00
0000---10

consisting of cyclic permutations of its first column. For any sequence f = (fo,...,
fa—1) € C", we define the circulant matrix H(f) as

n—1 )
H(f) =) fiS,
j=0

where S¥ = I, as usual.
Prove that

H(f)Fn:an

The above shows that the columns of the Fourier matrix F;, are the eigenvectors of
the circulant matrix H(f), and that the eigenvalue associated with the /th eigenvector
is (f) ;> the Ith component of the Fourier transform onf f (counting from 0).
Hint. Prove that

S,F, = F,diag(v")

where diag(v') is the diagonal matrix with the following entries on the diagonal:
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vl _ (Leﬂzn/n, . 7eflk2ﬂ/l‘l, . 7671(}171)271/)‘!) )

(3) If the sequence f = (fy,...,fy—1) is even, which means that f_; = f; for
all j € Z (viewed as a periodic sequence), or equivalently that f,_; = f; for all j,

0 < j <n—1, prove that the Fourier transform fis expressed as
N n—1
k) =} ficos (2mjk/n),
j=0
and that the inverse Fourier transform (taking ¢ back to f) is expressed as

n—1
clk) = Z cjcos (2w jk/n),
Jj=0
foreveryk,0 <k <n-—1.
(4) Define the convolution fxg of two sequences f = (fo,...,fyn—1) and g =
(80,---,8n—1) as
fxg=H(f)g,

viewing f and g as column vectors.
Prove the (circular) convolution rule

frxg=rg

where the multiplication on the right-hand side is just the inner product of the vec-
tors f and g.

11.7. Let ¢: E x E — C be a sesquilinear form on a complex vector space E of
finite dimension n. Given any basis (ej,...,e,) of E, let A = (¢ ;) be the matrix
defined such that

aij = ¢(eie;),

1 <i,j < n. We call A the matrix of ¢ w.r.t. the basis (ey,...,ey).
(a) For any two vectors x and y, if X and Y denote the column vectors of coordi-
nates of x and y w.r.t. the basis (ey,...,e,), prove that

P(x,y) =X AY.

(b) Recall that A is a Hermitian matrix if A = A* = AT. Prove that ¢ is Hermitian
iff A is a Hermitian matrix. When is it true that

o(x,y) =Y"AX?

(©) If (f1,...,fn) is another basis of E and P is the change of basis matrix from
(e1,-..,en) to (f1,-..,fn), prove that the matrix of ¢ w.r.t. the basis (f1,...,f,) is

PTAP.
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The common rank of all matrices representing ¢ is called the rank of ¢.

11.8. Let ¢: E x E — C be a Hermitian form on a complex vector space E of finite
dimension n. Two vectors x and y are said to be conjugate w.r.t. ¢ if @(x,y) = 0.
The main purpose of this problem is to prove that there is a basis of vectors that are
pairwise conjugate w.r.t. Q.

(a) Prove that if @(x,x) = 0 for all x € E, then ¢ is identically null on E. For this,
compute @(ix+ y,ix+y) and i¢(x+y,x+y), and conclude that ¢(x,y) = 0.

Otherwise, we can assume that there is some vector x € E such that ¢(x,x) # 0.
Use induction to prove that there is a basis of vectors that are pairwise conjugate
w.r.t. Q.

For the induction step, proceed as follows. Let (ey, e, . .. ,¢,) be a basis of E, with
¢(e1,e1) # 0. Prove that there are scalars 4,, . .., A, such that each of the vectors

vi = e+ ey,
is conjugate to e; w.r.t. @, where 2 <i < n, and that (ey,vs,...,v,) is a basis.
(b) Let (ey,...,e,) be a basis of vectors that are pairwise conjugate w.r.t. ¢, and

assume that they are ordered such that

o _J6#0 if1<i<Zr,
‘p(e“e’)_{o ifre1<i<n,

where r is the rank of @. Show that the matrix of ¢ w.r.t. (eq,...,e,) is a diagonal
matrix, and that

o(x,y) =Y 6xi¥i,
i=1

where x =Y" | xje;andy =Y, yie;.
Prove that for every Hermitian matrix A there is an invertible matrix P such that

P'AP=D,

where D is a diagonal matrix.
(c) Prove that there is an integer p, 0 < p < r (where r is the rank of @), such

that @ (u;,u;) > 0 for exactly p vectors of every basis (uy,...,u,) of vectors that are
pairwise conjugate w.r.t. @ (Sylvester’s inertia theorem).
Proceed as follows. Assume that in the basis (uy,...,u,), for any x € E, we have
@(x,x) = ai]x; |2 +eeet O‘p|)fp|2 - ap+1|xp+l|2 — O‘r|xr|2a
where x = Y} | x;u;, and that in the basis (vy,...,vy), for any x € E, we have
2 2 2 2
@(x,x) = Bulyi]™ 4+ Bglygl™ = Bgrygr|” =+ = Bely:I7,

where x =Y | yivi, with o >0, ;> 0,1 <i<r.
Assume that p > g and derive a contradiction. First, consider x in the subspace F
spanned by
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(U1, Uy U1,y Un),

and observe that @(x,x) > 0if x # 0. Next, consider x in the subspace G spanned by

(VL]Jrlv"' avr)a

and observe that @(x,x) < 0 if x # 0. Prove that F NG is nontrivial (i.e., contains
some nonnull vector), and derive a contradiction. This implies that p < g. Finish the
proof.

The pair (p,r — p) is called the signature of @.

(d) A Hermitian form ¢ is definite if for every x € E, if ¢(x,x) =0, then x = 0.

Prove that a Hermitian form is definite iff its signature is either (n,0) or (0,n). In
other words, a Hermitian definite form has rank » and is either positive or negative.

(e) The kernel of a Hermitian form ¢ is the subspace consisting of the vectors that
are conjugate to all vectors in E. We say that a Hermitian form ¢ is nondegenerate
if its kernel is trivial (i.e., reduced to {0}).

Prove that a Hermitian form ¢ is nondegenerate iff its rank is n, the dimension
of E. Is a definite Hermitian form ¢ nondegenerate? What about the converse?

Prove that if ¢ is nondegenerate, then there is a basis of vectors that are pairwise
conjugate w.r.t. @ and such that ¢ is represented by the matrix

I, 0
0-1,)’
where (p,q) is the signature of ¢.
(f) Given a nondegenerate Hermitian form ¢ on E, prove that for every linear
map f: E — E, there is a unique linear map f*: E — E such that

o(f(u),v) = o(u, f*(v),

for all u,v € E. The map f* is called the adjoint of f (w.rt. to ¢). Given any basis
(u1,...,up), if 2 is the matrix representing ¢ and A is the matrix representing f,
prove that f* is represented by (2 ")~ 'A*QT.

Prove that Lemma 11.3 also holds, i.e., the maps bl E—E" andb": E — E* are
canonical isomorphisms.

A linear map f: E — E is an isometry w.r.t. @ if

P(f(x), f(¥)) = @(x,)
for all x,y € E. Prove that a linear map f is an isometry w.r.t. ¢ iff
frof=fof =id.

Prove that the set of isometries w.r.t. ¢ is a group. This group is denoted by U(¢),
and its subgroup consisting of isometries having determinant +1 by SU(¢). Given
any basis of E, if Q is the matrix representing ¢ and A is the matrix representing f,
prove that f € U(¢) iff
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A'QTA=QT.

Given another nondegenerate Hermitian form y on E, we say that ¢ and y are
equivalent if there is a bijective linear map h: E — E such that

y(x,y) = @(h(x), h(y)),

for all x,y € E. Prove that the groups of isometries U(¢) and U(y) are isomomor-
phic (use the map f — ho foh~! from U(y) to U(¢)).

If ¢ is a nondegenerate Hermitian form of signature (p,q), prove that the group
U(@) is isomorphic to the group of n x n matrices A such that

(1, 0\~ (I, 0
A <O—Iq A=\o0 -1,)

Remark: In view of question (f), the groups U(¢) and SU(¢) are also denoted by
U(p,q) and SU(p,q) when ¢ has signature (p,q). They are Lie groups.

11.9. (a) If A is a real symmetric n X n matrix and B is a real skew symmetric n X n
matrix, then A 4-1B is Hermitian. Conversely, every Hermitian matrix can be written
as A +1B, where A is real symmetric and B is real skew symmetric.

(b) Every complex n X n matrix can be written as A + iB, for some Hermitian
matrices A, B.

11.10. (a) Given a complex n X n matrix A, prove that
n
) la; j|* = tr(A*A) = tr(AA™).
ij=1
(b) Prove that ||A|| = \/tr(A*A) defines a norm on matrices. Prove that
|AB]| < [|A[l[|B]|

(c) When A is Hermitian, prove that
2 Vg2
1A]* =} A7,
i=1

where the A; are the (real) eigenvalues of A.

11.11. Given a Hermitian matrix A, prove that I, +iA and I, — iA are invertible.
Prove that (I, +iA)(I, —iA)~! is a unitary matrix.

11.12. Let E be a Hermitian space of dimension n. For any basis (ej,...,e,) of E,
orthonormal or not, let G be the Gram matrix associated with (ey,...,e,), i.e., the
matrix

G= (ei-ej).



342 11 Basics of Hermitian Geometry

Given any linear map f: E — E, if A is the matrix of f w.r.t. (e1,...,e,), prove that
f is self-adjoint (f* = f) iff
G'A=A"G'.
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Chapter 12

Spectral Theorems in Euclidean and Hermitian
Spaces

12.1 Introduction: What’s with Lie Groups and Lie Algebras?

The goal of this chapter is to show that there are nice normal forms for symmetric
matrices, skew-symmetric matrices, orthogonal matrices, and normal matrices. The
spectral theorem for symmetric matrices states that symmetric matrices have real
eigenvalues and that they can be diagonalized over an orthonormal basis. The spec-
tral theorem for Hermitian matrices states that Hermitian matrices also have real
eigenvalues and that they can be diagonalized over a complex orthonormal basis.
Normal matrices can be block diagonalized over an orthonormal basis with blocks
having size at most two, and there are refinements of this normal form for skew-
symmetric and orthogonal matrices.

One of the main purposes of this book is to give a concrete introduction to Lie
groups and Lie algebras. Our ulterior motive is to present some beautiful mathemat-
ical concepts that can also be used as tools for solving practical problems arising in
computer science, more specifically in robotics, motion planning, computer vision,
and computer graphics.

Most texts on Lie groups and Lie algebras begin with prerequisites in differen-
tial geometry that are often formidable to average computer scientists (or average
scientists, whatever that means!). We also struggled for a long time, trying to figure
out what Lie groups and Lie algebras are all about, but this can be done! A good
way to sneak into the wonderful world of Lie groups and Lie algebras is to play
with explicit matrix groups such as the group of rotations in R? (or R3) and with
the exponential map. After actually computing the exponential A = ef of a 2 x 2
skew-symmetric matrix B and observing that it is a rotation matrix, and similarly
for a 3 x 3 skew-symmetric matrix B, one begins to suspect that there is something
deep going on. Similarly, after the discovery that every real invertible n X n matrix
A can be written as A = RP, where R is an orthogonal matrix and P is a positive
definite symmetric matrix, and that P can be written as P = e5 for some symmetric
matrix S, one begins to appreciate the exponential map.

343



344 12 Spectral Theorems

Our goal is to give an elementary and concrete introduction to Lie groups and
Lie algebras by studying a number of the so-called classical groups, such as the
general linear group GL(n,R), the special linear group SL(n,R), the orthogonal
group O(n), the special orthogonal group SO(n), and the group of affine rigid mo-
tions SE(n), and their Lie algebras gl(n,IR) (all matrices), sl(n,R) (matrices with
null trace), o(n), and so(n) (skew-symmetric matrices). We also consider the cor-
responding groups of complex matrices and their Lie algebras. Whenever possible,
we show that the exponential map is surjective. For this, all we need is some results
of linear algebra about various normal forms for symmetric matrices and skew-
symmetric matrices. Thus, we begin by proving that there are nice normal forms
(block diagonal matrices whith blocks having size at most two) for normal matrices
and other special cases (symmetric matrices, skew-symmetric matrices, orthogonal
matrices). We also prove the spectral theorem for complex normal matrices.

12.2 Normal Linear Maps

We begin by studying normal maps, to understand the structure of their eigenvalues
and eigenvectors. This section and the next two were inspired by Lang [4], Artin
[1], Mac Lane and Birkhoff [5], Berger [2], and Bertin [3].

Definition 12.1. Given a Euclidean space E, a linear map f: E — E is normal if
fofrt=frof.

A linear map f: E — E is self-adjoint if f = f*, skew-self-adjoint if f = —f*, and
orthogonal if fo f* = f*o f =1id.

Obviously, a self-adjoint, skew-self-adjoint, or orthogonal linear map is a normal
linear map. Our first goal is to show that for every normal linear map f: E — E,
there is an orthonormal basis (w.r.t. (—, —)) such that the matrix of f over this basis
has an especially nice form: It is a block diagonal matrix in which the blocks are
either one-dimensional matrices (i.e., single entries) or two-dimensional matrices of

the form
Aop

This normal form can be further refined if f is self-adjoint, skew-self-adjoint, or
orthogonal. As a first step, we show that f and f* have the same kernel when f is
normal.

Lemma 12.1. Given a Euclidean space E, if f: E — E is a normal linear map, then
Ker f = Ker f*.

Proof. First, let us prove that
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for all u,v € E. Since f* is the adjoint of f and fo f* = f* o f, we have

(fu), f(u)) = (u,(f" o f)(u)),
= <u,(f0f*)(u)>,
= (f"(u), f" ().

Since (—, —) is positive definite,

(f(u),f)) =0 iff f(u) =0,
(7 @), f*(u) =0 iff  f*(u) =0,

and since

we have
flw)y=0 iff f*(u)=0.
Consequently, Ker f = Ker f*. 0O

The next step is to show that for every linear map f: E — E there is some sub-
space W of dimension 1 or 2 such that f(W) C W. When dim(W) = 1, the subspace
W is actually an eigenspace for some real eigenvalue of f. Furthermore, when f
is normal, there is a subspace W of dimension 1 or 2 such that f(W) C W and
f*(W) CW. The difficulty is that the eigenvalues of f are not necessarily real. One
way to get around this problem is to complexify both the vector space E and the
inner product (—, —).

In Section 5.11 it was explained how a real vector space E is embedded into a
complex vector space Ec, and how a linear map f: E — E is extended to a linear
map fr: Ec — Ec. For the sake of convenience, we repeat the definition of E¢.

Definition 12.2. Given a real vector space E, let E¢ be the structure E x E under
the addition operation

(w1, u2) + (vi, v2) = (u1 +v1, uz +v2),
and let multiplication by a complex scalar z = x + iy be defined such that
(x+1y) - (u,v) = (xu — yv, yu+xv).
It is convenient to write u + iv for (u,v).

A linear map f: E — E is extended to the linear map f¢: Ec — E¢ defined such
that

Je(u+iv) = () +if(v).
Next, we need to extend the inner product on E to an inner product on Ec.

The inner product (—, —) on a Euclidean space E is extended to the Hermitian
positive definite form (—, —)¢ on Eg as follows:
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(ur +ivi,up +iva)e = (ur,uz) + (vi,va) +i((uz,v1) — (u1,v2)).

It is easily verified that (—, —)¢ is indeed a Hermitian form that is positive defi-
nite, and it is clear that (—, —)¢ agrees with (—, —) on real vectors. Then, given any
linear map f: E — E, it is easily verified that the map f¢ defined such that

Jelutiv) = f"(u) +if*(v)

for all u,v € E is the adjoint of f¢ w.r.t. {(—,—)c.
Assuming again that E is a Hermitian space, observe that Lemma 12.1 also holds.
We have the following crucial lemma relating the eigenvalues of f and f*.

Lemma 12.2. Given a Hermitian space E, for any normal linear map f: E — E, a
vector u is an eigenvector of f for the eigenvalue A (in C) iff u is an eigenvector of
" for the eigenvalue A.

Proof. First, it is immediately verified that the adjoint of f — Aid is f* — Aid. Fur-
thermore, f — Aid is normal. Indeed,

(f = Aid) o (f — Aid)* = (f — Aid) o (f* — Aid),
=fof*—Af—Af*+Ahid,
=frof—Af = Af+AAid,
= (f*—Aid)o (f — Aid),
=(f—Aid)* o (f — Aid).

Applying Lemma 12.1 to f — Aid, for every nonnull vector u, we see that
(f = Aid)(u) =0 iff (f*—2Aid)(u) =0,
which is exactly the statement of the lemma. O

The next lemma shows a very important property of normal linear maps: Eigen-
vectors corresponding to distinct eigenvalues are orthogonal.

Lemma 12.3. Given a Hermitian space E, for any normal linear map f: E — E, if
u and v are eigenvectors of f associated with the eigenvalues A and L (in C) where

A # u, then {(u,v) =0.

Proof. Let us compute (f(u),v) in two different ways. Since v is an eigenvector of
f for p, by Lemma 12.2, v is also an eigenvector of f* for [, and we have

(f(u),v) = (Au,v) = A{u,v)
and
(f(u),v) = (u, f*(v)) = (u,@v) = p(u,v),

where the last identity holds because of the semilinearity in the second argument,
and thus



12.2 Normal Linear Maps 347

Afu,v) = plu,v),
that is,

(A — “)<”7V> =0,
which implies that (u,v) =0, since A # u. 0O

We can also show easily that the eigenvalues of a self-adjoint linear map are real.

Lemma 12.4. Given a Hermitian space E, the eigenvalues of any self-adjoint linear
map f: E — E are real.

Proof. Let z (in C) be an eigenvalue of f and let u be an eigenvector for z. We
compute {f(u),u) in two different ways. We have

(f (), u) = (zut,u) = z(u, ),

and since f = f*, we also have

(f(u),u) = Cu, f(w)) = (u, f () = (u,2u) = Z(u,u).

Thus,
z(u,u) =7Z(u,u),

which implies that z =7, since u # 0, and z is indeed real. 0O

Given any subspace W of a Hermitian space E, recall that the orthogonal com-
plement W of W is the subspace defined such that

Wt ={uckE| (uw)=0,forallwe W}

Recall from Lemma 11.7 that that E =W @& W+ (this can be easily shown, for exam-
ple, by constructing an orthonormal basis of E using the Gram—Schmidt orthonor-
malization procedure). The same result also holds for Euclidean spaces (see Lemma
6.8). The following lemma provides the key to the induction that will allow us to
show that a normal linear map can be diagonalized. It actually holds for any linear
map. We found the inspiration for this lemma in Berger [2].

Lemma 12.5. Given a Hermitian space E, for any linear map f: E — E, if W is
any subspace of E such that f(W) C W and f*(W) CW, then f(W') CW* and
frwH)ycwt,

Proof. 1f u € W+, then
(u,wy =0

for all w € W. However,
(f(u),w) = (u, f*(w)),

and since f*(W) C W, we have f*(w) € W, and since u € W, we get

(u, f*(w)) =0,
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which shows that
(f(u),w) =0

for all w € W, that is, f(u) € W=. Thus, f(W) C W. The proof that f*(W+) C
W is analogous. O

The above lemma also holds for Euclidean spaces. Although we are ready to
prove that for every normal linear map f (over a Hermitian space) there is an or-
thonormal basis of eigenvectors, we now return to real Euclidean spaces.

If f: E— E is alinear map and w = u +1iv is an eigenvector of fc: Ec — E¢
for the eigenvalue z = A + iy, where u,v € E and A, € R, since

Je(utiv) = () +if(v)

and
fclu+iv)=A+in)(u+iv) = Au—pv+i(uu+Av),

we have

fw)=Au—pv and f(v) = pu+ Ay,

from which we immediately obtain

fe(u—iv) = (4 —ip)(u—iv),

which shows that W = u — iv is an eigenvector of f¢ for 7= A —iu. Using this fact,
we can prove the following lemma.

Lemma 12.6. Given a Euclidean space E, for any normal linear map f: E — E,
if w=u+1iv is an eigenvector of fr associated with the eigenvalue z = A + il
(where u,v € E and A, € R), if u # 0 (i.e., z is not real) then (u,v) =0 and
(u,uy = (v,v), which implies that u and v are linearly independent, and if W is the
subspace spanned by u and v, then f(W) =W and f*(W) = W. Furthermore, with
respect to the (orthogonal) basis (u,v), the restriction of f to W has the matrix

A
If £ =0, then A is a real eigenvalue of f, and either u or v is an eigenvector of f

for A. If W is the subspace spanned by u if u # 0, or spanned by v # 0 if u = 0, then
FOW) CW and f*(W) CW.

Proof. Since w =u+iv is an eigenvector of fc, by definition it is nonnull, and either
u # 0 or v # 0. From the fact stated just before Lemma 12.6, u — iv is an eigenvector
of fc for A —ip. It is easy to check that fr is normal. However, if u # 0, then
A +iu # A —iu, and from Lemma 12.3, the vectors u+iv and u — iv are orthogonal
w.r.t. (—,—)c, that is,

(u+iv,u —ivc = (u,u) — (v,v) + 2i{u,v) = 0.
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Thus, we get (u,v) =0 and (u,u) = (v,v), and since u # 0 or v # 0, u and v are
linearly independent. Since

fu)=Au—pv and f(v)=pu+iv
and since by Lemma 12.2 u +iv is an eigenvector of f¢ for A —iu, we have
ffw)=Au+puv and f*(v)=—pu+Av,

and thus f(W) =W and f*(W) = W, where W is the subspace spanned by u and v.
When p = 0, we have

fw)y=2Au and f(v)=Av,

and since u # 0 or v # 0, either u or v is an eigenvector of f for A. If W is the
subspace spanned by u if u # 0, or spanned by v if u =0, it is obvious that f(W) CW
and f*(W) C W. Note that A = 0 is possible, and this is why C cannot be replaced
by=. O

The beginning of the proof of Lemma 12.6 actually shows that for every linear
map f: E — E there is some subspace W such that f(W) C W, where W has di-
mension 1 or 2. In general, it doesn’t seem possible to prove that W+ is invariant
under f. However, this happens when f is normal.

We can finally prove our first main theorem.

Theorem 12.1. Given a Euclidean space E of dimension n, for every normal linear
map f: E — E there is an orthonormal basis (ey,...,e,) such that the matrix of f
w.r.t. this basis is a block diagonal matrix of the form

Aq
Ay ...

A,

such that each block A; is either a one-dimensional matrix (i.e., a real scalar) or a
two-dimensional matrix of the form

(A
A’_(ui li)’

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the
result is trivial. Assume now that n > 2. First, since C is algebraically closed (i.e.,
every polynomial has a root in C), the linear map f : Ec — E¢ has some eigenvalue
z=A+ip (where A, € R). Let w = u + iv be some eigenvector of f¢ for A +iu
(where u,v € E). We can now apply Lemma 12.6.

where A, Wi € R, with u; > 0.
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If 4 =0, then either u or v is an eigenvector of f for A € R. Let W be the subspace
of dimension 1 spanned by e; = u/||u|| if u # 0, or by e; = v/||v|| otherwise. It is
obvious that f(W) C W and f*(W) C W. The orthogonal W of W has dimension
n—1, and by Lemma 12.5, we have f(W+) C W. But the restriction of f to W+
is also normal, and we conclude by applying the induction hypothesis to W.

If u # 0, then (u,v) =0 and {(u,u) = (v,v), and if W is the subspace spanned by
u/||u|| and v/||v||, then f(W) =W and f*(W) = W. We also know that the restriction
of f to W has the matrix

A
(—u l)

with respect to the basis (u/||ul|,v/||v|]). If 4 <0, welet A} =4, gy = —U, e; =
u/||ul|,and e =v/||v|. If 1 >0, welet Ay = A, uy =y, e; =v/||v||, and ex = u/ ||u].
In all cases, it is easily verified that the matrix of the restriction of f to W w.r.t. the

orthonormal basis (eg,e;) is
M —,u1>
Al = ,
! (#1 A

where A, 11 € R, with gy > 0. However, W has dimension n — 2, and by Lemma
12.5, f(WL) C W+, Since the restriction of fto W+ is also normal, we conclude

by applying the induction hypothesis to W+. 0O

After this relatively hard work, we can easily obtain some nice normal forms for
the matrices of self-adjoint, skew-self-adjoint, and orthogonal linear maps. How-
ever, for the sake of completeness (and since we have all the tools to so do), we
go back to the case of a Hermitian space and show that normal linear maps can be
diagonalized with respect to an orthonormal basis.

Theorem 12.2. Given a Hermitian space E of dimension n, for every normal linear
map f: E — E there is an orthonormal basis (ey, ..., e,) of eigenvectors of f such
that the matrix of f w.r.t. this basis is a diagonal matrix

Mo
Ay ...

oA
where A; € C.

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the
result is trivial. Assume now that n > 2. Since C is algebraically closed (i.e., every
polynomial has a root in C), the linear map f: E — E has some eigenvalue A € C,
and let w be some eigenvector for A. Let W be the subspace of dimension 1 spanned
by w. Clearly, f(W) C W. By Lemma 12.2, w is an eigenvector of f* for A, and
thus f*(W) C W. By Lemma 12.5, we also have f(W-) C W, The restriction of f
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to W+ is still normal, and we conclude by applying the induction hypothesis to W+
(whose dimensionisn—1). O

Thus, in particular, self-adjoint, skew-self-adjoint, and orthogonal linear maps
can be diagonalized with respect to an orthonormal basis of eigenvectors. In this
latter case, though, an orthogonal map is called a unitary map. Also, Lemma 12.4
shows that the eigenvalues of a self-adjoint linear map are real. It is easily shown
that skew-self-adjoint maps have eigenvalues that are pure imaginary or null, and
that unitary maps have eigenvalues of absolute value 1.

Remark: There is a converse to Theorem 12.2, namely, if there is an orthonormal
basis (ey,...,e,) of eigenvectors of f, then f is normal. We leave the easy proof as
an exercise.

12.3 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal Linear
Maps

We begin with self-adjoint maps.

Theorem 12.3. Given a Euclidean space E of dimension n, for every self-adjoint
linear map f: E — E, there is an orthonormal basis (e1, ..., e,) of eigenvectors of
[ such that the matrix of f w.r.t. this basis is a diagonal matrix

Ao
Ay ...

A
where A; € R.

Proof. The case n =1 is trivial. If n > 2, we need to show that f: E — E has some
real eigenvalue. There are several ways to do so. One method is to observe that the
linear map fc: Ec — Ec is also self-adjoint, and by Lemma 12.4 the eigenvalues
of fc are all real. This implies that f itself has some real eigenvalue, and in fact,
all eigenvalues of f are real. We now give a more direct method not involving the
complexification of (—, —) and Lemma 12.4.

Since C is algebraically closed, fc has some eigenvalue A +iu, and let u+iv
be some eigenvector of fc for A +iu, where A, € R and u,v € E. We saw in the
proof of Lemma 12.6 that

fw)=Au—pv and f(v)=pu+Av.

Since f = f*,
(f(w),v) = (u, f(v))
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for all u,v € E. Applying this to
Fw)y=Au—pv and f(v)=pu+Av,

we get

(F(),) = (e — pv,v) = Au,v) = pv,)
and

(u, f(v)) = (u, e+ Av) = pu, u) + Adu,v),

and thus we get
A’<”=v> —/.L(v,v> = [.L(u,u> +A<M,V>,

that is,
p((u,u) +(v,v)) =0,

which implies pt = 0, since either u # 0 or v # 0. Therefore, A is a real eigenvalue
of f.

Now, going back to the proof of Theorem 12.1, only the case where t = 0 applies,
and the induction shows that all the blocks are one-dimensional. [

Theorem 12.3 implies that if A, ..., A, are the distinct real eigenvalues of f, and
E; is the eigenspace associated with A;, then

where E; and E; are orthogonal for all i # j.

Remark: Another way to prove that a self-adjoint map has a real eigenvalue is to
use a little bit of calculus. We learned such a proof from Herman Gluck. The idea is
to consider the real-valued function @ : E — R defined such that

for every u € E. This function is C*, and if we represent f by a matrix A over some
orthonormal basis, it is easy to compute the gradient vector

Vo(X) = (g—j(x),...,g—z(x))

of @ at X. Indeed, we find that
VO(X)=(A+ATX,
where X is a column vector of size n. But since f is self-adjoint, A = AT, and thus
V& (X) =24AX.

The next step is to find the maximum of the function @ on the sphere
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S = {(x1,...,x0) ER" | x4 22 =1},

Since " ! is compact and @ is continuous, and in fact C*, @ takes a maximum at
some X on S"!. But then it is well known that at an extremum X of & we must
have

ddy(Y) = (VB(X),Y) =0

for all tangent vectors ¥ to §"~! at X, and so V@(X) is orthogonal to the tangent
plane at X, which means that
Vo (X)=21X

for some A € R. Since V@ (X) = 24X, we get
2AX = AX,

and thus A /2 is a real eigenvalue of A (i.e., of f).

Next, we consider skew-self-adjoint maps.

Theorem 12.4. Given a Euclidean space E of dimension n, for every skew-self-
adjoint linear map f: E — E there is an orthonormal basis (ey,...,e,) such that
the matrix of f w.r.t. this basis is a block diagonal matrix of the form

A .
As ...
Ay

such that each block A; is either 0 or a two-dimensional matrix of the form

(0 -
A’_(ui 0 )

where U; € R, with y; > 0. In particular, the eigenvalues of fc are pure imaginary
of the form iy, or 0.

Proof. The case where n = 1 is trivial. As in the proof of Theorem 12.1, fc has
some eigenvalue z = A + iy, where A, 1 € R. We claim that A = 0. First, we show
that

<f(w)7w> =0

for all w € E. Indeed, since f = —f*, we get

(fw),w) = w, [T (W) = (w, =f(w)) = =(w, f(w)) = = (f(w),w),

since (—, —) is symmetric. This implies that

<f(w)7w> =0.
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Applying this to u and v and using the fact that
Fw)y=Au—pv and f(v)=pu+Av,

we get

0= (f(u),u) = (Au—pv,u) = Au,u) — p(u,v)
and

0=(f(v),v) = (Lu+Av,v) = u{u,v) + A {v,v),

from which, by addition, we get
A((v,v) + (v,v)) = 0.

Since u # 0 or v # 0, we have A = 0.

Then, going back to the proof of Theorem 12.1, unless u = 0, the case where u
and v are orthogonal and span a subspace of dimension 2 applies, and the induction
shows that all the blocks are two-dimensional or reduced to 0. O

Remark: One will note that if f is skew-self-adjoint, then ifc is self-adjoint w.r.t.
(—,—)c- By Lemma 12.4, the map if¢ has real eigenvalues, which implies that the
eigenvalues of fc are pure imaginary or 0.

Finally, we consider orthogonal linear maps.

Theorem 12.5. Given a Euclidean space E of dimension n, for every orthogonal
linear map f: E — E there is an orthonormal basis (ey, ... ,e,) such that the matrix
of f w.r.t. this basis is a block diagonal matrix of the form

Ay .
Ay ...
Ay
such that each block A; is either 1, —1, or a two-dimensional matrix of the form
A — cos 0; —sin 6;
"7 \sin6; cos6;
where 0 < 6; < w. In particular, the eigenvalues of fc are of the form cos 6; 1isin 6;,
1, or —1.

Proof. The case where n = 1 is trivial. As in the proof of Theorem 12.1, fc has
some eigenvalue z = A +iu, where A, 1 € R. Since fc o f¢ = f¢ o fc = id, the map
fc is invertible. In fact, the eigenvalues of fi have absolute value 1. Indeed, if z (in
C) is an eigenvalue of f, and u is an eigenvector for z, we have

(fe ), fo () = (zu, zu) = 2Z(u,u)
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and
(fe(w), fo(w) = (u, (fe o fo)(w) = (u,u),
from which we get
Z{u,u) = (u,u).
Since u # 0, we have zz = 1, i.e., |z = 1. As a consequence, the eigenvalues of
fc are of the form cos @ £isin O, 1, or —1. The theorem then follows immediately

from Theorem 12.1, where the condition g > 0 implies that sin6; > 0, and thus,
0<6;<m 0O

It is obvious that we can reorder the orthonormal basis of eigenvectors given by
Theorem 12.5, so that the matrix of f w.r.t. this basis is a block diagonal matrix of

the form
Ay ...

_Iq
IP

where each block A; is a two-dimensional rotation matrix A; # +1, of the form
A — cos 6; —sin 6;
"7 \sin6; cos6;
with 0 < 6; < 7.

The linear map f has an eigenspace E(1, f) = Ker(f —id) of dimension p for
the eigenvalue 1, and an eigenspace E(—1, f) = Ker (f + id) of dimension ¢ for the
eigenvalue —1. If det(f) = +1 (f is a rotation), the dimension g of E(—1, f) must
be even, and the entries in —I,; can be paired to form two-dimensional blocks, if we
wish. In this case, every rotation in SO(n) has a matrix of the form

A ...
.
In72m

where the first m blocks A; are of the form
A — cos 6; —sin 6;
"7 \sin6; cos6;
with 0 < 6; < 7.

Theorem 12.5 can be used to prove a sharper version of the Cartan—Dieudonné
theorem, as claimed in remark (3) after Theorem 8.1.
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Theorem 12.6. Let E be a Euclidean space of dimension n > 2. For every isometry
f€O(E), if p=dim(E(1,f)) = dim(Ker (f —id)), then f is the composition of
n — p reflections, and n — p is minimal.

Proof. From Theorem 12.5 there are r subspaces Fi, ..., F;, each of dimension 2,
such that
E=E(,f)OE(-1,f)oF o oF,

and all the summands are pairwise orthogonal. Furthermore, the restriction r; of f to
each F; is a rotation r; # +id. Each 2D rotation r; can be written a the composition
ri= s? os; of two reflections s; and s? about lines in F; (forming an angle 6;/2). We
can extend s; and s/ to hyperplane reflections in E by making them the identity on
F:-. Then,
slos,0--05] 085

agrees with f on F1 ®--- @ F, and is the identity on E(1, f) B E(—1,f). If E(—1, f)
has an orthonormal basis of eigenvectors (vi,...,v,), letting s’j' be the reflection
about the hyperplane (v j)L, it is clear that

" . "
SqO oS5

agrees with f on E(—1, f) and is the identity on E(1, f) ® F} @ - -- © F,. But then,

o "n_J /
f_sqo---oslosros,o---oslosl7

the composition of 2r 4+ g = n — p reflections.

If
f:slo"'osla

for r reflections s;, it is clear that

t

F=(E(l,s) CE(L,f),

i=1

where E(1,s;) is the hyperplane defining the reflection s;. By the Grassmann re-
lation, if we intersect < n hyperplanes, the dimension of their intersection is at
least n —t. Thus, n —t < p, that is, t > n — p, and n — p is the smallest number of
reflections composing f. 0O

The theorems of this section and of the previous section can be immediately
applied to matrices.

12.4 Normal, Symmetric, Skew-Symmetric, Orthogonal,
Hermitian, Skew-Hermitian, and Unitary Matrices

First, we consider real matrices. Recall the following definitions.
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Definition 12.3. Given a real m x n matrix A, the transpose AT of A is the n x m
matrix AT = (a;r ;) defined such that

foralli,j, 1 <i<m,1<j<n.Arealnxnmatrix A is

e normal if

AAT =ATA,
e symmetric if
AT =4,
*  skew-symmetric if
AT =—A,

e orthogonal if
AAT =ATA=1,

Recall from Lemma 6.10 that when E is a Euclidean space and (ey, ..., ¢,) is an
orthonormal basis for E, if A is the matrix of a linear map f: E — E w.r.t. the basis
(e1,...,en),then AT is the matrix of the adjoint f* of f. Consequently, a normal lin-
ear map has a normal matrix, a self-adjoint linear map has a symmetric matrix,
a skew-self-adjoint linear map has a skew-symmetric matrix, and an orthogonal
linear map has an orthogonal matrix. Similarly, if £ and F are Euclidean spaces,
(u1,...,up) is an orthonormal basis for E, and (v,...,v,) is an orthonormal basis
for F, if a linear map f: E — F has the matrix A w.r.t. the bases (uy,...,u,) and
(V1,---,vm), then its adjoint f* has the matrix A" w.r.t. the bases (vy,...,v,) and
(i, up).

Furthermore, if (uj,...,u,) is another orthonormal basis for E and P is the
change of basis matrix whose columns are the components of the u; w.r.t. the ba-
sis (eq,...,e,), then P is orthogonal, and for any linear map f: E — E, if A is the
matrix of f w.r.t (e1,...,e,) and B is the matrix of f w.r.t. (uy,...,u,), then

B=PTAP.
As a consequence, Theorems 12.1 and 12.3—12.5 can be restated as follows.

Theorem 12.7. For every normal matrix A there is an orthogonal matrix P and a
block diagonal matrix D such that A= PDP, where D is of the form

D
D, ...
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such that each block D; is either a one-dimensional matrix (i.e., a real scalar) or a
two-dimensional matrix of the form

(A
Di= (.LLi Ai )’

Theorem 12.8. For every symmetric matrix A there is an orthogonal matrix P and
a diagonal matrix D such that A= PDP", where D is of the form

where A, Wi € R, with y; > 0.

Mo
A ...

where A; € R.

Theorem 12.9. For every skew-symmetric matrix A there is an orthogonal matrix P
and a block diagonal matrix D such that A= PDP', where D is of the form

D ...
D, ...
..D,

such that each block D; is either 0 or a two-dimensional matrix of the form

(0 -
D’_<uf 0 >

where l; € R, with 1; > 0. In particular, the eigenvalues of A are pure imaginary of
the form xip;, or 0.

Theorem 12.10. For every orthogonal matrix A there is an orthogonal matrix P and
a block diagonal matrix D such that A= PDP", where D is of the form

D, .
D, ...

.. D,
such that each block D; is either 1, —1, or a two-dimensional matrix of the form

cos 6; —sin 6;
Di= (sin 6; cos6; )
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where 0 < 0; < 7. In particular, the eigenvalues of A are of the form cos 6; £isin 0;,
1, or —1.

We now consider complex matrices.
Definition 12.4. Given a complex m X n matrix A, the transpose A" of A is the n x m
matrix AT = (a;'— j) defined such that

T ..
a; j=4aj,i

foralli,j, 1 <i<m,1< j<n.The conjugate A of A is the m x n matrix A = (i)
defined such that
bi,j = ai,

foralli,j, 1 <i<m, 1< j<n.Given an m X n complex matrix A, the adjoint A*
of A is the matrix defined such that

A*=(AT)=(A)".

A complex n X n matrix A is

e normal if

AA* =A%A,
e Hermitian if
A" =A,
*  skew-Hermitian if
A¥=—A,
* unitary if
AA* =A"A =1,.

Recall from Lemma 11.10 that when E is a Hermitian space and (ey, ..., e,) is an
orthonormal basis for E, if A is the matrix of a linear map f: E — E w.r.t. the basis
(e1,...,ey), then A* is the matrix of the adjoint f* of f. Consequently, a normal

linear map has a normal matrix, a self-adjoint linear map has a Hermitian matrix, a
skew-self-adjoint linear map has a skew-Hermitian matrix, and a unitary linear map
has a unitary matrix. Similarly, if £ and F are Hermitian spaces, (u1,...,u,) is an
orthonormal basis for E, and (v1,...,vy) is an orthonormal basis for F, if a linear
map f: E — F has the matrix A w.r.t. the bases (uy,...,u,) and (vq,...,vy), then
its adjoint f* has the matrix A* w.r.t. the bases (v{,...,vy) and (u1,...,u,).
Furthermore, if (uj,...,u,) is another orthonormal basis for £ and P is the
change of basis matrix whose columns are the components of the u; w.r.t. the basis
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(e1,...,en), then P is unitary, and for any linear map f: E — E, if A is the matrix
of f w.rt (ey,...,e,) and B is the matrix of f w.r.t. (uy,...,u,), then

B =P*AP.

Theorem 12.2 can be restated in terms of matrices as follows. We can also say a
little more about eigenvalues (easy exercise left to the reader).

Theorem 12.11. For every complex normal matrix A there is a unitary matrix U
and a diagonal matrix D such that A= UDU?. Furthermore, if A is Hermitian, then
D is a real matrix; if A is skew-Hermitian, then the entries in D are pure imaginary
or null; and if A is unitary, then the entries in D have absolute value 1.

We now have all the tools to present the important singular value decomposition
(SVD) and the polar form of a matrix.

12.5 Problems

12.1. Given a Hermitian space of finite dimension #, for any linear map f: E — E,
prove that if there is an orthonormal basis (ey,...,e,) of eigenvectors of f, then f is
normal.

12.2. The purpose of this problem is to prove that given any self-adjoint linear map
f: E — E (i.e., such that f* = f), where E is a Euclidean space of dimension n > 3,
given an orthonormal basis (ey,...,ey), there are n — 2 isometries #;, hyperplane
reflections or the identity, such that the matrix of

hy—20---0hjofohjo---ohy

is a symmetric tridiagonal matrix.

(1) Prove that for any isometry f: E — E we have f = f* = f~liff fo f =id.

Prove that if f and & are self-adjoint linear maps (f* = f and h* = h), then ho foh
is a self-adjoint linear map.

(2) Proceed by induction, taking inspiration from the proof of the triangular de-
composition given in Chapter 8. Let V; be the subspace spanned by (exy1,-..,en).
For the base case, proceed as follows.

Let

fle) =adYe; +---+adle,,

and let
ria = |lader+ -+ apenl|.

Find an isometry A (reflection or id) such that

hi(f(er) —aler) =ri zes.
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Observe that
0
wi =ri2ex+aje; — f(e)) €V,

and prove that i (e;) = ey, so that
hiofohi(e)) =ale;+r e

Let fi =hjofoh;.
Assuming by induction that

Je=hgo---ohjofohjo--ohy
has a tridiagonal matrix up to the kth row and column, 1 <k <n—3, let
Selery1) = aliek + ali+1€k+1 +o a’f;en,

and let
Tkt1,k4+2 = |‘a£+zek+z + - +a’,‘,en||.

Find an isometry /. (reflection or id) such that
k k

i1 (fi(ers1) — agex — A 1€k1) = Tii 1 k2 €ki2-

Observe that
_ k k v
Wil = T 1 k42 €kr2 + agex +agy1exi1 — filew1) € Vigr,
and prove that i1 (ex) = ex and Ay 1(ex1) = et 1, SO that
k k
hiy10 frohigi(exy1) = ager + g €t + i k2 €xr2-

Let fi+1 = hk+1 © fx © hk41, and finish the proof.

Do f and f,,_» have the same eigenvalues? If so, explain why.

(3) Prove that given any symmetric n X n matrix A, there are n — 2 matrices
Hi,...,H,_», Householder matrices or the identity, such that

B=H, »---HAH,---H,_»
is a symmetric tridiagonal matrix.
12.3. Write a computer program implementing the method of Problem 12.2(3).

12.4. Let A be a symmetric tridiagonal n X n matrix
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by ¢y
c1 by o
¢ by 3

Cn—2 bp1 cu1
Cn—1 bn

where it is assumed that ¢; # 0 for all i, 1 <i<n—1, and let A; be the k x k
submatrix consisting of the first k rows and columns of A, 1 < k < n. We define the
polynomials P (x) as follows: (0 < k < n).

P() (x) 1,
Py(x) = by —x,
Pk(x) = (bk —X)Pk,I (x) — Ciflpkfz(x),

where 2 < k <n.
(1) Prove the following properties:

(i) P¢(x) is the characteristic polynomial of A;, where 1 <k <n.
(i) limy—,—co P (x) = +oo, where 1 <k < n.
(i) If Pk(x) =0, then Pkfl(.x)Pk+1 (x) <0,where 1 <k<n-—1.
(iv) Pi(x) has k distinct real roots that separate the k + 1 roots of Py, where 1 <
k<n-—1.

(2) Given any real number u > 0, for every k, 1 < k < n, define the function
sgi (1) as follows:

sg, (1) = sign of P (1) if Pe(u) #0,
&)= sign of By (1) if Pu(p) = 0.

We encode the sign of a positive number as 4+, and the sign of a negative number
as —. Then let E(k, i) be the ordered list

E(k,[.t) = <+7 Sg1 (“)7 ng(“)v SEEX) Sgk(.u»u

and let N (k, 1) be the number changes of sign between consecutive signs in E (k, 1t ).
Prove that sg; (i) is well defined, and that N(k, ) is the number of roots A of
P, (x) such that A < .

Remark: The above can be used to compute the eigenvalues of a (tridiagonal) sym-
metric matrix (the method of Givens—Householder).

12.5. Let A = (a; ;) be a real or complex n x n matrix.
(1) If A is an eigenvalue of A, prove that there is some eigenvectoru = (uy, ..., u,)
of A for A such that

max |u;| = 1.
1<i<n
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(2) If u = (uy,...,u,) is an eigenvector of A for A as in (1), assuming that i,
1 <i<n,is an index such that |u;| = 1, prove that

n
(7L - a,',')u,' = Z ajjuj,
j=1
J#i
and thus that .
A —ai| < Y aij.
j=1
J#i

Conclude that the eigenvalues of A are inside the union of the closed disks D; defined

such that
n
D; = {ZE Cllz—aii < Z |Cl,‘j|}.
j=1
J#i

Remark: This result is known as Gershgorin’s theorem.

12.6. (a) Given a rotation matrix
R (€08 0 —sinb
“ \sin® cos@ )’
where 0 < 0 < 7, prove that there is a skew-symmetric matrix B such that

R=(I-B)(I+B)"".

(b) If B is a skew-symmetric n X n matrix, prove that A, — B and AI, + B are
invertible for all A = 0, and that they commute.
(c) Prove that
R= (AL, —B)(Al,+B)!

is a rotation matrix that does not admit —1 as an eigenvalue.
(d) Given any rotation matrix R that does not admit —1 as an eigenvalue, prove
that there is a skew-symmetric matrix B such that

R=(I,—B)(I,+B)"' = (I,+B)"'(I,- B).

This is known as the Cayley representation of rotations (Cayley, 1846).
(e) Given any rotation matrix R, prove that there is a skew-symmetric matrix B
such that s
R=(L—B)I,+B)™")".

12.7. Given a Euclidean space E, let ¢: E x E — R be a symmetric bilinear form
on E. Prove that there is an orthonormal basis of E w.r.t. which ¢ is represented
by a diagonal matrix. Given any basis (ey,...,e,) of E, recall that for any two vec-
tors x and y, if X and Y denote the column vectors of coordinates of x and y w.r.t.
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(e1,...,en), then
Px,y) =X"AY,

for some symmetric matrix A; see Chapter 6, Problem 6.13.
Hint. Let A be the symmetric matrix representing ¢ over (ey,...,e,). Use the fact
that there is an orthogonal matrix P and a (real) diagonal matrix D such that

A=PDP'.

12.8. Given a Hermitian space E, let ¢ : E x E — C be a Hermitian form on E. Prove
that there is an orthonormal basis of E w.r.t. which ¢ is represented by a diagonal

matrix. Given any basis (ej,...,e,) of E, recall that for any two vectors x and y, if
X and Y denote the column vectors of coordinates of x and y w.r.t. (ey,...,ey), then
P(x,y) =X AY,

for some Hermitian matrix A; see Chapter 11, Problem 11.7.
Hint. Let A be the Hermitian matrix representing ¢ over (e1,...,e,). Use the fact
that there is a unitary matrix P and a (real) diagonal matrix D such that

A" = PDP*.

12.9. Let E be a Euclidean space of dimension n. For any linear map f: E — E, we
define the Rayleigh—Ritz ratio of f as the function Ry: (E —{0}) — R defined such
that

for all x # 0.
(a) Prove that
Ry(x) = Ry (Ax)

for all A € R, A # 0. As a consequence, show that it can be assumed that Ry is
defined on the unit sphere

s = {xe E || = 1.

(b) Assume that f is self-adjoint, and let A} < A5 < --- < A, be the (real) eigen-
values of f listed in nondecreasing order. Prove that there is an orthonormal basis
(e1,...,e,) such that, letting V; = §"~! N E, be the intersection of "~ ! with the sub-
space Ej spanned by {e,...,e;}, the following properties hold for all k, 1 <k < n:

(1) A = Ry (ex);
(2) )yk = MaXycy, Rf(x).

(c) Letting ¥} denote the set of all sets of the form W N "1 where W is any
subspace of dimension k > 1, prove that

(3) A = miny ¢y, maxeew Ry(x).

Hint. You will need to prove that if W is any subspace of dimension k, then
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dim(WNEL) > 1.

The formula given in (3) is usually called the Courant—Fischer formula.
(d) Prove that
Rf(S”’l) = [A1, A
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Chapter 13

Singular Value Decomposition (SVD) and Polar
Form

13.1 Polar Form

In this section we assume that we are dealing with a real Euclidean space E. Let
f: E — E be any linear map. In general, it may not be possible to diagonalize f.
We show that every linear map can be diagonalized if we are willing to use two
orthonormal bases. This is the celebrated singular value decomposition (SVD). A
close cousin of the SVD is the polar form of a linear map, which shows how a linear
map can be decomposed into its purely rotational component (perhaps with a flip)
and its purely stretching part.
The key observation is that f* o f is self-adjoint, since

(f e f)w),v) = {f(u),f(v)) = (u,(f 0 £)(V))-

Similarly, f o f* is self-adjoint.

The fact that f* o f and f o f* are self-adjoint is very important, because it implies
that f* o f and fo f* can be diagonalized and that they have real eigenvalues. In fact,
these eigenvalues are all nonnegative. Indeed, if u is an eigenvector of f* o f for the
eigenvalue A, then

((f* o f)u),u) = (f(u), f(u))
and
(f o f)(u),u) = Alu,u),
and thus

)’<u7u> = <f(u)7f(”)>a

which implies that A > 0, since (—, —) is positive definite. A similar proof applies to
fof*. Thus, the eigenvalues of f* o f are of the form /.112, ..., 12 or 0, where y; > 0,
and similarly for f o f*. The situation is even better, since we will show shortly that
f*ofand fo f* have the same eigenvalues.

Remark: Given any two linear maps f: E — F and g: F — E, where dim(E) =n
and dim(F) = m, it can be shown that

367
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(=A)"det(gof—AL,) = (—A)"det(fog— AlLy),

and thus go f and f o g always have the same nonnull eigenvalues!

Definition 13.1. The square roots ; > 0 of the positive eigenvalues of f* o f (and
fo f*)are called the singular values of f.

Definition 13.2. A self-adjoint linear map f: E — E whose eigenvalues are non-
negative is called positive semidefinite (or positive), and if f is also invertible, f
is said to be positive definite. In the latter case, every eigenvalue of f is strictly
positive.

We just showed that f*o f and f o f* are positive semidefinite self-adjoint lin-
ear maps. This fact has the remarkable consequence that every linear map has two
important decompositions:

1. The polar form.
2. The singular value decomposition (SVD).

The wonderful thing about the singular value decomposition is that there exist
two orthonormal bases (uy,...,u,) and (vq,...,v,) such that with respect to these
bases, f is a diagonal matrix consisting of the singular values of f, or 0. Thus, in
some sense, f can always be diagonalized with respect to two orthonormal bases.
The SVD is also a useful tool for solving overdetermined linear systems in the least
squares sense and for data analysis, as we show later on.

First, we show some useful relationships between the kernels and the images of
f, f5, ffof,and fo f*. Recall that if f: E — F is a linear map, the image Im f
of f is the subspace f(E) of F, and the rank of f is the dimension dim(Im f) of its
image. Also recall that

dim (Ker f) + dim (Im f) = dim (E),
and that for every subspace W of E,
dim (W) +dim (W) = dim (E).

Lemma 13.1. Given any two Euclidean spaces E and F, where E has dimension n
and F has dimension m, for any linear map f: E — F, we have

Kerf =Ker(f* o f),
Ker f* =Ker (fo f*),
Ker f = (Im f*)*,
Ker f* = (Im f)*,
dim(Im f) = dim(Im f*),
n —dim(Ker f) = m — dim(Ker ™),

and f, f*, f*o f, and f o f* have the same rank.
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Proof. To simplify the notation, we will denote the inner products on E and F
by the same symbol (—,—) (to avoid subscripts). If f(u) = 0, then (f*o f)(u) =
FA(f(w)) = f*(0) =0, and so Ker f C Ker(f* o f). By definition of f*, we have

(), f (@) = ((f" o f)(u),u)

forall u € E. If (f*o f)(u) =0, since (—,—) is positive definite, we must have
f(u) =0, and so Ker (f* o f) C Ker f. Therefore,

Ker f = Ker (f* o f).

The proof that Ker f* = Ker (f o f*) is similar.
By definition of f*, we have

(f(w),v) = (u, f*(v))
for all u € E and all v € F. This immediately implies that

Kerf = (Imf*)* and Kerf* = (Imf)*.

Since
dim(Im f) = n — dim(Ker f)
and
dim((Im £*)*) = n — dim(Im f*),
from

Ker f = (Im f*)*

we also have
dim(Ker £) = dim((Im £*)*),

from which we obtain
dim(Im f) = dim(Im f*).

The above immediately implies that n — dim(Ker f) = m — dim(Ker f*). From all
this we easily deduce that

dim(Im f) = dim(Im (f* o f)) = dim(Im (f o f*)),
ie., f, f*, ffof,and fo f* have the same rank. 0O

The next lemma shows a very useful property of positive semidefinite self-adjoint
linear maps.

Lemma 13.2. Given a Euclidean space E of dimension n, for any positive semidef-
inite self-adjoint linear map f: E — E there is a unique positive semidefinite self-
adjoint linear map h: E — E such that f = h> = hoh. Furthermore, Ker f = Kerh,
andif Wy,..., Up are the distinct eigenvalues of h and E; is the eigenspace associated
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with ;, then /.112, .. ,;,L; are the distinct eigenvalues of f, and E; is the eigenspace
associated with [1?.

Proof. Since f is self-adjoint, by Theorem 12.3 there is an orthonormal basis
(u1,..., up) consisting of eigenvectors of f, and if A;,...,A, are the eigenvalues
of f, we know that A; € R. Since f is assumed to be positive semidefinite, we have
A; >0, and we can write A; = ,uiz, where u; > 0. If we define h: E — E by its action
on the basis (u,...,u,), so that

h(u;) = Wi,

it is obvious that f = A” and that / is positive semidefinite self-adjoint (since its ma-
trix over the orthonormal basis (u1,...,u,) is diagonal, thus symmetric). It remains
to prove that £ is uniquely determined by f. Let g: E — E be any positive semidef-
inite self-adjoint linear map such that f = g2. Then there is an orthonormal basis
(vi,...,vy) of eigenvectors of g, and let uy,..., U, be the eigenvalues of g, where
u; > 0. Note that

FOi) =g (vi) = g(g()) = wivi,
so that v; is an eigenvector of f for the eigenvalue ,uiz. If wy,...,H, are the distinct
eigenvalues of g and E1,...,E, are the corresponding eigenspaces, the above argu-

ment shows that each E; is a subspace of the eigenspace U; of f associated with u?.
However, we observed (just after Theorem 12.3) that

where E; and E; are orthogonal if i # j, and thus we must have E; = U;. Since
Wi, it; > 0 and y; # p; implies that p? # ,ujz, the values u?, ... ,u,% are the distinct
eigenvalues of f, and the corresponding eigenspaces are also Ey, ..., E,. This shows
that g = h, and 4 is unique. Also, as a consequence, Ker f = Kerh, and if uy,..., 1,
are the distinct eigenvalues of &, then ,ulz, ceey ,ulz, are the distinct eigenvalues of f,
and the corresponding eigenspaces are identical. 0O

There are now two ways to proceed. We can prove directly the singular value
decomposition, as Strang does [8, 7], or prove the so-called polar decomposition
theorem. The proofs are of roughly the same difficulty. We have chosen the second
approach, since it is less common in textbook presentations, and since it also yields
a little more, namely uniqueness when f is invertible. It is somewhat disconcerting
that the next two theorems are given only as an exercise in Bourbaki [1] (Algebre,
Chapter 9, Problem 14, page 127). Yet, the SVD decomposition is of great practi-
cal importance. This is probably typical of the attitude of “pure mathematicians.”
However, the proof hinted at in Bourbaki is quite elegant.

The early history of the singular value decomposition is described in a fascinating
paper by Stewart [6]. The SVD is due to Beltrami and Camille Jordan independently
(1873, 1874). Gauss is the grandfather of all this, for his work on least squares (1809,
1823) (but Legendre also published a paper on least squares!). Then come Sylvester,
Schmidt, and Hermann Weyl. Sylvester’s work was apparently “opaque.” He gave
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a computational method to find an SVD. Schmidt’s work really has to do with in-
tegral equations and symmetric and asymmetric kernels (1907). Weyl’s work has
to do with perturbation theory (1912). Autonne came up with the polar decomposi-
tion (1902, 1915). Eckart and Young extended SVD to rectangular matrices (1936,
1939).

The next three theorems deal with a linear map f: E — E over a Euclidean space
E. We will show later on how to generalize these results to linear maps f: E — F
between two Euclidean spaces E and F.

Theorem 13.1. Given a Euclidean space E of dimension n, for any linear map
f: E — E there are two positive semidefinite self-adjoint linear maps hy: E — E
and hy: E — E and an orthogonal linear map g: E — E such that

f=80ohi=hyog.

Furthermore, if f has rank r, the maps hy and hy have the same positive eigenvalues
Ui,..., U, which are the singular values of f, i.e., the positive square roots of the
nonnull eigenvalues of both f* o f and f o f*. Finally, hy,h, are unique, g is unique
if f is invertible, and hy = hy if f is normal.

Proof. By Lemma 13.2 there are two (unique) positive semidefinite self-adjoint lin-
ear maps iy : E — E and hy: E — E such that f*o f = h% and fo f* :h%. Note

that
(f(),f(v)) = (i (u), b1 (v))
for all u,v € E, since
(f(),f(v)) = (u, (f* o)) = (u, (h1 o 1) (v)) = (h1(u), 1 (v)),

because f*o f = h% and hy = hj (hy is self-adjoint). From Lemma 13.1, Ker f =
Ker (f* o f), and from Lemma 13.2, Ker (f* o f) = Kerh;. Thus,

Ker f = Kerh;.

If r is the rank of f, then since h; is self-adjoint, by Theorem 12.3 there is an
orthonormal basis (u1,...,u,) of eigenvectors of i, and by reordering these vectors
if necessary, we can assume that (i1, ...,u,) are associated with the strictly positive
eigenvalues Up,..., U, of hy (the singular values of f), and that t, | =--- = u, =
0. Observe that (uy1,...,u,) is an orthonormal basis of Ker f = Kerhy, and that
(uy,...,u,) is an orthonormal basis of (Ker f)* = Im f*. Note that

(F i), f(ug)) = () b () = bt (i) = 7 6,
when 1 <i,j <n (recall that §;; = 1 if i = j, and §;; = 0 if i # j). Letting

S(ui)
i

Vi =

when 1 < i <r, observe that
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(visvj) = &ij

when 1 <, j < r. Using the Gram—Schmidt orthonormalization procedure, we can
extend (vy,...,v,) to an orthonormal basis (vy,...,v,) of E (even when r = 0).
Also note that (vy,...,v,) is an orthonormal basis of Im f, and (v,y1,...,v,) is an
orthonormal basis of Im f* = Ker f*.

We define the linear map g: E — E by its action on the basis (uy,...,u,) as
follows:

8(ui) =vi
forall i, 1 <i<n.We have
yV V) = o) — () — s — w9 — e
(gohi)(ui) = g(h(ui)) = g(piui) = pig(ui) = pivi = IT = f(ui)
(]
when 1 <i<r, and
(g0 h)(ui) = g(hi(ui)) = g(0) =0
when r+1 <i <n (since (#,41,...,u,) is a basis for Ker f = Ker/;), which shows
that f = gohy. The fact that g is orthogonal follows easily from the fact that it maps
the orthonormal basis (uj,...,u,) to the orthonormal basis (vi,...,v,).
We can show that f = h; o g as follows. Notice that
m(vi) = (fof") (—( ),
Wi
* Ui
=(fo(fT oMM —]
Hi
1
= E(foh%)(ui)v
1
- hz Uui)),
uif( T(ui))
1 2
= Ef(.uz ”i)v
- uif(ui)u
= v

when 1 <i<r, and
W5 (vi) = (fo f*) i) = f(f*(vi)) =0

when r+1 < i < n, since (V,11,...,v,) is a basis for Ker f* = (Im f)*. Since h, is
positive semidefinite self-adjoint, so is K2, and by Lemma 13.2, we must have

hy(vi) = Wivi
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when 1 <i<r, and

hg(vi) =0
when r+ 1 <i < n. This shows that (vi,...,v,) are eigenvectors of A, for y;,..., U,
(since Uy41 =--- = U, =0), and thus i and &, have the same eigenvalues Uy, ..., l,.

As a consequence,

(haog)(ui) = ha(g(ui)) = ha(vi) = wivi = f(u;)

when 1 <i<n. Since hy, hp, f*o f,and fo f* are positive semidefinite self-adjoint,
ffof=h, fof*= h%, and up,...,u, are the eigenvalues of both A and hjy, it
follows that yy,..., U, are the singular values of f, i.e., the positive square roots of
the nonnull eigenvalues of both f* o f and f o f*.
Finally, since
ffof=hi and fof*=h3,

by Lemma 13.2, h; and h, are unique and if f is invertible, then 7 and h; are
invertible and thus g is also unique, since g = f ohfl. If i is normal, then f* o f =
fof*andhy =hy,. O

In matrix form, Theorem 13.1 can be stated as follows. For every real n X n matrix
A, there is some orthogonal matrix R and some positive semidefinite symmetric
matrix S such that
A =RS.

Furthermore, R, S are unique if A is invertible.

Definition 13.3. A pair (R, S) such that A = RS with R orthogonal and S symmetric
positive semidefinite is called a polar decomposition of A.

For example, the matrix

11 1 1
111 —1-1
A=311211 21
1-1-11

is both orthogonal and symmetric, and A = RS with R = A and S = I, which implies
that some of the eigenvalues of A are negative.

Remark: If E is a Hermitian space, Theorem 13.1 also holds, but the orthogonal
linear map g becomes a unitary map. In terms of matrices, the polar decomposition
states that for every complex n X n matrix A, there is some unitary matrix U and
some positive semidefinite Hermitian matrix H such that

A=UH.
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13.2 Singular Value Decomposition (SVD)

The proof of Theorem 13.1 shows that there are two orthonormal bases (1, ... ,uy)
and (vi,...,v,), where (up,...,u,) are eigenvectors of h; and (vi,...,v,) are
eigenvectors of /. Furthermore, (u1,...,u,) is an orthonormal basis of Im f*,
(Wyt1,...,uy) is an orthonormal basis of Ker f, (vi,...,v;) is an orthonormal ba-
sis of Im f, and (v,11,...,v,) is an orthonormal basis of Ker f*. Using this, we
immediately obtain the singular value decomposition theorem. Note that the sin-
gular value decomposition for linear maps of determinant +1 is called the Cartan
decomposition (after Elie Cartan)!

Theorem 13.2. Given a Euclidean space E of dimension n, for every linear map
f: E = E there are two orthonormal bases (uy, ... ,u,) and (vy,...,vy) such that if
r is the rank of f, the matrix of f w.r.t. these two bases is a diagonal matrix of the
form

M1 e
o ...

.
where W1, ..., U, are the singular values of f, i.e., the (positive) square roots of the
nonnull eigenvalues of f*o f and fo f*, and U4\ = --- = W, = 0. Furthermore,

(u1,...,uy) are eigenvectors of f*o f, (vi,...,v,) are eigenvectors of f o f*, and
S(ui) = piviwhen 1 <i<n.

Proof. Going back to the proof of Theorem 13.2, there are two orthonormal bases

(uy,...,up) and (vy,...,v,), where (uy,...,u,) are eigenvectors of hy, (vi,...,vy)

are eigenvectors of iy, f(u;) = ;v when 1 <i<r,and f(u;) =0whenr+1 <i<n.

But now, with respect to the orthonormal bases (uy,...,u,) and (vi,...,v,), the
matrix of f is indeed

M1 e

...

o My

where Uy, ..., U, are the singular values of f and Y,y =---=u, =0. O

Note that y; > 0 for all i (1 <i < n)iff f is invertible. Given an orientation of the
Euclidean space E specified by some orthonormal basis (e1,...,e,) taken as direct,
if det(f) > 0, we can always make sure that the two orthonormal bases (1, ... ,uy)
and (vy,...,v,) are oriented positively. Indeed, if det(f) = 0, we just have to flip u,
to —u, if necessary, and v, to —v,, if necessary. If det(f) > 0, since y; > 0 for all i,
1 <i < n, the orthogonal matrices U and V whose columns are the u;’s and the v;’s
have determinants of the same sign. Since f(u,) = W,v, and u, > 0, we just have

to flip u, to —u, if necessary, since v, will also be flipped. Theorem 13.2 can be
restated in terms of (real) matrices as follows.
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Theorem 13.3. For every real n x n matrix A there are two orthogonal matrices U
andV and a diagonal matrix D such that A= VDU ", where D is of the form

251 .
...
D= . - 9
o Uy
where W1, ..., U, are the singular values of f, i.e., the (positive) square roots of the
nonnull eigenvalues of ATA and AAT, and p,. = --- = w, = 0. The columns of U

are eigenvectors of AT A, and the columns of V are eigenvectors of AA". Further-
more, if det(A) > 0, it is possible to choose U and V such that det(U) = det(V) =
+1, i.e., U and V are rotation matrices.

Definition 13.4. A triple (U,D,V) such that A = VDU " where U and V are or-
thogonal and D is a diagonal matrix whose entries are nonnegative (it is positive
semidefinite) is called a singular value decomposition (SVD) of A.

Remarks:

(1) In Strang [8] the matrices U,V,D are denoted by U = 0>,V = Qq,and D = X,
and an SVD is written as A = leQg. This has the advantage that Q; comes
before Q; in A = QIZQ;. This has the disadvantage that A maps the columns
of 0, (eigenvectors of A" A) to multiples of the columns of Q; (eigenvectors of
AAT).

(2) Algorithms for actually computing the SVD of a matrix are presented in Golub
and Van Loan [4], Demmel [3], and Trefethen and Bau [9], where the SVD and
its applications are also discussed quite extensively.

(3) The SVD also applies to complex matrices. In this case, for every complex n x n
matrix A, there are two unitary matrices U and V and a diagonal matrix D such
that

A=VDU",
where D is a diagonal matrix consisting of real entries ui,...,HU,, where
Ui, ..., U, are the singular values of f, i.e., the positive square roots of the non-
null eigenvalues of A*A and AA*, and 4, =... =, =0.

It is easy to go from the polar form to the SVD, and conversely. Indeed, given a
polar decomposition A = RS, where R is orthogonal and S is positive semidefinite
symmetric, there is an orthogonal matrix R, and a positive semidefinite diagonal
matrix D such that S = R,DR/ , and thus

A=R\R:DR, =VDU",

where V = R|R, and U = R, are orthogonal.
Going the other way, given an SVD decomposition A =VDU ", let R=VU "
and S = UDU . Tt is clear that R is orthogonal and that S is positive semidefinite
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symmetric, and
RS=vU'UDU" =VvDU' =A.

Note that it is possible to require that det(R) = +1 when det(4) > 0.

Theorem 13.3 can be easily extended to rectangular m X n matrices (see Strang
[8] or Golub and Van Loan [4], Demmel [3], Trefethen and Bau [9]).

As a matter of fact, both Theorem 13.1 and Theorem 13.2 can be generalized to
linear maps f: E — F between two Euclidean spaces E and F. In order to do so, we
need to define the analogue of the notion of orthogonal linear map for a linear map
f: E — F.We thank Raphael Leone for pointing out a mistake in a previous version
of Theorem 13.4 regading the uniqueness of the maps /; and h;. The problem can
be rectified by changing slightly the definition of a weakly orthogonal map.

By definition, the adjoint f*: F — E of a linear map f: E — F is the unique
linear map such that

(f(u),v)a = (u, f* (V)1

forall u € E and all v € F. Then we have

(f),fW))2 = (u,(f o f)()h

for all u,v € E. Letting n = dim(E), m = dim(F), if f has rank r and if for every r
orthonormal vectors (uy,...,u,) in (Ker f)* the vectors (f(u1),..., f(u,)) are also
orthonormal in F', then

frof=id
on (Ker f)*. The converse is immediately proved. Thus, we will say that a linear
map f: E — F is weakly orthogonal if
ffof=id on (Kerf):,
equivalently if
fof*=id onlImf*.

Of course, f*o f =0 on Ker f. In terms of matrices, we will say that a real m X n
matrix A of rank r is weakly orthogonal if it is of the form

A= PT (Q Om,nfr) R,

with P a m x m orthogonal matrix, R a n X n orthogonal matrix, and Q a m X r
matrix such that QTQ =1,, in other words, a matrix whose columns are orthonormal.

Obviously
I 0y
ATA _ RT r rn—r R.
(0mr,r Omr,nr)

The main difference with orthogonal matrices is that AA T is usually not a nice
matrix of the above form (unless m = n). Weakly unitary linear maps are defined
analogously.
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Theorem 13.4. Given any two Euclidean spaces E and F, where E has dimension
n and F has dimension m, for every linear map f: E — F there are two positive
semidefinite self-adjoint linear maps hy: E — E and hy: F — F and a weakly or-
thogonal linear map g: E — F such that

f=gohi=hyog.

Furthermore, if f is injective, then hy and g are unique, and if f is surjective, then
hy and g are unique. The maps hy, hy, and g can be chosen to have the same rank as
[, in which case they are unique, and then h is the unique square root of f* o f and
hy is the unique square root of f o f*. In this case, hy and hy have the same positive
eigenvalues |y, ..., ., which are the singular values of f, i.e., the positive square
roots of the nonnull eigenvalues of both f* o f and f o f*. Finally, hy = hy if f is
normal.

Proof. First assume that the decompositions f = goh; = hj o g exist. For every
x € (Ker f)* we have & (x) € (Kerg)!, hence g* o g(hi(x)) = hy (x) and

frofx) =hog ogom(x) =hi(x),  x&(Kerf)".
In a similar way, we show that

fof ) =m0), yelmf

It follows that if f is injective, then h% = f*o f on E so hy is uniquely determined
and bijective, and then g is also uniquely determined. If f is surjective, then h3 =
fof*onF,so hy is uniquely determined and bijective, and then g is also uniquely
determined. If /1, h3, and g have the same rank as f, then ; is injective on (Ker ),
and since f = gohy and g has the same rank as Ay, it is uniquely determined.

We now prove the existence of &1, h; and g with the same rank r as f.

By Lemma 13.2 there are two (unique) positive semidefinite self-adjoint linear
maps hi: E — E and hy: F — F such that f*o f = h? and fo f* = h3. As in the
proof of Theorem 13.1,

Ker f = Kerhy,
and letting r be the rank of f, there is an orthonormal basis (u1,...,u,) of eigenvec-
tors of 4y such that (u,...,u,) are associated with the strictly positive eigenvalues
Ui,..., Uy of hy (the singular values of f). The vectors (u,1,...,u,) form an or-
thonormal basis of Ker f = Ker/y, and the vectors (uy,...,u,) form an orthonormal
basis of (Ker f)* = Im f*. Furthermore, letting
"
)
i
when 1 < i < r, using the Gram—Schmidt orthonormalization procedure, we can
extend (vq,...,v;) to an orthonormal basis (vi,...,v,) of F (even when r = 0).
Also note that (v,...,v,) is an orthonormal basis of Im f, and (v,y1,...,vn) is an

orthonormal basis of Im f = Ker f*.
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We define the linear map g: E — F by its action on the basis (uy,...,u,) as
follows:

8(ui) = vi
foralli, 1 <i<r, and
g(ui) =0
forall i, r+ 1 <i < n. Just as in the proof of Theorem 13.1, we have

(gohi)(ui) = f(u)

when 1 <i<r, and

(gohy)(ui) = g(hi(u;)) = g(0) =0

when r+1 <i <n (since (#,41,...,u,) is a basis for Ker f = Ker/;), which shows

that f = goh;. The fact that g is weakly orthogonal follows easily from the fact that

it maps the orthonormal vectors (uj,...,u,) to the orthonormal vectors (vy,...,v,).
We can show that f = h; o g as follows. Just as in the proof of Theorem 13.1,

h%(vi) = .LLizV,'
when 1 <i<r, and
h5(vi) = (fo f*)(vi) = F(f*(vi)) =0

when r+1 <i <m, since (v, 1,...,Vy) is a basis for Ker f* = (Im ). Since &, is
positive semidefinite self-adjoint, so is h%, and by Lemma 13.2, we must have

ha(vi) = Wivi
when 1 <i<r, and
hz (V,‘) = O
when r+ 1 <i <m. This shows that (v1,...,v,) are eigenvectors of &, for Uy,..., Uy
(letting t,+1 = - -+ = Uy, = 0), and thus k; and h, have the same nonnull eigenvalues

Ui,...,Ur. As a consequence,
(h208)(ui) = ha(g(wi)) = ha(vi) = pvi = f (us)
when 1 <i<m.If his normal, then f*o f= fof*and hy =h,. O

In matrix form, Theorem 13.4 can be stated as follows. For every real m x n ma-
trix A, there is some weakly orthogonal m X n matrix R and some positive semidefi-
nite symmetric n X n matrix S such that

A=RS.

A pair (R,S) such that A = RS is called a polar decomposition of A.
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Remark: If E is a Hermitian space, Theorem 13.4 also holds, but the weakly or-
thogonal linear map g becomes a weakly unitary map. In terms of matrices, the polar
decomposition states that for every complex m X n matrix A, there is some weakly
unitary m X n matrix U and some positive semidefinite Hermitian n X n matrix H
such that

A=UH.

The proof of Theorem 13.4 shows that there are two orthonormal bases (uj, ...,
uy) and (vy,...,vy) for E and F, respectively, where (uy, .. .,u,) are eigenvectors of
hy and (vy,...,v,) are eigenvectors of hy. Furthermore, (u1,...,u,) is an orthonor-
mal basis of Im f*, (#1,...,u,) is an orthonormal basis of Ker f, (vq,...,v,) is an
orthonormal basis of Im f, and (v,41, ..., V) is an orthonormal basis of Ker f*. Us-
ing this, we immediately obtain the singular value decomposition theorem for linear
maps f: E — F, where E and F can have different dimensions.

Theorem 13.5. Given any two Euclidean spaces E and F, where E has dimension n
and F has dimension m, for every linear map f: E — F there are two orthonormal
bases (uy,...,un) and (vy,...,vy) such that if r is the rank of f, the matrix of f w.rt.
these two bases is a m X n matrix D of the form

M1
o ...
D= Ho orD=1 . . . . )
0:..0 000
Mn0...0
0:..0
where Uy,..., U, are the singular values of f, i.e., the (positive) square roots of
the nonnull eigenvalues of f*o f and fo f*, and p,41 = --- = U, = 0, where
p =min(m,n). Furthermore, (u1,... ,u,) are eigenvectors of f*o f, (vi,...,vm) are

eigenvectors of fo f*, and f(u;) = Wv; when 1 <i < p = min(m,n).

Even though the matrix D is an m X n rectangular matrix, since its only nonzero
entries are on the descending diagonal, we still say that D is a diagonal matrix.
Theorem 13.5 can be restated in terms of (real) matrices as follows.

Theorem 13.6. For every real m x n matrix A, there are two orthogonal matrices U
(nx n) andV (m x m) and a diagonal m x n matrix D such that A=VDU ", where
D is of the form
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My
...
oo Hy 0...0
D= Hn orD = . . . ,
0 :..0 w0000
o Un0...0
0:..0
where [y,..., 1, are the singular values of f, i.e. the (positive) square roots of
the nonnull eigenvalues of ATA and AAT, and pi,1 = ... = Up =0, where p =

min(m,n). The columns of U are eigenvectors of AT A, and the columns of V are
eigenvectors of AAT.

A triple (U,D,V) such that A = VDU is called a singular value decomposition
(SVD) of A.

The SVD of matrices can be used to define the pseudo-inverse of a rectangular
matrix; see Strang [8], Demmel [3], Trefethen and Bau [9], or Golub and Van Loan
[4] for a thorough presentation.

Remark: The matrix form of Theorem 13.4 also yields a variant of the singular
value decomposition. First, assume that m > n. Given an m X n matrix A, there is
a weakly orthogonal m x n matrix R; and a positive semidefinite symmetric n X n
matrix S such that

A =R;S.

Since S is positive semidefinite symmetric, there is an orthogonal n X n matrix R,
and a diagonal n X n matrix D with nonnegative entries such that

S=R,DR, .
Thus, we can write
A=R|R;DR, .
We claim that R| R, is weakly orthogonal. Indeed,
(RiRy) " (R1Ry) =R; (R| Ry)Ry,
and if m > n, we have
R[R =1,

so that
(RiR2) " (RiR>) = I,.

Thus, R{R; is indeed weakly orthogonal. Let us now consider the case n > m. From
the version of SVD in which
A=VvVDU'
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where U is n X n orthogonal, V is m X m orthogonal, and D is m X n diagonal with
nonnegative diagonal entries, letting V' be the m X n matrix obtained from V by
adding n — m zero columns and D’ be the n x n matrix obtained from D by adding
n — m zero rows, it is immediately verified that

V'D' =VD,
and thus when n > m, we also have
A=V'DUT,

where U is n x n orthogonal, V' is m x n weakly orthogonal, and D’ is n x n diagonal
with nonnegative diagonal entries. As a consequence, in both cases we have shown
that there exists a weakly orthogonal m X n matrix V, an orthogonal n X n matrix U,
and a diagonal n X n matrix D with nonnegative entries such that

A=VDU'.

There is yet another alternative when n > m. Given an m X n matrix A, there is
a positive semidefinite symmetric m X m matrix S and a weakly orthogonal m x n
matrix R, such that
A =SR;.

Since S is positive semidefinite symmetric, there is an orthogonal m X m matrix R;
and a diagonal m x m matrix D with nonnegative entries such that
S=RyDR,.
Thus, we can write
A=R)DR;R;.
We claim that R;— R, is weakly orthogonal. Indeed,

(RyR1)" Ry R =R| (R2R) )R =R| Ry,

since R; is orthogonal, and if n > m, we have

R1TR1 _ ( Im Om,nfm )

Onfm,m Onfm,nfm

so that
Tp AT pT In Omn-
(RJR)TRIR, = (0 m Omam >
n—m,m Yn—m,n—m

and RZTRI is weakly orthogonal. Since n > m, (RZTRl)T = RITRZ is also weakly or-
thogonal. As a consequence, we have shown that when m > n, there exists a weakly
orthogonal m x n matrix V, an orthogonal n X n matrix U, and a diagonal n x n
matrix D with nonnegative entries such that
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A=VDU',

and when n > m, there exists an orthogonal m x m matrix V, a weakly orthogonal
m x nmatrix U (with U also weakly orthogonal), and a diagonal m x m matrix D
with nonnegative entries, such that

A=VDU'.

In both cases,
VAU =D.

One of the spectral theorems states that a symmetric matrix can be diagonalized
by an orthogonal matrix. There are several numerical methods to compute the eigen-
values of a symmetric matrix A. One method consists in tridiagonalizing A, which
means that there exists some orthogonal matrix P and some symmetric tridiagonal
matrix 7 such that A = PTPT. In fact, this can be done using Householder trans-
formations. It is then possible to compute the eigenvalues of 7 using a bisection
method based on Sturm sequences. One can also use Jacobi’s method. For details,
see Golub and Van Loan [4], Chapter 8, Demmel [3], Trefethen and Bau [9], Lec-
ture 26, or Ciarlet [2]. Computing the SVD of a matrix A is more involved. Most
methods begin by finding orthogonal matrices U and V and a bidiagonal matrix B
such that A= VBU . This can also be done using Householder transformations. Ob-
serve that B' B is symmetric tridiagonal. Thus, in principle, the previous method to
diagonalize a symmetric tridiagonal matrix can be applied. However, it is unwise to
compute B' B explicitly, and more subtle methods are used for this last step. Again,
see Golub and Van Loan [4], Chapter 8, Demmel [3], and Trefethen and Bau [9],
Lecture 31.

The polar form has applications in continuum mechanics. Indeed, in any de-
formation it is important to separate stretching from rotation. This is exactly what
QS achieves. The orthogonal part Q corresponds to rotation (perhaps with an addi-
tional reflection), and the symmetric matrix S to stretching (or compression). The
real eigenvalues o1, .., 0, of S are the stretch factors (or compression factors) (see
Marsden and Hughes [5]). The fact that S can be diagonalized by an orthogonal
matrix corresponds to a natural choice of axes, the principal axes.

The SVD has applications to data compression, for instance in image processing.
The idea is to retain only singular values whose magnitudes are significant enough.
The SVD can also be used to determine the rank of a matrix when other methods
such as Gaussian elimination produce very small pivots. One of the main applica-
tions of the SVD is the computation of the pseudo-inverse. Pseudo-inverses are the
key to the solution of various optimization problems, in particular the method of
least squares. This topic is discussed in the next chapter (Chapter 14). Applications
of the material of this chapter can be found in Strang [8, 7]; Ciarlet [2]; Golub and
Van Loan [4], which contains many other references; Demmel [3]; and Trefethen
and Bau [9].
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13.3 Problems

13.1. (1) Given a matrix

ab
= (2
prove that there are Householder matrices G, H such that
GAH — 0959 sin@ ab cos¢ sing _p
sin@ —cosO ) \cd/ \sing —cos¢
where D is a diagonal matrix, iff the following equations hold:

(b+c)cos(0+ @) = (a—d)sin(6 + ¢),

(2) Discuss the solvability of the system. Consider the following cases:

l.a—d=a+d=0.

2a.a—d=b+c=0,a+d+#0.
2b.a—d=0,b+c#0,a+d#0.
3a.a+d=c—b=0,a—d#0.
3b.a+d=0,c—b#0,a—d#0.

4.a+d#0,a—d#0. Show that the solution in this case is

6= l {arctan <ﬂ) + arctan <ﬂ)}
2 a—d a+d)|’
1 b+c c—b

Q= 3 {arctan<a_d) —arctan<a+d)} .

If b = 0, show that the discussion is simpler: Basically, consider ¢ = 0 or ¢ # 0.
(3) Expressing everything in terms of u = cot@ and v = cot¢, show that the
equations of question (1) become

b+c)uv—1)=(u+v)(a—d),
(c=b)(uv+1)=(—u+v)(a+d).

Remark: I was unable to find an elegant solution for this system.

13.2. The purpose of this problem is to prove that given any linear map f: E —
E, where E is a Euclidean space of dimension n» > 2 and an orthonormal basis
(e1,...,en), there are isometries g;,h;, hyperplane reflections or the identity, such
that the matrix of

gno---ogiofohjo---oh,
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is a lower bidiagonal matrix, which means that the nonzero entries (if any) are on
the main descending diagonal and on the diagonal below it.

(1) Prove that for any isometry f: E — E we have f = f* = f~liff fo f =id.

(2) Proceed by induction, taking inspiration from the proof of the triangular de-
composition given in Chapter 6. Let U] be the subspace spanned by (ey,...,e) and
U,ﬁ’ be the subspace spanned by (e 1,...,e,), | <k <n— 1. For the base case,
proceed as follows.

Letv; = f*(e1) and ry,; = ||v1]|. Find an isometry &, (reflection or id) such that

hi(f*(e1)) =r1,1€1.

Observe that i (f*(e1)) € Uy, so that

(h1(f*(e1)),e;) =0

for all j, 2 < j < n, and conclude that

(e1,fohi(e))) =0

forall j,2<j<n.
Next, let
uy = fohy(e)) =u)+uf,
where ) € U and uf € U/, and let r,,; = ||u}||. Find an isometry g; (reflection or
id) such that
"
g1(uy) =r, 1e2.

Show that gy (e1) = ey,

giofohi(e)) =uj+r, e,

and that
(e1,g10fohi(ej)) =0

for all j, 2 < j < n. At the end of this stage, show that g o f o h; has a matrix such
that all entries on its first row except perhaps the first are null, and that all entries on
the first column, except perhaps the first two, are null.

Assume by induction that some isometries gi,...,8x and hy,...,h; have been
found, either reflections or the identity, and such that

Jfe=8ko---og1ofohjo---oh

has a matrix that is lower bidiagonal up to and including row and column k, where
1<k<n-2.
Let
/ !
Vit = i (ek1) = Vipr + Ve
where ‘f;<+1 E.UIQ and v{,, € U/, and let riqy g41 = |[v{, || Find an isometry /.
(reflection or id) such that
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"
hic 1 (Vi 1) = Thet ke 1€k41 -

Show that if 7y is a reflection, then U, C Hj., where Hy; is the hyperplane
defining the reflection /2 1. Deduce that A (v}, ;) = V)., and that

Pt (fE(erg1)) = Vit + Tl ks 1€041-

Observe that iy 1 (f; (ex+1)) € Uy, so that

(P (i (ext1)) €) =0

for all j, k+2 < j < n, and thus

(exr1, fiohiyi(e))) =0

forall j,k+2 < j<n.
Next, let
U1 = frohppi(ersr) = Uy +up

!

/ ! 1 !
where U | € Uk+l and ug | € Uk+1’

8i+1 (reflection or id) such that

and let 12 41 = |[uy,||. Find an isometry

"
k1 (Ui 1) = Tir2,kr1€k42-

Show that if g is a reflection, then U,é +1 € Gry1, where Gy is the hyperplane
defining the reflection gi 1. Deduce that gy (e;) = ¢; forall i, 1 <i<k+1, and
that

/
k410 Jk 0 M1 (e 1) = Uheyy + Thr2 ke 1€442-

Since by induction hypothesis

(ei, fiohy1(ej)) =0

foralli,j, 1 <i<k+1,k+2<j<n,andsince gy(e;) =¢; foralli, 1 <i<k+1,
conclude that

(ei,&k+10 frohiyi(e))) =0
foralli,j, 1 <i<k+1,k+2 < j<n. Finish the proof.

13.3. Write a computer program implementing the method of Problem 13.2 to con-
vert an n X n matrix to bidiagonal form.
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Chapter 14
Applications of SVD and Pseudo-inverses

De tous les principes qu’on peut proposer pour cet objet, je pense qu’il n’en est pas de plus
général, de plus exact, ni d’une application plus facile, que celui dont nous avons fait usage
dans les recherches précédentes, et qui consiste a rendre minimum la somme des carrés des
erreurs. Par ce moyen il s’établit entre les erreurs une sorte d’équilibre qui, empéchant les
extrémes de prévaloir, est trés propre a faire connaitre 1’état du systeme le plus proche de la
vérité.

—Legendre, 1805, Nouvelles Méthodes pour la détermination des Orbites des Cométes

14.1 Least Squares Problems and the Pseudo-inverse

This chapter presents several applications of SVD. The first one is the pseudo-
inverse, which plays a crucial role in solving linear systems by the method of least
squares. The second application is data compression. The third application is prin-
cipal component analysis (PCA), whose purpose is to identify patterns in data and
understand the variance—covariance structure of the data. The fourth application is
the best affine approximation of a set of data, a problem closely related to PCA.

The method of least squares is a way of “solving” an overdetermined system of
linear equations

Ax=0b,

i.e., a system in which A is a rectangular m X n matrix with more equations than
unknowns (when m > n). Historically, the method of least squares was used by
Gauss and Legendre to solve problems in astronomy and geodesy. The method was
first published by Legendre in 1805 in a paper on methods for determining the orbits
of comets. However, Gauss had already used the method of least squares as early as
1801 to determine the orbit of the asteroid Ceres, and he published a paper about
it in 1810 after the discovery of the asteroid Pallas. Incidentally, it is in that same
paper that Gaussian elimination using pivots is introduced.

387
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The reason why more equations than unknowns arise in such problems is that
repeated measurements are taken to minimize errors. This produces an overdeter-
mined and often inconsistent system of linear equations. For example, Gauss solved
a system of eleven equations in six unknowns to determine the orbit of the asteroid
Pallas. As a concrete illustration, suppose that we observe the motion of a small
object, assimilated to a point, in the plane. From our observations, we suspect that
this point moves along a straight line, say of equation y = dx + c. Suppose that we
observed the moving point at three different locations (x1,y;), (x2,y2), and (x3,y3).
Then we should have

c+dx =1,
c+dxy; =y,
c+dxz;=ys.

If there were no errors in our measurements, these equations would be compatible,
and ¢ and d would be determined by only two of the equations. However, in the
presence of errors, the system may be inconsistent. Yet we would like to find ¢ and
d!

The idea of the method of least squares is to determine (c,d) such that it mini-
mizes the sum of the squares of the errors, namely,

(c+dx; —yl)2 + (c—i—dxz—yz)z—i— (c+dxs —y3)2.

In general, for an overdetermined m x n system Ax = b, what Gauss and Legendre
discovered is that there are solutions x minimizing

lAx — b|?
(where [|u]|? = u? + -+ u2, the square of the Euclidean norm of the vector u =
(u1,...,uy)), and that these solutions are given by the square n X n system
ATAx=ATb,

called the normal equations. Furthermore, when the columns of A are linearly inde-
pendent, it turns out that AT A is invertible, and so x is unique and given by

x=(ATA)'ATD.

Note that ATA is a symmetric matrix, one of the nice features of the normal equa-
tions of a least squares problem. For instance, the normal equations for the above
problem are

3 Xrtx+a3) fc) _ Yi+y2+y3
x1+x+x3x3+x3+x3) \d X1y1+X2y2 + X353 )
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In fact, given any real m X n matrix A, there is always a unique x™ of minimum
norm that minimizes ||Ax — b||?, even when the columns of A are linearly dependent.
How do we prove this, and how do we find x™?

Theorem 14.1. Every linear system Ax = b, where A is an m X n matrix, has a
unique least squares solution x™ of smallest norm.

Proof. Geometry offers a nice proof of the existence and uniqueness of x™. Indeed,
we can interpret b as a point in the Euclidean (affine) space R™, and the image
subspace of A (also called the column space of A) as a subspace U of R™ (passing
through the origin). Then, we claim that x minimizes ||Ax — b||? iff Ax is the orthog-

onal projection p of b onto the subspace U, which is equivalent to pb = b — Ax being
orthogonal to U.

First of all, if U+ is the vector space orthogonal to U, the affine space b+ U+
intersects U in a unique point p (this follows from Lemma 2.15 (2)). Next, for any

point y € U, the vectors ﬁ and bp are orthogonal, which implies that

— —
1BY11* = [1bp|> + || B3I

Thus, p is indeed the unique point in U that minimizes the distance from b to any
pointin U.

To show that there is a unique x* of minimum norm minimizing the (square)
error ||Ax — b||?, we use the fact that

R" = KerA @ (KerA)™*.

Indeed, every x € R” can be written uniquely as x = u + v, where u € KerA and
Vv E (KerA)L, and since u and v are orthogonal,

2 2 2
[l = flaell ™+ [vII".

Furthermore, since u € KerA, we have Au = 0, and thus Ax = p iff Av = p, which
shows that the solutions of Ax = p for which x has minimum norm must belong
to (KerA):. However, the restriction of A to (KerA)" is injective. This is be-
cause if Av; = Av,, where vi,v, € (KerA)*, then A(v; —v,) = 0, which implies
v —vi € KerA, and since vy, v, € (KerA)*, we also have v, —v; € (KerA)*, and
consequently, v — vy = 0. This shows that there is a unique x of minimum norm
minimizing ||Ax — b||%, and that it must belong to (KerA)*. O

The proof also shows that x minimizes ||Ax — b||? iff p? = b — Ax is orthogonal
to U, which can be expressed by saying that b — Ax is orthogonal to every column
of A. However, this is equivalent to

AT(h—Ax)=0, ie, A'Ax=A"b.

Finally, it turns out that the minimum norm least squares solution x* can be found
in terms of the pseudo-inverse A1 of A, which is itself obtained from any SVD of A.
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Definition 14.1. Given any m x n matrix A, if A= VDU T is an SVD of A with
D =diag(Ay,...,4+,0,...,0),
where D is an m X n matrix and A; > 0, if we let
Dt =diag(1/A1,...,1/2,,0,...,0),
an n X m matrix, the pseudo-inverse of A is defined by

At =uDtVv".

Actually, it seems that A* depends on the specific choice of U and V in an SVD
(U,D,V) for A, but the next theorem shows that this is not so.

Theorem 14.2. The least squares solution of smallest norm of the linear system
Ax = b, where A is an m X n matrix, is given by

xt=ATb=UD"VTbh.

Proof. First, assume that A is a (rectangular) diagonal matrix D, as above. Then,
since x minimizes ||Dx — b||? iff Dx is the projection of b onto the image subspace
F of D, it is fairly obvious that x* = D" b. Otherwise, we can write

A=VDU',
where U and V are orthogonal. However, since V is an isometry,
|Ax—b|| = |VDU "x—b|| = ||DU "x—V "b||.

Letting y = U " x, we have ||x|| = |||, since U is an isometry, and since U is surjec-
tive, |Ax — b|| is minimized iff | Dy — V " b|| is minimized, and we have shown that
the least solution is

yr =DV Tb.

Since y = U "x, with ||x|| = [|y||, we get
xt=UD'V'b=A"D.

Thus, the pseudo-inverse provides the optimal solution to the least squares problem.
O

By Lemma 14.2 and Theorem 14.1, A" b is uniquely defined by every b, and thus
AT depends only on A.
Let A=UZXV T be an SVD for A. It is easy to check that

AATA = A,
ATAAT = AT
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and both AA™ and AT A are symmetric matrices. In fact,
AAT=UuzvivETUT =UEETUT =U (1, 0 > U’
and
ATA=vEtuTuzvT =vEtzvi =v <I’ 0 ) v
We immediately get

(AAT)? = AA7,

(ATA)? = ATA,
so both AA™ and AT A are orthogonal projections (since they are both symmetric).
We claim that AA™ is the orthogonal projection onto the range of A and AT A is the
orthogonal projection onto Ker(A)* =Tm(A "), the range of A" .

Obviously, we have range(AA™) C range(A), and for any y = Ax € range(A),
since AATA = A, we have

AATY=AATAx=Ax =Y,

so the image of AA™ is indeed the range of A. It is also clear that Ker(A) C
Ker(ATA), and since AATA = A, we also have Ker(ATA) C Ker(A), and so

Ker(ATA) = Ker(A).

Since AT A is Hermitian, range(ATA) = Ker(ATA)* = Ker(A)*, as claimed.
It will also be useful to see that range(A) = range(AA™) consists of all vectors

y € R™ such that
T._ (<X

with z € R".
Indeed, if y = Ax, then

UTy=UTAx=UTUsVTx=xvTx= (% O VyTe= (Z),
0 Opr 0

where Z, is the r x r diagonal matrix diag(o1,...,0,). Conversely, if Uy = ().
theny =U ((Z)), and
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AATy=U (1, 0 > U'y
Om—r
(5o ) (i)
o(600.) ()

_U@_y,

which shows that y belongs to the range of A.
Similarly, we claim that range(A*A) = Ker(A)" consists of all vectors y € R"
withz € R".

such that
T. (X
If y = AT Au, then

I, 0 Z
At A, — r T,
y=A"Au V<0 Onr)V u V<0)7

for some z € R”. Conversely, if V'y = (), theny =V (), and so

war()=v(he ) (i
(

which shows that y € range(ATA).
If A is a symmetric matrix, then in general, there is no SVD UXV T of A with U =
V. However, if A is positive semidefinite, then the eigenvalues of A are nonnegative,
and so the nonzero eigenvalues of A are equal to the singular values of A and SVDs
of A are of the form
A=UZU".

Analogous results hold for complex matrices, but in this case, U and V are unitary
matrices and AA™ and ATA are Hermitian orthogonal projections.

If A is a normal matrix, which means that AAT = AT A, then there is an intimate
relationship between SVD’s of A and block diagonalizations of A. As a consequence,
the pseudo-inverse of a normal matrix A can be obtained directly from a block diag-
onalization of A.
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If A is a (real) normal matrix, then we know from Theorem 12.7 that A can be
block diagonalized with respect to an orthogonal matrix U as

A=UAUT,
where A is the (real) block diagonal matrix
A =diag(By,...,By),

consisting either of 2 x 2 blocks of the form

14 _u.>
B.— (% —H
’ <u,~ Aj

with uj # 0, or of one-dimensional blocks By = (4;). Then we have the following
proposition:

Proposition 14.1. For any (real) normal matrix A and any block diagonalization
A=UAU" of A as above, the pseudo-inverse of A is given by

AT=UAYUT,

where AT is the pseudo-inverse of A. Furthermore, if
(A0
2= (50)
A7LO
+ _ r
A= ( A 0) |

Proof. Assume that By, ...,B, are 2 x 2 blocks and that A, 1, ..., A, are the scalar
entries. We know that the numbers A; £ip;, and the A, are the eigenvalues of A.

where A, has rank r, then

Letp2j71 =pP2j= H)LJ-Z—F.LLJZfOI'j: 1,...,p,p2p+j:/1j forj=1,...,n—2p, and
assume that the blocks are ordered so that p; > py > --- > p,,. Then it is easy to see
that

UU'=U'"U=UAUTUATU" =UAATU,

with
AAT =diag(pf,..,pp),

so the singular values 61 > 6, > --- > 0, of A, which are the nonnegative square
roots of the eigenvalues of AAT, are such that

oj=pj, l<j<n
We can define the diagonal matrices

X =diag(oy,...,0,0,...,0),
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where r = rank(A), oy > --- > 0, > 0 and
© = diag(o; 'B1,...,0,, By, 1,...,1),
so that ® is an orthogonal matrix and
A=0ZX = (By,...,By,lopi1,...,A4,0,...,0).

But then we can write
A=UAU" =UBZU,

and we if let V = U@, since U is orthogonal and @ is also orthogonal, V is also
orthogonal and A = VXU T is an SVD for A. Now we get

At=vurtv =vuzte'u’.

However, since © is an orthogonal matrix, 0T =0"! and a simple calculation
shows that
T —1
Ite' =zt l=A",

which yields the formula
AT =UATUT.

Also observe that if we write

Ar: (Bla"'7Bp7)’2p+11"'7)’r)1

A0

+ r

a= (510).

Therefore, the pseudo-inverse of a normal matrix can be computed directly from
any block diagonalization of A, as claimed. O

then A, is invertible and

The following properties, due to Penrose, characterize the pseudo-inverse of a
matrix. We have already proved that the pseudo-inverse satisfies these equations.
For a proof of the converse, see Kincaid and Cheney [6].

Lemma 14.1. Given any m x n matrix A (real or complex), the pseudo-inverse A™
of A is the unique n X m matrix satisfying the following properties:

AATA=A,
ATAAT = AT,
(AAT)T =AAT,
(ATA)T =ATA.

If A is an m X n matrix of rank # (and so m > n), it is immediately shown that the
OR-decomposition in terms of Householder transformations applies as follows:
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There are n m x m matrices Hy, ..., H,, Householder matrices or the identity, and
an upper triangular m X n matrix R of rank n such that

A=H;---H,R.
Then, because each H; is an isometry,
|Ax = b|| = [|[Rx — H,--- H, b,
and the least squares problem Ax = b is equivalent to the system
Rx=H,---Hb.

Now, the system
Rx=H,---H\b

(o )+=(5)

where R; is an invertible n X n matrix (since A has rank n), c € R"”, and d € R™" ™",
and the least squares solution of smallest norm is

is of the form

xt :erc.

Since R; is a triangular matrix, it is very easy to invert R;.

The method of least squares is one of the most effective tools of the mathematical
sciences. There are entire books devoted to it. Readers are advised to consult Strang
[7], Golub and Van Loan [4], Demmel [1], and Trefethen and Bau [8], where exten-
sions and applications of least squares (such as weighted least squares and recursive
least squares) are described. Golub and Van Loan [4] also contains a very extensive
bibliography, including a list of books on least squares.

14.2 Data Compression and SVD

Among the many applications of SVD, a very useful one is data compression, no-
tably for images. In order to make precise the notion of closeness of matrices, we
review briefly the notion of matrix norm. We assume that the reader is familiar with
the concept of a norm in a vector space. The concept of a norm is defined in Sec-
tion 21.2 of the appendix, and the reader may want to review it before reading any
further.

A familiar example of a norm on R" (resp. C") is the [, norm,

n 1/p
[lull, = <Z|ui|”> ,
i=1
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where p > 1. When p = 1, we have

n
leelly = Y loal:
i=1

when p = 2, we have the Euclidean norm,

ully =

and when p = o, we have
|lu|l.. = max |u;|.
1<i<n
Now let E and and F be two normed vector spaces (we will use the same notation,
|Il], for the norms on E and F). If A: E — F is a linear map, we say that A is bounded
iff there is some constant ¢ > 0 such that

([ Aul] < ¢ |lulf,

forallu € E.

It is well known that a linear map is continuous iff it is bounded. Also, if E is
finite-dimensional, then a linear map is always bounded. The norms on E and F
induce a norm on bounded linear maps as follows:

Definition 14.2. Given two normed vector spaces E and F, for any linear map
A: E — F, we define ||A|| by

[|Au|
|A]| = sup ——— = sup [|Aul|.

w0 llull =1

Proposition 14.2. Given two normed vector spaces E and F, the quantity ||A|| is
a norm on bounded linear maps A: E — F. Furthermore, ||Au|| < ||A]|||u|| for all
uck.

The norm ||A|| on (bounded) linear maps defined as above is called an operator
norm or induced norm or subordinate norm. From Proposition 14.2, we deduce that
if A: E— F and B: F — G are bounded linear maps, where E,F,G are normed
vector spaces, then

1BA] < [IA][IB]l.

Let us now consider m X n matrices. A matrix norm is simply a norm on R™" (or
C™"). Some authors require a matrix norm to satisfy ||AB|| < ||A|| ||B|| whenever AB
makes sense. We immediately have the subordinate matrix norms induced by the /,
norms, but there are also useful matrix norms that are not subordinate norms.

For example, we have the Frobenius norm (also known as Schur norm or Hilbert
norm) defined so that if A = (g, ;) is an m x n matrix, then
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Ay = [ laijl*
ij

We leave the following useful proposition as an exercise:

Proposition 14.3. Let A be an m x nmatrix (over Ror C) and let 61 > 6, > -+ > 06,
be its singular values (where p = min(m,n)). Then the following properties hold:

1. ||Au|| < ||A]| ||ull, where ||A|| is a subordinate norm and ||Aull, < ||Allg ||ull,,
where ||A||y is the Frobenius norm.

2. ||AB|| < ||A|| |B]], for a subordinate norm or the Frobenius norm.

3. ||UAV|| = ||A|| if U and V are orthogonal (or unitary) and || || is the Frobenius

norm or the subordinate norm || ||,.
4. ||A| = max; ¥ |ai ;|-
- [|All, = max; ¥, aij|.
. J|All; = 01 = \/Amax(A*A), where Amax (A*A) is the largest eigenvalue of A*A.

7. ||Allp = \/XL, 62, where p = min(m,n).

QA L

8 Al < llAllr < vPlIAllL:

In (4), (5), (6), (8), the matrix norms are the subordinate norms induced by the
corresponding norms (||| I, and || ||,) on R™ and R".

oo’

Having all this, given an m X n matrix of rank r, we would like to find a best
approximation of A by a matrix B of rank k < r (actually, k < r) so that ||A — B||,
(or [|[A — B||) is minimized.

Proposition 14.4. Let A be an m x n matrix of rank r and let VDU " = A be an SVD
for A. Write u; for the columns of U, v; for the columns of V, and 61 > 6, > --- > 0,
for the singular values of A (p = min(m,n)). Then a matrix of rank k < r closest to
A (in the || ||, norm) is given by

k
Ak = Z ('F,'Vil,t;r = Vdiag(ol, ey Gk)UT
i=1

and [|A = Al = Ok1.

Proof. By construction, Ay has rank k, and we have

P
la=ad = ¥ owa
i=k+1

- HVdiag(O, . ,o,akﬂ,...,c;,,)UTH2 — G,

It remains to show that ||A — B||, > oy for all rank-k matrices B. Let B be any
rank-k matrix, so its kernel has dimension n — k. The subspace U, spanned by
(u1,...,uxr1) has dimension k + 1, and because the sum of the dimensions of the
kernel of B and of Uy is (n —k)+k+ 1 =n+ 1, these two subspaces must intersect
in a subspace of dimension at least 1. Pick any unit vector 4 in Ker(B) N Uy 1. Then
since Bh = 0, we have
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2 2
|A=BI5 > (A= B)l = |Anl = ||\vDUTh| > o2, [UTh| = o,

which proves our claim. 0O

Note that A; can be stored using (m -+ n)k entries, as opposed to mn entries. When
k < m, this is a substantial gain.

A nice example of the use of Proposition 14.4 in image compression is given in
Demmel [1], Chapter 3, Section 3.2.3, pages 113—115; see the Matlab demo.

An interesting topic that we have not addressed is the actual computation of an
SVD. This is a very interesting but tricky subject. Most methods reduce the compu-
tation of an SVD to the diagonalization of a well-chosen symmetric matrix (which
is not AT A). Interested readers should read Section 5.4 of Demmel’s excellent book
[1], which contains an overview of most known methods and an extensive list of
references.

14.3 Principal Components Analysis (PCA)

Suppose we have a set of data consisting of n points X, ...,X,, with each X; € R?
viewed as a row vector.
Think of the X;’s as persons, and if X; = (x;1,...,X;q), each x;; is the value of

some feature (or attribute) of that person. For example, the X;’s could be mathe-
maticians, d = 2, and the first component, x;{, of X; could be the year that X; was
born, and the second component, x;,, the length of the beard of X; in centimeters.
Here is a small data set:

Name year |length
Carl Friedrich Gauss 1777 0
Camille Jordan 1838 12

Adrien-Marie Legendre|1752 0
Bernhard Riemann 1826 15

David Hilbert 1862 2
Henri Poincaré 1854 5
Emmy Noether 1882 0
Karl Weierstrass 1815 0
Eugenio Beltrami 1835 2

Hermann Schwarz 1843 20

We usually form the n X d matrix X whose ith row is X;, with 1 <i < n. Then
the jth column is denoted by C; (1 < j < d). It is sometimes called a feature vector,
but this terminology is far from being universally accepted. In fact, many people in
computer vision call the data points X; feature vectors!

The purpose of principal components analysis, for short PCA, is to identify pat-
terns in data and understand the variance—covariance structure of the data. This is
useful for the following tasks:
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1. Data reduction: Often much of the variability of the data can be accounted for
by a smaller number of principal components.
2. Interpretation: PCA can show relationships that were not previously suspected.

Given a vector (a sample of measurements) x = (x,...,x,) € R", recall that the
mean (or average) X of x is given by

In order to measure the spread of the x;’s around the mean, we define the sample
variance (for short, variance) var(x) (or s%) of the sample x by

i (i —J_C)Z.

var(x) = 1
n—

There is a reason for using n — 1 instead of n. The above definition makes var(x)
an unbiased estimator of the variance of the random variable being sampled. How-
ever, we don’t need to worry about this. Curious readers will find an explanation of
these peculiar definitions in Epstein [2] (Chapter 14, Section 14.5), or in any decent
statistics book.

Given two vectors x = (x1,...,x,) and y = (y1,...,yu), the sample covariance
(for short, covariance) of x and y is given by

(i —X) (i )
n—1 '

cov(x,y) =

The covariance of x and y measures how x and y vary from the mean with respect
to each other. Obviously, cov(x,y) = cov(y,x) and cov(x,x) = var(x).

Note that .
_x=%) (6-Y)
cov(x,y) = P .
We say that x and y are uncorrelated iff cov(x,y) = 0.
Finally, given an n x d matrix X of n points X;, for PCA to be meaningful, it will
be necessary to translate the origin to the centroid (or center of gravity) u of the
X;’s, defined by

1
y:#&+m+ny
Observe thatif u = (uy,..., 4g), then 1 is the mean of the vector C; (the jth column
of X).

We let X — u denote the matrix whose ith row is the centered data point X; — 1
(1 <i < n). Then, the sample covariance matrix (for short, covariance matrix) of X
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is the d X d symmetric matrix

2:

1 1(X — )" (X — 1) = (cov(C;,C))).

n—

Remark: The factor ﬁ is irrelevant for our purposes and can be ignored.
Here is the matrix X — u in the case of our bearded mathematicians: Since

1 = 1828.4, w=5.6,

we get
Name year |length
Carl Friedrich Gauss |—51.4] —5.6
Camille Jordan 9.6 6.4
Adrien-Marie Legendre|—76.4| —5.6
Bernhard Riemann —2.4 94
David Hilbert 33.6 | —3.6
Henri Poincaré 256 | —0.6
Emmy Noether 53.6 | —=5.6
Karl Weierstrass 134 | —-5.6
Eugenio Beltrami 6.6 | —3.6
Hermann Schwarz 146 | 144

We can think of the vector C; as representing the features of X in the direction
e; (the jth canonical basis vector in R?, namely ej=1(0,...,1,...0), witha 1 in the
Jjth position).

If v € R is a unit vector, we wish to consider the projection of the data points
X1,...,X, onto the line spanned by v. Recall from Euclidean geometry that if x € R?
is any vector and v € R? is a unit vector, the projection of x onto the line spanned
by vis

(x,v)v.

Thus, with respect to the basis v, the projection of x has coordinate (x,v). If x is
represented by a row vector and v by a column vector, then

(x,v) = xv.

Therefore, the vector Y € R” consisting of the coordinates of the projections of
Xi,...,X, onto the line spanned by v is given by Y = Xv, and this is the linear
combination

XV=V1C1+"'+VdCd

of the columns of X (with v = (v1,...,v4)).
Observe that because p; is the mean of the vector C; (the jth column of X), we
get
Y =Xv=viti+-- +villa,



14.3 Principal Components Analysis (PCA) 401
and so the centered point Y —Y is given by

Y=Y =vi(Cr— 1)+ +va(Cqs— a) = (X — )v.
Furthermore, if Y = Xv and Z = Xw, then

(X —)v) " (X = pw
n—1

cov(Y,Z) =

= ) ()

where X is the covariance matrix of X. Since Y — Y has zero mean, we have

- 1
var(Y) =var(Y —=Y) =v' (X = w) (X — .
n—
The above suggests that we should move the origin to the centroid ¢ of the X;’s and
consider the matrix X — u of the centered data points X; — .
From now on, beware that we denote the columns of X — u by Cy,...,C; and that
Y denotes the centered pointY = (X — u)v = 27:1 v;C;, where v is a unit vector.

Basic idea of PCA: The principal components of X are uncorrelated projections Y
of the data points X1, ..., X;; onto some directions v (where the v’s are unit vectors)
such that var(Y') is maximal.

This suggests the following definition:

Definition 14.3. Given an n x d matrix X of data points Xi,...,X,, if u is the cen-
troid of the X;’s, then a first principal component of X (first PC) is a centered point
Y1 = (X — u)vy, the projection of Xi,...,X, onto a direction v; such that var(¥;) is
maximized, where vy is a unit vector (recall that ¥; = (X — tt)v; is a linear combi-
nation of the C;’s, the columns of X — ).

More generally, if Yi,...,Y; are k principal components of X along some unit
vectors vy,..., v, where 1 <k < d, a (k+ 1)th principal component of X ((k+ 1)th
PC) is a centered point Y| = (X — it)vg 1, the projection of Xj, ..., X, onto some
direction vy such that var(Y;, ) is maximized, subject to cov(¥},, Y, 1) = 0 for all
h with 1 < h <k, and where v is a unit vector (recall that ¥, = (X — u)v;, is a
linear combination of the C;’s). The v, are called principal directions.

The following lemma is the key to the main result about PCA:

Lemma 14.2. If A is a symmetric d x d matrix with eigenvalues Ay > 2y > -+ > Ay
and if (uy,...,uy) is any orthonormal basis of eigenvectors of A, where u; is a unit
eigenvector associated with A;, then

xTAx

max =
x£0 xTx
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(with the maximum attained for x = uy ) and

xAx
max —— =My
xZ0xe{uy,.u }t X' X
(with the maximum attained for x = uy ), where 1 <k <d—1.

Proof. First, observe that

T

X Ax T T
ma =ma A =1
0 x1x xx{x xleix=1},

and similarly,

x Ax
max

m T 1 T
=max<x Ax|(x € {uy,...,u /\xx:l},
x20.x€{uy,...up }+ xTx X { | ( { 1 k} ) ( )

Since A is a symmetric matrix, its eigenvalues are real and it can be diagonalized
with respect to an orthonormal basis of eigenvectors, so let (uy,...,uy) be such a
basis. If we write
d
X = inui,
i=1

a simple computation shows that
d
xTAx= Z l,-xiz.
i=1
If x"x = 1, then Y&, x? = 1, and since we assumed that 4; > A, > --- > A4, we get

d d
x Ax = Zlixl-z <M (lez) =A.
i=1 i=1

Thus,
max {xTAx | X x= 1} <A,
X
and since this maximum is achieved for e; = (1,0,...,0), we conclude that
max {xTAx |x'x= 1} =A.
X
Next, observe that x € {uj,...,ux} - andx"x = 1iffx; =--- =x; =0and Y&, x; =

1. Consequently, for such an x, we have

d d
)CTA)CZ Z lixl-z < A«k+1< Z xlz) Zl]ﬁq.

i=k+1 i=k+1
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Thus,
max {xTAx | (x € {ur,...,m} )N (x"x= 1)} < X1,
X

and since this maximum is achieved for ¢, ; = (0,...,0,1,0,...,0) with a 1 in
position k+ 1, we conclude that

mfx{xTAx| (e {ug,...,m} )N (x"x= 1)} = Mt 1s

as claimed. 0O

The quantity
x' Ax

-

X' X

is known as the Rayleigh—Ritz ratio and Lemma 14.2 is often known as part of the
Rayleigh—Ritz theorem.

Lemma 14.2 also holds if A is a Hermitian matrix and if we replace x' Ax by
x*Ax and x"x by x*x. The proof is unchanged, since a Hermitian matrix has real
eigenvalues and is diagonalized with respect to an orthonormal basis of eigenvectors
(with respect to the Hermitian inner product).

We then have the following fundamental result showing how the SVD of X yields
the PCs:

Theorem 14.3. (SVD yields PCA) Let X be an n x d matrix of data points X1, ..., X,,
and let u be the centroid of the X;’s. If X — = VDU " is an SVD decomposition of
X — 1 and if the main diagonal of D consists of the singular values 61 > 6 > -+ >
Oy, then the centered points Y1,...,Y,, where

Y, = (X — W)uy = kth column of VD

and uy is the kth column of U, are d principal components of X. Furthermore,

2
c
var(¥y) = n——kl

and cov(Y,,Y;) =0, whenever h # k and 1 < k,h <d.

Proof. Recall that for any unit vector v, the centered projection of the points
Xi,...,X, onto the line of direction v is ¥ = (X — p)v and that the variance of Y
is given by

var(Y) =v' ! 1(X—,I.L)T(X—u)v.

n—

Since X —u =VDU T, we get
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— T — v
(n—l)(X n) (X —nu)

1
=y ———UDV'VDU v
(n—1)

D*U .

Similarly, if ¥ = (X — p)v and Z = (X — u)w, then the covariance of ¥ and Z is
given by

D*U "w.

1
cov(Y,Z) = vTU(n_ )
(o

Obviously, U @ l 1)DZU Tisa symmetric matrix whose eigenvalues are e HR

2
%, and the columns of U form an orthonormal basis of unit eigenvectors.

We proceed by induction on k. For the base case, k = 1, maximizing var(Y) is
equivalent to maximizing

viUu D*U Ty,

1
(n—1)
where v is a unit vector. By Lemma 14.2, the maximum of the above quantity is the

2
largest eigenvalue of U (nlUDzU T namely %, and it is achieved for uq, the first

columnn of U. Now we get

Y1 = (X —p)u; = VDU "uy,

and since the columns of U form an orthonormal basis, U u; = e; = (1,0,...,0),
and so Y; is indeed the first column of VD.

By the induction hypothesis, the centered points Y1, ..., ¥, where ¥, = (X — u)uy,
and uy,...,uy are the first k columns of U, are k principal components of X. Because

cov(Y,Z)=v'U D*U w,

(n—1)
where Y = (X — u)vand Z = (X — i)w, the condition cov(¥;,,Z) =0forh=1,...,k
is equivalent to the fact that w belongs to the orthogonal complement of the subspace
spanned by {uy,...,u;}, and maximizing var(Z) subject to cov(¥y,Z) =0 for h =
1,...,k is equivalent to maximizing

w' U

1 27,
DU
-~ "
where w is a unit vector orthogonal to the subspace spanned by {uj,...,uz}. By
Lemma 14.2, the maximum of the above quantity is the (k+ 1)th eigenvalue of

2
U (nll)DzUT, namely :"jll , and it is achieved for 1, 1, the (k+ 1)th columnn of U.

Now we get

Yerr = (X — Wugr = VDU "y,
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and since the columns of U form an orthonormal basis, U TukH = ep+1, and Y4
is indeed the (k + 1)th column of VD, which completes the proof of the induction
step. O

The d columns uy, ... ,uy of U are usually called the principal directions of X — 1t
(and X). We note that not only do we have cov(Y},,Y;) = 0 whenever i # k, but the
directions u1,...,uy along which the data are projected are mutually orthogonal.

We know from our study of SVD that 612, R G‘% are the eigenvalues of the sym-
metric positive semidefinite matrix (X — )" (X — u) and that uy, ..., uy are corre-
sponding eigenvectors. Numerically, it is preferable to use SVD on X — u rather than
to compute explicitly (X — ) " (X — u) and then diagonalize it. Indeed, the explicit
computation of ATA from a matrix A can be numerically quite unstable, and good
SVD algorithms avoid computing A" A explicitly.

In general, since an SVD of X is not unique, the principal directions uy, ..., ug
are not unique. This can happen when a data set has some rotational symmetries,
and in such a case, PCA is not a very good method for analyzing the data set.

14.4 Best Affine Approximation

A problem very close to PCA (and based on least squares) is to best approximate a
data set of n points X, ...,X,, with X; € R%, by a p-dimensional affine subspace A
of RY, with 1 < p < d — 1 (the terminology rank d — p is also used).

First, consider p = d — 1. Then A = A is an affine hyperplane (in RY), and it is
given by an equation of the form

ayx)1+---+agxg+c=0.

By best approximation, we mean that (ay,...,a,c) solves the homogeneous linear
system
ag 0
xpp o xig 1 .
) aq 0
Xnl *** Xng 1 0
in the least squares sense, subject to the condition that a = (ay,...,ay) is a unit
vector, thatis, a"a = 1, where X; = (xi1,--- ,X;q)-

If we form the symmetric matrix

-
X xig 1 xXip - Xig 1

Xp1 v Xpg 1 Xl v Xpa 1

involved in the normal equations, we see that the bottom row (and last column) of
that matrix is



406 14 Applications of SVD and Pseudo-inverses

0 R ) R

where nj1; = YI"_ | x;j is n times the mean of the column C; of X.
Therefore, if (ay,...,aq,c) is a least squares solution, that is, a solution of the
normal equations, we must have

npia + - +npgag +nc =0,

that is,
ajpy + - +agpq +c =0,

which means that the hyperplane A| must pass through the centroid | of the data
points X1, ...,X,. Then we can rewrite the original system with respect to the cen-
tered data X; — u, and we find that the variable ¢ drops out and we get the system

(X_Ii)a: 07

where a = (ay,...,ay).
Thus, we are looking for a unit vector a solving (X — it )a = 0 in the least squares
sense, that is, some a such thata'a = 1 minimizing

a' (X—p) (X -pa.

Compute some SVD VDU " of X — u, where the main diagonal of D consists of the
singular values 61 > 0y > --- > o4 of X — u arranged in descending order. Then

a'(X—p)' (X —wa=a"UD?U a,

where D* = diag(o7,...,07) is a diagonal matrix, so pick a to be the last column
in U (corresponding to the smallest eigenvalue 65 of (X — )" (X —u)). This is a
solution to our best fit problem.

Therefore, if U;_ is the linear hyperplane defined by a, that is,

Ug 1 = {ucR?| (u,a) =0},

where a is the last column in U for some SVD VDU " of X — u, we have shown
that the affine hyperplane A} = pt 4+ U,_; is a best approximation of the data set
X1,...,X, in the least squares sense.

Is is easy to show that this hyperplane A| = 1 + U;_| minimizes the sum of the
square distances of each X; to its orthogonal projection onto A;. Also, since Uy_ is
the orthogonal complement of a, the last column of U, we see that U,_; is spanned
by the first d — 1 columns of U, that is, the first d — 1 principal directions of X — .

All this can be generalized to a best (d — k)-dimensional affine subspace Ay ap-
proximating X1, ...,X, in the least squares sense (1 < k < d —1). Such an affine
subspace Ay, is cut out by k independent hyperplanes H; (with 1 <i < k), each given
by some equation

aj1xy1+---+ajgxg+ci =0.
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If we write a; = (a;1,---,a;4), to say that the H; are independent means that
ai,...,a; are linearly independent. In fact, we may assume that ay,...,a; form an
orthonormal system.

Then, finding a best (d — k)-dimensional affine subspace A; amounts to solving
the homogeneous linear system

ap
X10---000\ |c 0
000---0x1) | a 0
Ck

in the least squares sense, subject to the conditions aiTa = S; j» for all i, j with
1 <, j <k, where the matrix of the system is a block diagonal matrix consisting of
k diagonal blocks (X,1), where 1 denotes the column vector (1,...,1) € R".

Again, it is easy to see that each hyperplane H; must pass through the centroid i
of X1,...,X,, and by switching to the centered data X; — u we get the system

X—-u0--- 0 ai 0
0 0---X—u ag 0
withaa; = §; foralli,j with 1 <i,j<k.

If VDU =X — p is an SVD decomposition, it is easy to see that a least squares
solution of this system is given by the last k columns of U, assuming that the main
diagonal of D consists of the singular values 61 > 0> > --- > 04 of X —  arranged in
descending order. But now the (d — k)-dimensional subspace U,_j cut out by the hy-
perplanes defined by ay, ..., a; is simply the orthogonal complement of (ay, ..., ay),
which is the subspace spanned by the first d — k columns of U.

So the best (d — k)-dimensional affine subpsace A; approximating Xj,...,X, in

the least squares sense is
Ay =p+Ug,

where U,_y is the linear subspace spanned by the first d — k principal directions
of X — u, that is, the first d — k columns of U. Consequently, we get the following
interesting interpretation of PCA (actually, principal directions):

Theorem 14.4. Let X be an n x d matrix of data points Xi,...,X,, and let i be the
centroid of the X;’s. If X — . = VDU " is an SVD decomposition of X — u and if the
main diagonal of D consists of the singular values 61 > 0y > --- > 0y, then a best
(d — k)-dimensional affine approximation Ay of X, ..., X, in the least squares sense
is given by

Ar=Uu+Ug,

where U;_y, is the linear subspace spanned by the first d — k columns of U, the first
d — k principal directions of X —u (1 <k <d—1).
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There are many applications of PCA to data compression, dimension reduction,
and pattern analysis. The basic idea is that in many cases, given a data set Xy, ...,X,,
with X; € RY, only a “small” subset of m < d of the features is needed to describe
the data set accurately.

If uy,...,uy are the principal directions of X — u, then the first m projections
of the data (the first m principal components, i.e., the first m columns of VD) onto
the first m principal directions represent the data without much loss of information.
Thus, instead of using the original data points Xi,...,X,, with X; € RY, we can use
their projections onto the first m principal directions Yi,...,Y,,, where ¥; € R and
m < d, obtaining a compressed version of the original data set.

For example, PCA is used in computer vision for face recognition. Sirovitch and
Kirby (1987) seem to be the first to have had the idea of using PCA to compress
facial images. They introduced the term eigenpicture to refer to the principal direc-
tions, u;. However, an explicit face recognition algorithm was given only later, by
Turk and Pentland (1991). They renamed eigenpictures as eigenfaces.

For details on the topic of eigenfaces, see Forsyth and Ponce [3] (Chapter 22,
Section 22.3.2), where you will also find exact references to Turk and Pentland’s
papers.

Another interesting application of PCA is to the recognition of handwritten dig-
its. Such an application is described in Hastie, Tibshirani, and Friedman, [5] (Chap-
ter 14, Section 14.5.1).

14.5 Problems

14.1. We observe m positions ((x1,y1), ..., (Xm,ym)) of a point moving in the plane
(m > 2), and assume that they are roughly on a straight line. Prove that the line
y = ¢ + dx that minimizes the error

(c+dx; —y) 2+ + (c+dxp—ym)?

is the line of equation

y=y+d(x-X%),
where

_ X1t txy,
Xr=—,

m
_ oVttt Ym
y= )

m
d— Zlil(‘xi_x)yl
Zlm:1(xi—x)2

14.2. Find the least squares solution to the problem
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Do the problem again with the right-hand sides

2 2
-1 and 2
2 —1
14.3. Given m real numbers (yy,...,ym), prove that the constant function ¢ that min-

imizes the error
e=(—c)’+-+0Om—c)’
is the mean y of the data,
Y1ttt m
y="—"
m
Note that the corresponding error is the variance of the data.

14.4. Given the four points (—1,2), (0,0), (1,—3), (2,—5), find (in the least squares
sense)

(i) The best horizontal line y = c;
(ii) The best line y = ¢ + dx;
(iii) The best parabola y = ¢ + dx + ex”.

14.5. Given the four points (1,1,3), (0,3,6), (2,1,5), (0,0,0), find the best plane
(in the least squares sense)
z=c+dx+ey

that fits the four points.

14.6. (a) Prove that if A has independent columns, then its pseudo-inverse is
(ATA)~'AT, which is also the left inverse of A.

(b) Prove that if A has independent rows, then its pseudo-inverseis AT (AA 7)1,
which is also the right inverse of A.

14.7. Prove Proposition 14.2.
14.8. Prove Proposition 14.3.

14.9. Let A be any invertible (real) n X n matrix.

(a) Prove that for every SVD A = VDU T of A, the product VU T is the same (i.e.,
if ViDU|" = V,DU,', then V,U;" = V,U,"). What does VU " have to do with the
polar form of A?

(b) Given any invertible (real) n X n matrix A, prove that there is a unique or-
thogonal matrix Q € O(n) such that |[A — Q|| is minimal (under the Frobenius
norm). In fact, prove that Q = VU T, where A= VDU is an SVD of A. Moreover,
if det(A) > 0, show that O € SO(n).

What can you say if A is singular (i.e., noninvertible)?
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Chapter 15
Quadratic Optimization Problems

15.1 Quadratic Optimization: The Positive Definite Case

In this chapter, we consider two classes of quadratic optimization problems that
appear frequently in engineering and in computer science (especially in computer
vision):

1. Minimizing
1
flx)= ExTAx +x'b
over all x € R”, or subject to linear or affine constraints.
2. Minimizing
1
flx)= ExTAx +x'b
over the unit sphere.

In both cases, A is a symmetric matrix. We also seek necessary and sufficient con-
ditions for f to have a global minimum.

Many problems in physics and engineering can be stated as the minimization
of some energy function, with or without constraints. Indeed, it is a fundamental
principle of mechanics that nature acts so as to minimize energy. Furthermore, if a
physical system is in a stable state of equilibrium, then the energy in that state should
be minimal. For example, a small ball placed on top of a sphere is in an unstable
equilibrium position. A small motion causes the ball to roll down. On the other hand,
a ball placed inside and at the bottom of a sphere is in a stable equilibrium position,
because the potential energy is minimal.

The simplest kind of energy function is a quadratic function. Such functions can
be conveniently defined in the form

P(x)=x"Ax—x"b,

where A is a symmetric n X n matrix, and x, b, are vectors in R”, viewed as column
vectors. Actually, for reasons that will be clear shortly, it is preferable to put a factor

411
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% in front of the quadratic term, so that
1 T T
P(x) = 7% Ax—x'b.

The question is, under what conditions (on A) does P(x) have a global minimum,
preferably unique?
We give a complete answer to the above question in two stages:

1. In this section, we show that if A is symmetric positive definite, then P(x) has a
unique global minimum precisely when

Ax=0b.

2. In Section 15.2, we give necessary and sufficient conditions in the general case,
in terms of the pseudo-inverse of A.

We begin with the matrix version of Definition 13.2.

Definition 15.1. A symmetric positive definite matrix is a matrix whose eigenvalues
are strictly positive, and a symmetric positive semidefinite matrix is a matrix whose
eigenvalues are nonnegative.

Equivalent criteria are given in the following lemma.

Lemma 15.1. Given any Euclidean space E of dimension n, the following properties
hold:

(1) Every self-adjoint linear map f: E — E is positive definite iff
(x,f(x)) >0

for all x € E with x # 0.
(2) Every self-adjoint linear map f: E — E is positive semidefinite iff

(x,f(x)) =0
forallx € E.
Proof. (1) First, assume that f is positive definite. Recall that every self-adjoint
linear map has an orthonormal basis (ej,...,e,) of eigenvectors, and let Ay,...,4,

be the corresponding eigenvalues. With respect to this basis, for every x = x1e1 +
-+ xpe, # 0, we have

(x, f(x)) = <iixieiaf(iixiei)> = <éxz'ei,i{lixz'ei> = i{&'ﬁ,

which is strictly positive, since A; > 0 fori=1,...,n, and xiz > 0 for some i, since

x#0.
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Conversely, assume that
(. f(x)) >0

for all x # 0. Then for x = ¢;, we get
(i, f(ei)) = (ei, Aiei) = Ai,

and thus A; > O foralli=1,...,n.
(2) Asin (1), we have

and since A; > 0 for i = 1,...,n because f is positive semidefinite, we have
(x, f(x)) > 0, as claimed. The converse is as in (1) except that we get only A; > 0
since (e;, f(e;)) >0. O

Some special notation is customary (especially in the field of convex optiniza-
tion) to express that a symmetric matrix is positive definite or positive semidefinite.

Definition 15.2. Given any n X n symmetric matrix A we write A > 0 if A is positive
semidefinite and we write A > 0 if A is positive definite.

It should be noted that we can define the relation
A>B

between any two n X n matrices (symmetric or not) iff A — B is symmetric posi-
tive semidefinite. It is easy to check that this relation is actually a partial order on
matrices, called the positive semidefinite cone ordering; for details, see Boyd and
Vandenberghe [1], Section 2.4.

If A is symmetric positive definite, it is easily checked that A~! is also symmetric
positive definite. Also, if C is a symmetric positive definite m x m matrix and A is
an m x n matrix of rank n (and so m > n), then A CA is symmetric positive definite.

We can now prove that

P(x)=-x"Ax—x'b
has a global minimum when A is symmetric positive definite.

Lemma 15.2. Given a quadratic function

1
P(x) = ExTAx —x'b,
if A is symmetric positive definite, then P(x) has a unique global minimum for the
solution of the linear system Ax = b. The minimum value of P(x) is

1
P(A"'b) = —EbTAflb.
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Proof. Since A is positive definite, it is invertible, since its eigenvalues are all strictly
positive. Let x = A~!h, and compute P(y) — P(x) for any y € R”". Since Ax = b, we
get

1 1
P(y)—P(x)= EyTAy —y'b— ExTAx—i—be
1 1
=3 yTAy — yTAx + ExTAx

= 200 AL ).

Since A is positive definite, the last expression is nonnegative, and thus
P(y) = P(x)

for all y € R”, which proves that x = A~ !5 is a global minimum of P(x). A simple

computation yields

1
P(A"'b) = —EbTAflb.

Remarks:
(1) The quadratic function P(x) is also given by

1
P(x) = ExTAx —b'x,

but the definition using x " b is more convenient for the proof of Lemma 15.2.
(2) If P(x) contains a constant term ¢ € R, so that

1
P(x) = ExTAx —x'b+ec,

the proof of Lemma 15.2 still shows that P(x) has a unique global minimum for
x =A"'b, but the minimal value is

1
P(A™'p) = —EbTA*IbJrc.

Thus, when the energy function P(x) of a system is given by a quadratic function

1
P(x) = ExTAx —x'b,
where A is symmetric positive definite, finding the global minimum of P(x) is equiv-
alent to solving the linear system Ax = b. Sometimes, it is useful to recast a linear
problem Ax = b as a variational problem (finding the minimum of some energy func-
tion). However, very often, a minimization problem comes with extra constraints
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that must be satisfied for all admissible solutions. For instance, we may want to
minimize the quadratic function

0(y1,y2) == (i +¥3)

N =

subject to the constraint
2y1—y2 =5.

The solution for which Q(y1,y,) is minimum is no longer (y;,y2) = (0,0), but in-
stead, (y1,y2) = (2,—1), as will be shown later.

Geometrically, the graph of the function defined by z = Q(y;,y;) in R3 is a
paraboloid of revolution P with axis of revolution Oz. The constraint

2y1—y2=5

corresponds to the vertical plane H parallel to the z-axis and containing the line
of equation 2y; —y, = 5 in the xy-plane. Thus, the constrained minimum of Q is
located on the parabola that is the intersection of the paraboloid P with the plane H.

A nice way to solve constrained minimization problems of the above kind is to
use the method of Lagrange multipliers. But first, let us define precisely what kind
of minimization problems we intend to solve.

Definition 15.3. The quadratic constrained minimization problem consists in mini-
mizing a quadratic function

1+
Q(y)zinC y—bTy

subject to the linear constraints
T
Ay=f,
where C~! is an m x m symmetric positive definite matrix, A is an m x n matrix of

rank n (so that m > n), and where b,y € R™ (viewed as column vectors), and f € R"
(viewed as a column vector).

The reason for using C~! instead of C is that the constrained minimization prob-
lem has an interpretation as a set of equilibrium equations in which the matrix that
arises naturally is C (see Strang [10]). Since C and C~! are both symmetric positive
definite, this doesn’t make any difference, but it seems preferable to stick to Strang’s
notation.

The method of Lagrange consists in incorporating the n constraints ATy = f into
the quadratic function Q(y), by introducing extra variables A = (44,...,4,) called
Lagrange multipliers, one for each constraint. We form the Lagrangian

Ly,A) =0 +AT(ATy—f) = %yTC"y —(b—A2)y=2Tf.
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We shall prove that our constrained minimization problem has a unique solution
given by the system of linear equations

C'y+AL =b,
Aly=F,

which can be written in matrix form as

C'A\ (y\ (b
AT o) \1) —\f)-
Note that the matrix of this system is symmetric. Eliminating y from the first equa-

tion
Cly+Ar=b,

we get
y=C(b—AL),

and substituting into the second equation, we get
ATC(b—AL) = f,
that is,
ATCAL =ATCb-f.

However, by a previous remark, since C is symmetric positive definite and the
columns of A are linearly independent, AT CA is symmetric positive definite, and
thus invertible. Note that this way of solving the system requires solving for the
Lagrange multipliers first.

Letting e = b — AA, we also note that the system

() ()-(0)

is equivalent to the system

e=b—AA,
y=_Ce,
Aly=T.

The latter system is called the equilibrium equations by Strang [10]. Indeed, Strang
shows that the equilibrium equations of many physical systems can be put in the
above form. This includes spring-mass systems, electrical networks, and trusses,
which are structures built from elastic bars. In each case, y, e, b, C, A, f, and K =
ATCA have a physical interpretation. The matrix K = AT CA is usually called the
stiffness matrix. Again, the reader is referred to Strang [10].
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In order to prove that our constrained minimization problem has a unique so-
lution, we proceed to prove that the constrained minimization of Q(y) subject
to ATy = f is equivalent to the unconstrained maximization of another function
—P(1). We get P(A) by minimizing the Lagrangian L(y,A) treated as a function of
y alone. Since C~! is symmetric positive definite and

1
L@J):Eff”y—@—Alfy—WV,

by Lemma 15.2 the global minimum (with respect to y) of L(y,A) is obtained for
the solution y of
Cly=b—-A2,

that is, when
y=C(b—AN),

and the minimum of L(y,A) is
Ignuxxy:—%mx—bfcmx—w)—ATﬁ

Letting
P(A) = %(Ak —b)TCAA—b)+ AT f,

we claim that the solution of the constrained minimization of Q(y) subjectto ATy =
f is equivalent to the unconstrained maximization of —P(A). Of course, since we
minimized L(y,A) with respect to y, we have

L(y,A) > —P(2)

for all y and all A. However, when the constraint ATy = f holds, L(y,A) = Q(y),
and thus for any admissible y, which means that ATy = f, we have

m)m o@y) > max —P(1).

In order to prove that the unique minimum of the constrained problem Q(y) subject
to Ay = f is the unique maximum of —P(1), we compute Q(y) + P(1).

Lemma 15.3. The quadratic constrained minimization problem of Definition 15.3
has a unique solution (y,A) given by the system

C 1A\ (y\ (b
AT 0)\1) —\f)"
Furthermore, the component A of the above solution is the unique value for which

—P(A) is maximum.

Proof. As we suggested earlier, let us compute Q(y) + P(4), assuming that the con-
straint ATy = f holds. Eliminating f, since 5’y =y'band ATATy = yTAA, we
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get
0()+P(A)= %ch*ly ~b'y+ %(Al —b)'C(AL —b)+A"f
= %(C*lyﬂm ~b)TC(C 'y +AL —b).
Since C is positive definite, the last expression is nonnegative. In fact, it is null iff
Cly+AL—b=0,
that is,
Cly+AL=b.

But then the unique constrained minimum of Q(y) subject to ATy = f is equal to
the unique maximum of —P(A) exactly when ATy = f and C~'y +AA = b, which
proves the lemma. O

Remarks:

(1) There is a form of duality going on in this situation. The constrained minimiza-
tion of Q(y) subject to ATy = f is called the primal problem, and the uncon-
strained maximization of —P(2) is called the dual problem. Duality is the fact
stated slightly loosely as

i = —P(R).
minQ(y) = max—P(1)
Recalling that e = b — AA, since
P(R) = %(Al _b)TCAL—b)+ AT,

we can also write 1
P(A) = EeTcewa.

This expression often represents the total potential energy of a system. Again,
the optimal solution is the one that minimizes the potential energy (and thus
maximizes —P(1)).

(2) Itis immediately verified that the equations of Lemma 15.3 are equivalent to the
equations stating that the partial derivatives of the Lagrangian L(y,A) are null:

JdL
— =0, i=1,....m,
dyi
oL
— =0 i=1,...,n.
al} ) ] b 7n

Thus, the constrained minimum of Q(y) subject to ATy = f is an extremum of
the Lagrangian L(y,A). As we showed in Lemma 15.3, this extremum corre-
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sponds to simultaneously minimizing L(y,A) with respect to y and maximiz-
ing L(y,A) with respect to A. Geometrically, such a point is a saddle point for
L(y,A).

(3) The Lagrange multipliers sometimes have a natural physical meaning. For ex-
ample, in the spring-mass system they correspond to node displacements. In
some general sense, Lagrange multipliers are correction terms needed to satisfy
equilibrium equations and the price paid for the constraints. For more details,
see Strang [10].

Going back to the constrained minimization of Q(y;,y;) = %(y% +3) subject to
2y1 =y =5,

the Lagrangian is

1
L(y1,y2,A) = E(y%+y§) +A2y1—y2-5),

and the equations stating that the Lagrangian has a saddle point are

y1+2120,
)’2—/1:0a
2y1—y2—5:0.

We obtain the solution (y,yz,A) = (2,—1,—1).

Much more should be said about the use of Lagrange multipliers in optimization
or variational problems. This is a vast topic. Least squares methods and Lagrange
multipliers are used to tackle many problems in computer graphics and computer
vision; see Trucco and Verri [11], Metaxas [9], Jain, Katsuri, and Schunck [8],
Faugeras [4], and Foley, van Dam, Feiner, and Hughes [5]. For a lucid introduc-
tion to optimization methods, see Ciarlet [2].

15.2 Quadratic Optimization: The General Case

In this section, we complete the study initiated in Section 15.1 and give necessary
and sufficient conditions for the quadratic function %xTAx—l-be to have a global
minimum. We begin with the following simple fact:

Proposition 15.1. If A is an invertible symmetric matrix, then the function
1+ T
flx) = 7% Ax+x'b

has a minimum value iff A >~ 0, in which case this optimal value is obtained for a
unique value of x, namely x* = —A~'b, and with
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1
f(A™1p) = —EbTA*Ib.
Proof. Observe that

1 1
(x+A"'D)TA(x+A"1b) = ExTAerbeJr EbTA*Ib.

N —

Thus,

1 1
flx) = ExTA”be = - (x+A7 ) A(x+ A1) - 5bTA*1b.

N —

If A has some negative eigenvalue, say —A (with A > 0), if we pick any eigenvector
u of A associated with A, then for any @ € R with o # 0, if we let x = otu — A1,
then since Au = —Au, we get

1 1
flx) = 5(HA*Ib)TA(x+A*‘b) - EbUrlb
1 1
= 5omTAom— EbTA*Ib
2 ul|2 — LpTa-1p
2 2 2 ’

and since a can be made as large as we want and A > 0, we see that f has no
minimum. Consequently, in order for f to have a minimum, we must have A > 0. In
this case, since (x +A~'5)TA(x +A~1b) > 0, it is clear that the minimum value of
£ is achieved when x +A~'b = 0, thatis, x = —A~'b. O

Let us now consider the case of an arbitrary symmetric matrix A.

Proposition 15.2. If A is a symmetric matrix, then the function
1 T
flx)= 7% Ax+x'b

has a minimum value iff A = 0 and (I — AA")b = 0, in which case this minimum
value is

[
f=——b'ATb.
=73
Furthermore, if A= U " XU is an SVD of A, then the optimal value is achieved by

all x € R" of the form
x=-Atb+U"T <(Z)) ,

for any z € R"™", where r is the rank of A.

Proof. The case that A is invertible is taken care of by Proposition 15.1, so we may
assume that A is singular. If A has rank r < n, then we can diagonalize A as
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(50
A=U (0 0>U,

where U is an orthogonal matrix and where X, is an r x r diagonal invertible matrix.
Then we have

Ut (20’ 8) Ux+x'UTUb

(Ux)" (% 8) Ux+ (Ux)"Ub.

If we write

with y,c € R" and z,d € R"™", we get

flx) = %(Ux)T (f) 8) Ux+ (Ux)"Ub

o (500 )

1
= EyTEry—i—ch—i—sz.
For y =0, we get
fx)=2z"d,

so if d # 0, the function f has no minimum. Therefore, if f has a minimum, then
d = 0. However, d = 0 means that
c
- ()

and we know from Section 14.1 that b is in the range of A (here, U is UT), which is
equivalent to (I —AA™)b =0.1f d = 0, then

flx) = %yTErerch,

and since X, is invertible, by Proposition 15.1, the function f has a minimum iff
X, > 0, which is equivalent to A > 0.

Therefore, we have proved that if f has a minimum, then (I —AA™")b = 0 and
A = 0. Conversely, if (I —AA*)b =0and A > 0, what we just did proves that f does
have a minimum.

When the above conditions hold, the minimum is achieved if y = — X le,z=0
and d = 0, that is, for x* given by
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. —Zr’lc _(c
Ux_( 0 > and Ub—<0),

from which we deduce that

-1 -1 -1
o (5 (5 )6 (5

and the minimum value of f is

flx*) = —%bTAer.

For any x € R" of the form

x=-ATh+U"T (g) ,

for any z € R"™", our previous calculations show that f(x) = — %bTAﬂ?. O

The case in which we add either linear constraints of the form C"x = 0 or affine
constraints of the form C'x = ¢ (where 7 # 0) can be reduced to the unconstrained
case using a QR-decomposition of C. Let us show how to do this for linear con-
straints of the form C"x = 0.

If we use a QR decomposition of C, by permuting the columns, we may assume

that
_ T(RS
cC=0 (OO)H’

where R is an r X r invertible upper triangular matrix and S is an r x (m — r) matrix
(C has rank r). Then, if we let
_ T (Y
=0 (7).

where y € R" and z € R"™, then CTx = 0 becomes

RT 0 RT 0
T 1T Yy _
(o) o=t (51) (2) o

which implies y = 0, and every solution of C"x = 0 is of the form

o (0).

minimize %(yT,ZT)QAQT <)Z}> +(y',z")0b

subjectto y=0,y € R", ze R"".

Our original problem becomes
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Thus, the constraint C' x = 0 has been eliminated, and if we write

G Gz
AQT =
0AQ <G21 Gzz)

and
Ob = <b1> . b ER , bye R,

by
our problem becomes

1

minimize EZT Gnz+z'by, zeR'T,
the problem solved in Proposition 15.2.
Constraints of the form C T x =t (where ¢ # 0) can be handled in a similar fashion.

In this case, we may assume that C is an n x m matrix with full rank (so that m < n)
and t € R™. Then we use a QR-decomposition of the form

c-r(%).

where P is an orthogonal matrix and R is an m X m invertible upper triangular matrix.
If we write
x=P <y > ,
Z

where y € R” and z € R"~", the equation C " x = t becomes

(R",00PTx=1,
that is,
RT,0)(Y) =t
@ .0 (1) =
which yields
R'y=1.

Since R is invertible, we get y = (R")~!¢, and then it is easy to see that our original
problem reduces to an unconstrained problem in terms of the matrix P'AP; the
details are left as an exercise.

15.3 Maximizing a Quadratic Function on the Unit Sphere

In this section we discuss various quadratic optimization problems mostly arising
from computer vision (image segmentation and contour grouping). These problems
can be reduced to the following basic optimization problem: Given an n X n real
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symmetric matrix A

maximize x' Ax

subjectto x'x=1,x € R",

In view of Lemma 14.2, the maximum value of x " Ax on the unit sphere is equal to
the largest eigenvalue A, of the matrix A, and it is achieved for any unit eigenvector
u; associated with A;.

A variant of the above problem often encountered in computer vision consists in
minimizing x ' Ax on the ellipsoid given by an equation of the form

x Bx= 1,

where B is a symmetric positive definite matrix. Since B is positive definite, it can
be diagonalized as
B=0QDQ",

where Q is an orthogonal matrix and D is a diagonal matrix,
D =diag(dy,...,d,),

withd; > 0, fori = 1,...,n. If we define the matrices BY/? and B~1/2 by

Bl/zsziag (\/d—l,,\/d_n) QT

and

B2 = Qaing (1/\/d1.....1/\/d,) Q.

it is clear that these matrices are symmetric, that B 12BB~1/2 = , and that Bl/2
and B~!/2 are mutual inverses. Then, if we make the change of variable

x=B"" 2y,
the equation x" Bx = 1 becomes y 'y = 1, and the optimization problem

maximize x'Ax
subjectto x'Bx=1,x e R",

is equivalent to the problem

maximize yTBfl/zABfl/zy

subjectto y'y=1,yeR",

where y = B'/2x and where B~'/2AB~1/2 is symmetric.

We will see in Chapter 17 that the complex version of our basic optimization
problem in which A is a Hermitian matrix also arises, namely, given an n X n com-
plex Hermitian matrix A,
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maximize x*Ax
subjectto x*x=1,x€ C".

Again by Lemma 14.2, the maximum value of x*Ax on the unit sphere is equal to
the largest eigenvalue A; of the matrix A and it is achieved for any unit eigenvector
u; associated with A;.

It is worth pointing out (and we will use this fact in Section 17.5) that if A is a
skew-Hermitian matrix, that is, if A* = —A, then x*Ax is pure imaginary or zero.

Indeed, since 7 = x*Ax is a scalar, we have z* = 7 (the conjugate of z), so we have

X*Ax = (x"Ax)" = x"A"x = —x"Ax,

$0 x*Ax 4+ x*Ax = 2Re(x*Ax) = 0, which means that x*Ax is pure imaginary or zero.
In particular, if A is a real matrix and if A is skew-symmetric, then

x Ax=0.
Thus, for any real matrix (Symmetric or not),

x Ax=x"H(A)x

3

where H(A) = (A+A")/2, the symmetric part of A.

There are situations in which it is necessary to add linear constraints to the prob-
lem of maximizing a quadratic function on the sphere. This problem was completely
solved by Golub [7] (1973). The problem is the following: Given an n X n real sym-
metric matrix A and an n X p matrix C,

minimize x'Ax

subjectto x'x=1,C'x=0,xeR".

Golub shows that the linear constraint C"x = 0 can be eliminated as follows: If
we use a QR decomposition of C, by permuting the columns, we may assume that

_oT (RS
o (83)m

where R is an r X r invertible upper triangular matrix and S is an r x (p — r) matrix
(assuming C has rank r). Then if we let

x—QT@,

where y € R" and z € R"™, then CTx = 0 becomes

RT 0 RT 0
T 1T Yy _
(o) o=t (51) (2) o
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which implies y = 0, and every solution of C"x = 0 is of the form

o (0).

minimize (y',z')QAQ" @ )

Our original problem becomes

subject to 2z= 1,zeR",
y=0,yeR"

Thus, the constraint C"x = 0 has been eliminated, and if we write

Gi1 Glz)
AQ" = :
ehe (GE G

our problem becomes

minimize z' Gz
subjectto z'z=1,z€ R"",

a standard eigenvalue problem. Observe that if we let
00
= (0.

JOAQ'J = <8 G022> ,

then

and if we set
P=0"JQ,

then
PAP=Q'J0AQ"JO.

Now, QTJQAQTJQ and JQAQ J have the same eigenvalues, so PAP and JQAQJ
also have the same eigenvalues. It follows that the solutions of our optimization
problem are among the eigenvalues of K = PAP, and at least r of those are 0. Using
the fact that CC" is the projection onto the range of C, where C™ is the pseudo-
inverse of C, it can also be shown that

P=I1-cCCt,

the projection onto the kernel of C'. In particular, when n > p and C has full rank
(the columns of C are linearly independent), then we know that C* = (C'C)~'CT
and
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p=I-c(c'o)"!cT.

This fact is used by Cour and Shi [3] and implicitly by Yu and Shi [12].

The problem of adding affine constraints of the form N Tx =1, where ¢ #0, also
comes up in practice. At first glance, this problem may not seem harder than the
linear problem in which # = 0, but it is. This problem was extensively studied in a
paper by Gander, Golub, and von Matt [6] (1989).

Gander, Golub, and von Matt consider the following problem: Given an (n +
m) X (n+ m) real symmetric matrix A (with n > 0), an (n+m) x m matrix N with
full rank, and a nonzero vector 7 € R™ with ||(N")"t|| <1 (where (N)" denotes
the pseudo-inverse of N ),

minimize x'Ax
subjectto x'x=1,N'x=¢,xe R"™"
The condition ||(NT)7|| < 1 ensures that the problem has a solution and is not

trivial. The authors begin by proving that the affine constraint N " x = ¢ can be elim-
inated. One way to do so is to use a QR decomposition of N. If

ver(f)

where P is an orthogonal matrix and R is an m X m invertible upper triangular matrix,
then if we observe that

x Ax=x" PPTAPPTx,
N'x=R",00P x=1,

x x=x"PPTx= 1,

PTAP = <B r T)

and if we write

I C

and
PTx=("
Z )
then we get
x'Ax=y'By+2z'I'y+z'Cz,
R'y=1,
yTy +zz=1.
Thus
y=@®R"",

and if we write
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$?=1-y"y>0
and
b=TYy,
we get the simplified problem
minimize z'Cz+2z'b

subjectto z'z=s% z€R™.

Unfortunately, if » # 0, Lemma 14.2 is no longer applicable. It is still possible
to find the minimum of the function z" Cz+ 2z b using Lagrange multipliers, but
such a solution is too involved to be presented here. Interested readers will find a
thorough discussion in Gander, Golub, and von Matt [6].

15.4 Problems

15.1. If A is symmetric positive definite, prove that A~! is also symmetric positive
definite. If C is a symmetric positive definite m X m matrix and A is an m X n matrix
of rank 7 (and so m > n), prove that AT CA is symmetric positive definite.

1 1
0= 5 ()’%4‘ 5)’%)

15.3. Find the nearest point to the origin on the hyperplane

15.2. Minimize

subject to y; +y, = 1.

i+ tym=1
15.4. (i) Find the minimum of
[
0= 7 (VT +2y132) =2
subject to y; +y, =0.
(i) Find the minimum of
1
Q=3 (1+y1+3)

subject to y; —y, = l and y, —y3 = 2.

15.5. Find the rectangle with corners at points (y;,+y,) on the ellipse y% +4y% =1
such that the perimeter 4y; + 4y, is maximized.

15.6. What is the minimum-length least squares solution to
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100 c 0
100 dl=12
111 e 2

15.7. Give the details of the proof showing that minimizing a quadratic function
1
flx)= ExTAx +x'b

subject to constraints of the form CTx =1, where ¢ # 0 and C is an n X m matrix
with full rank, reduces to a similar unconstrained problem.
Hint. Use a QR-decomposition of the form

c-r(%).

where P is an orthogonal matrix and R is an m x m invertible upper triangular matrix,

and write
z

15.8. Let A be any symmetric n X n matrix, let b € R", and let ¢ € R.
(a) Prove that if A > 0, then the set

where y € R™ and z € R"™",

S={xeR"|x'Ax+b x+c<0}

is convex.
Hint. Intersect S with an arbitrary line determined by a point p and a unit vector u.
(b) Prove that if S as above is convex, then A > 0.
(c) Let H be an affine hyperplane defined by an equation of the form g " x+4 =0,
where we may assume that g is a unit vector. Prove that

H={zeR"|z=—hg+(I—gg')x,xeR"}

and that (g7 )" = g (where (g")* is the pseudo-inverse of g ). Prove that SN H is
convex (where S is defined in (a)) iff

(I—gg")A(I—gg") = 0.

Prove that if there is some A € R such that A+ Agg' > 0, then SN H is convex but
that the converse is false.
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Chapter 16
Schur Complements and Applications

16.1 Schur Complements

Schur complements arise naturally in the process of inverting block matrices of the

form
A B
w=(c)

and in characterizing when symmetric versions of these matrices are positive defi-
nite or positive semidefinite. These characterizations come up in various quadratic
optimization problems; see Boyd and Vandenberghe [1], especially Appendix B. In
the most general case, pseudo-inverses are also needed.

In this chapter we introduce Schur complements and describe several interesting
ways in which they are used. Along the way we provide some details and proofs of
some results from Appendix A.5 (especially Section A.5.5) of Boyd and Vanden-
berghe [1].

Let M be an n X n matrix written as a 2 x 2 block matrix

AB
v (en)

where A is a p X p matrix and D is a ¢ X ¢ matrix, withn=p+¢g (soBisa p x g
matrix and C is a ¢ X p matrix). We can try to solve the linear system

(0-6)

Ax+ By = c,
Cx+Dy=d,

that is,

431
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by mimicking Gaussian elimination. If we assume that D is invertible, then we first
solve for y, getting
y=D"'(d-Cx),

and after substituting this expression for y in the first equation, we get
Ax+B(D7'(d—Cx)) =c,

that is,
(A—BD 'C)x=c—BD 'd.

If the matrix A — BD~!C is invertible, then we obtain the solution to our system
x=(A-BD'C)"Y(c—BD 'd),
y=D'(d—CA-BD"'C) Y (c—BD 'd)).

If A is invertible, then by eliminating x first using the first equation, we obtain
analogous formulas involving the matrix D — CA~'B. The above formulas suggest
that the matrices A — BD~!C and D — CA~!B play a special role and suggest the
followig definition:

Definition 16.1. Given any block matrix of the form

AB
= (en)
if D is invertible, then the matrix A — BD~'C is called the Schur complement of D

in M. If A is invertible, then the matrix D — CA~'B is called the Schur complement
of Ain M.

The above equations written as

x=(A-BD'C)'c—(A—BD'C)"'BD 4,
y=-D'C(A-BD'C)" ¢
+ (D '+D'c(aA-BD'C)'BD V)d,

yield a formula for the inverse of M in terms of the Schur complement of D in M,
namely

AB\ ' (A—BD'C)"! —(A—BD"'C)"'BD!
cp) ~\-D'cA-BD7'C)"'D'+D'c(A-BD'C)"'BD' )"

A moment of reflection reveals that

AB\ ' (A—BD1C)"! 0\ (I-BD"!
cp) ~\-D'cA-BD'C)"'D'J\0 I ’

and then



16.1 Schur Complements 433

@8) ()26 )

It follows that
AB\ (IBD'"\ (A-BD7'CO 1 0
cp)\o 1 0 D)\bDcr1)"

The above expression can be checked directly and has the advantage of requiring
only the invertibility of D.

Remark: If A is invertible, then we can use the Schur complement D — CA™'B of
A to obtain the following factorization of M:

AB (I 0)\/A 0 I1A7'B
cp) \catrJ\ob-ca'BJ\o 1 )

If D— CA~!'Bis invertible, we can invert all three matrices above, and we get another
formula for the inverse of M in terms of (D — CA"B), namely,

AB\ ' (A4 A'B(D-CA"'B)"'CA™! —A"'B(D—CA"'B)"!
cCD) —(D—-CcA7'B)"lcA! (D—-CA'B)! '

If A, D and both Schur complements A — BD~'C and D — CA~'B are all invertible,
by comparing the two expressions for M~!, we get the (nonobvious) formula

(A-—BD'C)'=A"'+A'B(D-CcA 'B)lcAa™!.

Using this formula, we obtain another expression for the inverse of M involving the
Schur complements of A and D (see Horn and Johnson [2]):

AB\"' [ (A-BD'C)"! —A"'B(D—CA"'B)"!
(CD) _<—(D—CAIB)ICA1 (D—CA™'B)™! )

If we set D =1 and change B to —B, we get
(A+BC) '=A"'—A"'BI-CcAT'B)'ca,

a formula known as the matrix inversion lemma (see Boyd and Vandenberghe [1],
Appendix C.4, especially C.4.3).
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16.2 Symmetric Positive Definite Matrices and Schur
Complements

If we assume that our block matrix M is symmetric, so that A, D are symmetric and
C = B", then we see that M is expressed as

(A B\ _ (18D (A=BD'BT 0\ (1BD7M\'
~\B8'D) \0 I 0 D)\0 I ’
which shows that M is similar to a block diagonal matrix (obviously, the Schur

complement, A—BD !B is symmetric). As a consequence, we have the following
version of “Schur’s trick” to check whether M > 0 for a symmetric matrix.

Proposition 16.1. For any symmetric matrix M of the form

A B
= (o)
if C is invertible, then the following properties hold:

(1) M= 0iffC>0and A—BC~'B" > 0.
(2) IfC = 0, then M = 0 iff A— BC~'BT > 0.

Proof. (1) Observe that

1BD~\"' (1 -BD!
0 I “\o 1 )

and we know that for any symmetric matrix 7 and any invertible matrix N, the
matrix 7 is positive definite (7 = 0) iff NTN" (which is obviously symmetric) is
positive definite (NN >~ 0). But a block diagonal matrix is positive definite iff
each diagonal block is positive definite, which concludes the proof.

(2) This is because for any symmetric matrix 7 and any invertible matrix N, we
have T = 0iff NTN' = 0. O

Another version of Proposition 16.1 using the Schur complement of A instead of
the Schur complement of C also holds. The proof uses the factorization of M using
the Schur complement of A (see Section 16.1).

Proposition 16.2. For any symmetric matrix M of the form

A B
(32
if A is invertible then the following properties hold:
(I)M = 0iffA>0andC—B"A"'B > 0.
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(2)IfA>0, thenM =0 iff C—B'A"'B>0.

When C is singular (or A is singular), it is still possible to characterize when
a symmetric matrix M as above is positive semidefinite, but this requires using
a version of the Schur complement involving the pseudo-inverse of C, namely
A—BCTB' (or the Schur complement, C — BTATB, of A). We use the crierion of
Proposition 15.2, which tells us when a quadratic function of the form %xTPx—i—be
has a minimum and what this optimum value is (where P is a symmetric matrix).

16.3 Symmetric Positive Semidefinite Matrices and Schur
Complements

We now return to our original problem, characterizing when a symmetric matrix

A B
= (5¢)
is positive semidefinite.
Thus, we want to know when the function
A B\ (x
fly) =x"y" ( AT C) <y> =x"Ax+2x'By+y'Cy

has a minimum with respect to both x and y. If we hold y constant, Proposition 15.2
implies that f(x,y) has a minimum iff A = 0 and (I — AA")By = 0, and then the
minimum value is

f(x*,y)=—y ' B'A™By+y'Cy=y"(C—B'ATB)y.

Since we want f(x,y) to be uniformly bounded from below for all x, y, we must have
(I —AAT)B = 0. Now, f(x*,y) has a minimum iff C — BTA*B = 0. Therefore, we
have established that f(x,y) has a minimum over all x, y iff

A=0, (I-AAY)B=0, C—-B'A'B>0.

Similar reasoning applies if we first minimize with respect to y and then with respect
to x, but this time, the Schur complement A — BC*BT of C is involved. Putting all
these facts together, we get our main result:

Theorem 16.1. Given any symmetric matrix

A B
= (o)

the following conditions are equivalent:
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(1) M > 0 (M is positive semidefinite).

(2)A=0, (I-AAT)B=0, C—-BTATB>0.

(3)C>=0, (I-CC*)B"=0, A—BC'B' ~0.

If M > 0 as in Theorem 16.1, then it is easy to check that we have the following
factorizations (using the fact that ATAAT = A" and C*CCT = C™):

A B\ (IBC"\ (A-BC'B' 0 1 0
BTc) \0o I 0 C)\CtBT I
AB\ (I 0\/A 0 1 ATB
BT c)  \B'atr1)\oc-BTAtB)\0 I |-

16.4 Problems

and

16.1. Supply the details of the argument showing that if D is invertible, then

AB\ (IBD'\ (A-BD7'CO 1 0
cD) \0 I 0 D)\D'cI)"

16.2. Let X be a symmetric n X n matrix and let x € R" be a vector. Prove that

X txxT

X x
()c—r 1) = 0.

16.3. Consider the following quadratic optimization problem with quadratic con-
straints

minimize x'Ajx+2b] x
subject to xTAzx + 2sz x <0,

where A|,A; are symmetric n X n matrices and b;,b; € R". Using the fact that
tr(Axx") = x" Ax, prove that the above problem is equivalent to the problem

minimize tr(A;X) +2b]x
subject to tr(A,X)+2byx <0, X =xx',

where A,A; are symmetric n X n matrices, X is a symmetric matrix with X > 0, and
by1,by € R"™.

The above problem is hard to solve, but it can be relaxed to the following prob-
lem:
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minimize tr(A;X)+2b]x
subject to tr(A2X)+2b,x <0, X = xx',

where Aj,A,,X are symmetric n X n matrices, and by,b, € R”".
Show that the relaxed problem is equivalent to the problem

minimize tr(A,X)+2b] x

subject to tr(A2X) +2b, x <0, <§|— )16> =0,
where Aj,A,,X are symmetric n X n matrices, and by,b, € R”".
The above is an SDP program, and a number of methods are available to solve it;
see Boyd and Vandenberghe [1].
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Chapter 17
Quadratic Optimization and Contour Grouping

17.1 Formulation of the Problem

This chapter presents a new and exciting application of quadratic optimization meth-
ods to the problem of contour grouping in computer vision. It turns out that this
problem leads to finding the local maxima of a Hermitian matrix depending on a
parameter. We are thus led to the problem of finding the derivative of an eigenvalue
and the derivative of some eigenvector associated with this eigenvalue, in the case
of a normal matrix. The problem also leads naturally to the consideration of the field
of values of a matrix, a concept studied as early as 1918 by Toeplitz and Hausdorff.
We prove that the field of values is convex, a theorem due to Toeplitz and Hausdorff.
This fact is helpful in improving the search for local maxima.

Many problems in computer vision can be cast as quadratic optimization prob-
lems. In a seminal paper, Shi and Malik [5] showed how image segmentation can be
performed using certain types of graph cuts called normalized cuts. Inspired by this
work, Jianbo Shi and his students Qihui Zhu and Gang Song investigated the prob-
lem of contour grouping in 2D images [6]. Recently, this method was significantly
improved and a better optimization function was introduced; see Kennedy, Gallier,
and Shi [3]. We present a method using the new optimization function but for sim-
plicity, we use the older method described in [6]. The problem is to find 1D (closed)
curve-like structures in images. The goal is to find cycles linking small edges called
edgels.

The method uses a directed graph in which the nodes are edgels and the edges
connect pairs of edgels within some distance. Every edge has a weight W;; measur-
ing the (directed) collinearity of two edgels using the elastic energy between these
edgels.

Given a weighted directed graph G = (V,E, W), we seek a set of edges S C V (a
cut) and an ordering € on S that maximizes a certain objective function,

— 1 - Ecut(S) - ICut(Sa ﬁak)

C(S,0,k) T ,

439
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where

1. Ecu(S) measures how strongly S is separated from its surrounding background
(external cut);

2. Lw(S, O,k) is a measure of the entanglement of the edges between the nodes in
S (internal cut);,

3. T(k) is the rube size of the cut; it depends on the thickness factor k (in fact,
T (k) = k/ISD.

Maximizing C(S, 0, k) is a hard combinatorial problem, so Shi, Zhu, and Gong
had the idea of converting the orginal problem to a simpler problem using a circular
embedding.

The main idea is that a cycle is an image of the unit circle. Thus, we try to map
the nodes of the graph onto the unit circle, but nodes not in a cycle will be mapped
to the origin. A point on the unit circle has coordinates

(cosB,sin0),

which are conveniently encoded as the complex number

z=cos6 +isin@ =e'®.

The nodes in a cycle will be mapped to the complex numbers

0, 2rj

Zj:elej, ejlelj

The maximum jumping angle Omax Will also play a role; this is the maximum of the
angle between two consecutive nodes. Then, Shi and Zhu proved that maximizing
C(S, 0, k) is equivalent to maximizing the circular embedding score

1
Ce(ra eaemax) =

emax

Y B/ls
9i<9j§6i+9max
ri>0,rj>0

where:

1. The matrix P = (P,;) is obtained from the weight matrix W (of the graph G =
(V,E,W)) by a suitable normalization;,

2. rj € {0, 1};

3. 0; is an angle specifying the ordering of the nodes in the cycle;

4. Omax is the maximum jumping angle.

This optimization problem is still hard to solve. Consequently, Shi and Zhu con-
sidered a continuous relaxation of the probem by allowing r; to be any real number
in the interval [0, 1] and 6; to be any angle (within a suitable range). In the circular
embedding, a node in then represented by the complex number

RS - H
Xj=rje 7.



17.1 Formulation of the Problem 441
We also introduce the average jumping angle
AQ =06, —0;.

Then it is not hard to see that the numerator of C,(r, 0, Omax) is well approximated
by the expression

Zijcos(Ok —0;—A0) = ZRe(xjxk e 140y,
Jik Jjik

Thus, C,(r, 0, 6max) is well approximated by

1 Yj«Re(xin e 49)
Omax Zj |Xj|2

This term can be written in terms of the matrix P as

1 Re(x*Px-e140)

Omax xX*x

Ce(r767 emax) ~

)

where x € C" is the vector x = (xj,...,X,). The matrix P is a real matrix, but in
general, it is neither symmetric nor normal (PP* = P*P). If we write 6 = A0 and
if we assume that 0 < 8y < 8 < Omax, We need to solve the following quadratic
optimization problem:

maximize Re(x*e ' Px)
subjectto x*x =1,x € C*; dpin < 6 < Omax-

At first glance, this problem does not look like any of the standard quadratic
optimization problems on the unit sphere. Nevertheless, we show that it reduces to
a standard quadratic optimization problem involving a Hermitian matrix.

Let

c=e 0= a+ib,

with a = cosd and b = —sind. Following Horn and Johnson [1], for any (real or
complex) n x n matrix P let H(P) be the Hermitian part of P and let S(P) be the
skew-Hermitian part of P, where H(P) and S(P) are given by

P+ P* P—P*
_ ot and S(P)= .

H(P) .

Obviously,
HP)*=H(P), S(P)*=-S(P), and P=H(P)+S(P).

Observe that +§(P) = —iS(P) is Hermitian. If P is a real matrix, then H(P) is said
to be symmetric and S(P) is said to be skew-symmetric. In this case,
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_P+PT
T2

P-PT
and S(P)= B

H(P)
For every complex number z = x + iy, recall that

(z+72).

NS

Re(z) =y=
Now, z = x*cPx is a complex number and 7 = z*, viewing z as a 1 x 1 matrix, so

Re(x* cPx) = (cP+cP")x.

N =

(x* cPx+ (x* cPx)*) = = (x* cPx+x"¢P x) = x*

NS
NS

The matrix cP+¢P ! is clearly Hermitian, and in fact,
1 - T 1 . . T
E(cP—i—cP )= E((a—i—lb)P—i— (a—ib)P")
= aE(P—i-P )—i—le(P—P ) =aH(P)+ibS(P).

Define the Hermitian matrix H as

H =aH(P) +ibS(P) = %(CP-FEPT).
Observe that 1 1
H= 5(CP+EPT) =5 (cP+ (cP)*) = H(cP),
the Hermitian part of cP, and since ¢ = e’i‘g, we have
H=H(e 9P).

In view of the above, our optimimization problem can also be stated as

maximize x*H(J)x
subject to x*x=1,x € C"; Snin < 6 < Omax,

with ‘
H(8) = H(e ®*P) = cos § H(P) —isin 8 S(P),

a Hermitian matrix.

By Lemma 14.2, the optimal value is the largest eigenvalue A, of H(8) over all §
such that dpin < 8 < Omax, and it is attained for the associated complex eigenvector
X = Xre + 1Xim.

To study the variation of the eigenvalues of H(0), we will need to compute the
derivative of H (&) with respect to 8, denoted by H'(8). We have

H'(8) = —sin8H(P) —icos3S(P).



17.2 Derivatives of Eigenvalues and Eigenvectors for Normal Matrices 443

17.2 Derivatives of Eigenvalues and Eigenvectors for Normal
Matrices

Let X(6) be a normal matrix that depends differentiably on &, let A be some eigen-
value of X, which we assume to be simple (it has algebraic multiplicity 1), and let
u be the corresponding unit eigenvector. We are going to derive formulas for the
derivative of A and the derivative of u. We adapt the derivation given by Peter Lax
[4] (Chapter 9, Section 2) to normal matrices. The step missing in Lax is the appli-
cation of the pseudo-inverse. However, Lax’s derivation applies to arbitrary matrices
X. A similar derivation is given in a blog by Terence Tao, assuming that the matrix
X has only simple eigenvalues. The simplification afforded by normal matrices is
that there is no need to deal with the dual space, since Xu = Au iff X*u = Au iff
u*X = Au*. When the eigenvalues are all simple, we can use a basis of eigenvectors
(ui,...,u,) and its dual basis (u},...,u};), because Xu; = Au; iff u;X = Au} (where
ui (uj) = &j).

It is proved in Lax [4] (Chapter 9, Theorem 7 and Theorem 8) that if A is a simple
eigenvalue of X (6) for & = & and if u is a unit eigenvector associated with A, then
in a small open interval around &, the matrix X (&) has a simple eigenvalue A(5)
that is differentiable (with A(8y) = A) and that there is a choice of an eigenvector
u(r) associated with A (z), so that u(¢) is also differentiable (with u(&y) = u). In the
case of an eigenvalue, the proof uses the implicit function theorem applied to the
characteristic polynomial det(A/ — X (8)) = f(A,8). The proof of differentiability
for an eigenvector is more involved and uses the nonvanishing of some principal
minor of det(A — X(98)).

Since explicit formulas (for normal matrices) for the derivative of a simple eigen-
value and the derivative of the corresponding unit eigenvector are not so easily found
in the literature, we will prove the following proposition in full detail:

Proposition 17.1. Ler X (8) be a normal matrix that depends differentiably on d. If
A is any simple eigenvalue of X at & (it has algebraic multiplicity 1) and if u is the
corresponding unit eigenvector, then the derivatives at 6 = & of A(8) and u(d) are
given by

A =uX'u,

u =AM —X)"X'u,
where (M —X) " is the pseudo-inverse of A\l — X, X' is the derivative of X at 8 = &,
and u' is orthogonal to u.

Proof. lf X is a normal matrix, then by Lemma 12.2, we known that Xu = Au iff
X*u = Au, and so if Xu = Au, then

WX =Au.

Taking the derivative of Xu = Au and using the chain rule, we get
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Xu+Xu' =Nu+2Au.
By taking the inner product with u*, we get

WX u+uXu =AM utu+ Aut
However, u*X = Au*, so
wXu' = Autu,
and since u is a unit vector, u*u = 1, so
wX'u+Au'n' = A+ Auud,
that is,
A =uX'u.
Let us rewrite the equation

Xu+Xu =Nu+ 2

as
A —X)u' = (X' = A'Tu.

We need to show that this equation has a solution, and for this, it is enough to prove
that (X’ — A’I)u is in the range of Al — X. However, the range of A/ — X is equal
to the orthogonal complement of the kernel of its adjoint (A1 — X)* = Al —X*,
and since A is a simple eigenvalue of X, A is also a simple eigenvalue of X* and
Ker(AI — X) = Ker(Al — X*) = Cu, the one-dimensional space spanned by the unit
eigenvector u. Thus, (X’ — A'Iu is in the range of A/ — X iff it is orthogonal to
Ker(Al — X*) = Cu iff

u'(X' = A Hu=0
iff

wX'u—A'utu=0,
that is, A’ = u*X’u, which we have just proved.

Therefore the set of solutions of the linear equation

A —X)u' = (X'— A Du

is an affine line whose direction is the one-dimensional subspace spanned by the
unit eigenvector u.

By Theorem 14.2, the pseudo-inverse of Al — X yields a solution of minimum
norm belonging to the orthogonal complement of the kernel of A7 — X, that is, a
solution orthogonal to the unit vector u, given by

W=AI-X)" (X' = A'Du.

Actually, because X is normal, we claim that
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A —X) u=0,

and so
U =AI-X)"Xu

For this, it is enough to prove that if X is a normal matrix and if Xu = 0, then
X"u = 0. Indeed, since AI — X is also normal and since (A1 — X )u = 0, the above
fact implies that (A1 — X)*u = 0.

Now, since X is a (real) normal matrix, by Theorem 12.7 it can be block diago-
nalized with respect to an orthogonal matrix U as

X=UAU",
where A is the (real) block diagonal matrix

A =diag(By,...,By),

consisting either of 2 x 2 blocks of the form

B:= ] J
! (u,f Aj
with p; # 0 or of one-dimensional blocks B = (A). If we write
(A0
2= (50)

where A is invertible (with rank r) and all the other entries are zero, then by Propo-
sition 14.1, the pseudo-inverse of X is given by

—1
Xt =UAtUT =U <A6 8> U'.

A0\ T
(0 0>U u=0,

()

with dim(y) = n — r. Then we have

ATLO A7L0N /0
+.. r T, _ r _
X u_u< A O)U u_u< A 0)<y>_0,

as claimed. O

Now, Xu = 0 implies that

which means that

Applying the above to the Hermitian matrix H (), we get
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A (8) =u*H(8)u= —u*(sinSH(P)+icos8S(P))u.
The derivative «'(8) orthogonal to u is given by
i (8) = (A(8)I —H(8))"H'(8)u(9),

where (1(6)I — H(8))" is the pseudo-inverse of A (8)I — H(§).

17.3 Relationship between the Eigenvectors of P and H(J)

Experimental evidence suggests that there is a close relationship between the eigen-
vectors of the real matrix P and the eigenvectors of the Hermitian matrix H(0). If P
is a normal matrix, we can indeed prove such a relationship.

Recall that a matrix P is normal if P commutes with its transpose, that is,

PP' =P'P.

Proposition 17.2. For any normal matrix P if u+1iv is an eigenvector of P for the
eigenvalue A + i, then u+iv is also an eigenvector of H = aH (P) 4+ ibS(P) for the
real eigenvalue ad — bli. Furthermore, all the eigenvalues of H = aH (P) +1bS(P)
are of the form ad — by, where A + i1 is an eigenvalue of P.

Proof. If P is a normal matrix, then by Lemma 12.2 we know that a complex vector
u+iv is an eigenvector of P for the eigenvalue A + iy iff u +iv is an eigenvector of
P for the conjugate eigenvalue, A — iy.

As a consequence,

H(u+iv)= = (cP+cP")(u+iv)

(cP(u+iv)+TP" (u+iv))

(c(A +ip) + (A — i) (u+iv)

T = N = N =

e(c(A+iu))(u+iv)
al —bu)(u+iv),

—

since ¢ = a +1ib. The last statement holds because a normal matrix is diagonalizable
(over an orthonormal basis with respect to the Hermitian inner product). 0O

With the values of @ and b as in Section 17.1,
al —bp = Acosd + usind = A(9).

If we write
A+iu = p(cos@+ising),
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then we get
A(8)=Acosb+ pusind =cos@cosd +sin@sind = pcos(¢p — J).

The function § — p cos(¢ — ) has a maximum for § = @.
This confirms the experimental evidence that the numerator p cos(¢ — &) of the
eigenvalue A (8) of H(9) associated with A +iu has a local maximum exactly when

Re(u*Pu-c)

(subject to u*u = 1) has a local maximum, which also happens for 6 = ¢. It appears
that these results still hold as long as P is not “too distant” from a normal matrix.

It would be desirable to measure how far a matrix A is from being normal. Ac-
cording to Horn and Johnson [1] (Chapter 3, Problem 18, page 156), this can be
done using the defect from normality.

Definition 17.1. If o1, .., 0, are the singular values of A listed in decreasing order
and Ay,...,A, are the eigenvalues of A listed so that |A;]| > --- > |A,|, then the defect
Jfrom normality of A with respect to the Frobenius norm is defined by

Or(4) = | 3 (07 = Aif?).

ISE

i=1

Recall that the singular values oy,...,0;, of A are the nonnegative square roots
of the eigenvalues of A*A (and AA*), so that the Frobenius norm of A is given by

JAlle = oA = |3 o

For any upper triangular Schur decomposition of A,
A=U(D+T)U",

where U is a unitary matrix, D is the diagonal matrix D = diag(A;,...,A,) and T
is a strictly upper triangular matrix, since the Frobenius norm is unitarily invariant,
which means that

Al =ID+T||f-

Since D is a diagonal matrix, a straightforward computation shows that
2 2 2
1Al = IDI[F + 1F |7 -
However,

n
2
DI = X 14,
i=1

and since ||A||7 = Y/, 67, we conclude that
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n

ITI7 = Y (67 = 1l).

i=1

Therefore, the quantity Y, (67 — | A;|?) is always nonnegative, and moreover, || T|| »
has the same value for all upper triangular Schur decompositions of A, namely, the
defect from normality of A,

5r(4) = | Y. (02— 1P,

i=1

We have also proved that A is normal iff

(o7 — 4% =0,

(ngE

i=1

which implies that
O; = |;Ll|

fori=1,...,n. Indeed, if A is normal, then A can be diagonalized with respect to a
unitary matrix U, so that A = UAU™ and then

U*U = UA*AU",

which proves that the singular values of A are indeed |A],...,|Ay]|.
Conversely, if
O; = |A,,|
fori=1,...,n, then
n
) (o7 = [4P) =0,

i=1

which, as we proved above, implies that A is normal. Thus, we have just proved the
following proposition:

Proposition 17.3. A matrix A is normal iff

(DX 0 =X [, or
(2) o= |Ai|, fori=1,...,n.

The quantity 8p(A) = /Y7, (67 —|Ai|%) measures the defect from normality of

A.If 6p(A) is “small,” then A behaves much like a normal matrix.

Also observe that if || || is any unitarily invariant matrix norm, then (following
Horn and Johnson [1] (Chapter 3, Problem 31, page 192) we can define the defect
Sfrom normality of A with respect to the norm || || by

8(A, ) =inf{||T|[A=UMD+T)U"},

where U(D+ T)U* is any upper triangular Schur decomposition of A. Intuitively,
A is “almost normal” iff 6(A, || ||) is small. In the case of the Frobenius norm, we
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proved that

n

8(A.Il7) = r(A) = | X (07 = |A*).

i=1

17.4 Study of the Continuous Relaxation of the Problem

In this section, we study the variations of the the objective function
f(x,8) =x"(cosO H(P) —isind S(P))x,

where x € C" with ||x|| =1, and 0 < § < 2m.

Figures 17.1, 17.2, and 17.3 show plots of the eigenvalues of various matrices as
functions of 6 € [0,27) and were produced by Ryan Kennedy. Figure 17.4 corre-
sponds to an actual image.

0.8}
06+
041
02

© of

fD.‘8 fD.‘G 7014 70‘.2 0' O\T% 0.‘4 0.‘6 0‘.8 1‘ 1‘.2
Fig. 17.1 The eigenvalues of a matrix H(J) that is not normal.
It turns out that x*H (8)x < |x*Px| for all x and all &, and this has some important

implications regarding the local maxima of these two functions.

Proposition 17.4. For any (real) matrix P if we write x* Px = |x*Px|(cos ¢ +isin @)
and H(8) = cos 6 H(P) —isin 6 S(P) (as usual), then

X"H(8)x = |x*Px|cos(6 — ¢).
Proof. First, let us compute x*Hx and |x* Px|. We can write

P =H(P)+S(P) = H(P)+i(—iS(P)) = H, +iH,
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Fig. 17.2 The eigenvalues of a normal matrix H(9).

Fig. 17.3 The eigenvalues of a matrix H(J) that is near normal.

with H; = H(P) and H, = —iS(P). Recall that A, and H, are Hermitian, so o0 =
x*Hyx and B = x*Hyx are both real, and we have

Now,

X'Px=x"Hix+ix"Hox = o +if.

H =cos6H(P)—isind S(P) =cos0 H| +sind Ha,

and so

X'Hx=cos8x*Hyx+sin6x*Hyx =cosd ot +sind 3.

In summary,
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Fig. 17.4 The eigenvalues of the matrix for an actual image.

X*Hx=cosda+sind B,
X'Px=o+ip.

Since x*Px = |x* Px|(cos ¢ +isin @), we have a = |x*Px|cos ¢ and B = |x*Px|sin @
and we get

X"Hx=cosd o +sind = |x*Px|(cosdcos ¢ +sind sin @) = [x*Px|cos(d — @).
O

The equation
x"Hx = |x*Px|cos(6 — @)

implies that
X"Hx < |x*Px|

for all x € C" and all 8 (0 < & < 27), with equality iff

o=0,

the argument (phase angle) of x*Px. In particular, for x fixed, f(x,8) = x*Hx has a
local optimum when 8 = @, and in this case, x*Hx = |x*Px|.

The inequality x*Hx < |x*Px| also implies that if |x*Px| achieves a local max-
imum for some vector x, then f(x,0) = x*Hx achieves a local maximum equal to
|x*Px| for 6 = ¢ and for the same x (where @ is the argument of x* Px).

Indeed, we know that f(x, @) = |x*Px|, and if f(x, ¢) were not a local maximum
at (x, @), then for every open set U C C" x [0,2x] with (x, @) € U, there would be
some pair (y,1) € U such that
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fy.n) > f(x, @) = |x"Px|,

and since
X Px| < f(y,n) < |y*Pyl,

we would have |y*Py| > |x*Px|. In particular, we can pick the open set U C C" x
[0,27] to be a product U = Q x (6 —€,6 + €), where £ is some arbitrary open
subset of C", and the above reasoning shows that |[y*Py| > |x*Px| for some y € Q,
contradicting the fact that x is a local maximum of |x*Px|.

Now, since H is a Hermitian matrix, for 8 fixed, we know that if f(x,8) = x*Hx
has a local maximum for x, then x must be an eigenvector of H. Therefore, we
proved that if |x* Px| achieves a local maximum for some unit vector x, then x must
be an eigenvector of H(§) for some &, namely, the argument of x*Px.

Generally, if f(x,0) = x*Hx is a local maximum of f at (x, §), then |x*Px| is not
necessarily a local maximum at x.

However, we can show that if f(x,8) = x*Hx is a local maximum of f at (x,d),
then 6 = ¢, the phase angle of |x*Px|, and so x*Hx = |x*Px|.

This is because

x"Hx = |x*Px|cos(6 — ¢),

and for every open subset U C C" x [0,27] with (x,6) € U, we can find some 7
small enough that (x,6 + 1) € U and |0 + 1 — | < |8 — ¢|, and thus

X*H(6+n)x>x"H(d)x,

contradicting the fact that (x, §) is a local maximum.
Unfortunately, this does not seem to help much in finding for which 6 the func-
tion f(x,8) has local maxima.

17.5 The Field of Values

The determination of the local extrema of |x*Px| (with x*x = 1) is closely related to
the structure of the set of complex numbers

FP)={x"PxeC|xeC" x'x=1},

known as the field of values of P or the numerical range of P; see Horn and Johnson
[2] (Chapter 1).

The notation W (P) is also commonly used, corresponding to the German ter-
minology “Wertvorrat” or “Wertevorrat.” This set was studied as early as 1918 by
Toeplitz and Hausdorff. Toeplitz proved that the boundary of F(P) is convex, and
Hausdorff proved the remarkable fact that F (P) itself is convex. The quantity

r(P) =max{|z| | z € F(P)}



17.5 The Field of Values 453

is called the numerical radius of P. It is obviously of interest to us, since it corre-
sponds to the maximum of |x* Px| over all unit vectors x.

Figures 17.5, 17.6, and 17.7 give examples of numerical ranges and were pro-
duced by Ryan Kennedy.
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Fig. 17.5 Numerical range of a matrix that is not normal.
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Fig. 17.6 Numerical range of a normal matrix.

Here is a summary of properties of the field of values relevant to our problem
(assuming P is an n X n matrix):

(1) The set F(P) is a compact subset of the complex plane C.
(2) F(P) is convex.

(3) Every eigenvalue of P belongs to F(P).
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Fig. 17.7 Numerical range of a matrix that is near normal.

(4) If P is normal, then F(P) is the convex hull of its eigenvalues.
(5) If P is Hermitian, then F (P) is a real closed interval [oy,, 0], where o, is the
smallest eigenvalue of P and ¢ is the largest eigenvalue of P.
(6) F(U*PU) = F(P), for every unitary matrix U.
(7) F(H(P)) = Re(F(P)) and F(S(P)) = Im(F (P)).
(8) F(P+al)=F(P)+a.
9) F(aP)= aF(P).
(10) If a is a sharp point of the boundary dF (P) of F(P), then ¢ is an eigenvalue
of P.
(11) The boundary dF (P) of F(P) has at most n sharp points.
(12) If the boundary dF (P) of F(P) is C' (does not have any sharp point), then
every eigenvalue of P is in the interior of F(P).
(13) The boundary JF (P) of P is a piecewise algebraic curve.
(14) If A € JF (P) for some eigenvalue A of P, then

a. Every eigenvector associated with A is orthogonal to every eigenvector
associated with every eigenvalue p # A of P.

b. The dimension of the eigenspace associated with A is equal to the alge-
braic multiplicity of A.

(15) If P is areal matrix, then F(P) is symmetric with respect to the x-axis.

Let us prove (2), since it is the main property of the field of values. Rather than
following the proof given in Horn and Johnson [2] (Chapter 1, Section 1.3), which
reduces the general case to the two-dimensional case, we give a proof much closer
to Hausdorff’s original proof based on a path connectivity argument (a similar proof
is outlined in Horn and Johnson [2]; Section 1.3, Problem 7).

Lemma 17.1. If A is any Hermitian matrix, then for any A € C, the set

La(A)={xeC"|x"Ax=A,x"x =1}
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is path connected (which means that there is a continuous curve contained in L (L)
Joining any two points in Ly(1)). Furthermore, for any o € C, the set Lga(A) is
also path connected.

Proof. Because A is Hermitian, x*Ax is real, its eigenvalues are real, and it can be
diagonalized with respect to a unitary matrix. Thus A € R and, by properties (6)
and (8) above, we may assume that A = 0 and that A is a real diagonal matrix,
A = diag(ay,...,ay,). In this case,

n n
F) = { X ol | 1) € € X [ =1},
=1 =1
Let x,y € C" be two unit vectors x,y € L (0), that is, such that
- SO - 2
Y ajlxilP =Y ajly;l*
=1 =1

If we write x; = rjeiei, withr; €R,7;>0,and 6; € [0,27), it is clear that the points
(rie®,... ruei%) € Ly (0) and (ry,...,r,) € La(0) are connected by the continuous
curve

% (l‘) _ (rleiﬂl(lft)’ s r,nei(%,(lft))7

where 71 (¢) € L4(0) for all ¢ € [0, 1]. Therefore, it is enough to prove that any two
points x,y € L, (0), with x;,y; € R and x;,y; > 0, are path connected. This is indeed
the case, since the continuous curve

P(t) = (\/(1 —t)x%+ty%,...,\/(1 —t)x%—i—ty%)

stays in L4 (0) and connects x and y. The second part of the lemma follows from the
fact that F(a.P) = aF (P) (property (9)). O

We can now prove property (2). For any complex matrix A, the matrix H(A)
is Hermitian and S(A) is skew-Hermitian. However, if S is skew-Hermitian, then
S = —1iS where iS is Hermitian.

Theorem 17.1. (Toeplitz and Hausdorff) For every complex matrix A, the field of
values F (A) is convex.

Proof. We need to prove that for any two distinct complex numbers ¢, 3 € C, if
o, € F(A), then (1 —f)a+tf € F(A) for all ¢ € [0,1]. By Properties (8) and
(9), we may assume that &« = 0 and 8 = 1. Let x,y € C" be unit vectors such that
x*Ax =0 and y*Ay = 1. Since the skew-Hermitian part S(A) of A is a scalar multiple
of the Hermitian matrix iS(A), by Lemma 17.1, the set

Lga)(0) = {xe C" [x"S(A)x=0,x"x =1}
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is path connected. Because x*Ax =0 and y*Ay = 1 are real and because S(A) is skew-
Hermitian, as remarked in Section 15.3, x*S(A)x and y*S(A)y are pure imaginary
or zero, so we must have x*S(A)x = y*S(A)y = 0. Therefore, x,y € Lg4)(0), and
there is some continuous curve ¥(¢) in Lg(4)(0) such that y(0) = x and ¥(1) = y.
Consequently, since H(A) is Hermitian, y(¢)*H(A)y(¢) € R, and the function

Y(#) Ay(t) = y(t)"H(A)y(t) + y(t)"S(A)y(t) = v(t)"H(A)y(t)

is a real and continuous function from y(0)*Ay(0) = x*Ax = 0 to y(1)*Ay(1) =
y*Ay = 1, which proves that [0, 1] C F(A). Therefore, F(A) is indeed convex. O

Property (12) shows that in general, the eigenvalues of P do not yield the local
maxima of |x*Px|. Property (14) shows that if some eigenvalue A of P belongs to
JdF (P), then A behaves like an eigenvalue of a normal matrix. Property (9) implies
that

F(e ®P)=e OF(P),

and so _ _
F(P)=e®F(e7P).

Geometrically, this means that F (P) is obtained from F (e 1% P) by rotating it by &.
This with (5) and (7) yields a nice way of finding supporting lines for the convex set
F(P). To show this, we use a proposition from Horn and Johnson [2], whose proof
is quite simple:

Proposition 17.5. For any n x n matrix P and any unit vector x € C", the following
properties are equivalent:

(1) Re(x*Px) = max{Re(z) | z € F(P)}.
(2) x*H(P)x =max{r | re F(H(P))}.
(3) The vector x is an eigenvector of H(P) corresponding to the largest eigenvalue

)q OfH(P).

In fact, Proposition 17.5 immediately implies that
max{Re(z) |z€ F(P)} =max{r|re F(H(P))} = A1.

As a consequence, for every angle 0 €[0,2m), if we let A5 be the largest eigenvalue
of the matrix H (e"‘sP) and if xg5 is a corresponding unit eigenvector, then z5 =
x5Pxg is on the boundary dF (P) of F(P), and the line Ls given by

Ls= {ei‘g(l(s—i—ti) | tER} = {(x,y) €R?|cosSx+sindy—Ag :O}

is a supporting line of F(P) at z5. This is because by Proposition 17.5, the vertical
line through the real point Ag is the supporting line to F(P) at As, and the line Ly is
obtained by rotating by 8.

Observe that the triple (cos §,sin 8, As) satisfies the equation

det(wl —uH, —vH,) =0,
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in the variables u,v,w, since Ag is the largest eigenvalue of the matrix H(e 0 P) =
cos 0 Hy +sin 6 H, (recall that Hy = H(P) and H, = —iS(P)). We can extend the
domain of the variables u, v, w to be C, in which case, the equation

det(uH; +vH, +wl) =0

defines a set of projective lines in the complex projective plane CIP?, each one given
by the equation
ux+vy+wz=0,

in homogeneous coordinates (x: y: z), and this set of lines is the set of tangent lines
of a complex projective algebraic curve C(P).

The above equation is the so-called equation in line coordinates of the curve
C(P). Since all supporting lines of F(P) have line coordinates of the form (cosd,
sin§, —Ag), they are among such tangent lines, and it is easy to see that the convex
hull of the set of real points of the curve C(P) is F(P). The curve C(P) first intro-
duced and studied by Rudolph Kippenhahn in 1951 (note: Francis Murnaghan also
briefly discussed this curve in 1932), is called the boundary generating curve of P.
It is an algebraic curve of class n, which means that n tangent lines to the curve
pass that through any “general” point. The degree of this curve is n(n — 1) minus the
number of multiple tangents counted with their multiplicity.

17.6 Problems

17.1. Prove properties (2)—(9) of the field of values.

17.2. Prove Proposition 17.5.
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Chapter 18

Basics of Manifolds and Classical Lie Groups:
The Exponential Map, Lie Groups, and Lie
Algebras

Le role prépondérant de la théorie des groupes en mathématiques a été longtemps insoupgon-
né; il y a quatre-vingts ans, le nom méme de groupe était ignoré. C’est Galois qui, le premier,
en a eu une notion claire, mais c’est seulement depuis les travaux de Klein et surtout de Lie
que I’on a commencé a voir qu’il n’y a presque aucune théorie mathématique ou cette no-
tion ne tienne une place importante.

—Henri Poincaré

18.1 The Exponential Map

This chapter is an introduction to manifolds, Lie groups, and Lie algebras.

The inventors of Lie groups and Lie algebras (starting with Lie!) regarded Lie
groups as groups of symmetries of various topological or geometric objects. Lie al-
gebras were viewed as the “infinitesimal transformations” associated with the sym-
metries in the Lie group. For example, the group SO(n) of rotations is the group
of orientation-preserving isometries of the Euclidean space E”. The Lie algebra
s0(n,R) consisting of real skew-symmetric n x n matrices is the corresponding set
of infinitesimal rotations. The geometric link between a Lie group and its Lie alge-
bra is the fact that the Lie algebra can be viewed as the tangent space to the Lie group
at the identity. There is a map from the tangent space to the Lie group, called the ex-
ponential map. The Lie algebra can be considered as a linearization of the Lie group
(near the identity element), and the exponential map provides the “delinearization,”
i.e., it takes us back to the Lie group. These concepts have a concrete realization in
the case of groups of matrices, and for this reason we begin by studying the behavior
of the exponential maps on matrices.

We begin by defining the exponential map on matrices and proving some of its
properties. The exponential map allows us to “linearize” certain algebraic properties
of matrices. It also plays a crucial role in the theory of linear differential equations
with constant coefficients. But most of all, as we mentioned earlier, it is a stepping-
stone to Lie groups and Lie algebras. On the way to Lie algebras, we derive the

459
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classical “Rodrigues-like” formulae for rotations and for rigid motions in R? and
R3. We give an elementary proof that the exponential map is surjective for both
SO(n) and SE(n), not using any topology, just our normal forms for matrices.

The last section gives a quick introduction to Lie groups and Lie algebras. We
define manifolds as embedded submanifolds of RY, and we define linear Lie groups,
using the famous result of Cartan (apparently actually due to Von Neumann) that a
closed subgroup of GL(n,R) is a manifold, and thus a Lie group. This way, Lie alge-
bras can be “computed” using tangent vectors to curves of the form 7 — A(t), where
A(t) is a matrix. This section is inspired from Artin [6], Chevalley [12], Marsden
and Ratiu [33], Curtis [14], Howe [23], and Sattinger and Weaver [42].

Given an n x n (real or complex) matrix A = (g; ), we would like to define the
exponential e* of A as the sum of the series

AP AP

&:Q+

)

0
p>1 p! pzop!

letting A? = I,,. The problem is, Why is it well-defined? The following lemma shows
that the above series is indeed absolutely convergent.

Lemma 18.1. Let A = (a; ) be a (real or complex) n x n matrix, and let
u=max{la;;| | 1 <i,j <n}.
IfA? = (al(?)), then
] < (np)”
foralli,j, 1<i,j<n.Asa consequence, the n* series

(p)

y
p=0 P!
converge absolutely, and the matrix
AP
eA = —'
p>0 P:

is a well-defined matrix.

Proof. The proof is by induction on p. For p = 0, we have A = I, (nu)? = 1, and
the lemma is obvious. Assume that

] < (np)?

for all i, j, 1 <i,j < n.Then we have

Jaif ™) = ‘ Y aifa;| < Y | ag| < Y || < np(u)?
k=1 k=1 k=1
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and so, al(’;H)‘ < (nu)P*! for all i, j, 1 < i,j < n. For every pair (i, j) such that
1<i,j<n,since

la?)] < (n)?,

the series
y a7
ps0 P!
is bounded by the convergent series
=Y ("IJ')” ,
p=0 P

and thus it is absolutely convergent. This shows that

Aoy X
=0 k!
is well defined. 0O

It is instructive to compute explicitly the exponential of some simple matrices.
As an example, let us compute the exponential of the real skew-symmetric matrix

A:(g‘o")

We need to find an inductive formula expressing the powers A”. Let us observe that

()=o) = (30) ()

Then, letting
0-1
= (00

we have
4n 4n
AT =0"1,
4n+1 _ pan+l
A =0 J,
Adnt2 _94n+212’
4n+3 _ 4n+3
A =—-0 J,
and so

0 92 63 4 65 66 67
A— —_— _—— —_—— —_— —_— —_—— —_—— e
e —Iz-i-l!l 2!12 3!J—|—4!Iz+5!1 6!12 7!J+ .
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Rearranging the order of the terms, we have

02 o+ 0° 6 0> 6 o
A _
¢ —(1‘§+m‘a+“'>’2+<ﬁ‘§+§‘7+'“>’-

We recognize the power series for cos 8 and sin 6, and thus

e =cosOL +sin6J,

A <cos 6 —sin 6>
sin@ cosf /-’

Thus, e is a rotation matrix! This is a general fact. If A is a skew-symmetric
matrix, then e? is an orthogonal matrix of determinant +1, i.e., a rotation matrix.
Furthermore, every rotation matrix is of this form; i.e., the exponential map from
the set of skew-symmetric matrices to the set of rotation matrices is surjective. In
order to prove these facts, we need to establish some properties of the exponential
map. But before that, let us work out another example showing that the exponential
map is not always surjective. Let us compute the exponential of a real 2 x 2 matrix
with null trace of the form

A= (“ b )
c—a

We need to find an inductive formula expressing the powers A”. Observe that

that is

A% = (a* + bc)l, = —det(A) .
If a® + be = 0, we have
ed = L+A.
If a*> + be < 0, let @ > 0 be such that ®* = —(a® 4 bc). Then, A> = —w*L,. We get

A ®? ? w* w* w® 6
Ai —_— — — — — _— —_— — — — — e
C=ht b At gt A grh oAt

Rearranging the order of the terms, we have
2 4 6 3 5 7
A 0 0 o 1 0 ® o
ef=(l-=+———-——+|b+—|(O0——+——=+- |A
< T TRRTI >2+w< P P )
We recognize the power series for cos @ and sin @, and thus

sin @
eA:cosa)Iz—i- p A.

If a*> + be > 0, let @ > 0 be such that ®* = (a® + bc). Then A2 = w?1,. We get

2 (1)2 4 4 6 6

A [0} [0} 0] 0]
Af _ _ _ _ _ _ “ e
€ —Iz—i—ﬁ—i— 2!Iz+ 3!A+ 0 L+ 5!A—|— 6!12+ 7!A—|— .
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Rearranging the order of the terms, we have

2

e = 1+w—+w—4+w—6+ h+t w+w—3+w—5+w—7+ A
- 21 "4 el 2w 315 T '

If we recall that cosh® = (e® +¢~®) /2 and sinhw = (e® —e~?) /2, we recognize
the power series for cosh @ and sinh w, and thus

A sinh®

e =coshwl + A.

It immediately verified that in all cases,
det (eA) =1.

This shows that the exponential map is a function from the set of 2 x 2 matrices
with null trace to the set of 2 x 2 matrices with determinant 1. This function is
not surjective. Indeed, tr(e?) = 2cos @ when a? + be < 0, tr(e?) = 2cosh® when
a®>+bc>0,and tr(eA) =2whena’+bc=0.Asa consequence, for any matrix A
with null trace,

tr (eA) > -2,

and any matrix B with determinant 1 and whose trace is less than —2 is not the
exponential ! of any matrix A with null trace. For example,

a 0
B_<Oa1>’

where a < 0 and a # —1, is not the exponential of any matrix A with null trace.
A fundamental property of the exponential map is thatif Ay, ..., A4, are the eigen-
values of A, then the eigenvalues of e are eM Yoo ,e’l". For this we need two lemmas.

Lemma 18.2. Let A and U be (real or complex) matrices, and assume that U is
invertible. Then B
QUAUT! _ Ay 1.

Proof. A trivial induction shows that

UAPU ! = (AU 1P,

and thus
QAU Z(UAU*I)P_ UAPU !
>0 p! >0 p!
AP
=U| Y= |v'=veu!
p>0P:
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Say that a square matrix A is an upper triangular matrix if it has the following
shape,

aip ai2 di3 -.. dip—1 Qdin
0 azpar3 ... azp1 azg
0 0 asz3 ... aAizp—1 asy
. . b
0 0o 0 ... Ap_1n—1 An—1n
0O 0 O 0 ann
i.e.,a;; =0 whenever j <i,1<i,j<n
J J yJ

Lemma 18.3. Given any complex n x n matrix A, there is an invertible matrix P and
an upper triangular matrix T such that

A=PTP .

Proof. We prove by induction on n that if f: C" — C”" is a linear map, then there
is a basis (uy,...,u,) with respect to which f is represented by an upper triangular
matrix. For n = 1 the result is obvious. If n > 1, since C is algebraically closed,
f has some eigenvalue A; € C, and let u; be an eigenvector for A;. We can find
n— 1 vectors (v,...,v,) such that (u1,vo,...,v,) is a basis of C", and let W be the
subspace of dimension n — 1 spanned by (vy,...,v,). In the basis (u1,v;...,v,), the
matrix of f is of the form
ap apz --- ain
0 azp ... dyy

0 ays ... apn

since its first column contains the coordinates of A;u; over the basis (u1,v2, ..., vy).
Letting p: C" — W be the projection defined such that p(u;) = 0 and p(v;) = v;
when 2 <i < n, the linear map g: W — W defined as the restriction of po f to W is

represented by the (n—1) x (n— 1) matrix (a; j)2<; j<n Over the basis (v2,...,v,). By
the induction hypothesis, there is a basis (uy, .. .,u,) of W such that g is represented
by an upper triangular matrix (b;;)1<; j<n—1-
However,
C"=Cuy®W,

and thus (uy,...,u,) is a basis for C". Since p is the projection from C" = Cu; & W
onto W and g: W — W is the restriction of po f to W, we have

flur) = Ay

and
n—1

fluip1) = aur+ Y bijujy
=1
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for some a;; € C, when 1 <i < n— 1. But then the matrix of f with respect to
(u1,...,uy) is upper triangular. Thus, there is a change of basis matrix P such that
A = PTP~! where T is upper triangular. O

Remark: If E is a Hermitian space, the proof of Lemma 18.3 can be easily adapted
to prove that there is an orthonormal basis (uy,...,u,) with respect to which the
matrix of f is upper triangular. In terms of matrices, this means that there is a unitary
matrix U and an upper triangular matrix 7 such that A = UTU*. This is usually
known as Schur’s lemma. Using this result, we can immediately rederive the fact
that if A is a Hermitian matrix, then there is a unitary matrix U and a real diagonal
matrix D such that A = UDU*.

If A= PTP~! where T is upper triangular, note that the diagonal entries on T
are the eigenvalues A4,...,A, of A. Indeed, A and T have the same characteristic
polynomial. This is because if A and B are any two matrices such that A = PBP~!,
then

det(A — A1) = det(PBP~ ' —APIP!),
=det(P(B— AP,

= det(P)det(B — AI)det(P!),

= det(P) det(B AT)det(P)~!,

=det(B—AI).

Furthermore, it is well known that the determinant of a matrix of the form

M—A aia a3z ... a1 aig
0 A,z—)y axz ... dAyp—1 arn
0 0 Ag—)y N Y | asy

0 0 0 A«nfl—)v An_1n
0 0 0o ... 0 An—A

is (A{ —=A)--- (A, — 1), and thus the eigenvalues of A = PTP~! are the diagonal
entries of 7. We use this property to prove the following lemma.

Lemma 18.4. Given any complex n x n matrix A, if Ay,...,A, are the eigenvalues
of A, then eM, ... eM are the eigenvalues of e*. Furthermore, if u is an eigenvector
of A for i, then u is an eigenvector of e* for et
Proof. By Lemma 18.3 there is an invertible matrix P and an upper triangular matrix
T such that

A=PTP "

By Lemma 18.2,
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—1 _
efTP = pel P71,

However, we showed that A and T have the same eigenvalues, which are the di-

agonal entries Ai,...,A, of T, and e = e’"?"' = Pe”P~! and e’ have the same
eigenvalues, which are the diagonal entries of e’ . Clearly, the diagonal entries of
el are eM,... et Now, if u is an eigenvector of A for the eigenvalue A, a simple
induction shows that u is an eigenvector of A" for the eigenvalue A", from which is

follows that u is an eigenvector of e fore*. 0O

As a consequence, we can show that
A tr(A
det(e?) = "),

where tr(A) is the trace of A, i.e., the sum aj| +--- + a,, of its diagonal entries,
which is also equal to the sum of the eigenvalues of A. This is because the determi-

nant of a matrix is equal to the product of its eigenvalues, and if A,,..., A, are the
eigenvalues of A, then by Lemma 18.4, et yeen ,el" are the eigenvalues of et and
thus

det (eA) _ e/’Ll . .eln — el1+-..+ln _ etl‘(A)'

This shows that e? is always an invertible matrix, since e is never null for every
z € C. In fact, the inverse of e? is e 4, but we need to prove another lemma. This is
because it is generally not true that

B — B,

unless A and B commute, i.e., AB = BA. We need to prove this last fact.

Lemma 18.5. Given any two complex n x n matrices A, B, if AB = BA, then

Proof. Since AB = BA, we can expand (A + B)? using the binomial formula:

(A+B)" = Zp: (‘]Z) Akprk,

k=0
and thus , . .
1 A*BP~
—(A+B)’ = —_.
p! kgbk!(p—k)!

Note that for any integer N > 0, we can write

2N 2N p kpp—k
1 A*BP
—(A+Br=Y Y S
L L L uo-7
N N k pl
AP B? A*B
<p—0 '> (p—O P!> max(k,l) >N kb 1!

k+1<2N
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where there are N(N + 1) pairs (k,/) in the second term. Letting

[A]} = max{a;;| | 1 <i,j <n}, |B]| =max{|bi;| | 1 <i,j<n},
and pt = max(||A||,||B||), note that for every entry c;; in (A*/k!) (B'/1!) we have

()" (np)' _ (n?u)*"
k! - N

lcijl <n
As a consequence, the absolute value of every entry in

Ak B!
max (k,[) >N k1
k+I<2N

is bounded by
()Y
N!
which goes to 0 as N — oo. From this, it immediately follows that

N(N+1)

a

which shows that the inverse of e? is e 4.

We will now use the properties of the exponential that we have just established
to show how various matrices can be represented as exponentials of other matrices.

18.2 The Lie Groups GL(n,R), SL(n,R), O(n), SO(n), the Lie
Algebras gl(n,R), sl(n,R), o(n), so(n), and the Exponential
Map

First, we recall some basic facts and definitions. The set of real invertible n x n
matrices forms a group under multiplication, denoted by GL(n,R). The subset of
GL(n,R) consisting of those matrices having determinant +1 is a subgroup of
GL(n,R), denoted by SL(n,R). It is also easy to check that the set of real n x n or-
thogonal matrices forms a group under multiplication, denoted by O(n). The subset
of O(n) consisting of those matrices having determinant +1 is a subgroup of O(n),
denoted by SO(n). We will also call matrices in SO(n) rotation matrices. Staying
with easy things, we can check that the set of real n X n matrices with null trace
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forms a vector space under addition, and similarly for the set of skew-symmetric
matrices.

Definition 18.1. The group GL(n,R) is called the general linear group, and its
subgroup SL(n,R) is called the special linear group. The group O(n) of orthog-
onal matrices is called the orthogonal group, and its subgroup SO(n) is called the
special orthogonal group (or group of rotations). The vector space of real n x n
matrices with null trace is denoted by s[(n,R), and the vector space of real n x n
skew-symmetric matrices is denoted by so(n).

Remark: The notation sl(n,R) and so(n) is rather strange and deserves some ex-
planation. The groups GL(n,R), SL(n,R), O(n), and SO(n) are more than just
groups. They are also topological groups, which means that they are topological
spaces (viewed as subspaces of R”z) and that the multiplication and the inverse
operations are continuous (in fact, smooth). Furthermore, they are smooth real man-
ifolds.! Such objects are called Lie groups. The real vector spaces s[(n) and so(n)
are what is called Lie algebras. However, we have not defined the algebra structure
on sl(n,R) and so(n) yet. The algebra structure is given by what is called the Lie
bracket, which is defined as

[A, B] = AB — BA.

Lie algebras are associated with Lie groups. What is going on is that the Lie
algebra of a Lie group is its tangent space at the identity, i.e., the space of all tangent
vectors at the identity (in this case, I,;). In some sense, the Lie algebra achieves a
“linearization” of the Lie group. The exponential map is a map from the Lie algebra
to the Lie group, for example,

exp: s0(n) — SO(n)

and
exp: sl(n,R) — SL(n,R).

The exponential map often allows a parametrization of the Lie group elements by
simpler objects, the Lie algebra elements.

One might ask, What happened to the Lie algebras gl(n,R) and o(n) associated
with the Lie groups GL(n,R) and O(n)? We will see later that gl(n,R) is the set of
all real n x n matrices, and that o(n) = so(n).

The properties of the exponential map play an important role in studying a Lie
group. For example, it is clear that the map

exp: gl(n,R) - GL(n,R)

! We refrain from defining manifolds right now, not to interupt the flow of intuitive ideas.
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is well-defined, but since every matrix of the form e has a positive determinant,
exp is not surjective. Similarly, since

det(e?) = e,

the map
exp: sl(n,R) — SL(n,R)

is well-defined. However, we showed in Section 18.1 that it is not surjective either.
As we will see in the next theorem, the map

exp: so(n) — SO(n)
is well-defined and surjective. The map
exp: o(n) — O(n)

is well-defined, but it is not surjective, since there are matrices in O(n) with deter-
minant —1.

Remark: The situation for matrices over the field C of complex numbers is quite
different, as we will see later.

We now show the fundamental relationship between SO(n) and so(n).
Theorem 18.1. The exponential map
exp: so(n) — SO(n)
is well-defined and surjective.

Proof. First, we need to prove that if A is a skew-symmetric matrix, then etisa
rotation matrix. For this, first check that

(e =et'
Then, since AT = —A, we get
(eA)T A = e
and so
(eA)TeA —eAeh —e A el —

and similarly,

showing that e” is orthogonal. Also,

det (e?) = etr(4)
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and since A is real skew-symmetric, its diagonal entries are 0, i.e., tr(A) = 0, and so
det(e?) = +1.

For the surjectivity, we will use Theorem 12.9 and Theorem 12.10. Theorem 12.9
says that for every skew-symmetric matrix A there is an orthogonal matrix P such
that A = PDPT, where D is a block diagonal matrix of the form

D, ...
D, ...
..D,

such that each block D; is either O or a two-dimensional matrix of the form

0 -6
2= (o 7)

where 6; € R, with 6; > 0. Theorem 12.10 says that for every orthogonal matrix R
there is an orthogonal matrix P such that R = PE P ", where E is a block diagonal
matrix of the form

E ..
E ...
. E,

such that each block E; is either 1, —1, or a two-dimensional matrix of the form

E - cos 6; —sin 6;
"7 \sin6; cosb; -
If R is a rotation matrix, there is an even number of —1’s and they can be grouped

into blocks of size 2 associated with 6 = 7. Let D be the block matrix associated
with E in the obvious way, where an entry 0 in D is associated with a 1 in £ and

where
0 —6;
v=(5)

is associated with the rotation matrix
E - cos 6; —sin 6;
"7 \sin6; cos6; /-

—1 _
oA — oPDP™! _ poDp-1

Since by Lemma 18.2

and since D is a block diagonal matrix, we can compute e by computing the expo-
nentials of its blocks. If D; =0, we get E; = e = +1, and if
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0 -6
D; =
1 (61' O ) 3

Di cgs 6; —sin6;
sin@; cos6; /'’

exactly the block E;. Thus, E = el andasa consequence,

we showed earlier that

et = PP = peP’p! = PEP"' = PEPT =R.
This shows the surjectivity of the exponential. O

When n = 3 (and A is skew-symmetric), it is possible to work out an explicit
formula for e?. For any 3 x 3 real skew-symmetric matrix

0 —c b

A= ¢ 0 —a],
—b a O

letting 0 = v/a2 + b+ ¢% and
a® ab ac
B=|abb*bc|,
ac be ¢?

we have the following result known as Rodrigues’s formula (1840).

Lemma 18.6. The exponential map exp: s0(3) — SO(3) is given by

A sin 6 (I —cosB)
=cosO1I A B
€ cos0 Iz + ) + 02 ,
or, equivalently, by
ALt sm6A+ (1 —cosG)Az

0 62
if 8 #0, with €% = I.

Proof. Here is a proof sketch. First, prove that

A% =—0%I+B,
AB=BA =0.
From the above, deduce that
Ad =024,

and for any k > 0,



472 18 Basics of Manifolds and Classical Lie Groups

A4k+1 — 94kA
A4k+2 — 94kA2
A4k+3 — _64k+2A
A4k+4 — —64k+2A2.

Then prove the desired result by writing the power series for e* and regrouping
terms so that the power series for cos and sin show up. O

The above formulae are the well-known formulae expressing a rotation of axis
specified by the vector (a,b,c) and angle 6. Since the exponential is surjective, it
is possible to write down an explicit formula for its inverse (but it is a multivalued
function!). This has applications in kinematics, robotics, and motion interpolation.

18.3 Symmetric Matrices, Symmetric Positive Definite Matrices,
and the Exponential Map

Recall that a real symmetric matrix is called positive (or positive semidefinite) if
its eigenvalues are all positive or null, and positive definite if its eigenvalues are
all strictly positive. We denote the vector space of real symmetric n X n matrices
by S(n), the set of symmetric positive matrices by SP(n), and the set of symmetric
positive definite matrices by SPD(n).

The next lemma shows that every symmetric positive definite matrix A is of the
form e? for some unique symmetric matrix B. The set of symmetric matrices is a
vector space, but it is not a Lie algebra because the Lie bracket [A, B] is not symmet-
ric unless A and B commute, and the set of symmetric (positive) definite matrices is
not a multiplicative group, so this result is of a different flavor as Theorem 18.1.

Lemma 18.7. For every symmetric matrix B, the matrix €8 is symmetric positive

definite. For every symmetric positive definite matrix A, there is a unique symmetric
matrix B such that A = eP.

Proof. We showed earlier that
T T
(e5) = e,
If B is a symmetric matrix, then since BT =B, we get

(8) =B =e5,
and e? is also symmetric. Since the eigenvalues A, ..., A, of the symmetric matrix
B are real and the eigenvalues of e? are eM Yoo ,el", and since e* > 0if A € R, P is
positive definite.

If A is symmetric positive definite, by Theorem 12.8 there is an orthogonal matrix
P such that A = PDPT, where D is a diagonal matrix
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Al
A ...
oAy
where A; > 0, since A is positive definite. Letting
log Ay
logh, ...
... logh,
it is obvious that e* = D, with log A; € R, since A; > 0.

Let
B=PLP".

By Lemma 18.2, we have
of = oFLPT —PLP™ — pelp~1 — pel pT = PDPT = A.

Finally, we prove that if B; and B, are symmetric and A = eB1 = eB2, then B; = B».
Since B is symmetric, there is an orthonormal basis (u1,...,u,) of eigenvectors of
Bj.Let uy,...,u, be the corresponding eigenvalues. Similarly, there is an orthonor-
mal basis (vq,...,v,) of eigenvectors of B,. We are going to prove that By and B,
agree on the basis (vq,...,Vv,), thus proving that B; = B,.

Let u be some eigenvalue of B,, and let v = v; be some eigenvector of B, associ-
ated with u. We can write

V=0qus+ -+ Oyiy.
Since v is an eigenvector of B, for u and A = e?2, by Lemma 18.4
AWv)=etv=elaqu; +---+e'auy,.
On the other hand,
AW) =A(aqu; + -+ ouy) = g A(uy) + - + A (1),
and since A = 81 and B (u;) = Wiu;, by Lemma 18.4 we get
AWv)=eMaju + -+ et oy,
Therefore, o; = 0 if y; # u. Letting
I={ilw=p,ic{l,. .. ,n}t},

we have



474 18 Basics of Manifolds and Classical Lie Groups

V= Zaiui.

iel

Now,

Bi(v) =B <Z al-ul-) =Y 0B (u;) =Y otiptiu;

iel iel iel
= ZOC,‘[,LM,' =u (Z OC,'M,') = uv,
iel iel

since (; = 4 when i € I. Since v is an eigenvector of B, for u,
By(v) = v,

which shows that
Bl (v) = Bz(v).

Since the above holds for every eigenvector v;, we have By = B,. O

Lemma 18.7 can be reformulated as stating that the map exp: S(rn) — SPD(n) is
a bijection. It can be shown that it is a homeomorphism.

It should be noted that Lemma 18.7 is a key ingredient in the log-Euclidean
framework due to Arsigny, Fillard, Pennec and Ayache, which has important appli-
cations to medical imaging, especially diffusion tensor imaging (DTI) [2, 3, 4, 5].

In the case of invertible matrices, the polar form theorem can be reformulated as
stating that there is a bijection between the topological space GL(n,R) of real n x n
invertible matrices (also a group) and O(n) x SPD(n).

As a corollary of the polar form theorem (Theorem 13.1) and Lemma 18.7, we
have the following result: For every invertible matrix A there is a unique orthogonal
matrix R and a unique symmetric matrix S such that

A=ReS.

Thus, we have a bijection between GL(n,R) and O(n) x S(n). But S(n) itself is
isomorphic to R("+1)/2_ Thus, there is a bijection between GL(n,R) and O(n) x
R"("+1)/2 Tt can also be shown that this bijection is a homeomorphism. This is an
interesting fact. Indeed, this homeomorphism essentially reduces the study of the
topology of GL(n,R) to the study of the topology of O(n). This is nice, since it can
be shown that O(n) is compact.

In A = Re, if det(A) > 0, then R must be a rotation matrix (i.e., det(R) = +1),
since det (€%) > 0. In particular, if A € SL(n,R), since det(A) = det(R) = +1, the
symmetric matrix S must have a null trace, i.e., S € S(n) Nsl(n,R). Thus, we have a
bijection between SL(n,R) and SO(n) x (S(n) Nsl(n,R)).

We can also use the results of Section 12.4 to show that the exponential map is a
surjective map from the skew-Hermitian matrices to the unitary matrices.
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18.4 The Lie Groups GL(n,C), SL(n,C), U(n), SU(n), the Lie
Algebras gl(n,C), sl(n,C), u(n), su(n), and the Exponential
Map

The set of complex invertible n X n matrices forms a group under multiplication,
denoted by GL(n,C). The subset of GL(n,C) consisting of those matrices having
determinant +1 is a subgroup of GL(n,C), denoted by SL(n,C). It is also easy to
check that the set of complex n X n unitary matrices forms a group under multipli-
cation, denoted by U(n). The subset of U(n) consisting of those matrices having
determinant +1 is a subgroup of U(n), denoted by SU(n). We can also check that
the set of complex n x n matrices with null trace forms a real vector space under
addition, and similarly for the set of skew-Hermitian matrices and the set of skew-
Hermitian matrices with null trace.

Definition 18.2. The group GL(n,C) is called the general linear group, and its sub-
group SL(n,C) is called the special linear group. The group U(n) of unitary matri-
ces is called the unitary group, and its subgroup SU(n) is called the special unitary
group. The real vector space of complex n x n matrices with null trace is denoted by
sl(n,C), the real vector space of skew-Hermitian matrices is denoted by u(n), and
the real vector space u(n) Nsl(n,C) is denoted by su(n).

Remarks:

(1) As in the real case, the groups GL(n,C), SL(n,C), U(n), and SU(n) are also
topological groups (viewed as subspaces of Rz”z), and in fact, smooth real man-
ifolds. Such objects are called (real) Lie groups. The real vector spaces sl(n,C),
u(n), and su(n) are Lie algebras associated with SL(n,C), U(n), and SU(n).
The algebra structure is given by the Lie bracket, which is defined as

[A, B] = AB — BA.

(2) It is also possible to define complex Lie groups, which means that they are
topological groups and smooth complex manifolds. It turns out that GL(n,C)
and SL(n,C) are complex manifolds, but not U(n) and SU(n).

g% One should be very careful to observe that even though the Lie algebras

5l(n,C), u(n), and su(n) consist of matrices with complex coefficients,
we view them as real vector spaces. The Lie algebra sl(n,C) is also a complex
vector space, but u(n) and su(n) are not! Indeed, if A is a skew-Hermitian matrix,
iA is not skew-Hermitian, but Hermitian!

Again the Lie algebra achieves a “linearization” of the Lie group. In the complex
case, the Lie algebras gl(n,C) is the set of all complex n x n matrices, but u(n) #
su(n), because a skew-Hermitian matrix does not necessarily have a null trace.
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The properties of the exponential map also play an important role in studying
complex Lie groups. For example, it is clear that the map

exp: gl(n,C) — GL(n,C)

is well-defined, but this time, it is surjective! One way to prove this is to use the
Jordan normal form. Similarly, since

det (e!) = )
the map
exp: sl(n,C) — SL(n,C)
is well-defined, but it is not surjective! As we will see in the next theorem, the maps
exp: u(n) — U(n)

and
exp: su(n) — SU(n)
are well-defined and surjective.

Theorem 18.2. The exponential maps
exp: u(n) = U(n) and exp: su(n) — SU(n)

are well-defined and surjective.

Proof. First, we need to prove that if A is a skew-Hermitian matrix, then etisa
unitary matrix. For this, first check that

(eA) et
Then, since A* = —A, we get
(eA)* A = e A,

and so

* — —
(eA) eA —e AeA —e A+A :eon =1,

and similarly, e* (e*)" = I,, showing that e* is unitary. Since
det (e*) = )

if A is skew-Hermitian and has null trace, then det(e?) = +1.

For the surjectivity we will use Theorem 12.11. First, assume that A is a unitary
matrix. By Theorem 12.11, there is a unitary matrix U and a diagonal matrix D
such that A = UDU*. Furthermore, since A is unitary, the entries A;,...,4, in D
(the eigenvalues of A) have absolute value +1. Thus, the entries in D are of the form
cos 0 +isin @ = el®. Thus, we can assume that D is a diagonal matrix of the form
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o0 '
%
D= .
o,
If we let E be the diagonal matrix
i6; .
i0, .
E = .
.16,

it is obvious that E is skew-Hermitian and that
ef =D.
Then, letting B= UEU*, we have
ef = A,

and it is immediately verified that B is skew-Hermitian, since E is.
If A is a unitary matrix with determinant +1, since the eigenvalues of A are
el% ... el% and the determinant of A is the product

i0, 0

b — ei(61++6,)

e ...el

of these eigenvalues, we must have
01+---+6,=0,
and so, E is skew-Hermitian and has zero trace. As above, letting
B=UEU",

we have
ef = A,

where B is skew-Hermitian and has null trace. O

We now extend the result of Section 18.3 to Hermitian matrices.
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18.5 Hermitian Matrices, Hermitian Positive Definite Matrices,
and the Exponential Map

Recall that a Hermitian matrix is called positive (or positive semidefinite) if its eigen-
values are all positive or null, and positive definite if its eigenvalues are all strictly
positive. We denote the real vector space of Hermitian n X n matrices by H(n), the
set of Hermitian positive matrices by HP(n), and the set of Hermitian positive defi-
nite matrices by HPD(n).

The next lemma shows that every Hermitian positive definite matrix A is of the
form e? for some unique Hermitian matrix B. As in the real case, the set of Hermitian
matrices is a real vector space, but it is not a Lie algebra because the Lie bracket
[A,B] is not Hermitian unless A and B commute, and the set of Hermitian (positive)
definite matrices is not a multiplicative group.

Lemma 18.8. For every Hermitian matrix B, the matrix €8 is Hermitian positive
definite. For every Hermitian positive definite matrix A, there is a unique Hermitian
matrix B such that A = eP.

Proof. Ttis basically the same as the proof of Theorem 18.8, except that a Hermitian
matrix can be written as A = UDU*, where D is a real diagonal matrix and U is
unitary instead of orthogonal. O

Lemma 18.8 can be reformulated as stating that the map exp: H(n) — HPD(n)
is a bijection. In fact, it can be shown that it is a homeomorphism. In the case of
complex invertible matrices, the polar form theorem can be reformulated as stating
that there is a bijection between the topological space GL(n,C) of complex n X n
invertible matrices (also a group) and U(n) x HPD(n). As a corollary of the polar
form theorem and Lemma 18.8, we have the following result: For every complex
invertible matrix A, there is a unique unitary matrix U and a unique Hermitian matrix
S such that

A=Ue.

Thus, we have a bijection between GL(n,C) and U(n) x H(n). But H(n) itself is

isomorphic to R" and so there is a bijection between GL(n,C) and U(n) x R
It can also be shown that this bijection is a homeomorphism. This is an interesting
fact. Indeed, this homeomorphism essentially reduces the study of the topology of
GL(n,C) to the study of the topology of U(n). This is nice, since it can be shown
that U(n) is compact (as a real manifold).

In the polar decomposition A = Ue®, we have |det(U)| = 1, since U is unitary,
and tr(S) is real, since S is Hermitian (since it is the sum of the eigenvalues of S,
which are real), so that det (%) > 0. Thus, if det(A) = 1, we must have det (¢%) = 1,
which implies that S € H(n) Nsl(n, C). Thus, we have a bijection between SL(n, C)
and SU(n) x (H(n) Nsl(n,C)).

In the next section we study the group SE(n) of affine maps induced by orthog-
onal transformations, also called rigid motions, and its Lie algebra. We will show
that the exponential map is surjective. The groups SE(2) and SE(3) play play a
fundamental role in robotics, dynamics, and motion planning.
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18.6 The Lie Group SE(n) and the Lie Algebra se(n)

First, we review the usual way of representing affine maps of R” in terms of (n+
1) x (n+ 1) matrices.

Definition 18.3. The set of affine maps p of R”", defined such that
p(X)=RX+U,

where R is a rotation matrix (R € SO(n)) and U is some vector in R”, is a group
under composition called the group of direct affine isometries, or rigid motions,

denoted by SE(n).

Every rigid motion can be represented by the (n+ 1) X (n+ 1) matrix
RU
01
p(X)\ _(RU\ (X
1 “\0 1 1

p(X)=RX+U.

in the sense that

iff

Definition 18.4. The vector space of real (n+ 1) x (n+ 1) matrices of the form
= (29).

where Q is a skew-symmetric matrix and U is a vector in R”, is denoted by se(n).

Remark: The group SE(n) is a Lie group, and its Lie algebra turns out to be se(n).

We will show that the exponential map exp: se(n) — SE(n) is surjective. First,
we prove the following key lemma.

Lemma 18.9. Given any (n+ 1) x (n+ 1) matrix of the form

-(39)

where Q is any matrix and U € R",

k k—1
L [(QF a1y
“=(5%").
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where Q0 = I,. As a consequence,

where

Proof. A trivial induction on k shows that

ok o1y
k __
A _(O . Y).

Then we have

Ak
eA:ZH’

k>0
1 [k Qly
:In+1 + Z ' < )
kzlk! 0 0

k k—1
_ <In+):k>0 & Vi QTU)
0 1 ’

(e VU
—\o0 1)

We can now prove our main theorem. We will need to prove that V' is invertible
when (2 is a skew-symmetric matrix. It would be tempting to write V as

a

V= Ye?-1.

Unfortunately, for odd n, a skew-symmetric matrix of order 7 is not invertible! Thus,
we have to find another way of proving that V' is invertible. However, observe that
we have the following useful fact:

V=I+Y o —/le‘?’dt
N U VTR ¢ '

This is what we will use in Theorem 18.3 to prove surjectivity.
Theorem 18.3. The exponential map
exp: se(n) — SE(n)

is well-defined and surjective.
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Proof. Since Q is skew-symmetric, e

the exponential map

is a rotation matrix, and by Theorem 18.1,

exp: so(n) — SO(n)

is surjective. Thus, it remains to prove that for every rotation matrix R, there is some
skew-symmetric matrix £ such that R = e? and

_Qk
V=I+
,§l<k+1)

is invertible. By Theorem 12.9, for every skew-symmetric matrix €2 there is an
orthogonal matrix P such that Q = PDP", where D is a block diagonal matrix of
the form

D, ...
Ds ...
..D,

such that each block D; is either O or a two-dimensional matrix of the form

(0 -6
p=(a0)

where 0; € R, with 6; > 0. Actually, we can assume that 6; # k27 for all k € Z, since
when 6; = k27 we have e? = I, and D; can be replaced by two one-dimensional
blocks each consisting of a single zero. To compute V, since Q = PDP'" = PDP~!,
observe that

”+,§1 k+1

pD'p!

+
I ,;1 (k+1)!

L o)
=PI+ P
= (k+1)!
=pPwpP!,

where

We can compute

by computing
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W
W ...

W,
D; cos 6; —sin 6;
eli=1{".
sin 6; cos6;
when D; is a 2 x 2 skew-symmetric matrix and W; = fol ePidt, we get

wi — (Jo cos(Bin)dr [y —sin(@i)dr) _ 1 ( sin(6ir) [ cos(6ir) [y
" \Josin(6i)dr Jy cos(6i)dt —cos(6it) |g sin(6it) [y )’

by blocks. Since

0;

that is,

W-:l sinf; —(1—rcos6;)
"9, \1—cosb; sin 6; ’

and W; = 1 when D; = 0. Now, in the first case, the determinant is

1 2
o2 ((sin 6:)2 + (1 —cos@i)z) = E(l —cos6;),

i i

which is nonzero, since 6; # k2 for all k € Z. Thus, each W, is invertible, and so is
W, and thus, V = PWP~! is invertible. O

In the case n = 3, given a skew-symmetric matrix

0 —c b
Q= ¢ 0 —al,
—b a O

letting 0 = Va2 + b% + ¢2, it it easy to prove that if @ = 0, then

A (BU
© _(01 ’

and that if 6 # 0 (using the fact that Q3 = —02Q), then
sin 6 (1 —cosh)

Q 2
=1 Q0 Q
e 3+ ) + o2
and (1 0) (6 —sin0)
—cos —sin 2
V=Lh+ o2 Q+ PE Q-

Our next goal is to define embedded submanifolds and (linear) Lie groups. Before
doing this, we believe that some readers might appreciate a review of the notion of
the derivative of a function between two normed vector spaces.



18.7 The Derivative of a Function Between Normed Spaces 483

18.7 The Derivative of a Function Between Normed Vector
Spaces, a Review

In this brief section, we review some basic notions of differential calculus, in par-
ticular, the derivative of a function f: E — F, where E and F are normed vec-
tor spaces. In most cases, E = R"” and F = R"”. However, if we need to deal with
infinite-dimensional manifolds, then it is necessary to allow E and F to be infinite-
dimensional. This section can be omitted by readers already familiar with this stan-
dard material. We omit all proofs and refer the reader to standard analysis textbooks
such as Lang [29, 28], Munkres [38], Abraham and Marsden [1], Choquet-Bruhat
[13], Schwartz [43], or Cartan [10] for a complete exposition.

Let E and F be two normed vector spaces, let A C E be some open subset of A,
and let a € A be some element of A. Even though a is a vector, we may also call it a
point.

The idea behind the derivative of the function f at a is that it is a linear approx-
imation (actually, an affine approximation) of f in a small open set around a. The
difficulty is to make sense of the quotient

fla+h)—f(a)
h )
where £ is a vector. We circumvent this difficulty in two stages.
A first possibility is to consider the directional derivative with respect to a vector
u#0inkE.
We can consider the vector f(a+tu) — f(a), where r € R (or ¢ € C). Now

flattu) - fla)

t

makes sense.

The idea is that in E, the points of the form a + tu for ¢ in some small closed
interval [—¢, +€] of R (or C) form a line segment [r,s] in A containing a, and that
the image of this line segment defines a small curve segment on f(A). This curve
(segment) is defined by the map ¢ — f(a+ tu), from [r, s] to F, and the directional
derivative D, f (a) defines the direction of the tangent line at a to this curve.

Definition 18.5. Let E and F be two normed spaces, let A be a nonempty open
subset of E, and let f: A — F be any function. For any a € A, for any u # 0 in E,
the directional derivative of f at a with respect to the vector u, denoted by D, f(a),
is the limit (if it exists)
i a0 = 1)
t—0,tcU t

whereU ={tcR|a+tucAt#0}(orU={treCla+tucA,t#0}).

Since the map ¢ — a + tu is continuous, and since A — {a} is open, the inverse
image U of A — {a} under the above map is open, and the definition of the limit in
Definition 18.5 makes sense.
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Remark: Since the notion of limit is purely topological, the existence and value of
a directional derivative is independent of the choice of norms in £ and F, as long as
they are equivalent norms.

The directional derivative is sometimes called the Gdteaux derivative.

In the special case that E =R, F =R and we let u = 1 (i.e., the real number 1,
viewed as a vector), it is immediately verified that D; f(a) = f'(a). When E =R (or
E = C) and F is any normed vector space, the derivative Dy f(a), also denoted by
f'(a), provides a suitable generalization of the notion of derivative.

However, when E has dimension > 2, directional derivatives present a serious
problem, which is that their definition is not sufficiently uniform. Indeed, there is no
reason to believe that the directional derivatives with respect to all nonzero vectors
u share something in common. As a consequence, a function can have all directional
derivatives at a, and yet not be continuous at a. Two functions may have all direc-
tional derivatives in some open sets, and yet their composition may not. Thus, we
introduce a more uniform notion.

Definition 18.6. Let E and F be two normed spaces, let A be a nonempty open
subset of E, and let f: A — F be any function. For any a € A, we say that f is
differentiable at a € A if there are a linear continuous map L: E — F and a function
€(h) such that

fla+h) = f(a)+L(h) +e(h)||h]

for every a+h € A, where
lim &(h) =0,
h—0, heU
withU ={h€ E |a+heA, h#0}. The linear map L is denoted by Df(a), or Df,,
ordf(a),ordf,, or f'(a), and it is called the Fréchet derivative, or total derivative,
or derivative, or total differential, or differential, of f at a.

Since the map 4 — a+h from E to E is continuous, and since A is open in E, the
inverse image U of A — {a} under the above map is open in E, and it makes sense
to say that

lim ¢(h)=0.
h—0,heU

Note that for every h € U, since h # 0, €(h) is uniquely determined, since

 flath)— fla)— L(k)
eh) = i ’

and the value £(0) plays absolutely no role in this definition. It does no harm to
assume that £(0) = 0, and we will assume this from now on.

Remark: Since the notion of limit is purely topological, the existence and value of
a derivative is independent of the choice of norms in E and F, as long as they are
equivalent norms.

The following proposition shows that our new definition is consistent with the
definition of the directional derivative and that the continuous linear map L is
unique, if it exists.
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Proposition 18.1. Let E and F be two normed spaces, let A be a nonempty open
subset of E, and let f: A — F be any function. For any a € A, if Df(a) is defined,
then f is continuous at a and f has a directional derivative D, f (a) for every u # 0
in E. Furthermore,

Dy f(a) =Df(a)(u),
and thus Df (a) is uniquely defined.

Proof. If L =D (a) exists, then for any nonzero vector u € E, because A is open,
forany r € R — {0} (or¢ € C —{0}) small enough, a +tu € A, so

fla+ttu) = fla) + L(tw) + &(tu)|ru|| = f(a) + tL(u) + [t]€(tu) |[u],
which implies that

Ly = LI Wy,

and since lim,, o €(fu) = 0, we deduce that

L(u) =Df(a)(u) =D,f(a).

Because
fla+h) = f(a)+L(h)+e(h)|h

for all A such that ||A|| is small enough, L is continuous, and limy, ,o€(h)||A|| = 0,
we have limy,,o f(a + h) = f(a), that is, f is continuous ata. O

Observe that the uniqueness of D f(a) follows from Proposition 18.1. Also, when
E is of finite dimension, it is easily shown that every linear map is continuous, and
this assumption is then redundant.

If Df(a) exists for every a € A, we get a map

Df:A— ZE;F),

called the derivative of f on A, and also denoted by df. Here Z(E;F) denotes the
vector space of continuous linear maps from E to F.

When E is of finite dimension n, for any basis (u1,...,u,) of E, we can define the
directional derivatives with respect to the vectors in the basis (uy,...,u,) (actually,
we can also do it for an infinite basis). In this way, we obtain the definition of partial
derivatives, as follows:

Definition 18.7. For any two normed spaces E and F, if E is of finite dimension ,
then for every basis (uy,...,u,) for E, forevery a € E, for every function f: E — F,
the directional derivatives D, f(a) (if they exist) are called the partial derivatives
of f with respect to the basis (uy,...,u,). The partial derivative D, f(a) is also

denoted by d; f(a), or aa—xfj (a).
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The notation g—){; (a) for a partial derivative, although customary and going back

to Leibniz, is a “logical obscenity.” Indeed, the variable x; really has nothing to do
with the formal definition. This is just another of these situations in which tradition
is just too hard to overthrow!

We now consider a number of standard results about derivatives.

Proposition 18.2. Given two normed spaces E and F, if f: E — F is a constant
function, then Df (a) =0, for every a € E. If f: E — F is a continuous affine map,

then Df (a) = ?, for every a € E, where 7 denotes the linear map associated with
I

Proposition 18.3. Given a normed space E and a normed vector space F, for any
two functions f,g: E — F, for every a € E, if Df(a) and Dg(a) exist, then D(f +
g)(a) and D(Af)(a) exist, and

D(f +g)(a) =Df(a)+Dg(a),
D(Af)(a) = ADf(a).

Proposition 18.4. Given three normed vector spaces E1, E;, and F, for any contin-
uous bilinear map f: Ey X Ey — F, for every (a,b) € Ey X E», Df(a,b) exists, and
foreveryu e Ey andv € E;,

Df(a,b)(u,v) = f(u,b) + f(a,v).
We now state the very useful chain rule.

Theorem 18.4. Given three normed spaces E, F, and G, let A be an open set in E,
and let B an open set in F. For any functions f: A — F and g: B — G such that
f(A) CB, foranya € A, if Df(a) exists and Dg(f(a)) exists, then D(go f)(a) exists,
and

D(go f)(a) =Dg(f(a)) o Df(a).

Theorem 18.4 has many interesting consequences. We mention two corollaries.

Proposition 18.5. Given two normed spaces E and F, let A be some open subset in
E, let B be some open subset in F, let f: A — B be a bijection from A to B, and
assume that Df exists on A and that Df~" exists on B. Then for every a € A,

Df'(f(a)) = (Df(a))~".

Proposition 18.5 has the remarkable consequence that the two vector spaces E
and F have the same dimension. In other words, a local property, the existence of
a bijection f between an open set A of E and an open set B of F such that f is
differentiable on A and f~! is differentiable on B, implies a global property, that the
two vector spaces E and F have the same dimension.

If both E and F are of finite dimension, for any basis (u1,...,u,) of E and any
basis (vq,...,v,) of F, every function f: E — F is determined by m functions
fi: E—= R (or f;: E— C), where



18.7 The Derivative of a Function Between Normed Spaces 487

fx) = fix)vi+-+ fu(xX)vm,

for every x € E. Then we get

Df(a)(uj) =Dfi(a)(uj)vi +---+Dfi(a)(u;)vi+ -+ Dfw(a)(u;)vm,

that is,
Df(a)(u;) = d;fi(a)vi +---+d;fi(a)vi+ -+ 9 fum(a)vm

Since the jth column of the m x n matrix representing Df(a) with respect to
the bases (uy,...,u,) and (vi,...,vy) is equal to the components of the vector
Df(a)(u;) over the basis (vi,...,Vn), the linear map Df(a) is determined by the

m x nmatrix J(f)(a) = (d;fi(a)):

difi(a) dafi(a) ... dufi(a)
dif2(a) dhfa(a) ... dufa(a)

Ky = | O B A
d1fm(a) A fum(a) ... Onfm(a)
o of af of
1 1 1
axl( a_xZ( ) axn( )
Wy 2Ly %)
J(f)(a) = oxy oxp T ox,
Oy Ay

o0x1 a 0xy a) .. 8xn( @)
This matrix is called the Jacobian matrix of D f at a. When m = n, the determi-

nant det(J(f)(a)) of J(f)(a) is called the Jacobian (or Jacobian determinant) of
Df(a).

We know that this determinant depends only on D f(a), and not on specific bases.
However, partial derivatives give a means for computing it.

When E = R" and F R™, for any function f: R" — R™, it is easy to compute

the partial derivatives 2 % ( ). We simply treat the function f;: R" — R as a function

of its jth argument, leavmg the others fixed, and compute the derivative as the usual
derivative.

Example 18.1. For example, consider the function f: R? — R?, defined by
f(r,0) = (rcos0,rsin0).

Then we have
cosO —rsin 6)

J(f)(r,8) = (sine rcos 6

and the Jacobian (determinant) has value det(J(f)(r,0)) =
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In the case E =R (or E = C), for any function f: R — F (or f: C — F), the Ja-
cobian matrix of D f(«) is a column vector. In fact, this column vector is just Dy f(a).
Then for every A € R (or A € C), Df(a)(A) = AD, f(a). This case is sufficiently
important to warrant a definition.

Definition 18.8. Given a function f: R — F (or f: C — F), where F is a normed
space, the vector

Df(a)(1) =D1f(a)

is called the vector derivative or velocity vector (in the real case) at a. We usually
identify Df(a) with its Jacobian matrix D f(a), which is the column vector cor-
responding to Dy f(a). By abuse of notation, we also let Df(a) denote the vector

Df(a)(1) =D f(a).

When E = R, the physical interpretation is that f defines a (parametric) curve
that is the trajectory of some particle moving in R” as a function of time, and the
vector Dy f(a) is the velocity of the moving particle f(z) atr = a.

Example 18.2.
1. When A = (0,1) and F = R?, a function f: (0,1) — R? defines a (parametric)
curve in R3. If f = (fi, f>, f3), its Jacobian matrix at @ € R is

dfi
W(a)

1@ = | %2

df3
W(a)

2. When E = R? and F =R?, a function ¢ : R? — R? defines a parametric surface.
Letting ¢ = (f,g,h), its Jacobian matrix at a € R? is

af af
Z(a) 8_v(a)

dg dg
a(a) E(a)

oh oh
o (a) EN (a)

3. When E = R3 and F = R, for a function f: R3 — R, the Jacobian matrix at

ac€R3is 5 5 5
1n@= (5@ L@ L),

More generally, when f: R" — R, the Jacobian matrix at a € R" is the row vector



18.7 The Derivative of a Function Between Normed Spaces 489

10@= (5@ @),

Its transpose is a column vector called the gradient of f at a, denoted by gradf(a)
or Vf(a). Then, given any v € R", note that

d d
Df(a)(v) = a—){l(a)vl—l----—i— a)i;(a)vn = gradf(a) v,

the scalar product of gradf(a) and v.

When E, F, and G have finite dimensions, (u1,...,u,) is abasis for E, (vi,...,vy)
is a basis for F, and (wy,...,wy,) is a basis for G, if A is an open subset of E, B is an
open subset of F, for any functions f: A — F and g: B — G such that f(A) C B, for
any a € A, letting b = f(a) and h = go f, if Df(a) exists and Dg(b) exists, then by
Theorem 18.4, the Jacobian matrix J(k)(a) = J(go f)(a) with respect to the bases
(ur,...,up) and (wi,...,wy,) is the product of the Jacobian matrices J(g)(b) with
respect to the bases (vi,...,v,) and (wy,...,wy), and J(f)(a) with respect to the

bases (i1,...,up) and (v1,...,v,):
3—317 3—217 gi(b) g—ﬁa g—ﬁa)...g—j;(a)
e 3—§fb %b 3§j(b) 3—){?(1 %a}...g—z(a)

o D) 55, @) 0 \ G @ 5@ - 50 @

Thus, we have the familiar formula

Given two normed spaces E and F of finite dimension, given an open subset A of
E, if a function f: A — F is differentiable at a € A, then its Jacobian matrix is well
defined.

@ One should be warned that the converse is false. There are functions such that
all the partial derivatives exist at some a € A, yet the function is not differen-
tiable at a, and not even continuous at a.

However, there are sufficient conditions on the partial derivatives for Df(a) to
exist, namely, continuity of the partial derivatives. If f is differentiable on A, then f
defines a function Df: A — #(E;F). It turns out that the continuity of the partial
derivatives on A is a necessary and sufficient condition for Df to exist and to be
continuous on A.
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Theorem 18.5. Given two normed affine spaces E and F, where E is of finite dimen-
sion n and where (uy,...,u,) is a basis of E, given any open subset A of E, given
any function f: A — F, the derivative Df : A — L(E;F) is defined and continuous
on A iff every partial derivative d;f (or %) is defined and continuous on A, for

all j, 1 < j<n.As a corollary, if F is of finite dimension m, and (vy,...,vy) is a
basis of F, the derivative Df A — LE;F) is defined and continuous on A lﬁ‘every
partial derivative 9d; f; (0r 3 ’) is defined and continuous on A, for alli,j, 1 <i<m,
I1<j<n

Definition 18.9. Given two normed affine spaces £ and F' and an open subset A of
E, we say that a function f: A — F is a C%-function on A if f is continuous on A.
We say that f: A — F is a C'-function on A if Df exists and is continuous on A.

Let E and F be two normed affine spaces, let U C E be an open subset of E and
let f: E — F be a function such that D (a) exists for all a € U. If Df (a) is injective
forall a € U, we say that f is an immersion (on U), and if Df(a) is surjective for all
a € U, we say that f is a submersion (on U).

When E and F are finite-dimensional with dim(E) = n and dim(F) = m, if m > n,
then f is an immersion iff the Jacobian matrix J(f)(a) has full rank (n) foralla € E,
and if n > m, then f is a submersion iff the Jacobian matrix J(f)(a) has full rank
(m) foralla € E.

A very important theorem is the inverse function theorem. In order for this the-
orem to hold for infinite-dimensional spaces, it is necessary to assume that our
normed spaces are complete.

Given a normed vector space E we say that a sequence (up), with u, € E is a
Cauchy sequence if for every € > 0, there is some N > 0 such that for all m,n > N,

|l — uml|| < €.

A normed vector space E is complete iff every Cauchy sequence converges. A com-
plete normed vector space is also called a Banach space, after Stefan Banach (1892—
1945).

Fortunately, R, C, and every finite-dimensional (real or complex) normed vector
space is complete. A real (resp. complex) vector space E is a real (resp. complex)
Hilbert space if it is complete as a normed space with the norm ||u|| = \/{u,u) in-
duced by its Euclidean (resp. Hermitian) inner product (of course, positive definite).

Definition 18.10. Given two topological spaces £ and F and an open subset A of
E, we say that a function f: A — F is a local homeomorphism from A to F if for
every a € A, there are an open set U C A containing a and an open set V containing
f(a) such that f is a homeomorphism from U to V = f(U). If B is an open subset
of F, we say that f: A — F is a (global) homeomorphism from A to B if f is a
homeomorphism from A to B = f(A).

If E and F are normed spaces, we say that f: A — F is a local diffeomorphism
from A to F if for every a € A, there are an open set U C A containing a and an
open set V containing f(a) such that f is a bijection from U to V, f is a C'-function
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on U, and f~! is a C!-function on V = f(U). We say that f: A — F is a (global)
diffeomorphism from A to B if f is a homeomorphism from A to B = f(A), f is a
C!'-function on A, and f~! is a C!-function on B.

Note that a local diffeomorphism is a local homeomorphism. Also, as a conse-
quence of Proposition 18.5, if f is a diffeomorphism on A, then Df(a) is a linear
isomorphism for every a € A.

Theorem 18.6. (Inverse function theorem) Let E and F be complete normed spaces,
let A be an open subset of E, and let f: A — F be a C'-function on A. The following
properties hold:

(1) For every a € A, if Df(a) is a linear isomorphism, then there exist some open
subset U C A containing a and some open subset V of F containing f(a) such
that f is a diffeomorphism from U to V = f(U). Furthermore,

Df ! (f(a)) = (Df(a))~".

For every neighborhood N of a, the image f(N) of N is a neighborhood of f(a),
and for every open ball U C A of center a, the image f(U) of U contains some
open ball of center f(a).

(2) If Df (a) is invertible for every a € A, then B = f(A) is an open subset of F, and
f is a local diffeomorphism from A to B. Furthermore, if f is injective, then f is
a diffeomorphism from A to B.

Part (1) of Theorem 18.6 is often referred to as the “(local) inverse function theo-
rem.” It plays an important role in the study of manifolds and (ordinary) differential
equations.

If E and F are both of finite dimension, the case in which Df(a) is just injective
or just surjective is also important for defining manifolds, using implicit definitions.

We finally reach the best vantage point of our hike, the formal definition of (lin-
ear) Lie groups and Lie algebras.

18.8 Finale: Manifolds, Lie Groups, and Lie Algebras

In this section we attempt to define precisely Lie groups and Lie algebras. One of
the reasons that Lie groups are nice is that they have a differential structure, which
means that the notion of tangent space makes sense at any point of the group. Fur-
thermore, the tangent space at the identity happens to have some algebraic structure,
that of a Lie algebra. Roughly, the tangent space at the identity provides a “lin-
earization” of the Lie group, and it turns out that many properties of a Lie group
are reflected in its Lie algebra, and that the loss of information is not too severe.
The challenge that we are facing is that unless our readers are already familiar with
manifolds, the amount of basic differential geometry required to define Lie groups
and Lie algebras in full generality is overwhelming.
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Fortunately, all the Lie groups that we need to consider are subspaces of RY for
some sufficiently large N. In fact, they are all isomorphic to subgroups of GL(N,R)
for some suitable N, even SE(n), which is isomorphic to a subgroup of SL(n+ 1).
Such groups are called linear Lie groups (or matrix groups). Since the groups under
consideration are subspaces of R, we do not need the definition of an abstract
manifold. We just have to define embedded submanifolds (also called submanifolds)
of RV (in the case of GL(n,R), N = n?). This is the path that we will follow.

In general, the difficult part in proving that a subgroup of GL(n,R) is a Lie group
is to prove that it is a manifold. Fortunately, there is a characterization of the linear
groups that obviates much of the work. This characterization rests on two theorems.
First, a Lie subgroup H of a Lie group G (where H is an embedded submanifold
of G) is closed in G (see Warner [47], Chapter 3, Theorem 3.21, page 97). Second,
a theorem of Von Neumann and Cartan asserts that a closed subgroup of GL(n,R)
is an embedded submanifold, and thus, a Lie group (see Warner [47], Chapter 3,
Theorem 3.42, page 110). Thus, a linear Lie group is a closed subgroup of GL(n,R).

Since our Lie groups are subgroups (or isomorphic to subgroups) of GL(n,R)
for some suitable n, it is easy to define the Lie algebra of a Lie group using curves.
This approach to define the Lie algebra of a matrix group is followed by a number
of authors, such as Curtis [14]. However, Curtis is rather cavalier, since he does not
explain why the required curves actually exist, and thus, according to his definition,
Lie algebras could be the trivial vector space! Although we will not prove the theo-
rem of Von Neumann and Cartan, we feel that it is important to make clear why the
definitions make sense, i.e., why we are not dealing with trivial objects.

A small annoying technical problem will arise in our approach, the problem with
discrete subgroups. If A is a subset of R", recall that A inherits a topology from R
called the subspace topology, and defined such that a subset V of A is open if

V=ANU

for some open subset U of RY. A point a € A is said to be isolated if there is there
is some open subset U of R" such that

{a}=ANU,

in other words, if {a} is an open set in A.

The group GL(n,R) of real invertible n X n matrices can be viewed as a subset
of R”z, and as such, it is a topological space under the subspace topology (in fact, a
dense open subset of R”z). One can easily check that multiplication and the inverse
operation are continuous, and in fact smooth (i.e., C*-continuously differentiable).
This makes GL(n,R) a topological group. Any subgroup G of GL(n,R) is also a
topological space under the subspace topology. A subgroup G is called a discrete
subgroup if it has some isolated point. This turns out to be equivalent to the fact that
every point of G is isolated, and thus, G has the discrete topology (every subset of G
is open). Now, because GL(n,R) is Hausdorff, it can be shown that every discrete
subgroup of GL(n,R) is closed (which means that its complement is open). Thus,
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discrete subgroups of GL(n,R) are Lie groups! But these are not very interesting
Lie groups, and so we will consider only closed subgroups of GL(n,R) that are not
discrete.

Let us now review the definition of an embedded submanifold. For simplicity, we
restrict our attention to smooth manifolds. For detailed presentations, see DoCarmo
[15, 16], Milnor [35], Lee [30], Tu [46], Marsden and Ratiu [33], Guillemin and
Pollack [20], Berger and Gostiaux [8], or Warner [47]. For the sake of brevity, we
use the terminology manifold (but other authors would say embedded submanifolds,
or something like that).

The intuition behind the notion of a smooth manifold in R" is that a subspace M
is a manifold of dimension m if every point p € M is contained in some open subset
set U of M (in the subspace topology) that can be parametrized by some function
¢:  — U from some open subset 2 of the origin in R”, and that ¢ has some nice
properties that allow the definition of smooth functions on M and of the tangent
space at p. For this, ¢ has to be at least a homeomorphism, but more is needed: ¢
must be smooth, and the derivative ¢’(0,,) at the origin must be injective (letting
0, =(0,...,0)).

——

m

Definition 18.11. Given any integers N,m, with N > m > 1, an m-dimensional
smooth manifold in RN, for short a manifold, is a nonempty subset M of RY such
that for every point p € M there are two open subsets 2 C R™ and U C M, with
p € U, and a smooth function ¢: 2 — R such that ¢ is a homeomorphism be-
tween Q and U = ¢(R), and ¢'(ty) is injective, where o = ¢! (p). The function
¢: Q — U is called a (local) parametrization of M at p. If 0,, € Q and ¢(0,,) = p,
we say that ¢ : Q — U is centered at p.

Recall that M C R is a topological space under the subspace topology, and U
is some open subset of M in the subspace topology, which means that U = M NW
for some open subset W of RV, Since ¢: Q — U is a homeomorphism, it has an
inverse ¢~ ': U — Q that is also a homeomorphism, called a (local) chart. Since
Q C R™, for every point p € M and every parametrization ¢: Q2 — U of M at p,
we have ¢! (p) = (z1,...,2m) for some z; € R, and we call zj,...,z, the local
coordinates of p (with respect to ¢~'). We often refer to a manifold M without
explicitly specifying its dimension (the integer m).

Intuitively, a chart provides a “flattened” local map of a region on a manifold.
For instance, in the case of surfaces (2-dimensional manifolds), a chart is analogous
to a planar map of a region on the surface. For a concrete example, consider a map
giving a planar representation of a country, a region on the earth, a curved surface.

Remark: We could allow m = 0 in definition 18.11. If so, a manifold of dimension
0 is just a set of isolated points, and thus it has the discrete topology. In fact, it can
be shown that a discrete subset of RY is countable. Such manifolds are not very
exciting, but they do correspond to discrete subgroups.
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Example 18.3. The unit sphere S in R? defined such that
$?={(yz) eR [P+’ +2 =1}

is a smooth 2-manifold, because it can be parametrized using the following two
maps ¢ and ¢;:

2u 2v w4vr—1
WHv2+1" 2 +v2 41" w2 +v2+1

Qr: (u,v)'—>(

and

) 2u 2v 1—u?>—?
921 (v) = <u2—i—vz—|—17 wr4v24+1’ u2+v2+1> '

The map ¢; corresponds to the inverse of the stereographic projection from the
north pole N = (0,0,1) onto the plane z = 0, and the map ¢, corresponds to the
inverse of the stereographic projection from the south pole § = (0,0, —1) onto the
plane z =0, as illustrated in Figure 18.1. We leave as an exercise to check that the
map ¢; parametrizes S> — {N} and that the map ¢, parametrizes S> — {S} (and that
they are smooth, homeomorphisms, etc.). Using ¢, the open lower hemisphere is
parametrized by the open disk of center O and radius 1 contained in the plane z = 0.

Fig. 18.1 Inverse stereographic projections.

The chart ¢ ! assigns local coordinates to the points in the open lower hemi-
sphere. If we draw a grid of coordinate lines parallel to the x and y axes inside
the open unit disk and map these lines onto the lower hemisphere using ¢;, we
get curved lines on the lower hemisphere. These “coordinate lines” on the lower
hemisphere provide local coordinates for every point on the lower hemisphere. For
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this reason, older books often talk about curvilinear coordinate systems to mean the
coordinate lines on a surface induced by a chart. We urge our readers to define a
manifold structure on a torus. This can be done using four charts.

Every open subset of RY is a manifold in a trivial way. Indeed, we can use the
inclusion map as a parametrization. In particular, GL(n,R) is an open subset of R"z,
since its complement is closed (the set of invertible matrices is the inverse image of
the determinant function, which is continuous). Thus, GL(#n,R) is a manifold. We
can view GL(n,C) as a subset of R using the embedding defined as follows:
For every complex n x n matrix A, construct the real 2n x 2n matrix such that every
entry a +1ib in A is replaced by the 2 x 2 block

a—b
()
where a,b € R. It is immediately verified that this map is in fact a group isomor-
phism. Thus, we can view GL(n,C) as a subgroup of GL(2n,R), and as a manifold
in R’
A 1-manifold is called a (smooth) curve, and a 2-manifold is called a (smooth)
surface (although some authors require that they also be connected).

The following two lemmas provide the link with the definition of an abstract
manifold. The first lemma is easily proved using the inverse function theorem.

Lemma 18.10. Given an m-dimensional manifold M in RY, for every p € M there
are two open sets O,W C RN with Oy € O and p € MOW, and a smooth diffeomor-
phism ¢: O — W, such that ¢(Oy) = p and

P(ON(R™ % {Oy_n})) =MNW.

The next lemma is easily proved from Lemma 18.10 (see Berger and Gostiaux
[8], Theorem 2.1.9, or DoCarmo [16], Chapter O, Section 4). It is a key technical
result used to show that interesting properties of maps between manifolds do not
depend on parametrizations.

Lemma 18.11. Given an m-dimensional manifold M in RN, for every p € M and
any two parametrizations Q1 : 2, — Uy and @y Qy — Uy of M at p, if U NU, # 0,
the map (p{l oQr: (pf1 UiNnty) — (p{l (U NU,) is a smooth diffeomorphism.

The maps @, ' 0 @1: @' (Ui NUs2) — ¢, (U1 NU,) are called transition maps.
Lemma 18.11 is illustrated in Figure 18.2.

Using Definition 18.11, it may be quite hard to prove that a space is a manifold.
Therefore, it is handy to have alternative characterizations such as those given in the
next proposition:

Proposition 18.6. A subset M C R"** is an m-dimensional manifold iff either

(1) for every p € M, there are some open subset W C R"™* with p € W and a
(smooth) submersion f: W — R* such that W N\ M = f~1(0),
or
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S-

‘(leo(l)l

D"

Fig. 18.2 Parametrizations and transition functions.

(2) for every p € M, there are some open subset W C R"™* with p € W and a
(smooth) map f: W — RK such that f'(p) is surjective and W "M = f~1(0).

Observe that condition (2), although apparently weaker than condition (1), is in
fact equivalent to it, but more convenient in practice. This is because to say that
f'(p) is surjective means that the Jacobian matrix of f’(p) has rank k, which means
that some determinant is nonzero, and because the determinant function is con-
tinuous, this must hold in some open subset W; C W containing p. Consequently,
the restriction f; of f to W is indeed a submersion and f; '(0) = W, N f~1(0) =
winwnM=w,NM.

A proof of Proposition 18.6 can be found in Lafontaine [27] or Berger and Gos-
tiaux [8]. Lemma 18.10 and Proposition 18.6 are actually equivalent to Definition
18.11. This equivalence is also proved in Lafontaine [27] and Berger and Gostiaux
[8].

The proof, which is somewhat illuminating, is based on two technical lemmas
that are proved using the inverse function theorem (see Problem 18.24 and, for some
help, Guillemin and Pollack [20], Chapter 1, Sections 3 and 4).

Lemma 18.12. Let U CR™ be an open subset of R™ and pick somea c U. If f: U —
R" is a smooth immersion at a, i.e., df, is injective (so m < n), then there are an
open set VCR" with f(a) €V, an open subset U' CU witha € U' and f(U') C 'V,
an open subset O C R"™™, and a diffeomorphism 6 : V — U’ x O such that

O(f(x1y---y%m)) = (x1,--+,%m,0,...,0),

forall (xi,...,x,) €U".



18.8 Finale: Manifolds, Lie Groups, and Lie Algebras 497

Lemma 18.13. Let W C R™ be an open subset of R™ and pick some a € W. If
f: W — R" is a smooth submersion at a, i.e., df, is surjective (so m > n), then
there are an open set V. C W C R" with a € V and a diffeomorphism y: O — 'V,
with domain O C R™, such that

Sw(xr, ... oxm)) = (x1,- .., Xn),
forall (x1,...,x,) € O.

Using Lemmas 18.12 and 18.13, we can prove the following theorem, which
confirms that all our characterizations of a manifold are equivalent.

Theorem 18.7. A nonempty subset M C RN is an m-manifold (with 1 < m < N) iff
any of the following conditions hold:

(1) For every p € M, there are two open subsets @ CR™ and U C M, with p € U,
and a smooth function @: Q — RN such that ¢ is a homeomorphism between
Qand U = @(Q), and ¢'(0) is injective, where p = ¢(0).

(2) For every p € M, there are two open sets O,W C RN with Oy € O and p € MNW,
and a smooth diffeomorphism @ : O — W, such that ¢(Oy) = p and

O(ON(R" x {On_m})) =MNW.

(3) For every p € M, there are some open subset W C RN with p € W and a smooth
submersion f: W — RN~ such that W N M = f~1(0).

(4) For every p € M, there are some open subset W C RN with p € W and N —m
smooth functions fi: W — R such that the linear forms dfi(p),...,dfN—m(p)
are linearly independent and

WM = f7H0)n---n gy, 0).

Proof. 1f (1) holds, then by Lemma 18.12, replacing 2 by a smaller open subset
Q' C Q if necessary, there are some open subset V C RN with p€Vand (p(.Q/) cv,
an open subset O’ C RV~ and some diffeomorphism 6: V — Q' x 0’ such that

(Bo@)(x1,...,xm) = (X1,...,Xm,0,...,0),
for all (x1,...,x,) € 2'. Observe that the above condition implies that
(609)(Q) =6(V)N(R" x{(0,...,0)}).

Since @ is a homeomorphism between £ and its image in M and since Q' C Q
is an open subset, ¢(2') = M NW' for some open subset W' C RY, so if we let
W =VNW, because ¢(Q2') CV, it follows that 9(Q') = MNW and

O(WNM)=0(p(Q) = 6(V)N(R" x {(0,...,0)}).

However, 6 is injective and 6(WNM) C 6(W), so
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O(W NM) = 0(W)NO(V)N(R™x {(0,...,0)})

Wnv)n(R" x {(0,...,0)})
(W)N(R™ x {(0,...,0)}).

> D

If welet O = (W), we get
6~ (ON(R™ % {(0,...,0)})) =MNW,

which is (2).

If (2) holds, we can write @' = (f1,...,fv), and because ¢~ ': W — O is a
diffeomorphism, dfi(q),...,dfn(g) are linearly independent for all g € W, so the
map

f: (ferla"'va)
is a submersion f: W — R¥~" and we have f(x) = 0iff f,,11(x)=--- = fy(x) =0
iff
o ') = (fi(x),..., fu(x),0,...,0)
iff 9~ 1(x) € ON(R™ x {Oy_p}) iff x € @(ON(R™ x {Oy_n}) = MNW, because
O(ONR" x {On_m})) =MNW.

Thus, MNW = £~1(0), which is (3).

The proof that (3) implies (2) uses Lemma 18.13 instead of Lemma 18.12. If
f: W — R¥" is the submersion such that M N'W = f~1(0) given by (3), then
by Lemma 18.13, there are open subsets V C W, O C RY and a diffeomorphism
y: O — V such that

Sw(xr,...,xn)) = (x1,- -, XN—m)

for all (x1,...,xy) € O.If 0 is the permutation of variables given by
O (X1 ey Xy Xt 1y -+ s XN ) = (X Ly e e e s XN XL s+« 5 Xm) s

then @ = yo o is a diffeomorphism such that

F@x1,. . x8) = Kimsts- -, XN)
for all (xq,...,xy) € O. If we denote the restriction of f to V by g, it is clear that

MV =g 10),

and because g(@(xi,...,xy)) = 0iff (Xpt1,...,2nv) = Oy_p and @ is a bijection,

MOV ={(1,....yn) €V [gb1,...,yn) =0}
={o(x1,...,xn) | 3(x1,...,x5) € O)(g(@(x1,...,xnv)) =0)}
=@(ON(R" x {Oy-m})),
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which is (2).
If (2) holds, then ¢: O — W is a diffeomorphism,

on (Rm X {Ome}) =Q x {Ome}
for some open subset Q C R, and the map y: Q — R given by

y(x) = @(x,0n—m)

is an immersion on £2 and a homeomorphism onto U N M, which implies (1).

If (3) holds, then if we write f = (fi,...,fv—m) With f;: W — R, then the
fact that df(p) is a submersion is equivalent to the fact that the linear forms
dfi(p),...,dfv—m(p) are linearly independent and

MW =f710) = £, (0)N---N £y L,(0).
Finally, if (4) holds, then if we define f: W — RN-m by

f=U1fN-m)s

because dfi(p),...,dfn—m(p) are linearly independent we get a smooth map that is
a submersion at p such that
MW = f10).

Now, f is a submersion at p iff df(p) is surjective, which means that a certain
determinant is nonzero, and since the determinant function is continuous, this deter-
minant is nonzero on some open subset W' C W containing p, so if we restrict f to
W', we get an immersion on W’ such that M NW' = f~1(0). O

Condition (4) says that locally (that is, in a small open set of M containing p €
M), M is “cut out” by N —m smooth functions f;: W — R in the sense that the
portion of the manifold M NW is the intersection of the N —m hypersurfaces flfl (0)
(the zero-level sets of the f;) and that this intersection is “clean,” which means that
the linear forms d f| (p),...,dfn—m(p) are linearly independent.

As an illustration of Theorem 18.7, we can show again that the sphere

§"={xeR"™" | |lx]3 - 1=0}

is an n-dimensional manifold in R"*!. Indeed, the map f: R"*! — R given by
f(x) = ||x||3 = 1 is a submersion (for x # 0), since

n+1

df(x)(y) =2) xyx-
k=1

We can also show that the rotation group SO(n) is an "(”; D _dimensional mani-

fold in R". Indeed, GL ™ (n) is an open subset of R" (recall that GL* (n) = {A €
GL(n) | det(A) > 0}), and if f is defined by
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flA)y=ATA-1,
where A € GL (n), then f(A) is symmetric, so f(A) € S(n) = R™7.
It is easy to show (using directional derivatives) that

df(A)YH)=ATH+H'A.

But then df(A) is surjective for all A € SO(n), because if S is any symmetric matrix,

we see that As
df(A) (7) =S.

Since SO(n) = f~1(0), we conclude that SO(n) is indeed a manifold.

A similar argument proves that O(n) is an M”—;U-dimensional manifold. Using
the map f: GL(n) — R given by A — det(A), we can prove that SL(#n) is a manifold
of dimension n> — 1.

Remark: We have df(A)(B) = det(A)tr(A~'B) for every A € GL(n), where
f(A) = det(A).

The third characterization of Theorem 18.7 suggests the following definition.

Definition 18.12. Let f: R™** — R* be a smooth function. A point p € R"™* is
called a critical point (of f) if d f, is not surjective, and a point g € R¥ is called a
critical value (of f) if ¢ = f(p), for some critical point p € R"*. A point p € R"+k
is a regular point (of f) if p is not critical, i.e., d f), is surjective, and a point g € R¥ is
a regular value (of f) if it is not a critical value. In particular, any g € R* — f(R"*k)
is a regular value and g € f(R"*¥) is a regular value iff every p € f~1(g) is a regular
point (but in contrast, ¢ is a critical value iff some p € f~!(q) is critical).

Part (3) of Theorem 18.7 implies the following useful proposition:

Proposition 18.7. Given any smooth function f: R"T% — R, for every regular
value g € f(R™*), the preimage Z = f~'(q) is a manifold of dimension m.

Definition 18.12 and Proposition 18.7 can be generalized to manifolds (see Prob-
lem 18.24). Regular and critical values of smooth maps play an important role in
differential topology. Firstly, given a smooth map f: R™* — R¥ almost every
point of R¥ is a regular value of f. To make this statement precise, one needs the
notion of a set of measure zero. Then Sard’s theorem says that the set of critical val-
ues of a smooth map has measure zero. Secondly, if we consider smooth functions
f: R - R, apoint p € R™! is critical iff df, = 0. Then we can use second-
order derivatives to further classify critical points. The Hessian matrix of f (at p) is
the matrix of second-order partials

Hy(p) = ( ai;{cj (p)) ;
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and a critical point p is a nondegenerate critical point if Hy(p) is a nonsingular
matrix. The remarkable fact is that at a nondegenerate critical point p, the local
behavior of f is completely determined, in the sense that after a suitable change of
coordinates (given by a smooth diffeomorphism),

2 2 2 2
) =F(p) =¥ = =23 + 25+ X

near p, where A, called the index of f at p, is an integer that depends only on p
(in fact, A is the number of negative eigenvalues of Hy(p)). This result is known as
Morse’s lemma (after Marston Morse, 1892-1977).

Smooth functions whose critical points are all nondegenerate are called Morse
functions. It turns out that every smooth function f: R™*! — R gives rise to a large
supply of Morse functions by adding a linear function to it. More precisely, the set
of a € R™*! for which the function f,, given by

fa(x) = f(x) +arxi + -+ amy 1Xm 11

is not a Morse function has measure zero.

Morse functions can be used to study topological properties of manifolds. In a
sense to be made precise and under certain technical conditions, a Morse function
can be used to reconstruct a manifold by attaching cells, up to homotopy equiva-
lence. However, these results are way beyond the scope of this book. A fairly el-
ementary exposition of nondegenerate critical points and Morse functions can be
found in Guillemin and Pollack [20] (Chapter 1, Section 7). Sard’s theorem is proved
in Appendix 1 of Guillemin and Pollack [20] and also in Chapter 2 of Milnor [35].
Morse theory (starting with Morse’s lemma) and much more is discussed in Mil-
nor [36], widely recognized as a mathematical masterpiece. An excellent and more
leisurely introduction to Morse theory is given in Matsumoto [34], where a proof of
Morse’s lemma is also given.

Let us now review the definitions of a smooth curve in a manifold and the tangent
vector at a point of a curve.

Definition 18.13. Let M be an m-dimensional manifold in RN. A smooth curve y in
M is any function y: I — M, where [ is an open interval in R, such that for every
t € I, letting p = y(¢t), there are some parametrization ¢: Q — U of M at p and
some open interval |t — €, t + €[ C I such that the curve 9 'oy: Jt — &, t +€[— R™
is smooth.

Using Lemma 18.11, it is easily shown that Definition 18.13 does not depend on
the choice of the parametrization ¢: Q — U at p.

Lemma 18.11 also implies that y viewed as a curve y: I — R is smooth. Then
the tangent vector to the curve y: I — R at t, denoted by ¥/(t), is the value of the
derivative of ¥ at ¢ (a vector in R") computed as usual:

Y1) = tim YR =70) h})l m(0}

h—0
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Given any point p € M, we will show that the set of tangent vectors to all smooth
curves in M through p is a vector space isomorphic to the vector space R™. The
tangent vector at p to a curve y on a manifold M is illustrated in Figure 18.3.

Fig. 18.3 Tangent vector to a curve on a manifold.

Given a smooth curve y: I — M, for any ¢ € I, letting p = ¥(¢), since M is a
manifold, there is a parametrization ¢ : Q — U such that ¢(0,,) = p € U and some
open interval J C [ with ¢ € J and such that the function

o loy: J R

is a smooth curve, since 7y is a smooth curve. Letting & = ¢! 0y, the derivative
o/ (1) is well-defined, and it is a vector in R™. But ¢ o at: J — M is also a smooth
curve, which agrees with y on J, and by the chain rule,

Y (t) = @'(0m)(e (1)),

since a(r) = 0y, (because ¢(0,,) = p and ¥(¢) = p). Observe that ¥ (¢) is a vector in
RN . Now, for every vector v € R™, the curve o : J — R™ defined such that

o(u) =(u—1t)v

for all u € J is clearly smooth, and @'(¢) = v. This shows that the set of tangent
vectors at ¢ to all smooth curves (in R™) passing through 0,, is the entire vector
space R™. Since every smooth curve y: I — M agrees with a curve of the form
@oa:J— M for some smooth curve o : J — R™ (with J C I) as explained above,
and since it is assumed that ¢'(0,,) is injective, ¢'(0,,) maps the vector space R™
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injectively to the set of tangent vectors to Y at p, as claimed. All this is summarized
in the following definition.

Definition 18.14. Let M be an m-dimensional manifold in RY. For every point p €
M, the tangent space T,M at p is the set of all vectors in RV of the form ¥(0),
where y: I — M is any smooth curve in M such that p = y(0). The set T,M is a
vector space isomorphic to R™. Every vector v € T,M is called a tangent vector to
M at p.

We can now define Lie groups (postponing defining smooth maps).

Definition 18.15. A Lie group is a nonempty subset G of RV (N > 1) satisfying the
following conditions:

(a) G is a group.
(b) G is a manifold in RY.
(c) The group operation - : G x G — G and the inverse map ~!: G — G are smooth.

(Smooth maps are defined in Definition 18.18). It is immediately verified that
GL(n,R) is a Lie group. Since all the Lie groups that we are considering are sub-
groups of GL(n,R), the following definition is in order.

Definition 18.16. A linear Lie group is a subgroup G of GL(n,R) (for some n > 1)
which is a smooth manifold in R".

Let M(n,R) denote the set of all real n X n matrices (invertible or not). If we
recall that the exponential map

exp: Asel

is well defined on M(n,R), we have the following crucial theorem due to Von Neu-
mann and Cartan.

Theorem 18.8. A closed subgroup G of GL(n,R) is a linear Lie group. Further-
more, the set g defined such that

g={X eM(n,R)|e* € G forallt € R}

is a vector space equal to the tangent space TG at the identity I, and g is closed un-
der the Lie bracket |—, —| defined such that [A,B] = AB — BA for all A,B € M(n,R).

Theorem 18.8 applies even when G is a discrete subgroup, but in this case, g is
trivial (i.e., g = {0}). For example, the set of nonnull reals R* =R — {0} = GL(1,R)
is a Lie group under multiplication, and the subgroup

H={2"|neZ}
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is a discrete subgroup of R*. Thus, H is a Lie group. On the other hand, the set
Q* = Q— {0} of nonnull rational numbers is a multiplicative subgroup of R*, but it
is not closed, since QQ is dense in R.

The proof of Theorem 18.8 involves proving that when G is not a discrete sub-
group, there is an open subset £ C M(n,R) such that 0,, € , an open subset
W C M(n,R) such that 7 € W, and that exp: 2 — W is a diffeomorphism such that

exp(2Ng) =WnNG.

If G is closed and not discrete, we must have m > 1, and g has dimension m.

With the help of Theorem 18.8 it is now very easy to prove that SL(n), O(n),
SO(n), SL(n,C), U(n), and SU(n) are Lie groups and to figure out what are their
Lie algebras. (Of course, GL(n,R) is a Lie group, as we already know.)

For example, if G = GL(n,R), as 4 is invertible for every matrix, A € M(n,R),
we deduce that the Lie algebra, gl(n,R), of GL(n,R) is equal to M(n,R). We also
claim that the Lie algebra, s[(n,R), of SL(n,R) is the set of all matrices with zero
trace. Indeed, s[(n,R) is the subalgebra of gl(n,R) consisting of all matrices X €
gl(n,R) such that

det(e™) =1

for all r € R, and because det(e’X ) = eX), for r = 1, we get tr(X) = 0, as claimed.
We can also prove that SE(n) is a Lie group as follows. Recall that we can view
every element of SE(n) as areal (n+ 1) X (n+ 1) matrix

RU
01
where R € SO(n) and U € R". In fact, such matrices belong to SL(n + 1). This

embedding of SE(n) into SL(n+ 1) is a group homomorphism, since the group
operation on SE(n) corresponds to multiplication in SL(n+ 1):

(5™7)=61)6Y)

Note that the inverse is given by

R'—-R'U\ (RT —R"U
0 1 —\o 1 '
Also note that the embedding shows that as a manifold, SE(n) is diffeomorphic to
SO(n) x R" (given a manifold M, of dimension m; and a manifold M, of dimension
my, the product M| x M, can be given the structure of a manifold of dimension

m) + my in a natural way). Thus, SE(n) is a Lie group with underlying manifold
SO(n) x R", and in fact, a subgroup of SL(n+ 1).

@ Even though SE(n) is diffeomorphic to SO(n) x R" as a manifold, it is not
isomorphic to SO(n) x R" as a group, because the group multiplication
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on SE(n) is not the multiplication on SO(n) x R". Instead, SE(n) is a semidirect
product of SO(n) and R"; see Chapter 2, Problem 2.19.

Returning to Theorem 18.8, the vector space g is called the Lie algebra of the
Lie group G. Lie algebras are defined as follows.

Definition 18.17. A (real) Lie algebra <7 is a real vector space together with a bi-
linear map [-,-]: & x &/ — o called the Lie bracket on </ such that the following
two identities hold for all a,b,c € o/

[a,a] =0,
and the so-called Jacobi identity
[a, [b, c]] + [c, [a, b]] + [D, [c, a]] = 0.
It is immediately verified that [b,a] = —[a, b].

In view of Theorem 18.8, the vector space g = T;G associated with a Lie group
G is indeed a Lie algebra. Furthermore, the exponential map exp: g — G is well-
defined. In general, exp is neither injective nor surjective, as we observed earlier.
Theorem 18.8 also provides a kind of recipe for “computing” the Lie algebra g =
T;G of a Lie group G. Indeed, g is the tangent space to G at /, and thus we can use
curves to compute tangent vectors. Actually, for every X € T;G, the map

Yot e'X

is a smooth curve in G, and it is easily shown that 7&(0) = X. Thus, we can use
these curves. As an illustration, we show that the Lie algebras of SL(n) and SO(n)
are the matrices with null trace and the skew-symmetric matrices.
Let ¢ — R(t) be a smooth curve in SL(n) such that R(0) = I. We have det(R(¢)) =
1 for all ¢ €] — €, £ [. Using the chain rule, we can compute the derivative of the
function
t— det(R(z))

att =0, and we get
det;(R'(0)) = 0.

It is an easy exercise to prove that
det)(X) = tr(X),

and thus tr(R'(0)) = 0, which says that the tangent vector X = R’(0) has null trace.
Clearly, sl(n,R) has dimension n® — 1.
Let ¢ — R(t) be a smooth curve in SO(n) such that R(0) = I. Since each R(t) is
orthogonal, we have
R(OR(1) =1

forall r €] — €, €. Taking the derivative at t = 0, we get
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R'(0)R(0)" +R(0O)R'(0)" =0,
but since R(0) =1=R(0) ", we get
R(0)+R'(0)" =0,

which says that the tangent vector X = R'(0) is skew-symmetric. Since the diagonal
elements of a skew-symmetric matrix are null, the trace is automatically null, and
the condition det(R) = 1 yields nothing new. This shows that o(n) = so(n). It is
easily shown that so(n) has dimension n(n —1)/2.

As a concrete example, the Lie algebra so(3) of SO(3) is the real vector space
consisting of all 3 x 3 real skew-symmetric matrices. Every such matrix is of the
form

0 —d ¢
d 0 -b
—c b 0

where b,c,d € R. The Lie bracket [A, B] in s0(3) is also given by the usual commu-
tator, [A,B] = AB — BA.

We can define an isomorphism of Lie algebras y: (R, x) — s0(3) by the for-
mula

0 —d ¢
y(b,e,d)y=|d 0 —b
—-c b O

It is indeed easy to verify that

y(uxv) = [y(u), y(v)].

It is also easily verified that for any two vectors u = (b,c,d) and v = (b',¢’,d’) in
R3
y(u)(v) =uxw.
The exponential map exp: s0(3) — SO(3) is given by Rodrigues’s formula (see

Lemma 18.6):
4 sin 0 (I —cosB)

e =cosOl3+ 0 A+ ) B,
or equivalently by
eA=13+SlgeA+(1_6CfSG)A2
if 8 # 0, where
0 —d c
A=|d 0 —-b],
—c b 0

b+ c?+d? B=A?+ 6L, and with ¢% = I5.
Using the above methods, it is easy to verify that the Lie algebras gl(n,R),
sl(n,R), o(n), and so(n), are respectively M(n,R), the set of matrices with null
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trace, and the set of skew-symmetric matrices (in the last two cases). A similar com-
putation can be done for gl(n,C), sl(n,C), u(n), and su(n), confirming the claims
of Section 18.4. It is easy to show that gl(n,C) has dimension 212, sl(n,C) has
dimension 2(n? — 1), u(n) has dimension n?, and su(n) has dimension n> — 1.

For example, the Lie algebra su(2) of SU(2) (or S%) is the real vector space
consisting of all 2 x 2 (complex) skew-Hermitian matrices of null trace. Every such
matrix is of the form

i(doy +cor+bo3) = (_le_ i C:;ﬁ) ,
where b,c,d € R, and o1, 0», 03 are the Pauli spin matrices (see Section 9.1), and
thus the matrices i07,107,103 form a basis of the Lie algebra s1(2). The Lie bracket
[A,B] in su(2) is given by the usual commutator, [A, B] = AB — BA.

It is easily checked that the vector space R is a Lie algebra if we define the Lie
bracket on R? as the usual cross product u x v of vectors. Then we can define an
isomorphism of Lie algebras ¢: (R?, x) — su(2) by the formula

i 1
o(b,c,d) = 1 (doy+cor+bo3) = = (

ib  c+id
5 .

—c+id —ib

NS}

It is indeed easy to verify that

@(uxv)=[p(u), o(v)].

Returning to su(2), letting 6 = vb% + ¢% + d2, we can write

doy+coy+boy = (icid _liz_d) =0A,

where

1 1 b —ic+d
A—E(d61+662+b63)—5<ic+d b >,

so that A2 = I, and it can be shown that the exponential map exp: su(2) — SU(2)
is given by
exp(iBA) =cosO1+isinHA.

In view of the isomorphism ¢@: (R3, x) — su(2), where

1 b c+id\ .0
(P(b,C,d) - E (—C+1d —ib ) _IEAu

the exponential map can be viewed as a map exp: (R?, x) — SU(2) given by the
formula

exp(0v) = {cosg, singv] ;
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for every vector Ov, where v is a unit vector in R and 6 € R. In this form, exp(6v)
is a quaternion corresponding to a rotation of axis v and angle 6.

As we showed, SE(n) is a Lie group, and its lie algebra se(n) described in Section
18.6 is easily determined as the subalgebra of s[(n + 1) consisting of all matrices of

the form
BU
00

where B € s0(n) and U € R”™. Thus, se(n) has dimension n(n+ 1) /2. The Lie bracket
is given by

BU\ (CVN\ [(CV\ (BU\ _(BC—-CBBV-CU
00/\00 00/\00/ 0 0 ’
We conclude by indicating the relationship between homomorphisms of Lie groups

and homomorphisms of Lie algebras. First, we need to explain what is meant by a
smooth map between manifolds.

Definition 18.18. Let M; (im;-dimensional) and M, (m;-dimensional) be manifolds
in RV, A function f: M| — M, is smooth if for every p € M there are parametriza-
tions @: Q) — U; of My at p and y: , — U, of M, at f(p) such that f(U;) C U,
and

v lofop: Q = R™

is smooth.

Using Lemma 18.11, it is easily shown that Definition 18.18 does not depend on
the choice of the parametrizations ¢ : ; — U; and y: £, — U,. A smooth map f
between manifolds is a smooth diffeomorphism if f is bijective and both f and f~!
are smooth maps.

We now define the derivative of a smooth map between manifolds.

Definition 18.19. Let M| (m;-dimensional) and M, (m,-dimensional) be mani-
folds in RV. For any smooth function f: M; — M, and any p € M;, the function
f1/7: T,My — Ty, M, called the tangent map of f at p, or derivative of f at p, or
differential of f at p, is defined as follows: For every v € T,M; and every smooth
curve y: I — M such that y(0) = p and ¥'(0) = v,

F(v) = (for)(0).

The map f;? is also denoted by df), or T,,f. Doing a few calculations involving
the facts that

foy=(fog)o(¢ 'oy) and y=go(p 'oy)

and using Lemma 18.11, it is not hard to show that fl/,(v) does not depend on the
choice of the curve 7. It is easily shown that f,’, is a linear map.
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Finally, we define homomorphisms of Lie groups and Lie algebras and see how
they are related.

Definition 18.20. Given two Lie groups G| and G;, a homomorphism (or map) of
Lie groups is a function f: G; — G that is a homomorphism of groups and a
smooth map (between the manifolds G| and G;). Given two Lie algebras <7 and
aty, a homomorphism (or map) of Lie algebras is a function f: /) — o that is a
linear map between the vector spaces <7 and @ and that preserves Lie brackets,
ie.,

f([A,B]) = [f(A),f(B)]
forall A,B € &7.

An isomorphism of Lie groups is a bijective function f such that both f and f~!
are maps of Lie groups, and an isomorphism of Lie algebras is a bijective function
f such that both f and f~! are maps of Lie algebras. It is immediately verified that
if f: G| — G is a homomorphism of Lie groups, then f,/ : g1 — @2 is a homomor-
phism of Lie algebras. If some additional assumptions are made about G| and G,
(for example, connected, simply connected), it can be shown that f is pretty much
determined by f7.

Alert readers must have noticed that we only defined the Lie algebra of a linear
group. In the more general case, we can still define the Lie algebra g of a Lie group
G as the tangent space T;G at the identity /. The tangent space g = T;G is a vector
space, but we need to define the Lie bracket. This can be done in several ways. We
explain briefly how this can be done in terms of so-called adjoint representations.
This has the advantage of not requiring the definition of left-invariant vector fields,
but it is still a little bizarre!

Given a Lie group G, for every a € G we define left translation as the map
L,: G — G such that L,(b) = ab for all b € G, and right translation as the map
Ry;: G — G such that R,(b) = ba for all b € G. The maps L, and R, are diffeo-
morphisms, and their derivatives play an important role. The inner automorphisms
R,-1 0L, (also written as R,-1L,) also play an important role. Note that

R, 1Ly(b) = aba™".

The derivative
(Ra—lLa)/I: TG — T;,G

of R,-1L;: G — G at I is an isomorphism of Lie algebras, and since 7;G = g, we
get a map denoted by Ad,: g — g. The map a — Ad, is a map of Lie groups

Ad: G — GL(g),

called the adjoint representation of G (where GL(g) denotes the Lie group of all
bijective linear maps on g).
In the case of a linear group, one can verify that

Ad(a)(X) = Ady(X) = aXa !
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forall @ € G and all X € g. The derivative
Adj: g — gl(g)

of Ad: G — GL(g) at I is map of Lie algebras, denoted by ad: g — gl(g), called
the adjoint representation of g. (Recall that Theorem 18.8 immediately implies that
the Lie algebra gl(g) of GL(g) is the vector space of all linear maps on g).

In the case of a linear group, it can be verified that

ad(A)(B) = [A, B]

for all A,B € g. One can also check that the Jacobi identity on g is equivalent to the
fact that ad preserves Lie brackets, i.e., ad is a map of Lie algebras:

ad([A, B]) = [ad(A), ad(B)]

forall A, B € g (where on the right, the Lie bracket is the commutator of linear maps
on g). Thus, we recover the Lie bracket from ad.

This is the key to the definition of the Lie bracket in the case of a general Lie
group (not just a linear Lie group). We define the Lie bracket on g as

[A, B] = ad(A)(B).

To be complete, we would have to define the exponential map exp: g — G for a
general Lie group. For this we would need to introduce some left-invariant vector
fields induced by the derivatives of the left translations, and integral curves associ-
ated with such vector fields.

This is not hard, but we feel that it is now time to stop our introduction to Lie
groups and Lie algebras, even though we have not even touched many important
topics, for instance vector fields and differential foms. Readers who wish to learn
more about Lie groups and Lie algebras should consult (more or less listed in order
of difficulty) Curtis [14], Sattinger and Weaver [42], Hall [21], and Marsden and
Ratiu [33]. The excellent lecture notes by Carter, Segal, and Macdonald [11] consti-
tute a very efficient (although somewhat terse) introduction to Lie algebras and Lie
groups. Classics such as Weyl [48] and Chevalley [12] are definitely worth consult-
ing, although the presentation and the terminology may seem a bit old fashioned.
For more advanced texts, one may consult Abraham and Marsden [1], Warner [47],
Sternberg [45], Brocker and tom Dieck [9], and Knapp [26]. For those who read
French, Mneimné and Testard [37] is very clear and quite thorough, and uses very
little differential geometry, although it is more advanced than Curtis. Chapter 1, by
Bryant, in Freed and Uhlenbeck [17] is also worth reading, but the pace is fast,
and Chapters 7 and 8 of Fulton and Harris [18] are very good, but familiarity with
manifolds is assumed.
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18.9 Applications of Lie Groups and Lie Algebras

Some applications of Lie groups and Lie algebras to robotics and motion planning
are discussed in Selig [44] and Murray, Li, and Sastry [39]. Applications to physics
are discussed in Sattinger and Weaver [42] and Marsden and Ratiu [33].

The fact that the exponential maps exp: s0(3) — SO(3) and exp: se(3) — SE(3)
are surjective is important in robotics applications. Indeed, some matrices associated
with joints arising in robot kinematics can be written as exponentials %S, where 6
is a joint angle and s € se(3) is the so-called joint screw (see Selig [44], Chapter 4).
One should also observe that if a rigid motion (R, b) is used to define the position
of a rigid body, then the velocity of a point p is given by (R'p+b'). In other words,
the element (R',5) of the Lie algebra se(3) is a sort of velocity vector.

The surjectivity of the exponential map exp: se(3) — SE(3) implies that there
is a map log: SE(3) — se(3), although it is multivalued. Still, this log “function”
can be used to perform motion interpolation. For instance, given two rigid motions
B1,B; € SE(3) specifying the position of a rigid body B, we can compute log(B;)
and log(B,), which are just elements of the Euclidean space se(3), form the linear
interpolant (1 —7)log(B;) +¢log(B>), and then apply the exponential map to get an
interpolating rigid motion

e(1—t)log(B1)+tlog(B2)
Of course, this can also be done for a sequence of rigid motions By, ...,B,, where
n > 2, and instead of using affine interpolation between two consecutive positions,
a polynomial spline can be used to interpolate between the log(B;)’s in se(3). This
approach has been investigated by Kim, M.-J., Kim, M.-S. and Shin [24, 25], and
Park and Ravani [40, 41].

R.S. Ball published a treatise on the theory of screws in 1900 [7]. Basically, Ball’s
screws are rigid motions, and his instantaneous screws correspond to elements of the
Lie algebra se(3) (they are rays in s¢(3)). A screw system is simply a subspace of
s¢(3). Such systems were first investigated by Ball [7]. The first heuristic classifi-
cation of screw systems was given by Hunt [22]. Screw systems play an important
role in kinematics, see McCarthy [31] and Selig [44], Chapter 8.

Lie groups and Lie algebras are also a key ingredient in the use of symmetries
in motion, to reduce the number of parameters in the equations of motion, and in
optimal control. Such applications are described in a very exciting paper by Marsden
and Ostrowski [32] (see also the references in this paper).

18.10 Problems

18.1. Given a Hermitian space E, for every linear map f: E — E, prove that there
is an orthonormal basis (uy,...,u,) with respect to which the matrix of f is upper
triangular. In terms of matrices, this means that there is a unitary matrix U and an
upper triangular matrix 7 such that A = UTU™.
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Remark: This extension of Lemma 18.3 is usually known as Schur’s lemma.

18.2. Prove that the torus obtained by rotating a circle of radius b contained in a
plane containing the z-axis and whose center is on a circle of center O and radius b in
the xy-plane is a manifold by giving four parametrizations. What are the conditions
required on a,b?

Hint. What about

x=uacos0+bcosOcos o,

y=asin0 + bsin 6 cos @,

Z=bsin@?
18.3. (a) Prove that the maps ¢, and @, parametrizing the sphere are indeed smooth
and injective, that @f(u,v) and @5 (u,v) are injective, and that ¢@; and ¢, give the

sphere the structure of a manifold.
(b) Prove that the map y;: A(1) — S? defined such that

vi(x,y) = (x, ¥ vl—xz—yz),

where A (1) is the unit open disk, is a parametrization of the open upper hemisphere.
Show that there are five other similar parametrizations, which, together with yyq,
make S2 into a manifold.

18.4. Use Lemma 18.11 to prove that Definition 18.13 does not depend on the
choice of the parametrization ¢ : 2 — U at p.

18.5. Given a linear Lie group G, for every X € T;G, letting ¥ be the smooth curve
inG
Yt eX,

prove that % (0) = X.
18.6. Prove that

det)(X) = tr(X).
Hint. Find the directional derivative

det(1+1X) —det(/

(i det +1X) —det(l)

t—0 t

18.7. Confirm that gl(n,C), sl(n,C), u(n), and su(n), are the vector spaces of ma-
trices described in Section 18.4. Prove that gl(n,C) has dimension 2n, sl(n,C) has
dimension 2(n? — 1), u(n) has dimension n?, and su(n) has dimension n> — 1.

18.8. Prove that the map ¢: (R?, x) — su(2) defined by the formula

i 1
9lb,c.d) = 5(d0y + o2+ bos) = 3 (

ib  c+id
2

—c+id —-ib
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is an isomorphism of Lie algebras. If

A_L( b —ictd
9 \ic+d —b ’

where 6 = Vb2 + ¢2 +d?, prove that the exponential map exp: su(2) — SU(2) is
given by
exp(ifA) =cos61+isinHA.

18.9. Prove that Definition 18.18 does not depend on the parametrizations ¢ : ; —
U, and Y Q> — Us.

18.10. In Definition 18.19, prove that fl’,(v) does not depend on the choice of the
curve ¥, and that f;? is a linear map.

18.11. In the case of a linear group, prove that
Ad(a)(X) = Ad,(X) = aXa™!
forallac Gandall X € g.
18.12. In the case of a linear group, prove that
ad(A)(B) = [A, B]

forall A,B € g.
Check that the Jacobi identity on g is equivalent to the fact that ad preserves Lie
brackets, i.e., ad is a map of Lie algebras:

ad([A, B]) = [ad(A), ad(B)]

for all A, B € g (where on the right, the Lie bracket is the commutator of linear maps
on g).

18.13. Consider the Lie algebra su(2), whose basis is the Pauli spin matrices
01,072,053 (see Chapter 6, Section 9.1). The map ad(X) is a linear map for every
X € g, since ad: g — gl(g). Compute the matrices representing ad(o; ), ad(o2),
ad(63).

18.14. (a) Consider the affine maps p of A? defined such that
x\ [cosB® —sinB) (x L[
p y) \sin® cos6 y v)’
where 0,u,v € R.

Given any map p as above, letting

R cgsG—smG CX= X Cand U= u ’
sin@ cos6 y v
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p can be represented by the 3 x 3 matrix

cosO —sinf u
A—<§[1])— sin@ cos@ v
0 0 1
in the sense that
pX)\ _(RU\ (X
1 “\0 1 1
iff
p(X)=RX+U.

Prove that these maps are affine bijections and that they form a group, denoted by
SE(2) (the direct affine isometries, or rigid motions, of A2). Prove that such maps
preserve the inner product of R?, i.e., that for any four points a,b,c,d € A2,

p(@)-p(bd) = at-bd.

If 8 # k27 (k € Z), prove that p has a unique fixed point ¢p, and that with respect
to any frame with origin c,, p is a rotation of angle 6 and of center c.
(b) Let us now consider the set of matrices of the form

0—-0u
6 0 v
000

where 0,u,v € R. Verify that this set of matrices is a vector space isomorphic to
(R3,4). This vector space is denoted by se(2). Show that in general, AB # BA.

(c) Given a matrix
-6

0
0
0-6 u
'Q_(G O> and U_<v>
QU
a=(29).

. [(Qrorly
A _<o 0

0
A=1|06
0

o< =

letting
we can write
Prove that

where Q0 = I,. Prove that if 8 = 0, then

A (LU
¢ _<01 !



18.10 Problems 515
and that if 6 # 0, then
.\ cos® —sin® 4sinb+ 5 (cosh —1)

e” = |sin® cos® F(—cosO+1)+ 4sin6
0 0 1

Hint. Letting V = Q~!(e — 1), prove that

Qk
V=b+Y) ——
kg’l(k—l-l)!

Q
A_ (€ VU
“=(5 ")

Another proof consists in showing that

and that

A3 = —6°4A,

and that

A sin 6 1—cosf ,
=1 A A”.
€ 3+ ) + 02
(d) Prove that e is a direct affine isometry in SE(2). If 8 # k27 (k € Z), prove
that V is invertible, and thus prove that the exponential map exp: se(2) — SE(2) is

surjective. How do you need to restrict 0 to get an injective map?

Remark: Rigid motions can be used to describe the motion of rigid bodies in the
plane. Given a fixed Euclidean frame (O, (e}, e;)), we can assume that some moving
frame (C, (uj,us)) is attached (say glued) to a rigid body B (for example, at the
center of gravity of B) so that the position and orientation of B in the plane are
completely (and uniquely) determined by some rigid motion

RU
=(01)

where U specifies the position of C with respect to O, and R specifies the orientation
(i.e., angle) of B with respect to the fixed frame (O, (e1,e7)). Then, a motion of B in
the plane corresponds to a curve in the space SE(2). The space SE(2) is topologi-
cally quite complex (in particular, it is “‘curved”). The exponential map allows us to
work in the simpler (noncurved) Euclidean space se(2). Thus, given a sequence of
“snapshots” of B, say By,Bj,...,B;, we can try to find an interpolating motion (a
curve in SE(2)) by finding a simpler curve in se(2) (say, a B-spline) using the in-
verse of the exponential map. Of course, it is desirable that the interpolating motion
be reasonably smooth and “natural.” Computer animations of such motions can be
easily implemented.

18.15. (a) Consider the set of affine maps p of A3 defined such that
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p(X)=RX+U,

where R is a rotation matrix (an orthogonal matrix of determinant +1) and U is
some vector in R?. Every such a map can be represented by the 4 x 4 matrix

(o)
")=65)6)

p(X)=RX+U.

in the sense that

iff

Prove that these maps are affine bijections and that they form a group, denoted by
SE(3) (the direct affine isometries, or rigid motions, of A%). Prove that such maps
preserve the inner product of R3, i.e., that for any four points a,b,c,d € A3,

p(at)-p(bd) = @ -bd.

Prove that these maps do not always have a fixed point.
(b) Let us now consider the set of 4 x 4 matrices of the form

Qu
=(50)

where Q is a skew-symmetric matrix

0 —c b
Q= ¢ 0 —al,
—b a O

and U is a vector in R3.
Verify that this set of matrices is a vector space isomorphic to (R®, +). This
vector space is denoted by se(3). Show that in general, AB # BA.

(c) Given a matrix
QU
= (50

. [(Qrorly
A _(o 0

as in (b), prove that

where Q% = I;. Given
0 —c b
Q= ¢ 0 —al,
—b a O
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let 0 = v/a? + b2+ 2. Prove that if 6 = 0, then

A (BU
© _<01 ’

and that if 6 # 0, then

where L
Q
V=5hL+ —_—.
/§1 (k+1)!
(d) Prove that
a sin @ (I1—cosB) 5
e =L+ ) Q+ 02 Q
and (1 0) (6 —sin6)
—cos —sin »
V=Lh+ o2 Q+ PE Q-

Hint. Use the fact that Q3 = —62Q.
(e) Prove that e is a direct affine isometry in SE(3). Prove that V is invertible.
Hint. Assume that the inverse of V is of the form

W =L+4aQ +bQ?,

and show that a, b, are given by a system of linear equations that always has a unique
solution.

Prove that the exponential map exp: se(3) — SE(3) is surjective. You may use
the fact that exp: s0(3) — SO(3) is surjective, where

in @ 1 —cosH
exp(.Q):egzlg—i-Sln .Q—i—( cos6)

2
0 P Q-

Remark: Rigid motions can be used to describe the motion of rigid bodies in space.
Given a fixed Euclidean frame (O, (e1,e2,e3)), we can assume that some moving
frame (C, (u1,up,u3)) is attached (say glued) to a rigid body B (for example, at
the center of gravity of B) so that the position and orientation of B in space are
completely (and uniquely) determined by some rigid motion

RU
= (67)

where U specifies the position of C with respect to O, and R specifies the orientation
of B with respect to the fixed frame (O, (e1,ez,e3)). Then a motion of B in space
corresponds to a curve in the space SE(3). The space SE(3) is topologically quite
complex (in particular, it is “curved”). The exponential map allows us to work in
the simpler (noncurved) Euclidean space se(3). Thus, given a sequence of “snap-
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shots” of B, say By, Bj1,...,B,, we can try to find an interpolating motion (a curve
in SE(3)) by finding a simpler curve in se(3) (say, a B-spline) using the inverse of
the exponential map. Of course, it is desirable that the interpolating motion be rea-
sonably smooth and “natural.”” Computer animations of such motions can be easily
implemented.

18.16. Let A and B be the 4 x 4 matrices

0-6,0 0
|6, 0 0 0
A4=10 0 0 -0

00 6 0

and
cosf; —sinf; O 0
sin0; cos 06, 0 0
0 0 cos6, —sinb,
0 0 sinf@, cos6,

B =

where 01,6, > 0. (i) Compute A%, and prove that

B=¢t

)

where AP
eA = In —+ —' = Z I
p=1 P p>0 P

letting A? = I,,. Use this to prove that for every orthogonal 4 x 4 matrix B there is a
skew-symmetric matrix A such that

B=¢l.

(ii) Given a skew-symmetric 4 x 4 matrix A, prove that there are two skew-
symmetric matrices A; and A, and some 61,6, > 0 such that

A=A +A,,
3 2
A3 = —63A,,

AjAr =AA1 =0,
w(4?) = 262,
tr(A3) = —267,

and where A; = 0if 6; = 0 and A7 + A = — 6714 if 6, = 6.
Using the above, prove that

sin 6 sin O 1—cosB 1—cos6
eA:I4—|— 91A1—|— 92A2+( 1)A% ( 2)
1 b
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(iii) Given an orthogonal 4 x 4 matrix B, prove that there are two skew-symmetric
matrices A| and A, and some 61, 6, > 0 such that

sin 6, sin 6, (I—cosB) , (1—cosBy) ,
B=I1+ A+ Ay + AT+ A3,
4t g M 5 2 o7 1 62 2
where
A} =—00A,,
A3 = —074;,

A1A; = ArA; =0,
tr(A3) = —267,
tr(A3) = —263,

and where A; = 0 if 6; = 0 and AT + A3 = —6}14 if 6, = 6. Prove that

1 T sin 0; sin 6,

—(B—B')= A A

2( ) o, 1+ 5 2

1 (1 —cos6) (1 —cos6)
E(B+BT):I4+ &7 AT+ o 3

tr(B) =2cos ) +2cos 6;.

(iv) Prove that if sin8; = 0 or sin8, = 0, then A, A», and the cos 6; can be com-
puted from B. Prove that if 6, = 0y, then

sin 0;

B=cos8 I+ (A1 +Ap),

1

and cos 8; and A| 4+ A, can be computed from B.
(v) Prove that

1 2
Ztr ((B—BT) ) =2co0s? 0, +2cos’ 6, — 4.

Prove that cos 8 and cos 6, are solutions of the equation
2 _
x*—sx+p=0,
where

5= %tr(B), p=g(t(B) - 1—16tr ((B—BT)2> 1

Prove that we also have

1
cos” 0; cos” 6, = det (E (B+BT)> .



520 18 Basics of Manifolds and Classical Lie Groups

If sin6; # 0 for i = 1,2 and cos 6, # cos 6, prove that the system
1 T sin 0; sin 6,
~(B-B ) - A A,
5 ( o 1T 2

l (B+BT) (B_BT) _ Sinel COSGIA1 + SineZCOSGZAZ
4 61 92

has a unique solution for A; and A,.

(vi) Prove that A = A + A, has an orthonormal basis of eigenvectors such that
the first two are a basis of the plane with respect to which B is a rotation of angle
0;, and the last two are a basis of the plane with respect to which B is a rotation of
angle 6,.

Remark: I do not know a simple way to compute such an orthonormal basis of
eigenvectors of A = A + A», but it should be possible!

18.17. (a) Consider the map, f: GL™ (n) — S(n), given by
fA)=ATA-1I

Check that
df(A)(H)=ATH+H'A,

for any matrix, H.
(b) Consider the map, f: GL(n) — R, given by

f(A) = det(A).

Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity
matrix). Then, prove that

df(A)(B) = det(A)tr(A~'B),

where A € GL(n).

(c) Use the map A — det(A) — 1 to prove that SL(n) is a manifold of dimension
n*—1.

(d) Let J be the (n+ 1) x (n+ 1) diagonal matrix

(I, O
1= <o —1>'
We denote by SO(n, 1) the group of real (n+ 1) x (n+ 1) matrices:

SO(n,1)={AcGL(n+1)|A"JA=J and det(A)=1}.

Check that SO(n, 1) is indeed a group with the inverse of A given by A~! =JATJ
(this is the special Lorentz group). Consider the function f: GL™ (n+1) — S(n+1),
given by
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f(A)=ATJA-J,

where S(n+ 1) denotes the space of (n+ 1) x (n+ 1) symmetric matrices. Prove
that
df(A)(H)=A"JH+H'"JA

for any matrix H. Prove that df(A) is surjective for all A € SO(n,1) and that

SO(n, 1) is a manifold of dimension @

18.18. (a) Given any matrix

B— (Z b ) € 51(2,C),

if ®* = a®> 4 bc and @ is any of the two complex roots of a® + bc, prove that if @ # 0,

then )
B sinh @

e’ =coshwl+ B

)

and e® = I+ B if a*> + bc = 0. Observe that tr(e?) = 2 cosh .
Prove that the exponential map exp: s[(2,C) — SL(2,C) is not surjective. For

instance, prove that
-1 1
0 —1

is not the exponential of any matrix in s[(2,C).

(b) Recall that a matrix N is nilpotent if there is some m > 0 such that N"* = 0.
Let A be any n x n matrix of the form A =71 — N, where N is nilpotent. Why is A
invertible? prove that there is some B such that e? = I — N as follows: Recall that
for any y € R such that [y — 1| is small enough, we have

Y Y
tog(y) = ~(1—y) - 12 (=)

Since N is nilpotent, we have N = 0, where m is the smallest integer with this
propery. Then the expression

B=logI-N)=-N———---—

is well defined. Use a formal power series argument to show that e® = A. We denote
B by log(A).

(c) Let A € GL(n,C). Prove that there is some matrix B so that e® = A. Thus the
exponential map exp: gl(n,C) — GL(n,C) is surjective.

First, use the fact that A has a Jordan form PJP~'. Then show that finding a log
of A reduces to finding a log of every Jordan block of J. Since every Jordan block
J has a fixed nonzero constant A on the diagonal, with 1’s immediately above each
diagonal entry, and zeros everywhere else, we can write J as (AI)(I — N), where
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N is nilpotent. Find By and B, such that AT = eB1, 1 — N =eB2 and BB, = B,B;.
Conclude that J = ef1152,

18.19. Let B, = {x = (x1,...,x,) € R" |x} + - 4x2 < r} be the open ball of radius
r (centered at the origin) in R” (where r > 0). Prove that the map

rx

X =
VPR — ()

is a diffeomorphism of B, onto R" (where x = (x1,...,Xy)).
Hint. Compute explicity the inverse of this map.

18.20. A smooth bijective map of manifolds need not be a diffeomorphism. For
example, show that f: R — R given by f(x) = x> is not a diffeomorphism.

18.21. (a) Let X C RM and Y C RY be two smooth manifolds of dimension m and
n respectively. We can make X x ¥ C RM*N into a smooth manifold of dimen-
sion m+n as follows: for any (p,q) € X xY,if ¢: Q - U and y: Q) —»V
are parametrizations at p € U C X and g € V C Y respectively, then show that
QX y: Q) Xy — U xV is indeed a parametrization at (p,q) € X x Y. Since the
U x V’s cover X x Y, these parametrizations make X x Y into a manifold.
Check that T(,, (X X Y) = T,X x T,Y.

(b) Given aset X, let A = {(x,x) |x € X} C X x X, called the diagonal of X. If
X is a manifold, then prove that A is a manifold diffeomorphic to X.

(c) The graph of a function f: X — Y is the subset of X x Y given by

graph(f) = {(x,f(x)) | x € X}.

Define F: X — graph(f) by F(x) = (x, f(x)). Prove that if X and Y are smooth
manifolds and if f is smooth, then F is a diffeomorphism and thus graph(f) is a
manifold diffeomorphic to X.

(d) Given any (smooth) map f: X — X, some x € X is a fixed point of f if
f(x) =x. Prove that f has a fixed point iff graph(f) N A = @ (where A is the diagonal
in X x X).

18.22. Recall from Problem 12.6 the Cayley parametrization of rotation matrices in
SO(n) given by

C(B)=(I-B)(I+B) ",
where B is any n X n skew-symmetric matrix. In that problem, it was shown that
C(B) is a rotation matrix that does not admit —1 as an eigenvalue and that every
such rotation matrix is of the form C(B).

(a) If you have not already done so, prove that the map B — C(B) is injective.
(b) Prove that

dC(B)(A) =Dy (I—B)(I+B) ") =—[I+(I—-B)(I+B) 'JAUI+B)"".

Hint. First, show that D4(B~') = —B~'AB~! (where B is invertible) and that
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Da(f(B)g(B)) = (Daf(B))g(B) + f(B)(Dag(B)),

where f and g are differentiable matrix functions.

Deduce that dC(B) is injective for every skew-symmetric matrix B. If we identify
the space of n x n skew-symmetric matrices with R""=1/2_ show that the Cayley
map C: R""=1)/2 _; SO(n) is a parametrization of SO(r).

(c) Now consider n = 3, i.e., SO(3). Let E|, E,, and E; be the rotations about the
x-axis, y-axis, and z-axis, respectively, by the angle 7, i.e.,

10 0 ~10 0 -100
Ei=(0o-10]|, =010, Es=[0 —10
00 —1 00-1 0 01

Prove that the four maps
B— C(B), B— E|C(B), B+~ E;C(B), B~ E;C(B),

where B is skew-symmetric, are parametrizations of SO(3) and that the union of the
images of C, E|C, E,C, and E3C covers SO(3), so that SO(3) is a manifold.

(d) Let A be any square matrix (not necessarily invertible). Prove that there is
some diagonal matrix E with entries +1 or —1 such that EA 4-1 is invertible.

(e) Prove that every rotation matrix A € SO(n) is of the form

A=E(I-B)I+B)™!,

for some skew-symmetric matrix B and some diagonal matrix E with entries +1 and
—1, and where the number of —1 is even. Moreover, prove that every orthogonal
matrix A € O(n) is of the form

A=E(I-B)I+B)™!,

for some skew-symmetric matrix B and some diagonal matrix E with entries +1
and —1. The above provide parametrizations for SO(n) (resp. O(n)) that show that
SO(n) and O(n) are manifolds. However, observe that the number of these charts
grows exponentially with .

18.23. Let J be the 2 x 2 matrix
10
=62)
and let SU(1, 1) be the set of 2 x 2 complex matrices

SU(1,1) ={A|A"JA = J, det(A) = 1},

where A* is the conjugate transpose of A.
(a) Prove that SU(1, 1) is the group of matrices of the form
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A= <9?>, with ag@—bb = 1.
ba

(1—i
g_ 11 )

prove that the map from SL(2,R) to SU(1, 1) given by

If

A gAg71
is a group isomorphism.
(b) Prove that the Mobius transformation

z—1i
i —
z+1
associated with g is a bijection between the upper half-plane H and the unit open
disk D = {z € C | |z] < 1}. Prove that the map from SU(1, 1) to S! x D given by

(52) = alal.bja)

is a continuous bijection (in fact, a homeomorphism). Conclude that SU(1,1) is
topologically an open solid torus.

18.24. (a) Let W C R™ be an open subset of R™ and pick somea € W.If f: W — R”
is a smooth submersion at a, i.e., df, is surjective (so m > n), prove that there are
anopen set V C W C R™ with @ € V and a diffeomorphism y with domain O C R™
such that y(O) =V and

Fwxr,...oxm)) = (x1,... %),

for all (xi,...,x,) € O.

Hint. Since d f, is surjective, the rank of the Jacobian matrix (dfi/dxj(a)) (1 <i<
n, 1 < j <m)is n, and after some permutation of R”*, we may assume that the square
matrix B = (dfi/dxj(a)) (1 <i,j <n)is invertible. Define the map 1: W — R™ by

h(x) = (f1(%), ..o, (X)Xt 15 ooy Xm),

where x = (x1,...,Xy). Check that the Jacobian matrix of 4 at a is invertible. Then
apply the inverse function theorem and finish up.

(b) Let f: M — N be a map of smooth manifolds. A point p € M is called a
critical point (of f) if df, is not surjective, and a point g € N is called a critical
value (of f) if g = f(p), for some critical point p € M. A point p € M is a regular
point (of f)if p is not critical, i.e., df}, is surjective, and a point g € N is a regular
value (of f) if it is not a critical value. In particular, any ¢ € N — f(M) is a regular
value and g € f(M) is a regular value if every p € f~!(g) is a regular point (but in
contrast, g is a critical value if some p € f~1(gq) is critical).
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Prove that for every regular value g € f(M), the preimage Z = f~!(g) is a mani-
fold of dimension dim(M) — dim(N).

Hint. Pick any p € f~!(¢) and some parametrizations ¢ at p and y at ¢ with ¢(0) =
p and y(0) = g and consider 1 = y~! o f o @. Prove that dhy is surjective and then
apply (a).

(c) Under the same assumptions as (b), prove that for every point p € Z = f~!(q),
the tangent space 7,,Z is the kernel of d f,,: T,M — T,N.

(d) If X,Z C RV are manifolds and Z C X, we say that Z is a submanifold of X.
Assume that there is a smooth function g: X — R¥ and that 0 € R is a regular value
of g. Then by (b), Z = g~'(0) is a submanifold of X of dimension dim(X) — k. Let
g = (&1,...,8k), with each g; a function g;: X — R. Prove that for any p € X, dg,
is surjective iff the linear forms (dg;),: T,X — R are linearly independent. In this
case, we say that gy,..., g, are independent at p. We also say that Z is cut out by
g1,---,8 When

Z={peX|8&(p)=0,....8(p) =0}

with g1, ..., g, independent for all p € Z.

Let f: X — Y be a smooth map of manifolds and let g € f(X) be a regular
value. Prove that Z = f~!(g) is a submanifold of X cut out by k = dim(X) —dim(Y)
independent functions.

Hint. Pick some parametrization y at g such that y(0) = ¢ and check that 0 is a
regular value of g = ! o f, so that g1,..., gx work.

(e) Let U C R™ be an open subset of R” and pick somea € U.If f: U - R"isa
smooth immersion at a, i.e., d f, is injective (so m < n), prove that there are an open
set V. C R" with f(a) € V, an open subset U’ C U with a € U’ and f(U’) CV, an
open subset O C R"™™, and a diffeomorphism ¢: V — U’ x O such that

O(f(x1,--yxm)) = (X1, -+, xm,0,...,0),

for all (xy,...,x,) €U’.
Hint. Since d f, is injective, the rank of the Jacobian matrix (df;/dx;j(a)) (1 <i<n,
1 < j <m) is m, and after some permutation of R”, we may assume that the square
matrix B= (dfi/dx;(a)) (1 <i,j < m)is invertible. Define the map g: U x R"™" —
R” by

g(6,y) = (fi(x), -, fn(X), 31 + fans 1 (%), Y+ fa (%)),

where x = (x1,...,%,) and y = (y1,...,Ys—m). Check that the Jacobian matrix of g
at (a,0) is invertible. Then apply the inverse function theorem and finish up.

Now assume that Z is a submanifold of X. Prove that locally, Z is cut out by
independent functions. This means that if k = dim(X) — dim(Z), the codimension of
Z in X, then for every z € Z, there are k independent functions g1, ..., g, defined on
some open subset W C X with z € W, such that ZNW is the common zero set of the
gi’s

(f) We would like to generalize our result in (b) to the more general situation in
which we have a smooth map f: X — Y, but this time, we have a submanifold Z C Y
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and we are investigating whether £~'(Z) is a submanifold of X. In particular, if X
is also a submanifold of ¥ and f is the inclusion of X into Y, then f~!(Z) =X NZ.
Convince yourself that in general, the intersection of two submanifolds is not a
submanifold. Try examples involving curves and surfaces and you will see how bad
the situation can be. What is needed is a notion generalizing that of a regular value,
and this turns out to be the notion of transversality.
We say that f is transversal to Z if

dfp(TpX) + Ty(p)Z = Ty(p)Y,

for all p € f~1(Z). (Recall that if U and V are subspaces of a vector space E, then
U+V isthe subspace U+V ={u+veEE |uecU,veV}). Inparticular, if f is the
inclusion of X into Y, the transversality condition is

T,X +T,Z =TpY,

forallpe XNZ.

Draw several examples of transversal intersections to understand better this con-

cept. Prove that if f is transversal to Z, then f~!(Z) is a submanifold of X of codi-
mension equal to dim(Y) — dim(Z).
Hint. The set f~!(Z) is a manifold if for every p € f~!(Z), there is some open
subset U C X with p € U and f~!(Z)NU is a manifold. First, use (e) to assert that
locally near ¢ = f(p), Z is cut out by k = dim(Y) — dim(Z) independent functions
g1,---,8k 5o that locally near p, the preimage f~!(Z) is cutoutby g o f,..., g0 f.
If we let g = (g1,...,8k), it is a submersion, and the issue is to prove that 0 is a
regular value of go f in order to apply (b). Show that transversality is just what is
needed to show that 0 is a regular value of go f.

(g) With the same assumptions as in (f) (f is transversal to Z), if W = f -1 (2),
prove that for every p € W,

T,W = (dfy) " (Ty)2),

the preimage of 7y(,)Z by dfp: TpX — Ty, Y. In particular, if f is the inclusion of
X into Y, then
T,(XNZ)=T,XNT,Z.

(h) Let X,Z C Y be two submanifolds of ¥, with X compact, Z closed, dim(X) +
dim(Z) = dim(Y), and X transversal to Z. Prove that X N Z consists of a finite set of
points.
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Chapter 19
Basics of the Differential Geometry of Curves

19.1 Introduction: Parametrized Curves

In this chapter we consider parametric curves, and we introduce two important in-
variants, curvature and torsion (in the case of a 3D curve).

Properties of curves can be classified into local properties and global properties.
Local properties are the properties that hold in a small neighborhood of a point on
a curve. Curvature is a local property. Local properties can be studied more con-
veniently by assuming that the curve is parametrized locally. Thus, it is important
and useful to study parametrized curves. In order to study the global properties of a
curve, such as the number of points where the curvature is extremal, the number of
times that a curve wraps around a point, or convexity properties, topological tools
are needed. A proper study of global properties of curves really requires the intro-
duction of the notion of a manifold, a concept beyond the scope of this book. In
this chapter we study only local properties of parametrized curves. Readers inter-
ested in learning about curves as manifolds and about global properties of curves
are referred to do Carmo [7] and Berger and Gostiaux [2]. Kreyszig [15] is also an
excellent source, which does a great job at tracing the origin of concepts. It turns out
that it is easier to study the notions of curvature and torsion if a curve is parametrized
by arc length, and thus we will discuss briefly the notion of arc length.

Let & be some normed affine space of finite dimension, for the sake of simplicity
the Euclidean space E? or E3. Recall that the Euclidean space E” is obtained from
the affine space A" by defining on the vector space R the standard inner product

(xlv"'a-xm)'(ylv---aym) :xl)’1+"'+mem-

The corresponding Euclidean norm is

Gty x| = \/x%—i—---—i—x,zn.

Inspired by a kinematic view, we can define a curve as a continuous map f: ]a,b[—
& from an open interval I =]a, b[ of R to the affine space &. From this point of view

529
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we can think of the parameter 7 € |a, b[ as time, and the function f gives the position
f(t) at time ¢ of a moving particle. The image f(I) C & of the interval I is the
trajectory of the particle. In fact, asking only that f be continuous turns out to be
too liberal, as rather strange curves turn out to be definable, such as “square-filling
curves,” due to Peano, Hilbert, Sierpiniski, and others (see the problems).

Example 19.1. A very pretty square-filling curve due to Hilbert is defined by a se-
quence (h,) of polygonal lines &,: [0,1] — [0, 1] x [0,1] starting from the simple
pattern hg (a “square cap” ') shown on the left in Figure 19.1.

Fig. 19.1 A sequence of Hilbert curves hg, hy, h;.

The curve ki, is obtained by scaling down A, by a factor of 4, and connecting
the four copies of this scaled—down version of 4, obtained by rotating by 7/2 (left
lower part), rotating by —7/2 and translating right (right lower part), translating up
(left upper part), and translating diagonally (right upper part), as illustrated in Figure
19.1.

It can be shown that the sequence (%,) converges (pointwise) to a continuous
curve h: [0,1] — [0,1] x [0, 1] whose trace is the entire square [0,1] x [0,1]. The
Hilbert curve & is nowhere differentiable. It also has infinite length! The curve 5 is
shown in Figure 19.2.

Actually, there are many fascinating curves that are only continuous, fractal
curves being a major example (see Edgar [8]), but for our purposes we need the
existence of the tangent at every point of the curve (except perhaps for finitely many
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Fig. 19.2 The Hilbert curve hs.

points). This leads us to require that f: |a,b[— & be at least continuously differ-
entiable. Recall that a function f: ]a,b[— A" is of class CP, or is CP-continuous,
if all the derivatives f (k) exist and are continuous for all k,0<k < p(when p=0,
f(()) = f). Thus, we require f to be at least a C'-function. However, asking that
f: ]a,b|— & be a CP-function for p > 1 still allows unwanted curves.

Example 19.2. The plane curve defined such that

(0,e'/1y ifr <0;
f(t) =1 (0,0) ift =0
(e”1/1,0) ifr>0;

is a C™-function, but f’ (0) = 0, and thus the tangent at the origin is undefined. What
happens is that the curve has a sharp “corner” at the origin.

Example 19.3. Similarly, the plane curve defined such that

(—e!/t e /tsin(e/)) ifr < 0;
f(t) =1 (0,0) ift=0;
(e /1 e~ Visin(e!/!)) ifr>0;

shown in Figure 19.3 is a C*-function, but f’(0) = 0. In this case, the curve oscillates
more and more rapidly as it approaches the origin.

The problem with the above examples is that the origin is a singular point for
which f7(0) = 0 (a stationary point).
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et ﬂf\w

Fig. 19.3 Stationary point at the origin.

Although it is possible to define the tangent when f is sufficiently differentiable
and when for every ¢ €]a, b[, f(P)(r) # 0 for some p > 1 (where f(7) denotes the pth
derivative of f), a systematic study is rather cumbersome. Thus, we will restrict our
attention to curves having only regular points, that is, for which f’(¢) # 0 for every
t €la,b[. However, we will allow functions f: ]a,b[— & that are not necessarily
injective, unless stated otherwise.

Definition 19.1. An open curve (or open arc) of class CP is amap f: Ja,b[— & of
class CP, with p > 1, where ]a, b[ is an open interval (allowing a = —0 or b = +o0).
The set of points f(]a,b[) in & is called the trace of the curve f. A point f(t) is
regular art €la,b| if f'(r) exists and f(r) # 0, and stationary otherwise. A regular
open curve (or regular open arc) of class CP is an open curve of class C”, with
p > 1, such that every point is regular, i.e., f'(r) # 0 for every t €]a, b].

Note that Definition 19.1 is stated for an open interval ]a, b[, and thus f may not
be defined at a or b. If we want to include the boundary points at a and b in the curve
(when a # —eo and b # +o0), we use the following definition.

Definition 19.2. A curve (or arc) of class CP is a map f: [a,b] — &, with p >
1, such that the restriction of f to |a,b[ is of class C?, and where f()(a) =
limy g r>q £ (2) and fO(b) = lim,_p,,p fO(t) exist, where 0 < i < p. A regu-
lar curve (or regular arc) of class CP is a curve of class CP, with p > 1, such that
every point is regular, i.e., f'(¢) # 0 for every € |a,b]. The set of points f([a,b]) in
& is called the trace of the curve f.

It should be noted that even if f is injective, the trace f(I) of f may be self-
intersecting.

Example 19.4. Consider the curve f: R — E? defined such that
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2
1— 2
Al ="

The trace of this curve, shown in Figure 19.4, is called the “lemniscate of
Bernoulli” and it has a self-intersection at the origin. The map f is continuous,
and in fact bijective, but its inverse f~! is not continuous. Self-intersection is due to
the fact that

lim f(t) = lim £(r) = f(0).

t—y—o0 t—r+oo

Fig. 19.4 Lemniscate of Bernoulli.

If we consider a curve f: [a,b] — & and we assume that f is injective on the
entire closed interval [a,b], then the trace f([a,b]) of f has no self-intersection.
Such curves are usually called Jordan arcs, or simple arcs. The theory of Jordan
arcs f: [a,b] — & where f is only required to be continuous is quite rich. Because
[a,b] is compact, f is in fact a homeomorphism between [a,b] and f([a,b]). Many
fractal curves are only continuous Jordan arcs that are not differentiable.

We can also define closed curves. A simple way to do so is to say that a closed
curve is a curve f: [a,b] — & such that f(a) = f(b). However, this does not ensure
that the derivatives at @ and b agree, a situation that is quite undesirable. A better
solution is to define a closed curve as an open curve f: R — &, where f is periodic.

Definition 19.3. A closed curve (or closed arc) of class CP is amap f: R — & such
that f is of class C”, with p > 1, and such that f is periodic, which means that there
is some T > 0 such that f(x+ T) = f(x) for all x € R. A regular closed curve (or
regular closed arc) of class CP is a closed curve of class CP, with p > 1, such that
every point is regular, i.e., f/(r) # 0 for every t € R. The set of points f([0,7]) (or
S(R)) in & is called the trace of the curve f.
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A closed curve is a Jordan curve (or a simple closed curve) if f is injective on
the interval [0,7[. A Jordan curve has no self-intersection. The ellipse defined by
the map ¢ — (acost, bsint) is an example of a closed curve of type C* that is a
Jordan curve. In this example, the period is 7 = 27. Again, the theory of Jordan
curves f: [0,T] — & where f is only required to be continuous is quite rich.

An observant reader may have noticed that a curve has been defined as a map
f: la,b| = & (or f: [a,b] — &), rather than as a certain set of points. In fact,
it is possible for the trace of a curve to be defined by many parametrizations,
as illustrated by the unit circle, which is the trace of the parametrized curves
fi:10,27[—= & (or fi: [0,27] — &), where fi(t) = (coskt, sinkt), with k > 1. A
clean way to handle this phenomenon is to define a notion of geometric curve (or
arc). Such a treatment is given in Berger and Gostiaux [2]. For our purposes it will
be sufficient to define a notion of change of parameter that does not change the “ge-
ometric shape” of the trace. Recall that a diffeomorphism g: |a,b[—]c,d| of class
CP from an open interval ]a,b| to another open interval |c,d| is a bijection such
that both g: |a,b[—]c,d[ and its inverse g~ !: |c,d[— ]a,b| are CP-functions. This
implies that g'(¢) # O for every ¢ €]a,b|.

Definition 19.4. Two regular curves f: Ja,b[— & and g: ]c,d[ — & of class C?,
with p > 1, are CP-equivalent if there is a diffeomorphism 0 : |a,b[— |c,d] of class
C? such that f =go 6.

It is immediately verified that Definition 19.4 yields an equivalence relation on
open curves. Definition 19.4 is adapted to curves, by extending the notion of C?-
diffeomorphism to closed intervals in the obvious way.

Remark: Using Definition 19.4, we could define a geometric curve (or arc) of
class CP as an equivalence class of (parametrized) curves. This is done in Berger
and Gostiaux [2].

From now on, in most cases we will drop the word “regular” when referring to
regular curves, and simply say “curves.” Also, when we refer to a point f(¢) on a
curve, we mean that 7 € Ja,b[ for an open curve f: Ja,b[— &, and ¢ € [a,b] for a
curve f: [a,b] — &. In the case of a closed curve f: R — &, we can assume that
t € [0,T], where T is the period of f, and thus closed curves will be treated simply
as curves in the sequel. We now define tangent lines and osculating planes. Accord-
ing to Kreyszig [15], the term osculating plane was apparently first introduced by
Tinseau in 1780.

19.2 Tangent Lines and Osculating Planes
We begin with the definition of a tangent line.

Definition 19.5. For any open curve f: ]a,b[— & of class C? (or curve f: [a,b] —
& of class CP), with p > 1, given any point My = f(¢) on the curve, if f is locally
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injective at My and if for any point M| = f (¢ + h) near My the line T; , determined
by the points My and M| has a limit 7; when /& # 0 approaches 0, we say that 7; is
the tangent line to f in My = f(t) at t.

More precisely, if there is an open interval |t —n, 7+ n[CJa,b[ (with n > 0)
such that My = f(t+h) # f(t) = M for all h # 0 with h €| —n, [ and the line T ,
determined by the points My and M| has a limit 7; when & # 0 approaches 0 (with
h€]—mn,n]), then T; is the tangent line to f in My at ¢.

For simplicity we will often say “tangent,” instead of “tangent line.” The defi-
nition is simpler when f is a simple curve (there is no danger that M; = My when
h # 0). In this chapter there will be situations where it is notationally more con-
venient to denote the vector ab by b — a. The following lemma shows why regular
points are important.

Lemma 19.1. For any open curve f: |a,b[— & of class CP (or curve f: [a,b] = &
of class CP), with p > 1, given any point My = f(t) on the curve, if My is a regular
point at t, then the tangent line to f in My at t exists and is determined by the
derivative f'(t) of f att.

Proof. Provided that My # Mj, the line T; , is determined by the point My and the
vector My — My = f(t +h) — f(t). By the definition of f/(), we have

fe+h)—f(t) =hf'(t) + he(h),

where limy,_,0 20 €(h) = 0. We claim that there must be an open interval |t — 1,7+
N[ C]la,b[ (with 1 > 0) such that f(z + h) # f(¢) for all h # 0 with —n < h < 7.
Otherwise, since f'(r) exists, for every o > 0 there is some 1) > 0 such that

Hf(t+h2 O _ iy

<a

for all A, with —n < h < 7, and since f(t +h) — f(r) = 0 for some A # 0 with
he]—mn,n[, we would have ||f'(r)|| < c. Since this holds for every a > 0, we
would have f’(r) = 0, a contradiction. Thus, the line 7; , is determined by the point
My and the vector f'(¢) + &(h), which has the limit f/(¢) when h # 0 tends to 0, with
h €]—n,+n[. Thus, the line 7; , has for limit the line determined by M, and the

derivative f'(¢) of fatz. O

Remark: If f/(¢) = 0, the above argument breaks down. However, if f is a CP-
function and f() (t) # 0 for some p > 2, where p is the smallest integer with that
property, we can show that the line T; ; has the limit determined by My and the
derivative f(7) (t). Thus, the tangent line may still exist at a stationary point. For
example, the curve f defined by the map ¢ +— (2, £3) is a C*-function, but f(0) = 0.
Nevertheless, the tangent at the origin is defined for # = O (it is the x-axis). However,
some strange things can happen at a stationary point. Assuming that a curve is of
class C? for p large enough, using Taylor’s formula it is possible to study precisely
the behavior of the curve at a stationary point.
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Note that the tangent at a point can exist, even when the derivative f’ is not
continuous at this point.

Example 19.5. The C%-curve f defined such that

(¢, %sin(1/1)) ift #0;
f(t)_{(o,O)Sn if 1 =0

and shown in Figure 19.5 has a tangent at t = 0.

0.2

0.1

AV A

-0.4 -0.3 -o.z\f.i/v” '”VQ/1 0.2 0. 0.4
-0.1

Fig. 19.5 Curve with tangent at O and yet f’ discontinuous at O.

Indeed, £(0) = (0, 0), and lim;_,o#sin(1/7) = 0, and the derivative at 7 = 0 is the
vector (1,0). For ¢ # 0,

f(t)=(1,2tsin(1/t) —cos(1/t)),

which has no limit as ¢ tends to 0. Thus, f” is discontinuous at 0. What happens is
that f oscillates more and more near the origin, but the amplitude of the oscillations
decreases.

If g = f o0 is a curve CP-equivalent to f, where 0 is a C”-diffeomorphism, the
tangent at 0(¢) to f exists iff the tangent at 7 to g exists, and the two tangents are
identical. Indeed, g'(r) = f'(u)0'(¢), where u = 6(¢), and since 6’(r) # 0 because 0
is a diffeomorphism, the result is clear. Thus, the notion of tangent is intrinsic to the
geometric curve defined by f. We now consider osculating planes.

Definition 19.6. For any open curve f: ]a,b[— & of class C? (or curve f: [a,b] —
& of class CP), with p > 2, given any point My = f(¢) on the curve, if the tangent
T; at My exists, the point M; = f(¢ + h) is not on T; for h # 0 small enough, and
the plane P, , determined by the tangent 7; and the point M has a limit £ as h # 0
approaches 0, we say that P, is the osculating plane to f in My = f(t) at t.
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More precisely, if the tangent T; at My exists, there is an open interval | — 1,7+
Nn[Cla,b[ (with 1 > 0) such that the point M, = f(¢ +h) is not on T; for every h # 0
with & €] —n, 4+n[, and the plane P, , determined by the tangent 7; and the point
M, has a limit P, when h # 0 approaches 0 (with 1 €] — 11, +1[), we say that P, is
the osculating plane to f in My = f(z) at ¢.

Again, the definition is simpler when f is a simple curve. The following lemma
gives a simple condition for the existence of the osculating plane at a point.

Lemma 19.2. For any open curve f: la,b|— & of class CP (or curve f: [a,b] = &
of class CP), with p > 2, given any point My = f(t) on the curve, if f'(t) and f"(t)
are linearly independent (which implies that My is a regular point at t), then the
osculating plane to f in My at t exists and is determined by the first and second
derivatives f'(t) and f"(t) of f at t.

Proof. The plane P, j, is determined by the point My, the vector f”(z), and the vector
My —My = f(t+h)— f(t), provided that M; — My and f(¢) are linearly independent.
By Taylor’s formula, for 4 > 0 small enough we have

2 2
Pl ) = @) = hf () + 1) + e ),

where limy,_,0 520 €(h) = 0. By an argument similar to that used in Lemma 19.1,
we can show that there is some open interval |t — 1, ¢+ n[Cla,b[ (with 1 > 0)
such that for every h # 0 with —1n < h < 1, the point M} = f(¢ + h) is not on
the tangent T; (otherwise, we could prove that f”(¢) is the limit of a sequence of
vectors proportional to f’(¢), and thus that f7(¢) and f”(¢) are linearly dependent, a
contradiction). Thus, for 4 0 with h € | —n, +n[, the plane P, , is determined by
the point My, the vector f’(¢), and the vector f”(¢) + €(h), which has the limit f” ()
as h # 0 tends to 0, with & €] —n, +n[. Thus, the plane P, ; has for limit the plane
determined by M and the derivatives f’(z) and f”(¢) of f at ¢, since f'(¢) and f"(¢)
are assumed to be linearly independent. 0O

When f(¢) and f”(¢) exist and are linearly independent, it is sometimes said that
f is biregular at t, and that f(¢t) is a biregular point at t. From the kinematic point
of view, the osculating plane at time ¢ is determined by the position of the moving
particle f(¢), the velocity vector f’(¢), and the acceleration vector f”(r).

Remark: If the curve f is a plane curve, then the osculating plane at every regular
point is the plane containing the curve. Even when f’(¢) and f”'(¢) are linearly de-
pendent, the osculating plane may still exist, for instance, if there are two derivatives
FP)(r) # 0 and £ (r) # 0 that are linearly independent, with p < g, the smallest
integers with that property.

In general, the curve crosses its osculating plane at the point of contact 7.

If g = f o0 is a curve CP-equivalent to f, where 0 is a CP-diffeomorphism, the
osculating plane at 0(¢) to f exists iff the osculating plane at 7 to g exists, and these
two planes are identical. Indeed, g'(r) = f'(u)0’(r), and
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g'(1) = f"(w)6' (1) + f'(u)8" (1),

where u = 0(¢). Since 0’(r) # 0 because 0 is a diffeomorphism, the planes defined
by (f'(u),f"(u)) and (g'(r),g" (r)) are identical. Thus, the notion of osculating plane
is intrinsic to the geometric curve defined by f.

It should also be noted that the notions of tangent and osculating plane are affine
notions, that is, preserved under affine bijections.

We now consider the notion of arc length. For this, we assume that the affine
space & is a normed affine space of finite dimension with norm || ||. For simplicity,
we can assume that & = E".

19.3 Arc Length

Given an interval [a,b] (Where a # —oo and b # o), a subdivision of [a,b] is any
finite increasing sequence ty, . .. ,t, such thatfg = a, t, = b,and t; < tjy1, forall i, 0 <
i<n—1,wheren>1.Givenany curve f: [a,b] — & of class CP, with p > 0, for any
subdivision ¢ =1, ...,f, of [a,b] we obtain a polygonal line f(1), f(t1),...,f(t:)
with endpoints f(a) and f(b), and we define the length of this polygonal line as

n—1
l(o) = ;) ILf (tir) = £ @)

Definition 19.7. For any curve f: [a,b] — & of class CP, with p > 0, if the set £ ()
of the lengths /(o) of the polygonal lines induced by all subdivisions ¢ =1, ... ,#,
of [a,b] is bounded, we say that f is rectifiable, and we call the least upper bound
1(f) of the set Z(f) the length of f.

It is obvious that || f(b) — f(a)|| < I(f). If g = f o 0 is a curve CP-equivalent to
f,> where 0 is a CP-diffeomorphism, since 6’(r) # 0, 0 is a strictly increasing or
decreasing function, and thus the set of sums of the form /(o) is the same for both
f and g. Thus, the notion of length is intrinsic to the geometric curve defined by f.
This is false if 0 is not strictly increasing or decreasing. The following lemma can
be shown.

Lemma 19.3. For any curve f: [a,b] — & of class CP, with p > 1, f is rectifiable.

Remark: In fact, Lemma 19.3 can be shown under the hypothesis that f is of class
€Y, and that f'(¢) exists and || f'(¢)|| < M for some M > 0, for all ¢ € [a, b].

Definition 19.8. For any open curve f: ]a,b[— & of class C? (or curve f: [a,b] —
& of class CP), with p > 1, for any closed interval [ty,¢] C]a,b[ (or [to,t] C [a,b],
in the case of a curve), letting fj; ;) be the restriction of f to [f0,7], the length
I(fity4)) (which exists, by Lemma 19.3) is called the arc length of fj;, . For any
fixed 79 €a,b| (or any fixed 7y € [a,b], in the case of a curve), we define the func-
tion s: Ja,b[— R (or s: [a,b] — R, in the case of a curve), called algebraic arc
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length w.rt. ty, as follows:

l(fth) if [t J] Q]a,b[;
s(r) = {—l[(f[,i,,]) ;f [t(,)to] Cla,bl;

(and similarly in the case of a curve, except that [tg,t] C [a,b] or [t,t] C [a,b]).

For the sake of brevity, we will often call s the arc length, rather than algebraic
arc length w.r.t. 7.

Lemma 19.4. For any open curve f: la,b|— & of class CP (or curve f: [a,b] = &
of class CP), with p > 1, for any fixed ty €la,b| (or ty € |a, D), in the case of a curve),
the algebraic arc length s(t) w.r.t. ty is of class CP, and furthermore, s'(t) = || f'()]|.

Thus, the arc length is given by the integral

)= [ 1f @)l

In particular, when & = E" and the norm is the Euclidean norm, we have

0= [ R+

where f = (f1,...,fu). The number || f'(¢)|| is often called the speed of f(t) at time
t. For every regular point at ¢, the unit vector

[

SO

is called the unit tangent (vector) at t.

Now, if f: |a,b[— & (or f: [a,b] — &) is aregular curve of class C?, with p > 1,
since s'(t) = ||f'(¢)]], and f'(r) # O for all # € |a,b] (or ¢ € [a,b]), we have s'() > 0
for all t €a,b[ (or t € [a,b]). The mean value theorem implies that s is injective,
and that s: ]a,b[— ]s(a),s(b)[ (or s: [a,b] — [s(a),s(b)]) is a diffeomorphism of
class CP. In particular, the curve fo@: ]s(a),s(b)[— & (or fo@: [s(a),s(b)] = &),
with ¢ = s~!, is CP-equivalent to the original curve £, but it is parametrized by the
arc length s €]s(a),s(b)[ (or s € [s(a),s(b)]). As a consequence, since ¢ = s~ !, we

have
¢'(s(1)) = ('),
and letting g = f o @, by the chain rule
f'(1)

/ — flols /(s — (s () = )
g (s0) = FLotst))@ (s(t) = £ ) = 7

This shows that ||g'(s)|| = 1, i.e., that when a regular curve is parametrized by arc
length, its velocity vector has unit length. From a kinematic point of view, when
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a curve is parametrized by arc length, the moving particle travels at constant unit
speed.

Remark: If a curve f (or a closed curve) is of class C?, for p > 1, and it is a Jordan
arc, then the algebraic arc length s: [a,b] — R w.r.t. £ is strictly increasing, and thus
injective. Thus, s~ ! exists, and the curve can still be parametrized by arc length as
g = fos~!. However, g’(s) exists only when s(¢) corresponds to a regular point at
t. Thus, it still seems necessary to restrict our attention to regular curves, in order to
avoid complications.

We now consider the notion of curvature. In order to do so, we assume that the
affine space & has a Euclidean structure (an inner product), and that the norm on &
is the norm induced by this inner product. For simplicity, we assume that & = [E”".

19.4 Curvature and Osculating Circles (Plane Curves)

In a Euclidean space, orthogonality makes sense, and we can define normal lines
and normal planes. We begin with plane curves, i.e., the case where & = E2.

Definition 19.9. Given a regular plane curve f: Ja,b[— & (or f: [a,b] — &) of
class CP, with p > 1, the normal line N, to f at t is the line through f(¢) and
orthogonal to the tangent line 7; to f at . Any nonnull vector defining the direction
of the normal line N, is called a normal vector to f att.

From now on, we also assume that we are dealing with curves f that are biregular
for all 7. This means that f7(¢) and f”(¢) always exist and are linearly independent.
A fairly intuitive way to introduce the notion of curvature is to study the variation
of the normal line NV; to a curve f at ¢, in a small neighborhood of . The intuition
is that the normal N, to f at ¢ rotates around a certain point, and that the “speed”
of rotation of the normal measures how much the curve bends around ¢. In other
words, the rate at which the normal turns corresponds to the curvature of the curve
att. Another way to look at it is to focus on the point around which the normal turns,
the center of curvature C at ¢, and to consider the radius Z of the circle centered at C
and tangent to the curve at f(¢) (i.e., tangent to the tangent line to f at 7). Intuitively,
the smaller & is, the faster the curve bends, and thus the curvature can be defined
as 1/ 2.

Let us assume that some origin O is chosen in the affine plane, and to simplify
the notation, for any curve f let us denote f(¢) — O by M(¢) or M, for any point
P denote P — O by P, denote P— M by m, and denote f'(¢) by M'(¢) or M'. The
normal line N, to f att is the set of points P such that

M- MP =0,

or equivalently
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M -P=M M.

Similarly, for any small § # O such that f(¢ 4 ) is defined, the normal line N, , 5 to
Jfatt+ 6 is the set of points Q such that

M (t+8)- Q=M (t+68) -M(t+95).
Thus, the intersection point P of N; and N, s, if it exists, is given by the equations

M -P=M-M,
M (t+8)-P=M(t+8) -M(t+§).

Thus, P would also satisfy the equation obtained by subtracting the first one from
the second, that is,

M(t+8)—M)-P=M(t+6) M(t+85)—M M.

This equation can be written as

<w).p_ (W)~M(H—5)

LM (M(r+§)—M>7

and as 8 # 0 tends to 0, it has the following equation for limit:
M//'P:M//'M+M/'M/7

that is,
M’ - MP = M.

Consequently, if it exists, P is the intersection of the two lines of equations

M -MP =0
M- MP = |M||2.

Thus, if M’ and M” are linearly independent, wh