
Jean Gallier

Geometric Methods and

Applications

for Computer Science and

Engineering, Second Edition

December 31, 2024

Springer





To my wife, Anne, my children, Mia, Philippe,

and Sylvie, and my grandchildren, Bahari

and Demetrius





Preface

This book is an introduction to fundamental geometric concepts and tools needed

for solving problems of a geometric nature with a computer. Our main goal is to

present a collection of tools that can be used to solve problems in computer vision,

robotics, machine learning, computer graphics, and geometric modeling.

During the ten years following the publication of the first edition of this book,

optimization techniques have made a huge comeback, especially in the fields of

computer vision and machine learning. In particular, convex optimization and its

special incarnation, semidefinite programming (SDP), are now widely used tech-

niques in computer vision and machine learning, as one may verify by looking at

the proceedings of any conference in these fields. Therefore, we felt that it would

be useful to include some material (especially on convex geometry) to prepare the

reader for more comprehensive expositions of convex optimization, such as Boyd

and Vandenberghe [2], a masterly and encyclopedic account of the subject. In par-

ticular, we added Chapter 7, which covers separating and supporting hyperplanes.

We also realized that the importance of the SVD (singular value decomposition)

and of the pseudo-inverse had not been sufficiently stressed in the first edition of this

book, and we rectified this situation in the second edition. In particular, we added

sections on PCA (principal component analysis) and on best affine approximations

and showed how they are efficienlty computed using SVD. We also added a sec-

tion on quadratic optimization and a section on the Schur complement, showing the

usefulness of the pseudo-inverse.

In this second edition, many typos and small mistakes have been corrected, some

proofs have been shortened, some problems have been added, and some references

have been added. Here is a list containing brief descriptions of the chapters that have

been modified or added.

• Chapter 3, on the basic properties of convex sets, has been expanded. In par-

ticular, we state a version of Carathéodory’s theorem for convex cones (Theo-

rem 3.2), a version of Radon’s theorem for pointed cones (Theorem 3.6), and

Tverberg’s theorem (Theorem 3.7), and we define centerpoints and prove their

existence (Theorem 3.9).

vii
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• Chapter 7 is new. This chapter deals with separating hyperplanes, versions of

Farkas’s lemma, and supporting hyperplanes. Following Berger [1], various ver-

sions of the separation of open or closed convex subsets by hyperplanes are

proved as consequences of a geometric version of the Hahn–Banach theorem

(Theorem 7.1). We also show how various versions of Farkas’s lemma (Lemmas

7.3, 7.4, and 7.5) can be easily deduced from separation results (Corollary 7.4

and Proposition 7.3). Farkas’s lemma plays an important result in linear program-

ming. Indeed, it can be used to give a quick proof of so-called strong duality in

linear programming. We also prove the existence of supporting hyperplanes for

boundary points of closed convex sets (Minkowski’s lemma, Proposition 7.4).

Unfortunately, lack of space prevents us from discussing polytopes and polyhe-

dra. The reader will find a masterly exposition of these topics in Ziegler [3].

• Chapter 14 is a major revision of Chapter 13 (Applications of Euclidean Geome-

try to Various Optimization Problems) from the first edition of this book and has

been renamed “Applications of SVD and Pseudo-Inverses.” Section 14.1, about

least squares problems, and the pseudo-inverse has not changed much, but we

have added the fact that AA+ is the orthogonal projection onto the range of A and

that A+A is the orthogonal projection onto Ker(A)⊥, the orthogonal complement

of Ker(A). We have also added Proposition 14.1, which shows how the pseudo-

inverse of a normal matrix A can be obtained from a block diagonalization of A

(see Theorem 12.7). Sections 14.2, 14.3, and 14.4 are new.

In Section 14.2, we define various matrix norms, including operator norms, and

we prove Proposition 14.4, showing how a matrix can be best approximated by a

rank-k matrix (in the ‖‖2 norm).

Section 14.3 is devoted to principal component analysis (PCA). PCA is a very

important statistical tool, yet in our experience, most presentations of this con-

cept lack a crisp definition. Most presentations identify the notion of principal

components with the result of applying SVD and do not prove why SVD does in

fact yield the principal components and directions. To rectify this situation, we

give a precise definition of PCAs (Definition 14.3), and we prove rigorously how

SVD yields PCA (Theorem 14.3), using the Rayleigh–Ritz ratio (Lemma 14.2).

In Section 14.4, it is shown how to best approximate a set of data with an affine

subspace in the least squares sense. Again, SVD can used to find solutions.

• Chapter 15 is new, except for Section 15.1, which reproduces Section 13.2 from

the first edition of this book. We added the definition of the positive semidefinite

cone ordering, �, on symmetric matrices, since it is extensively used in convex

optimization.

In Section 15.2, we find a necessary and sufficient condition (Proposition 15.2)

for the quadratic function f (x) = 1
2
x⊤Ax+ x⊤b to have a minimum in terms of

the pseudo-inverse of A (where A is a symmetric matrix). We also show how to

accommodate linear constraints of the form C⊤x = 0 or affine constraints of the

form C⊤x = t (where t 6= 0).

In Section 15.3, we consider the problem of maximizing f (x) = x⊤Ax on the

unit sphere x⊤x = 1 or, more generally, on the ellipsoid x⊤Bx = 1, where A is

a symmetric matrix and B is symmetric, positive definite. We show that these
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problems are completely solved by diagonalizing A with respect to an orthogonal

matrix. We also briefly consider the effect of adding linear constraints of the form

C⊤x = 0 or affine constraints of the form C⊤x = t (where t 6= 0).

• Chapter 16 is new. In this chapter, we define the notion of Schur complement, and

we use it to characterize when a symmetric 2× 2 block matrix is either positive

semidefinite or positive definite (Proposition 16.1, Proposition 16.2, and Theo-

rem 16.1).

• Chapter 17 is also brand new. In this chapter, we show how a computer vision

problem, contour grouping, can be formulated as a quadratic optimization prob-

lem involving a Hermitian matrix. Because of the extra dependency on an an-

gle, this optimization problem leads to finding the derivative of eigenvalues and

eigenvectors of a normal matrix X . We derive explicit formulas for these deriva-

tives (in the case of eigenvectors, the formula involves the pseudo-inverse of X)

and we prove their correctness. It appears to be difficult to find these formulas to-

gether with a clean and correct proof in the literature. Our optimization problem

leads naturally to the consideration of the field of values (or numerical range)

F(A) of a complex matrix A. A remarkable property of the field of values is that

it is a convex subset of the plane, a theorem due to Toeplitz and Hausdorff, for

which we give a short proof using a deformation argument (Theorem 17.1). Prop-

erties of the fields of values can be exploited to solve our optimization problem.

This chapter describes current and exciting research in computer vision.

• Chapter 18 (which used to be Chapter 14 in the first edition) has been slightly ex-

panded and improved. Our experience in teaching the material of this chapter, an

introduction to manifolds and Lie groups, is that it is helpful to review carefully

the notion of the derivative of a function f : E → F where E and F are normed

vector spaces. Thus we added Section 18.7, which provides such a review. We

also state the inverse function theorem and define immersions and submersions.

Section 18.8 has also been slightly expanded. We added Proposition 18.6 and

Theorem 18.7, which are often useful in proving that various spaces are mani-

folds; we defined critical and regular values and defined Morse functions; and

we made a few cosmetic improvements in the paragraphs following Definition

18.20. A number of new problems on manifolds have been added.

• The only change to Chapter 19 (Chapter 15 in the first edition) is the inclusion of

a more complete treatment of the Frenet frame for nD curves in Section 19.10.

• Similarly, the only change to Chapter 20 (Chapter 16 in the first edition) is the

addition of Section 20.12, on covariant derivatives and the parallel transport.

Besides adding problems to all the chapters listed above we added one more

problem to Chapter 2.

As in the first edition, there is some additional material on the web site http:

//www.cis.upenn.edu/˜jean/gbooks/geom2.html

This material has not changed, and the chapter and section numbers are those of

the first edition. A graph showing the dependencies of chapters is shown in Figure

0.1.
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Preface to the First Edition

Many problems arising in engineering, and notably in computer science and me-

chanical engineering, require geometric tools and concepts. This is especially true

of problems arising in computer graphics, geometric modeling, computer vision,

and motion planning, just to mention some key areas. This book is an introduction

to fundamental geometric concepts and tools needed for solving problems of a ge-

ometric nature with a computer. In a previous text, Gallier [24], we focused mostly

on affine geometry and on its applications to the design and representation of poly-

nomial curves and surfaces (and B-splines). The main goal of this book is to provide

an introduction to more sophisticated geometric concepts needed in tackling engi-

neering problems of a geometric nature. Many problems in the above areas require

some nontrivial geometric knowledge, but in our opinion, books dealing with the

relevant geometric material are either too theoretical, or else rather specialized. For

example, there are beautiful texts entirely devoted to projective geometry, Euclidean

geometry, and differential geometry, but reading each one represents a considerable

effort (certainly from a nonmathematician!). Furthermore, these topics are usually

treated for their own sake (and glory), with little attention paid to applications.

This book is an attempt to fill this gap. We present a coherent view of geometric

methods applicable to many engineering problems at a level that can be understood

by a senior undergraduate with a good math background. Thus, this book should

be of interest to a wide audience including computer scientists (both students and

professionals), mathematicians, and engineers interested in geometric methods (for

example, mechanical engineers). In particular, we provide an introduction to affine

geometry, projective geometry, Euclidean geometry, basics of differential geometry

and Lie groups, and a glimpse of computational geometry (convex sets, Voronoi

diagrams, and Delaunay triangulations). This material provides the foundations for

the algorithmic treatment of curves and surfaces, some basic tools of geometric

modeling. The right dose of projective geometry also leads to a rigorous and yet

smooth presentation of rational curves and surfaces. However, to keep the size of

this book reasonable, a number of topics could not be included. Nevertheless, they

can be found in the additional material on the web site: see http://www.cis.

xiii
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upenn.edu/˜jean/gbooks/geom2.html. This is the case of the material

on rational curves and surfaces.

This book consists of sixteen chapters and an appendix. The additional material

on the web site consists of eight chapters and an appendix: see http://www.

cis.upenn.edu/˜jean/gbooks/geom2.html.

• The book starts with a brief introduction (Chapter 1).

• Chapter 2 provides an introduction to affine geometry. This ensures that readers

are on firm ground to proceed with the rest of the book, in particular, projective

geometry. This is also useful to establish the notation and terminology. Readers

proficient in geometry may omit this section, or use it as needed. On the other

hand, readers totally unfamiliar with this material will probably have a hard time

with the rest of the book. These readers are advised do some extra reading in

order to assimilate some basic knowledge of geometry. For example, we highly

recommend Pedoe [42], Coxeter [9], Snapper and Troyer [52], Berger [2, 3],

Fresnel [22], Samuel [51], Hilbert and Cohn–Vossen [31], Boehm and Prautzsch

[5], and Tisseron [54].

• Basic properties of convex sets and convex hulls are discussed in Chapter 3.

Three major theorems are proved: Carthéodory’s theorem, Radon’s theorem, and

Helly’s theorem.

• Chapter 4 presents a construction (the “hat construction”) for embedding an

affine space into a vector space. An important application of this construction

is the projective completion of an affine space, presented in the next chap-

ter. Other applications are treated in Chapter 20 on the web site, see http:

//www.cis.upenn.edu/˜jean/gbooks/geom2.html.

• Chapter 5 provides an introduction to projective geometry. Since we are not

writing a treatise on projective geometry, we cover only the most fundamental

concepts, including projective spaces and subspaces, frames, projective maps,

multiprojective maps, the projective completion of an affine space, cross-ratios,

duality, and the complexification of a real projective space. This material also

provides the foundations for our algorithmic treatment of rational curves and

surfaces, to be found on the web site (Chapters 18, 19, 21, 22, 23, 24); see

http://www.cis.upenn.edu/˜jean/gbooks/geom2.html.

• Chapters 6, 8, and 9, provide an introduction to Euclidean geometry, to the groups

of isometries O(n) and SO(n), the groups of affine rigid motions Is(n) and

SE(n), and to the quaternions. Several versions of the Cartan–Dieudonné the-

orem are proved in Chapter 8. The QR-decomposition of matrices is explained

geometrically, both in terms of the Gram–Schmidt procedure and in terms of

Householder transformations. These chapters are crucial to a firm understanding

of the differential geometry of curves and surfaces, and computational geometry.

• Chapter 10 gives a short introduction to some fundamental topics in computa-

tional geometry: Voronoi diagrams and Delaunay triangulations.

• Chapter 11 provides an introduction to Hermitian geometry, to the groups of

isometries U(n) and SU(n), and the groups of affine rigid motions Is(n,C)
and SE(n,C). The generalization of the Cartan–Dieudonné theorem to Her-

mitian spaces can be found on the web site, Chapter 25; see http://www.
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cis.upenn.edu/˜jean/gbooks/geom2.html. A short introduction to

Hilbert spaces, including the projection theorem, and the isomorphism of every

Hilbert space with some space l2(K), can also be found on the web site in Chapter

26, see http://www.cis.upenn.edu/˜jean/gbooks/geom2.html.

• Chapter 12 provides a presentation of the spectral theorems in Euclidean and

Hermitian spaces, including normal, self-adjoint, skew self-adjoint, and orthog-

onal linear maps. Normal form (in terms of block diagonal matrices) for various

types of linear maps are presented.

• The singular value decomposition (SVD) and the polar form of linear maps are

discussed quite extensively in Chapter 13. The pseudo-inverse of a matrix and its

characterization using the Penrose properties are presented.

• Chapter 14 presents some applications of Euclidean geometry to various opti-

mization problems. The method of least squares is presented, as well as the ap-

plications of the SVD and QR-decomposition to solve least squares problems.

We also describe a method for minimizing positive definite quadratic forms, us-

ing Lagrange multipliers.

• Chapter 18 provides an introduction to the linear Lie groups, via a presentation

of some of the classical groups and their Lie algebras, using the exponential map.

The surjectivity of the exponential map is proved for SO(n) and SE(n).
• An introduction to the local differential geometry of curves is given in Chapter

19 (curvature, torsion, the Frenet frame, etc).

• An introduction to the local differential geometry of surfaces based on some

lectures by Eugenio Calabi is given in Chapter 20. This chapter is rather unique,

as it reflects decades of experience from a very distinguished geometer.

• Chapter 21 is an appendix consisting of short sections consisting of basics of

linear algebra and analysis. This chapter has been included to make the material

self-contained. Our advice is to use it as needed!

A very elegant presentation of rational curves and surfaces can be given us-

ing some notions of affine and projective geometry. We push this approach quite

far in the material on the web; see http://www.cis.upenn.edu/˜jean/

gbooks/geom2.html. However, we provide only a cursory coverage of CAGD

methods. Luckily, there are excellent texts on CAGD, including Bartels, Beatty, and

Barsky [1], Farin [17, 18], Fiorot and Jeannin [20, 21], Riesler [50], Hoschek and

Lasser [33], and Piegl and Tiller [43]. Although we cover affine, projective, and Eu-

clidean geometry in some detail, we are far from giving a comprehensive treatment

of these topics. For such a treatment, we highly recommend Berger [2, 3], Samuel

[51], Pedoe [42], Coxeter [11, 10, 8, 9], Snapper and Troyer [52], Fresnel [22], Tis-

seron [54], Sidler [45], Dieudonné [13], and Veblen and Young [57, 58], a great

classic.

Similarly, although we present some basics of differential geometry and Lie

groups, we only scratch the surface. For instance, we refrain from discussing mani-

folds in full generality. We hope that our presentation is a good preparation for more

advanced texts, such as Gray [27], do Carmo [14], Berger and Gostiaux [4], and

Lafontaine [36]. The above are still fairly elementary. More advanced texts on dif-

ferential geometry include do Carmo [15, 16], Guillemin and Pollack [29], Warner
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[59], Lang [37], Boothby [6], Lehmann and Sacré [38], Stoker [53], Gallot, Hulin,

and Lafontaine [25], Milnor [41], Sharpe [44], Malliavin [39], and Godbillon [26].

It is often possible to reduce interpolation problems involving polynomial curves

or surfaces to solving systems of linear equations. Thus, it is very helpful to be

aware of efficient methods for numerical matrix analysis. For instance, we present

the QR-decomposition of matrices, both in terms of the (modified) Gram–Schmidt

method and in terms of Householder transformations, in a novel geometric fashion.

For further information on these topics, readers are referred to the excellent texts by

Strang [48], Golub and Van Loan [28], Trefethen and Bau [55], Ciarlet [7], and Kin-

caid and Cheney [34]. Strang’s beautiful book on applied mathematics is also highly

recommended as a general reference [46]. There are other interesting applications

of geometry to computer vision, computer graphics, and solid modeling. Some good

references are Trucco and Verri [56], Koenderink [35], and Faugeras [19] for com-

puter vision; Hoffman [32] for solid modeling; and Metaxas [40] for physics-based

deformable models.

Novelties

As far as we know, there is no fully developed modern exposition integrating the

basic concepts of affine geometry, projective geometry, Euclidean geometry, Her-

mitian geometry, basics of Hilbert spaces with a touch of Fourier series, basics of

Lie groups and Lie algebras, as well as a presentation of curves and surfaces both

from the standard differential point of view and from the algorithmic point of view

in terms of control points (in the polynomial and rational case).

New Treatment, New Results

This book provides an introduction to affine geometry, projective geometry, Eu-

clidean geometry, Hermitian geometry, Hilbert spaces, a glimpse at Lie groups and

Lie algebras, and the basics of local differential geometry of curves and surfaces.

We also cover some classics of convex geometry, such as Carathéodory’s theo-

rem, Radon’s theorem, and Helly’s theorem. However, in order to help the reader

assimilate all these concepts with the least amount of pain, we begin with some

basic notions of affine geometry in Chapter 2. Basic notions of Euclidean geom-

etry come later only in Chapters 6, 8, 9. Generally, noncore material is relegated

to appendices or to the web site: see http://www.cis.upenn.edu/˜jean/

gbooks/geom2.html.

We cover the standard local differential properties of curves and surfaces at an

elementary level, but also provide an in-depth presentation of polynomial and ra-

tional curves and surfaces from an algorithmic point of view. The approach (some-

times called blossoming) consists in multilinearizing everything in sight (getting

polar forms), which leads very naturally to a presentation of polynomial and ratio-

nal curves and surfaces in terms of control points (Bézier curves and surfaces). We

present many algorithms for subdividing and drawing curves and surfaces, all im-

plemented in Mathematica. A clean and elegant presentation of control points with

weights (and control vectors) is obtained by using a construction for embedding
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an affine space into a vector space (the so-called “hat construction,” originating in

Berger [2]). We also give several new methods for drawing efficiently closed ratio-

nal curves and surfaces, and a method for resolving base points of triangular rational

surfaces. We give a quick introduction to the concepts of Voronoi diagrams and De-

launay triangulations, two of the most fundamental concepts in computational ge-

ometry. As a general rule, we try to be rigorous, but we always keep the algorithmic

nature of the mathematical objects under consideration in the forefront.

Many problems and programming projects are proposed (over 230). Some are

routine, some are (very) difficult.

Applications

Although it is core mathematics, geometry has many practical applications. When-

ever possible, we point out some of these applications, For example, we mention

some (perhaps unexpected) applications of projective geometry to computer vision

(camera calibration), efficient communication, error correcting codes, and cryptog-

raphy (see Section 5.13). As applications of Euclidean geometry, we mention mo-

tion interpolation, various normal forms of matrices including QR-decomposition

in terms of Householder transformations and SVD, least squares problems (see Sec-

tion 14.1), and the minimization of quadratic functions using Lagrange multipliers

(see Section 15.1). Lie groups and Lie algebras have applications in robot kine-

matics, motion interpolation, and optimal control. They also have applications in

physics. As applications of the differential geometry of curves and surfaces, we

mention geometric continuity for splines, and variational curve and surface design

(see Section 19.11 and Section 20.13). Finally, as applications of Voronoi diagrams

and Delaunay triangulations, we mention the nearest neighbors problem, the largest

empty circle problem, the minimum spanning tree problem, and motion planning

(see Section 10.5). Of course, rational curves and surfaces have many applications

to computer-aided geometric design (CAGD), manufacturing, computer graphics,

and robotics.

Many Algorithms and Their Implementation

Although one of our main concerns is to be mathematically rigorous, which implies

that we give precise definitions and prove almost all of the results in this book, we

are primarily interested in the representation and the implementation of concepts

and tools used to solve geometric problems. Thus, we devote a great deal of efforts

to the development and implemention of algorithms to manipulate curves, surfaces,

triangulations, etc. As a matter of fact, we provide Mathematica code for most of

the geometric algorithms presented in this book. We also urge the reader to write his

own algorithms, and we propose many challenging programming projects.

Open Problems

Not only do we present standard material (although sometimes from a fresh point of

view), but whenever possible, we state some open problems, thus taking the reader

to the cutting edge of the field. For example, we describe very clearly the problem

of resolving base points of rectangular rational surfaces (this material is on the web

site, see http://www.cis.upenn.edu/˜jean/gbooks/geom2.html).
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What’s Not Covered in This Book

Since this book is already quite long, we have omitted solid modeling techniques,

methods for rendering implicit curves and surfaces, the finite elements method, and

wavelets. The first two topics are nicely covered in Hoffman [32], and the finite el-

ement method is the subject of so many books that we will not attempt to mention

any references besides Strang and Fix [47]. As to wavelets, we highly recommend

the classics by Daubechies [12], and Strang and Truong [49], among the many texts

on this subject. It would also have been nice to include chapters on the algebraic ge-

ometry of curves and surfaces. However, this is a very difficult subject that requires

a lot of algebraic machinery. Interested readers may consult Fulton [23] or Harris

[30].

How to Use This Book for a Course

This book covers three complementary but fairly disjoint topics:

(1) Projective geometry and its applications to rational curves and surfaces (Chapter

5, and on the web page, Chapters 18, 19, 21, 22, 23, 24);

(2) Euclidean geometry, Voronoi diagrams, and Delaunay triangulations, Hermitian

geometry, basics of Hilbert spaces, spectral theorems for special kinds of linear

maps, SVD, polar form, and basics of Lie groups and Lie algebras (Chapters 6,

8, 9, 10, 11, 12, 13, 14, 18);

(3) Basics of the differential geometry of curves and surfaces (Chapters 19 and 20).

Chapter 21 is an appendix consisting of background material and should be used

only as needed.

Our experience is that there is too much material to cover in a one–semester

course. The ideal situation is to teach the material in the entire book in two

semesters. Otherwise, a more algebraically inclined teacher should teach the first

or second topic, whereas a more differential-geometrically inclined teacher should

teach the third topic. In either case, Chapter 2 on affine geometry should be covered.

Chapter 4 is required for the first topic, but not for the second.

Problems are found at the end of each chapter. They range from routine to very

difficult. Some programming assignments have been included. They are often quite

open-ended, and may require a considerable amount of work. The end of a proof is

indicated by a square box ( ). The word iff is an abbreviation for if and only if . Ref-

erences to the web page http://www.cis.upenn.edu/˜jean/gbooks/

geom2.html will be abbreviated as web page.

Hermann Weyl made the following comment in the preface (1938) of his beauti-

ful book [60]:

The gods have imposed upon my writing the yoke of a foreign tongue that was not sung at

my cradle . . . . Nobody is more aware than myself of the attendant loss in vigor, ease and

lucidity of expression.

Being in a similar position, I hope that I was at least successful in conveying my

enthusiasm and passion for geometry, and that I have inspired my readers to study

some of the books that I respect and admire.
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Collection Mathématiques. Puf, second edition, 1992. English edition: Differential geometry,

manifolds, curves, and surfaces, GTM No. 115, Springer-Verlag.

5. W. Boehm and H. Prautzsch. Geometric Concepts for Geometric Design. AK Peters, first

edition, 1994.

6. William M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry.

Academic Press, second edition, 1986.

7. P.G. Ciarlet. Introduction to Numerical Matrix Analysis and Optimization. Cambridge Uni-

versity Press, first edition, 1989. French edition: Masson, 1994.

8. H.S.M. Coxeter. Non-Euclidean Geometry. The University of Toronto Press, first edition,

1942.

9. H.S.M. Coxeter. Introduction to Geometry. Wiley, second edition, 1989.

10. H.S.M. Coxeter. The Real Projective Plane. Springer-Verlag, third edition, 1993.

11. H.S.M. Coxeter. Projective Geometry. Springer-Verlag, second edition, 1994.

12. Ingrid Daubechies. Ten Lectures on Wavelets. SIAM Publications, first edition, 1992.
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16. Manfredo P. do Carmo. Differential Forms and Applications. Universitext. Springer-Verlag,

first edition, 1994.

17. Gerald Farin. Curves and Surfaces for CAGD. Academic Press, fourth edition, 1998.

18. Gerald Farin. NURB Curves and Surfaces, from Projective Geometry to Practical Use. AK

Peters, first edition, 1995.



xx Preface to the First Edition

19. Olivier Faugeras. Three-Dimensional Computer Vision, A Geometric Viewpoint. MIT Press,

first edition, 1996.

20. J.-C. Fiorot and P. Jeannin. Courbes et Surfaces Rationelles. RMA 12. Masson, first edition,

1989.

21. J.-C. Fiorot and P. Jeannin. Courbes Splines Rationelles. RMA 24. Masson, first edition,

1992.
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Chapter 1

Introduction

Je ne crois donc pas avoir fait une œuvre inutile en écrivant le présent Mémoire; je regette

seulement qu’il soit trop long; mais quand j’ai voulu me restreindre, je suis tombé dans

l’obscurité; j’ai préféré passer pour un peu bavard.

—Henri Poincaré, Analysis Situ, 1895

1.1 Geometries: Their Origin, Their Uses

What is geometry? According to Veblen and Young [8], geometry deals with the

properties of figures in space. Etymologically, geometry means the practical sci-

ence of measurement. No wonder geometry plays a fundamental role in mathemat-

ics, physics, astronomy, and engineering. Historically, as explained in more detail by

Coxeter [1], geometry was studied in Egypt about 2000 B.C. Then, it was brought to

Greece by Thales (640–456 B.C.). Thales also began the process of abstracting po-

sitions and straight edges as points and lines, and studying incidence properties. This

line of work was greatly developed by Pythagoras and his disciples, among which

we should distinguish Hippocrates. Indeed, Hippocrates attempted a presentation of

geometry in terms of logical deductions from a few definitions and assumptions. But

it was Euclid (about 300 B.C.) who made fundamental contributions to geometry,

recorded in his immortal Elements, one of the most widely read books in the world.

Euclid’s basic assumptions consist of basic notions concerning magnitudes, and

five postulates. Euclid’s fifth postulate, sometimes called the “parallel postulate,” is

historically very significant. It prompted mathematicians to question the traditional

foundations of geometry, and led them to realize that there are different kinds of

geometries. The fifth postulate can be stated in the following way:

V. If a straight line meets two other straight lines, so as to make the two interior

angles on one side of it together less than two right angles, the other straight

1
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lines will meet if produced on that side on which the angles are less than two

right angles.

Euclid’s fifth postulate is definitely not self-evident. It is also not simple or natural,

and after Euclid, many people tried to deduce it from the other postulates. However,

they succeeded only in replacing it by various equivalent assumptions, of which we

only mention two:

V′. Two parallel lines are equidistant. (Posidonius, first century B.C.).

V′′. The sum of the angles of a triangle is equal to two right angles. (Legendre,

1752–1833).

According to Euclid, two lines are parallel if they are coplanar without intersect-

ing.

It is remarkable that until the eighteenth century, no serious attempts at proving

or disproving Euclid’s fifth postulate were made. Saccheri (1667–1733) and Lam-

bert (1728–1777) attempted to prove Euclid’s fifth postulate, but of course, this was

impossible. This was shown by Lobachevsky (1793–1856) and Bolyai (1802–1860),

who proposed some models of non-Euclidean geometries. Actually, Gauss (1777–

1855) was the first to consider seriously the possibility that a geometry denying

Euclid’s fifth postulate was of some interest. However, this was such a preposterous

idea in those days that he kept these ideas to himself until others had published them

independently.

Thus, circa the 1830s, it was finally realized that there is not just one geometry,

but different kinds of geometries (spherical, hyperbolic, elliptic). The next big step

was taken by Riemann, (1826–1866) who introduced the “infinitesimal approach” to

geometry, wherein the differential of distance is expressed as the square root of the

sum of the squares of the differentials of the coordinates. Riemann studied spherical

spaces of higher dimension, and showed that their geometry is non-Euclidean. Fi-

nally, Cayley (1821–1895) and especially Klein (1849–1925) reached a clear under-

standing of the various geometries and their relationships. Basically, all geometries

can be viewed as embedded in a universal geometry, projective geometry. Projec-

tive geometry itself is non-Euclidean, since two coplanar lines always intersect in a

single point.

Projective geometry was developed in the nineteenth century, mostly by Monge,

Poncelet, Chasles, Steiner, and Von Staudt (but anticipated by Kepler (1571–1630)

and Desargues (1593–1662)). Klein also realized that “a geometry” can be defined

by the set of properties invariant under a certain group of transformations. For ex-

ample, projective properties are invariant under the group of projectivities, affine

properties are invariant under the group of affine bijections, and Euclidean proper-

ties are invariant under rigid motions. Although it is possible to define these various

groups of transformations as certain subgroups of the group of projectivities, such

an approach is quite bewildering to a novice. In order to appreciate such acrobatics,

one has to already know about projective geometry, affine geometry, and Euclidean

geometry.

Since the fifties, geometry has been built on top of linear algebra, as opposed to

axiomatically (as in Veblen and Young [8, 9] or Samuel [6]). Even though geometry
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loses some of its charm presented that way, it has the advantage of receiving a more

unified and simpler treatment.

Affine geometry is basically the geometry of linear algebra. Well, not quite, since

affine maps are not linear maps. The additional ingredient is that affine geometry is

invariant under translations, which are not linear maps! Instead of linear combina-

tions of vectors, we need to consider affine combinations of points, or barycenters

(where the scalars add up to 1). Affine maps preserve barycenters. In some sense,

affine geometry is the geometry of systems of particles and forces acting on them.

Angles and distances are undefined, but parallelism is well defined. The crucial

notion is the notion of ratio. Given any two points a,b and any scalar λ , the point

c= (1−λ )a+λ b is the point on the line (a,b) (assuming a 6= b) such that−→ac = λ
−→
ab,

i.e., the point c is “λ of the way between a and b.” Even though such a geometry

may seem quite restrictive, it allows the handling of polynomial curves and surfaces.

Euclidean geometry is obtained by adding an inner product to affine geometry.

This way, angles and distances can be defined. The maps that preserve the inner

product are the rigid motions. In Euclidean geometry, orthogonality can be defined.

This is a very rich geometry. The structure of rigid motions (rotations and rotations

followed by a flip) is well understood, and plays an important role in rigid body

mechanics.

Projective geometry is, roughly speaking, linear algebra “up to a scalar.” There

is no notion of angle or distance, and projective maps are more general than affine

maps. What is remarkable is that every affine space can be embedded into a pro-

jective space, its projective completion. In such a projective completion, there is a

special hyperplane of “points at infinity.” Affine maps are the projectivities that pre-

serve (globally) this hyperplane at infinity. Thus, affine geometry can be viewed as a

specialization of projective geometry. What is remarkable is that if we consider pro-

jective spaces over the complex field, it is possible to introduce the notion of angle in

a projective manner (via the cross-ratio). This discovery, due to Poncelet, Laguerre,

and Cayley, can be exploited to show that Euclidean geometry is a specialization of

projective geometry.

Besides projective geometry and its specializations, there are other important and

beautiful facets of geometry, notably differential geometry and algebraic geometry.

Nowdays, each one is a major area of mathematics, and it is out of the question to

discuss both in any depth. We will present some basics of the differential geometry

of curves and surfaces. This topic was studied by many, including Euler and Gauss,

who made fundamental contributions. However, we will limit ourselves to the study

of local properties and not even attempt to touch manifolds.

These days, projective geometry is rarely taught at any depth in mathematics de-

partments, and similarly for basic differential geometry. Typically, projective spaces

are defined at the begining of an algebraic geometry course, but modern alge-

braic geometry courses deal with much more advanced topics, such as varieties and

schemes. Similarly, differential geometry courses proceed quickly to manifolds and

Riemannian metrics, but the more elementary “geometry in the small” is cursorily

covered, if at all.
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Paradoxically, with the advent of faster computers, it was realized by manufac-

turers (for instance of cars and planes) that it was possible and desirable to use

computer-aided methods for their design. Computer vision problems (and some

computer graphics problems) can often be formulated in the framework of projec-

tive geometry. Thus, there seems to be an interesting turn of events. After being ne-

glected for decades, stimulated by computer science, old-fashioned geometry seems

to be making a comeback as a fundamental tool used in manufacturing, computer

graphics, computer vision, and motion planning, just to mention some key areas.

We are convinced that geometry will play an important role in computer science

and engineering in the years to come. The demand for technology using 3D graph-

ics, virtual reality, animation techniques, etc., is increasing fast, and it is clear that

storing and processing complex images and complex geometric models of shapes

(face, limbs, organs, etc.) will be required. This book represents an attempt at pre-

senting a coherent view of geometric methods used to tackle problems of a geomet-

ric nature with a computer. We believe that this can be a great way of learning some

old-fashioned (and some new!) geometry while having fun. Furthermore, there are

plenty of opportunities for applying these methods to real-world problems.

While we are interested in the standard (local) differential properties of curves

and surfaces (torsion, curvature), we concentrate on methods for discretizing curves

and surfaces in order to store them and display them efficiently. However, in order

to gain a deeper understanding of this theory of curves and surfaces, we present the

underlying geometric concepts in some detail, in particular, affine, projective, and

Euclidean geometry.

1.2 Prerequisites and Notation

It is assumed that the reader is familiar with the basics of linear algebra, at the level

of Strang [7]. The reader may also consult appropriate chapters on linear algebra in

Lang [3]. For the material on the differential geometry of curves and surfaces and

Lie groups, familiarity with some basics of analysis are assumed. Lang’s text [4] is

more than sufficient as background. A general background in classical geometry is

helpful, but not mandatory. Two excellent sources are Coxeter [2] and Pedoe [5].

We denote the set {0,1,2, . . .} of natural numbers by N, the ring {. . . ,−2,

−1,0,1,2, . . .} of integers by Z, the field of rationals by Q, the field of real numbers

by R, and the field of complex numbers by C. The multiplicative group R−{0} of

reals is denoted by R∗, and similarly, the multiplicative field of complex numbers is

denoted by C∗. We let R+ = {x ∈ R | x≥ 0} denote the set of nonnegative reals.

The n-dimensional vector space of real n-tuples is denoted by Rn, and the com-

plex n-dimensional vector space of complex n-tuples is denoted by Cn.

Given a vector space E , vectors are usually denoted by lowercase letters from the

end of the alphabet, in italic or boldface; for example, u,v,w, x,y,z.

The null vector (0, . . . ,0) is abbreviated as 0 or 0. A vector space consisting

only of the null vector is called a trivial vector space. A trivial vector space {0} is
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sometimes denoted by 0. A vector space E 6= {0} is called a nontrivial vector space.

When dealing with affine spaces, we will use an arrow in order to distinguish be-

tween spaces of points (E,U , etc.) and the corresponding spaces of vectors (
−→
E ,
−→
U ,

etc.).

The dimension of the vector space E is denoted by dim(E). The direct sum of

two vector spaces U,V is denoted by U⊕V . The dual of a vector space E is denoted

by E∗. The kernel of a linear map f : E → F is denoted by Ker f , and the image

by Im f . The transpose of a matrix A is denoted by A⊤. The identity function is

denoted by id, and the n× n-identity matrix is denoted by In, or I. The determinant

of a matrix A is denoted by det(A) or D(A).
The cardinality of a set S is denoted by |S|. Set difference is denoted by

A−B = {x | x ∈ A and x /∈ B}.

A list of symbols in their order of appearance in this book is given at the end of the

book.
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Chapter 2

Basics of Affine Geometry

L’algèbre n’est qu’une géométrie écrite; la géométrie n’est qu’une algèbre figurée.

—Sophie Germain

2.1 Affine Spaces

Geometrically, curves and surfaces are usually considered to be sets of points with

some special properties, living in a space consisting of “points.” Typically, one

is also interested in geometric properties invariant under certain transformations,

for example, translations, rotations, projections, etc. One could model the space of

points as a vector space, but this is not very satisfactory for a number of reasons.

One reason is that the point corresponding to the zero vector (0), called the origin,

plays a special role, when there is really no reason to have a privileged origin. An-

other reason is that certain notions, such as parallelism, are handled in an awkward

manner. But the deeper reason is that vector spaces and affine spaces really have

different geometries. The geometric properties of a vector space are invariant under

the group of bijective linear maps, whereas the geometric properties of an affine

space are invariant under the group of bijective affine maps, and these two groups

are not isomorphic. Roughly speaking, there are more affine maps than linear maps.

Affine spaces provide a better framework for doing geometry. In particular, it

is possible to deal with points, curves, surfaces, etc., in an intrinsic manner, that

is, independently of any specific choice of a coordinate system. As in physics, this

is highly desirable to really understand what is going on. Of course, coordinate

systems have to be chosen to finally carry out computations, but one should learn to

resist the temptation to resort to coordinate systems until it is really necessary.

Affine spaces are the right framework for dealing with motions, trajectories, and

physical forces, among other things. Thus, affine geometry is crucial to a clean

presentation of kinematics, dynamics, and other parts of physics (for example, elas-

ticity). After all, a rigid motion is an affine map, but not a linear map in general.

7
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Also, given an m× n matrix A and a vector b ∈ Rm, the set U = {x ∈ Rn | Ax = b}
of solutions of the system Ax = b is an affine space, but not a vector space (linear

space) in general.

Use coordinate systems only when needed!

This chapter proceeds as follows. We take advantage of the fact that almost ev-

ery affine concept is the counterpart of some concept in linear algebra. We begin by

defining affine spaces, stressing the physical interpretation of the definition in terms

of points (particles) and vectors (forces). Corresponding to linear combinations of

vectors, we define affine combinations of points (barycenters), realizing that we are

forced to restrict our attention to families of scalars adding up to 1. Corresponding to

linear subspaces, we introduce affine subspaces as subsets closed under affine com-

binations. Then, we characterize affine subspaces in terms of certain vector spaces

called their directions. This allows us to define a clean notion of parallelism. Next,

corresponding to linear independence and bases, we define affine independence and

affine frames. We also define convexity. Corresponding to linear maps, we define

affine maps as maps preserving affine combinations. We show that every affine map

is completely defined by the image of one point and a linear map. Then, we investi-

gate briefly some simple affine maps, the translations and the central dilatations. At

this point, we give a glimpse of affine geometry. We prove the theorems of Thales,

Pappus, and Desargues. After this, the definition of affine hyperplanes in terms of

affine forms is reviewed. The section ends with a closer look at the intersection of

affine subspaces.

Our presentation of affine geometry is far from being comprehensive, and it is

biased toward the algorithmic geometry of curves and surfaces. For more details,

the reader is referred to Pedoe [9], Snapper and Troyer [11], Berger [2, 3], Coxeter

[4], Samuel [10], Tisseron [13], and Hilbert and Cohn-Vossen [7].

Suppose we have a particle moving in 3D space and that we want to describe

the trajectory of this particle. If one looks up a good textbook on dynamics, such

as Greenwood [6], one finds out that the particle is modeled as a point, and that the

position of this point x is determined with respect to a “frame” in R3 by a vector.

Curiously, the notion of a frame is rarely defined precisely, but it is easy to infer that

a frame is a pair (O,(e1,e2,e3)) consisting of an origin O (which is a point) together

with a basis of three vectors (e1,e2,e3). For example, the standard frame in R3 has

origin O = (0,0,0) and the basis of three vectors e1 = (1,0,0), e2 = (0,1,0), and

e3 = (0,0,1). The position of a point x is then defined by the “unique vector” from

O to x.

But wait a minute, this definition seems to be defining frames and the position of

a point without defining what a point is! Well, let us identify points with elements of

R3. If so, given any two points a = (a1,a2,a3) and b = (b1,b2,b3), there is a unique

free vector, denoted by
−→
ab, from a to b, the vector

−→
ab = (b1− a1,b2− a2,b3− a3).

Note that

b = a+
−→
ab,
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addition being understood as addition in R3. Then, in the standard frame, given a

point x=(x1,x2,x3), the position of x is the vector
−→
Ox= (x1,x2,x3), which coincides

with the point itself. In the standard frame, points and vectors are identified. Points

and free vectors are illustrated in Figure 2.1.

bc

bc

bc

O

a

b

−→
ab

Fig. 2.1 Points and free vectors.

What if we pick a frame with a different origin, say Ω = (ω1,ω2,ω3), but the

same basis vectors (e1,e2,e3)? This time, the point x = (x1,x2,x3) is defined by two

position vectors:

−→
Ox = (x1,x2,x3)

in the frame (O,(e1,e2,e3)) and

−→
Ωx = (x1−ω1,x2−ω2,x3−ω3)

in the frame (Ω ,(e1,e2,e3)).
This is because

−→
Ox =

−−→
OΩ +

−→
Ωx and

−−→
OΩ = (ω1,ω2,ω3).

We note that in the second frame (Ω ,(e1,e2,e3)), points and position vectors are

no longer identified. This gives us evidence that points are not vectors. It may be

computationally convenient to deal with points using position vectors, but such a

treatment is not frame invariant, which has undesirable effects.

Inspired by physics, we deem it important to define points and properties of

points that are frame invariant. An undesirable side effect of the present approach

shows up if we attempt to define linear combinations of points. First, let us review
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the notion of linear combination of vectors. Given two vectors u and v of coordinates

(u1,u2,u3) and (v1,v2,v3) with respect to the basis (e1,e2,e3), for any two scalars

λ ,µ , we can define the linear combination λ u+ µv as the vector of coordinates

(λ u1 + µv1,λ u2 + µv2,λ u3 + µv3).

If we choose a different basis (e′1,e
′
2,e
′
3) and if the matrix P expressing the vectors

(e′1,e
′
2,e
′
3) over the basis (e1,e2,e3) is

P =




a1 b1 c1

a2 b2 c2

a3 b3 c3


 ,

which means that the columns of P are the coordinates of the e′j over the basis

(e1,e2,e3), since

u1e1 + u2e2 + u3e3 = u′1e′1 + u′2e′2 + u′3e′3

and

v1e1 + v2e2 + v3e3 = v′1e′1 + v′2e′2 + v′3e′3,

it is easy to see that the coordinates (u1,u2,u3) and (v1,v2,v3) of u and v with

respect to the basis (e1,e2,e3) are given in terms of the coordinates (u′1,u
′
2,u
′
3) and

(v′1,v
′
2,v
′
3) of u and v with respect to the basis (e′1,e

′
2,e
′
3) by the matrix equations




u1

u2

u3


= P




u′1
u′2
u′3


 and




v1

v2

v3


= P




v′1
v′2
v′3


 .

From the above, we get




u′1
u′2
u′3


= P−1




u1

u2

u3


 and




v′1
v′2
v′3


= P−1




v1

v2

v3


 ,

and by linearity, the coordinates

(λ u′1 + µv′1,λ u′2 + µv′2,λ u′3 + µv′3)

of λ u+ µv with respect to the basis (e′1,e
′
2,e
′
3) are given by




λ u′1 + µv′1
λ u′2 + µv′2
λ u′3 + µv′3


= λ P−1




u1

u2

u3


+ µP−1




v1

v2

v3


= P−1




λ u1 + µv1

λ u2 + µv2

λ u3 + µv3


 .

Everything worked out because the change of basis does not involve a change of

origin. On the other hand, if we consider the change of frame from the frame

(O,(e1,e2,e3)) to the frame (Ω ,(e1,e2,e3)), where
−−→
OΩ = (ω1,ω2,ω3), given two

points a, b of coordinates (a1,a2,a3) and (b1,b2,b3) with respect to the frame
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(O,(e1,e2,e3)) and of coordinates (a′1,a
′
2,a
′
3) and (b′1,b

′
2,b
′
3) with respect to the

frame (Ω ,(e1,e2,e3)), since

(a′1,a
′
2,a
′
3) = (a1−ω1,a2−ω2,a3−ω3)

and

(b′1,b
′
2,b
′
3) = (b1−ω1,b2−ω2,b3−ω3),

the coordinates of λ a+ µb with respect to the frame (O,(e1,e2,e3)) are

(λ a1 + µb1,λ a2 + µb2,λ a3 + µb3),

but the coordinates

(λ a′1 + µb′1,λ a′2 + µb′2,λ a′3 + µb′3)

of λ a+ µb with respect to the frame (Ω ,(e1,e2,e3)) are

(λ a1 + µb1− (λ + µ)ω1,λ a2 + µb2− (λ + µ)ω2,λ a3 + µb3− (λ + µ)ω3),

which are different from

(λ a1 + µb1−ω1,λ a2 + µb2−ω2,λ a3 + µb3−ω3),

unless λ + µ = 1.

Thus, we have discovered a major difference between vectors and points: The

notion of linear combination of vectors is basis independent, but the notion of linear

combination of points is frame dependent. In order to salvage the notion of linear

combination of points, some restriction is needed: The scalar coefficients must add

up to 1.

A clean way to handle the problem of frame invariance and to deal with points in

a more intrinsic manner is to make a clearer distinction between points and vectors.

We duplicate R3 into two copies, the first copy corresponding to points, where we

forget the vector space structure, and the second copy corresponding to free vectors,

where the vector space structure is important. Furthermore, we make explicit the

important fact that the vector space R3 acts on the set of points R3 : Given any

point a = (a1,a2,a3) and any vector v = (v1,v2,v3), we obtain the point

a+ v = (a1 + v1,a2 + v2,a3 + v3),

which can be thought of as the result of translating a to b using the vector v. We

can imagine that v is placed such that its origin coincides with a and that its tip

coincides with b. This action + : R3×R3 → R3 satisfies some crucial properties.

For example,

a+ 0 = a,

(a+ u)+ v = a+(u+ v),
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and for any two points a,b, there is a unique free vector
−→
ab such that

b = a+
−→
ab.

It turns out that the above properties, although trivial in the case of R3, are all that

is needed to define the abstract notion of affine space (or affine structure). The basic

idea is to consider two (distinct) sets E and
−→
E , where E is a set of points (with no

structure) and
−→
E is a vector space (of free vectors) acting on the set E .

Did you say “A fine space”?

Intuitively, we can think of the elements of
−→
E as forces moving the points in E ,

considered as physical particles. The effect of applying a force (free vector) u ∈ −→E
to a point a ∈ E is a translation. By this, we mean that for every force u ∈ −→E , the

action of the force u is to “move” every point a ∈ E to the point a+ u ∈ E obtained

by the translation corresponding to u viewed as a vector. Since translations can be

composed, it is natural that
−→
E is a vector space.

For simplicity, it is assumed that all vector spaces under consideration are defined

over the field R of real numbers. Most of the definitions and results also hold for

an arbitrary field K, although some care is needed when dealing with fields of char-

acteristic different from zero (see the problems). It is also assumed that all families

(λi)i∈I of scalars have finite support. Recall that a family (λi)i∈I of scalars has finite

support if λi = 0 for all i ∈ I− J, where J is a finite subset of I. Obviously, finite

families of scalars have finite support, and for simplicity, the reader may assume

that all families of scalars are finite. The formal definition of an affine space is as

follows.

Definition 2.1. An affine space is either the degenerate space reduced to the empty

set, or a triple
〈
E,
−→
E ,+

〉
consisting of a nonempty set E (of points), a vector space

−→
E (of translations, or free vectors), and an action + : E ×−→E → E , satisfying the

following conditions.

(A1) a+ 0 = a, for every a ∈ E .

(A2) (a+ u)+ v= a+(u+ v), for every a ∈ E , and every u,v ∈ −→E .

(A3) For any two points a,b ∈ E , there is a unique u ∈ −→E such that a+ u = b.

The unique vector u ∈ −→E such that a+ u = b is denoted by
−→
ab, or sometimes by

ab, or even by b− a. Thus, we also write

b = a+
−→
ab

(or b = a+ ab, or even b = a+(b− a)).

The dimension of the affine space
〈
E,
−→
E ,+

〉
is the dimension dim(

−→
E ) of the

vector space
−→
E . For simplicity, it is denoted by dim(E).
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Conditions (A1) and (A2) say that the (abelian) group
−→
E acts on E , and condition

(A3) says that
−→
E acts transitively and faithfully on E . Note that

−−−−−→
a(a+ v) = v

for all a ∈ E and all v ∈ −→E , since
−−−−−→
a(a+ v) is the unique vector such that a+ v =

a+
−−−−−→
a(a+ v). Thus, b = a+ v is equivalent to

−→
ab = v. Figure 2.2 gives an intuitive

picture of an affine space. It is natural to think of all vectors as having the same

origin, the null vector.

bc

bc

bc

E
−→
E

a

b = a+u

c = a+w

u

v

w

Fig. 2.2 Intuitive picture of an affine space.

The axioms defining an affine space
〈
E,
−→
E ,+

〉
can be interpreted intuitively

as saying that E and
−→
E are two different ways of looking at the same object, but

wearing different sets of glasses, the second set of glasses depending on the choice

of an “origin” in E . Indeed, we can choose to look at the points in E , forgetting that

every pair (a,b) of points defines a unique vector
−→
ab in

−→
E , or we can choose to look

at the vectors u in
−→
E , forgetting the points in E . Furthermore, if we also pick any

point a in E , a point that can be viewed as an origin in E , then we can recover all

the points in E as the translated points a+ u for all u ∈ −→E . This can be formalized

by defining two maps between E and
−→
E .

For every a ∈ E , consider the mapping from
−→
E to E given by

u 7→ a+ u,

where u ∈−→E , and consider the mapping from E to
−→
E given by

b 7→ −→ab,
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where b ∈ E . The composition of the first mapping with the second is

u 7→ a+ u 7→ −−−−−→a(a+ u),

which, in view of (A3), yields u. The composition of the second with the first map-

ping is

b 7→ −→ab 7→ a+
−→
ab,

which, in view of (A3), yields b. Thus, these compositions are the identity from
−→
E

to
−→
E and the identity from E to E , and the mappings are both bijections.

When we identify E with
−→
E via the mapping b 7→ −→ab, we say that we consider E

as the vector space obtained by taking a as the origin in E , and we denote it by Ea.

Because Ea is a vector space, to be consistent with our notational conventions we

should use the notation
−→
Ea (using an arrow), instead of Ea. However, for simplicity,

we stick to the notation Ea.

Thus, an affine space
〈
E,
−→
E ,+

〉
is a way of defining a vector space structure on

a set of points E , without making a commitment to a fixed origin in E . Nevertheless,

as soon as we commit to an origin a in E , we can view E as the vector space Ea.

However, we urge the reader to think of E as a physical set of points and of
−→
E as

a set of forces acting on E , rather than reducing E to some isomorphic copy of Rn.

After all, points are points, and not vectors! For notational simplicity, we will often

denote an affine space
〈
E,
−→
E ,+

〉
by (E,

−→
E ), or even by E . The vector space

−→
E is

called the vector space associated with E .

� One should be careful about the overloading of the addition symbol +.

Addition is well-defined on vectors, as in u+ v; the translate a+ u of a

point a∈ E by a vector u∈−→E is also well-defined, but addition of points a+b does

not make sense. In this respect, the notation b− a for the unique vector u such that

b = a+u is somewhat confusing, since it suggests that points can be subtracted (but

not added!). Yet, we will see in Section 4.1 that it is possible to make sense of linear

combinations of points, and even mixed linear combinations of points and vectors.

Any vector space
−→
E has an affine space structure specified by choosing E =

−→
E ,

and letting + be addition in the vector space
−→
E . We will refer to the affine structure〈−→

E ,
−→
E ,+

〉
on a vector space

−→
E as the canonical (or natural) affine structure on

−→
E . In particular, the vector space Rn can be viewed as the affine space

〈
Rn,Rn,+

〉
,

denoted by An. In general, if K is any field, the affine space
〈
Kn,Kn,+

〉
is denoted

by An
K . In order to distinguish between the double role played by members of Rn,

points and vectors, we will denote points by row vectors, and vectors by column

vectors. Thus, the action of the vector space Rn over the set Rn simply viewed as a

set of points is given by
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(a1, . . . ,an)+




u1

...

un


= (a1 + u1, . . . ,an + un).

We will also use the convention that if x = (x1, . . . ,xn) ∈ Rn, then the column vec-

tor associated with x is denoted by x (in boldface notation). Abusing the notation

slightly, if a ∈ Rn is a point, we also write a ∈ An. The affine space An is called the

real affine space of dimension n. In most cases, we will consider n = 1,2,3.

2.2 Examples of Affine Spaces

Let us now give an example of an affine space that is not given as a vector space (at

least, not in an obvious fashion). Consider the subset L of A2 consisting of all points

(x,y) satisfying the equation

x+ y− 1= 0.

The set L is the line of slope −1 passing through the points (1,0) and (0,1) shown

in Figure 2.3.

bc

bc

L

Fig. 2.3 An affine space: the line of equation x+ y−1 = 0.

The line L can be made into an official affine space by defining the action + : L×
R→ L of R on L defined such that for every point (x,1− x) on L and any u ∈R,

(x,1− x)+ u = (x+ u,1− x− u).
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It is immediately verified that this action makes L into an affine space. For example,

for any two points a = (a1,1− a1) and b = (b1,1− b1) on L, the unique (vector)

u ∈R such that b = a+u is u = b1−a1. Note that the vector space R is isomorphic

to the line of equation x+ y = 0 passing through the origin.

Similarly, consider the subset H of A3 consisting of all points (x,y,z) satisfying

the equation

x+ y+ z− 1= 0.

The set H is the plane passing through the points (1,0,0), (0,1,0), and (0,0,1). The

plane H can be made into an official affine space by defining the action + : H ×
R2→ H of R2 on H defined such that for every point (x,y,1− x− y) on H and any(

u

v

)
∈ R2,

(x,y,1− x− y)+

(
u

v

)
= (x+ u,y+ v,1− x− u− y− v).

For a slightly wilder example, consider the subset P of A3 consisting of all points

(x,y,z) satisfying the equation

x2 + y2− z = 0.

The set P is a paraboloid of revolution, with axis Oz. The surface P can be made into

an official affine space by defining the action + : P×R2→ P of R2 on P defined

such that for every point (x,y,x2 + y2) on P and any

(
u

v

)
∈ R2,

(x,y,x2 + y2)+

(
u

v

)
= (x+ u,y+ v,(x+ u)2+(y+ v)2).

This should dispell any idea that affine spaces are dull. Affine spaces not already

equipped with an obvious vector space structure arise in projective geometry. In-

deed, we will see in Section 5.1 that the complement of a hyperplane in a projective

space has an affine structure.

2.3 Chasles’s Identity

Given any three points a,b,c ∈ E , since c = a+−→ac, b = a+
−→
ab, and c = b+

−→
bc, we

get

c = b+
−→
bc = (a+

−→
ab)+

−→
bc = a+(

−→
ab+

−→
bc)

by (A2), and thus, by (A3), −→
ab+

−→
bc =−→ac,

which is known as Chasles’s identity, and illustrated in Figure 2.4.
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bc

bc

bc

E
−→
E

a

b

c

−→
ab

−→
bc

−→ac

Fig. 2.4 Points and corresponding vectors in affine geometry.

Since a = a+−→aa and by (A1) a = a+ 0, by (A3) we get

−→aa = 0.

Thus, letting a = c in Chasles’s identity, we get

−→
ba =−−→ab.

Given any four points a,b,c,d ∈ E , since by Chasles’s identity

−→
ab+

−→
bc =

−→
ad+

−→
dc =−→ac,

we have the parallelogram law

−→
ab =

−→
dc iff

−→
bc =

−→
ad.

2.4 Affine Combinations, Barycenters

A fundamental concept in linear algebra is that of a linear combination. The cor-

responding concept in affine geometry is that of an affine combination, also called

a barycenter. However, there is a problem with the naive approach involving a co-

ordinate system, as we saw in Section 2.1. Since this problem is the reason for

introducing affine combinations, at the risk of boring certain readers, we give an-

other example showing what goes wrong if we are not careful in defining linear

combinations of points.

Consider R2 as an affine space, under its natural coordinate system with origin

O = (0,0) and basis vectors

(
1

0

)
and

(
0

1

)
. Given any two points a = (a1,a2) and
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b = (b1,b2), it is natural to define the affine combination λ a+ µb as the point of

coordinates

(λ a1 + µb1,λ a2 + µb2).

Thus, when a = (−1,−1) and b = (2,2), the point a+ b is the point c = (1,1).
Let us now consider the new coordinate system with respect to the origin c =

(1,1) (and the same basis vectors). This time, the coordinates of a are (−2,−2), the

coordinates of b are (1,1), and the point a+b is the point d of coordinates (−1,−1).
However, it is clear that the point d is identical to the origin O = (0,0) of the first

coordinate system.

Thus, a+ b corresponds to two different points depending on which coordinate

system is used for its computation!

This shows that some extra condition is needed in order for affine combinations

to make sense. It turns out that if the scalars sum up to 1, the definition is intrinsic,

as the following lemma shows.

Lemma 2.1. Given an affine space E, let (ai)i∈I be a family of points in E, and let

(λi)i∈I be a family of scalars. For any two points a,b ∈ E, the following properties

hold:

(1) If ∑i∈I λi = 1, then

a+∑
i∈I

λi
−→aai = b+∑

i∈I

λi
−→
bai.

(2) If ∑i∈I λi = 0, then

∑
i∈I

λi
−→aai = ∑

i∈I

λi
−→
bai.

Proof. (1) By Chasles’s identity (see Section 2.3), we have

a+∑
i∈I

λi
−→aai = a+∑

i∈I

λi(
−→
ab+

−→
bai)

= a+

(
∑
i∈I

λi

)−→
ab+∑

i∈I

λi
−→
bai

= a+
−→
ab+∑

i∈I

λi

−→
bai since ∑i∈I λi = 1

= b+∑
i∈I

λi
−→
bai since b = a+

−→
ab.

(2) We also have

∑
i∈I

λi
−→aai = ∑

i∈I

λi(
−→
ab+

−→
bai)

=

(
∑
i∈I

λi

)−→
ab+∑

i∈I

λi

−→
bai

= ∑
i∈I

λi
−→
bai,
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since ∑i∈I λi = 0. ⊓⊔

Thus, by Lemma 2.1, for any family of points (ai)i∈I in E , for any family (λi)i∈I

of scalars such that ∑i∈I λi = 1, the point

x = a+∑
i∈I

λi
−→aai

is independent of the choice of the origin a ∈ E . This property motivates the follow-

ing definition.

Definition 2.2. For any family of points (ai)i∈I in E , for any family (λi)i∈I of scalars

such that ∑i∈I λi = 1, and for any a ∈ E , the point

a+∑
i∈I

λi
−→aai

(which is independent of a∈E , by Lemma 2.1) is called the barycenter (or barycen-

tric combination, or affine combination) of the points ai assigned the weights λi, and

it is denoted by

∑
i∈I

λiai.

In dealing with barycenters, it is convenient to introduce the notion of a weighted

point, which is just a pair (a,λ ), where a∈ E is a point, and λ ∈R is a scalar. Then,

given a family of weighted points ((ai,λi))i∈I , where ∑i∈I λi = 1, we also say that

the point ∑i∈I λiai is the barycenter of the family of weighted points ((ai,λi))i∈I .

Note that the barycenter x of the family of weighted points ((ai,λi))i∈I is the

unique point such that

−→ax = ∑
i∈I

λi
−→aai for every a ∈ E,

and setting a = x, the point x is the unique point such that

∑
i∈I

λi
−→xai = 0.

In physical terms, the barycenter is the center of mass of the family of weighted

points ((ai,λi))i∈I (where the masses have been normalized, so that ∑i∈I λi = 1, and

negative masses are allowed).

Remarks:

(1) Since the barycenter of a family ((ai,λi))i∈I of weighted points is defined for

families (λi)i∈I of scalars with finite support (and such that ∑i∈I λi = 1), we

might as well assume that I is finite. Then, for all m≥ 2, it is easy to prove that

the barycenter of m weighted points can be obtained by repeated computations

of barycenters of two weighted points.
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(2) This result still holds, provided that the field K has at least three distinct ele-

ments, but the proof is trickier!

(3) When ∑i∈I λi = 0, the vector ∑i∈I λi
−→aai does not depend on the point a, and

we may denote it by ∑i∈I λiai. This observation will be used in Section 4.1 to

define a vector space in which linear combinations of both points and vectors

make sense, regardless of the value of ∑i∈I λi.

Figure 2.5 illustrates the geometric construction of the barycenters g1 and g2 of

the weighted points
(
a, 1

4

)
,
(
b, 1

4

)
, and

(
c, 1

2

)
, and (a,−1), (b,1), and (c,1).

The point g1 can be constructed geometrically as the middle of the segment join-

ing c to the middle 1
2
a+ 1

2
b of the segment (a,b), since

g1 =
1

2

(
1

2
a+

1

2
b

)
+

1

2
c.

The point g2 can be constructed geometrically as the point such that the middle
1
2
b+ 1

2
c of the segment (b,c) is the middle of the segment (a,g2), since

g2 =−a+ 2

(
1

2
b+

1

2
c

)
.

bc bc

bc

bc

bc

bc bc

bc

bc

bc

a b

c

g1

a b

c
g2

Fig. 2.5 Barycenters, g1 =
1
4

a+ 1
4

b+ 1
2

c, g2 =−a+b+ c.

Later on, we will see that a polynomial curve can be defined as a set of barycen-

ters of a fixed number of points. For example, let (a,b,c,d) be a sequence of points
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in A2. Observe that

(1− t)3 + 3t(1− t)2+ 3t2(1− t)+ t3 = 1,

since the sum on the left-hand side is obtained by expanding (t +(1− t))3 = 1 using

the binomial formula. Thus,

(1− t)3 a+ 3t(1− t)2 b+ 3t2(1− t)c+ t3 d

is a well-defined affine combination. Then, we can define the curve F : A→A2 such

that

F(t) = (1− t)3 a+ 3t(1− t)2b+ 3t2(1− t)c+ t3 d.

Such a curve is called a Bézier curve, and (a,b,c,d) are called its control points.

Note that the curve passes through a and d, but generally not through b and c. We

show in Chapter 18 (on the web site) how any point F(t) on the curve can be con-

structed using an algorithm performing affine interpolation steps (the de Casteljau

algorithm).

2.5 Affine Subspaces

In linear algebra, a (linear) subspace can be characterized as a nonempty subset of

a vector space closed under linear combinations. In affine spaces, the notion cor-

responding to the notion of (linear) subspace is the notion of affine subspace. It is

natural to define an affine subspace as a subset of an affine space closed under affine

combinations.

Definition 2.3. Given an affine space
〈
E,
−→
E ,+

〉
, a subset V of E is an affine sub-

space (of
〈
E,
−→
E ,+

〉
) if for every family of weighted points ((ai,λi))i∈I in V such

that ∑i∈I λi = 1, the barycenter ∑i∈I λiai belongs to V .

An affine subspace is also called a flat by some authors. According to Definition

2.3, the empty set is trivially an affine subspace, and every intersection of affine

subspaces is an affine subspace.

As an example, consider the subset U of R2 defined by

U =
{
(x,y) ∈ R2 | ax+ by = c

}
,

i.e., the set of solutions of the equation

ax+ by = c,

where it is assumed that a 6= 0 or b 6= 0. Given any m points (xi,yi) ∈U and any m

scalars λi such that λ1 + · · ·+λm = 1, we claim that
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m

∑
i=1

λi(xi,yi) ∈U.

Indeed, (xi,yi) ∈U means that

axi + byi = c,

and if we multiply both sides of this equation by λi and add up the resulting m

equations, we get
m

∑
i=1

(λiaxi +λibyi) =
m

∑
i=1

λic,

and since λ1 + · · ·+λm = 1, we get

a

(
m

∑
i=1

λixi

)
+ b

(
m

∑
i=1

λiyi

)
=

(
m

∑
i=1

λi

)
c = c,

which shows that

(
m

∑
i=1

λixi,
m

∑
i=1

λiyi

)
=

m

∑
i=1

λi(xi,yi) ∈U.

Thus, U is an affine subspace of A2. In fact, it is just a usual line in A2.

It turns out that U is closely related to the subset of R2 defined by

−→
U =

{
(x,y) ∈ R2 | ax+ by = 0

}
,

i.e., the set of solutions of the homogeneous equation

ax+ by = 0

obtained by setting the right-hand side of ax+ by = c to zero. Indeed, for any m

scalars λi, the same calculation as above yields that

m

∑
i=1

λi(xi,yi) ∈
−→
U ,

this time without any restriction on the λi, since the right-hand side of the equation

is null. Thus,
−→
U is a subspace of R2. In fact,

−→
U is one-dimensional, and it is just

a usual line in R2. This line can be identified with a line passing through the origin

of A2, a line that is parallel to the line U of equation ax+ by = c, as illustrated in

Figure 2.6.

Now, if (x0,y0) is any point in U , we claim that

U = (x0,y0)+
−→
U ,
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U

−→
U

Fig. 2.6 An affine line U and its direction.

where

(x0,y0)+
−→
U =

{
(x0 + u1,y0 + u2) | (u1,u2) ∈

−→
U
}
.

First, (x0,y0)+
−→
U ⊆U , since ax0 +by0 = c and au1+bu2 = 0 for all (u1,u2) ∈

−→
U .

Second, if (x,y) ∈U , then ax+ by = c, and since we also have ax0 + by0 = c, by

subtraction, we get

a(x− x0)+ b(y− y0) = 0,

which shows that (x− x0,y− y0) ∈
−→
U , and thus (x,y) ∈ (x0,y0)+

−→
U . Hence, we

also have U ⊆ (x0,y0)+
−→
U , and U = (x0,y0)+

−→
U .

The above example shows that the affine line U defined by the equation

ax+ by = c

is obtained by “translating” the parallel line
−→
U of equation

ax+ by = 0

passing through the origin. In fact, given any point (x0,y0) ∈U ,

U = (x0,y0)+
−→
U .
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More generally, it is easy to prove the following fact. Given any m×n matrix A and

any vector b ∈ Rm, the subset U of Rn defined by

U = {x ∈Rn | Ax = b}

is an affine subspace of An.

Actually, observe that Ax= b should really be written as Ax⊤= b, to be consistent

with our convention that points are represented by row vectors. We can also use the

boldface notation for column vectors, in which case the equation is written as Ax =
b. For the sake of minimizing the amount of notation, we stick to the simpler (yet

incorrect) notation Ax = b. If we consider the corresponding homogeneous equation

Ax = 0, the set
−→
U = {x ∈ Rn | Ax = 0}

is a subspace of Rn, and for any x0 ∈U , we have

U = x0 +
−→
U .

This is a general situation. Affine subspaces can be characterized in terms of sub-

spaces of
−→
E . Let V be a nonempty subset of E . For every family (a1, . . . ,an) in V ,

for any family (λ1, . . . ,λn) of scalars, and for every point a ∈ V , observe that x ∈ E

given by

x = a+
n

∑
i=1

λi
−→aai

is the barycenter of the family of weighted points

(
(a1,λ1), . . . ,(an,λn),

(
a,1−

n

∑
i=1

λi

))
,

since
n

∑
i=1

λi +
(

1−
n

∑
i=1

λi

)
= 1.

Given any point a ∈ E and any subset
−→
V of

−→
E , let a+

−→
V denote the following

subset of E:

a+
−→
V =

{
a+ v | v ∈ −→V

}
.

Lemma 2.2. Let
〈
E,
−→
E ,+

〉
be an affine space.

(1) A nonempty subset V of E is an affine subspace iff for every point a ∈V, the set

−→
Va = {−→ax | x ∈V}

is a subspace of
−→
E . Consequently, V = a+

−→
Va . Furthermore,
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−→
V = {−→xy | x,y ∈V}

is a subspace of
−→
E and

−→
Va =

−→
V for all a ∈ E. Thus, V = a+

−→
V .

(2) For any subspace
−→
V of

−→
E and for any a ∈ E, the set V = a+

−→
V is an affine

subspace.

Proof. The proof is straightforward, and is omitted. It is also given in Gallier [5].

⊓⊔

In particular, when E is the natural affine space associated with a vector space
−→
E , Lemma 2.2 shows that every affine subspace of E is of the form u+

−→
U , for a

subspace
−→
U of

−→
E . The subspaces of

−→
E are the affine subspaces of E that contain

0.

The subspace
−→
V associated with an affine subspace V is called the direction of

V . It is also clear that the map + : V ×−→V →V induced by + : E×−→E → E confers

to
〈
V,
−→
V ,+

〉
an affine structure. Figure 2.7 illustrates the notion of affine subspace.

bc

E
−→
E

a

V = a+
−→
V

−→
V

Fig. 2.7 An affine subspace V and its direction
−→
V .

By the dimension of the subspace V , we mean the dimension of
−→
V .

An affine subspace of dimension 1 is called a line, and an affine subspace of

dimension 2 is called a plane.

An affine subspace of codimension 1 is called a hyperplane (recall that a sub-

space F of a vector space E has codimension 1 iff there is some subspace G of

dimension 1 such that E = F ⊕G, the direct sum of F and G, see Strang [12] or

Lang [8]).

We say that two affine subspaces U and V are parallel if their directions are

identical. Equivalently, since
−→
U =

−→
V , we have U = a+

−→
U and V = b+

−→
U for any

a ∈U and any b ∈V , and thus V is obtained from U by the translation
−→
ab.
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In general, when we talk about n points a1, . . . ,an, we mean the sequence

(a1, . . . ,an), and not the set {a1, . . . ,an} (the ai’s need not be distinct).

By Lemma 2.2, a line is specified by a point a ∈ E and a nonzero vector v ∈ −→E ,

i.e., a line is the set of all points of the form a+λ v, for λ ∈ R.

We say that three points a,b,c are collinear if the vectors
−→
ab and −→ac are linearly

dependent. If two of the points a,b,c are distinct, say a 6= b, then there is a unique

λ ∈ R such that −→ac = λ
−→
ab, and we define the ratio

−→ac−→
ab

= λ .

A plane is specified by a point a ∈ E and two linearly independent vectors u,v ∈
−→
E , i.e., a plane is the set of all points of the form a+λ u+ µv, for λ ,µ ∈ R.

We say that four points a,b,c,d are coplanar if the vectors
−→
ab,−→ac, and

−→
ad are

linearly dependent. Hyperplanes will be characterized a little later.

Lemma 2.3. Given an affine space
〈
E,
−→
E ,+

〉
, for any family (ai)i∈I of points in E,

the set V of barycenters ∑i∈I λiai (where ∑i∈I λi = 1) is the smallest affine subspace

containing (ai)i∈I .

Proof. If (ai)i∈I is empty, then V = /0, because of the condition ∑i∈I λi = 1. If (ai)i∈I

is nonempty, then the smallest affine subspace containing (ai)i∈I must contain the

set V of barycenters ∑i∈I λiai, and thus, it is enough to show that V is closed under

affine combinations, which is immediately verified. ⊓⊔

Given a nonempty subset S of E , the smallest affine subspace of E generated by

S is often denoted by 〈S〉. For example, a line specified by two distinct points a and

b is denoted by 〈a,b〉, or even (a,b), and similarly for planes, etc.

Remarks:

(1) Since it can be shown that the barycenter of n weighted points can be obtained

by repeated computations of barycenters of two weighted points, a nonempty

subset V of E is an affine subspace iff for every two points a,b ∈ V , the set

V contains all barycentric combinations of a and b. If V contains at least two

points, then V is an affine subspace iff for any two distinct points a,b ∈ V ,

the set V contains the line determined by a and b, that is, the set of all points

(1−λ )a+λ b, λ ∈ R.

(2) This result still holds if the field K has at least three distinct elements, but the

proof is trickier!

2.6 Affine Independence and Affine Frames

Corresponding to the notion of linear independence in vector spaces, we have the

notion of affine independence. Given a family (ai)i∈I of points in an affine space

E , we will reduce the notion of (affine) independence of these points to the (linear)

independence of the families (−−→aia j) j∈(I−{i}) of vectors obtained by choosing any ai
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as an origin. First, the following lemma shows that it is sufficient to consider only

one of these families.

Lemma 2.4. Given an affine space
〈
E,
−→
E ,+

〉
, let (ai)i∈I be a family of points

in E. If the family (−−→aia j) j∈(I−{i}) is linearly independent for some i ∈ I, then

(−−→aia j) j∈(I−{i}) is linearly independent for every i ∈ I.

Proof. Assume that the family (−−→aia j) j∈(I−{i}) is linearly independent for some spe-

cific i ∈ I. Let k ∈ I with k 6= i, and assume that there are some scalars (λ j) j∈(I−{k})
such that

∑
j∈(I−{k})

λ j
−−→aka j = 0.

Since
−−→aka j =

−−→akai +
−−→aia j,

we have

∑
j∈(I−{k})

λ j
−−→aka j = ∑

j∈(I−{k})
λ j
−−→akai + ∑

j∈(I−{k})
λ j
−−→aia j,

= ∑
j∈(I−{k})

λ j
−−→akai + ∑

j∈(I−{i,k})
λ j
−−→aia j,

= ∑
j∈(I−{i,k})

λ j
−−→aia j−

(
∑

j∈(I−{k})
λ j

)
−−→aiak,

and thus

∑
j∈(I−{i,k})

λ j
−−→aia j−

(
∑

j∈(I−{k})
λ j

)
−−→aiak = 0.

Since the family (−−→aia j) j∈(I−{i}) is linearly independent, we must have λ j = 0 for all

j ∈ (I−{i,k}) and ∑ j∈(I−{k}) λ j = 0, which implies that λ j = 0 for all j ∈ (I−{k}).
⊓⊔

We define affine independence as follows.

Definition 2.4. Given an affine space
〈
E,
−→
E ,+

〉
, a family (ai)i∈I of points in E is

affinely independent if the family (−−→aia j) j∈(I−{i}) is linearly independent for some

i ∈ I.

Definition 2.4 is reasonable, since by Lemma 2.4, the independence of the family

(−−→aia j) j∈(I−{i}) does not depend on the choice of ai. A crucial property of linearly

independent vectors (u1, . . . ,um) is that if a vector v is a linear combination

v =
m

∑
i=1

λiui

of the ui, then the λi are unique. A similar result holds for affinely independent

points.
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Lemma 2.5. Given an affine space
〈
E,
−→
E ,+

〉
, let (a0, . . . ,am) be a family of m+ 1

points in E. Let x ∈ E, and assume that x = ∑m
i=0 λiai, where ∑m

i=0 λi = 1. Then, the

family (λ0, . . . ,λm) such that x = ∑m
i=0 λiai is unique iff the family (−−→a0a1, . . . ,

−−→a0am)
is linearly independent.

Proof. The proof is straightforward and is omitted. It is also given in Gallier [5].

⊓⊔

Lemma 2.5 suggests the notion of affine frame. Affine frames are the affine ana-

logues of bases in vector spaces. Let
〈
E,
−→
E ,+

〉
be a nonempty affine space, and let

(a0, . . . ,am) be a family of m+ 1 points in E . The family (a0, . . . ,am) determines

the family of m vectors (−−→a0a1, . . . ,
−−→a0am) in

−→
E . Conversely, given a point a0 in E

and a family of m vectors (u1, . . . ,um) in
−→
E , we obtain the family of m+ 1 points

(a0, . . . ,am) in E , where ai = a0 + ui, 1≤ i≤ m.

Thus, for any m ≥ 1, it is equivalent to consider a family of m + 1 points

(a0, . . . ,am) in E , and a pair (a0,(u1, . . . ,um)), where the ui are vectors in
−→
E . Figure

2.8 illustrates the notion of affine independence.

bc

bc

bc

E
−→
E

a0 a1

a2

−−→a0a1

−−→a0a2

Fig. 2.8 Affine independence and linear independence.

Remark: The above observation also applies to infinite families (ai)i∈I of points in

E and families (−→ui )i∈I−{0} of vectors in
−→
E , provided that the index set I contains 0.

When (−−→a0a1, . . . ,
−−→a0am) is a basis of

−→
E then, for every x ∈ E , since x = a0 +

−→a0x,

there is a unique family (x1, . . . ,xm) of scalars such that

x = a0 + x1
−−→a0a1 + · · ·+ xm

−−→a0am.
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The scalars (x1, . . . ,xm) may be considered as coordinates with respect to

(a0,(
−−→a0a1, . . . ,

−−→a0am)). Since

x = a0 +
m

∑
i=1

xi
−−→a0ai iff x =

(
1−

m

∑
i=1

xi

)
a0 +

m

∑
i=1

xiai,

x ∈ E can also be expressed uniquely as

x =
m

∑
i=0

λiai

with ∑m
i=0 λi = 1, and where λ0 = 1−∑m

i=1 xi, and λi = xi for 1≤ i≤m. The scalars

(λ0, . . . ,λm) are also certain kinds of coordinates with respect to (a0, . . . ,am). All

this is summarized in the following definition.

Definition 2.5. Given an affine space
〈
E,
−→
E ,+

〉
, an affine frame with origin a0 is a

family (a0, . . . ,am) of m+1 points in E such that the list of vectors (−−→a0a1, . . . ,
−−→a0am)

is a basis of
−→
E . The pair (a0,(

−−→a0a1, . . . ,
−−→a0am)) is also called an affine frame with

origin a0. Then, every x ∈ E can be expressed as

x = a0 + x1
−−→a0a1 + · · ·+ xm

−−→a0am

for a unique family (x1, . . . ,xm) of scalars, called the coordinates of x w.r.t. the affine

frame (a0,(
−−→a0a1, . . .,

−−→a0am)). Furthermore, every x ∈ E can be written as

x = λ0a0 + · · ·+λmam

for some unique family (λ0, . . . ,λm) of scalars such that λ0 + · · ·+λm = 1 called the

barycentric coordinates of x with respect to the affine frame (a0, . . . ,am).

The coordinates (x1, . . . ,xm) and the barycentric coordinates (λ0, . . ., λm) are re-

lated by the equations λ0 = 1−∑m
i=1 xi and λi = xi, for 1≤ i≤m. An affine frame is

called an affine basis by some authors. A family (ai)i∈I of points in E is affinely de-

pendent if it is not affinely independent. We can also characterize affinely dependent

families as follows.

Lemma 2.6. Given an affine space
〈
E,
−→
E ,+

〉
, let (ai)i∈I be a family of points in E.

The family (ai)i∈I is affinely dependent iff there is a family (λi)i∈I such that λ j 6= 0

for some j ∈ I, ∑i∈I λi = 0, and ∑i∈I λi
−→xai = 0 for every x ∈ E.

Proof. By Lemma 2.5, the family (ai)i∈I is affinely dependent iff the family of vec-

tors (−−→aia j) j∈(I−{i}) is linearly dependent for some i ∈ I. For any i ∈ I, the family

(−−→aia j) j∈(I−{i}) is linearly dependent iff there is a family (λ j) j∈(I−{i}) such that λ j 6= 0

for some j, and such that

∑
j∈(I−{i})

λ j
−−→aia j = 0.

Then, for any x ∈ E , we have
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∑
j∈(I−{i})

λ j
−−→aia j = ∑

j∈(I−{i})
λ j(
−→xa j−−→xai)

= ∑
j∈(I−{i})

λ j
−→xa j−

(
∑

j∈(I−{i})
λ j

)
−→xai,

and letting λi =−
(
∑ j∈(I−{i}) λ j

)
, we get ∑i∈I λi

−→xai = 0, with ∑i∈I λi = 0 and λ j 6= 0

for some j ∈ I. The converse is obvious by setting x = ai for some i such that λi 6= 0,

since ∑i∈I λi = 0 implies that λ j 6= 0, for some j 6= i. ⊓⊔

Even though Lemma 2.6 is rather dull, it is one of the key ingredients in the proof

of beautiful and deep theorems about convex sets, such as Carathéodory’s theorem,

Radon’s theorem, and Helly’s theorem (see Section 3.1).

A family of two points (a,b) in E is affinely independent iff
−→
ab 6= 0, iff a 6= b. If

a 6= b, the affine subspace generated by a and b is the set of all points (1−λ )a+λ b,

which is the unique line passing through a and b. A family of three points (a,b,c) in

E is affinely independent iff
−→
ab and −→ac are linearly independent, which means that

a, b, and c are not on the same line (they are not collinear). In this case, the affine

subspace generated by (a,b,c) is the set of all points (1−λ−µ)a+λ b+µc, which

is the unique plane containing a, b, and c. A family of four points (a,b,c,d) in E is

affinely independent iff
−→
ab, −→ac, and

−→
ad are linearly independent, which means that

a, b, c, and d are not in the same plane (they are not coplanar). In this case, a, b,

c, and d are the vertices of a tetrahedron. Figure 2.9 shows affine frames and their

convex hulls for |I|= 0,1,2,3.

Given n+ 1 affinely independent points (a0, . . . ,an) in E , we can consider the

set of points λ0a0 + · · ·+λnan, where λ0 + · · ·+λn = 1 and λi ≥ 0 (λi ∈ R). Such

affine combinations are called convex combinations. This set is called the convex

hull of (a0, . . . ,an) (or n-simplex spanned by (a0, . . . ,an)). When n = 1, we get the

segment between a0 and a1, including a0 and a1. When n = 2, we get the interior

of the triangle whose vertices are a0,a1,a2, including boundary points (the edges).

When n = 3, we get the interior of the tetrahedron whose vertices are a0,a1,a2,a3,

including boundary points (faces and edges). The set

{a0 +λ1
−−→a0a1 + · · ·+λn

−−→a0an | where 0≤ λi ≤ 1 (λi ∈R)}

is called the parallelotope spanned by (a0, . . . ,an). When E has dimension 2, a

parallelotope is also called a parallelogram, and when E has dimension 3, a paral-

lelepiped.

More generally, we say that a subset V of E is convex if for any two points

a,b ∈V , we have c ∈V for every point c = (1−λ )a+λ b, with 0≤ λ ≤ 1 (λ ∈R).

� Points are not vectors! The following example illustrates why treating

points as vectors may cause problems. Let a,b,c be three affinely inde-

pendent points in A3. Any point x in the plane (a,b,c) can be expressed as

x = λ0a+λ1b+λ2c,
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bc

bc bc

bc bc

bc

bc

bc

bc

bc

a0

a0 a1

a0 a1

a2

a0

a3

a2

a1

Fig. 2.9 Examples of affine frames and their convex hulls.

where λ0 +λ1 +λ2 = 1. How can we compute λ0,λ1,λ2? Letting a = (a1,a2,a3),
b = (b1,b2,b3), c = (c1,c2,c3), and x = (x1,x2,x3) be the coordinates of a,b,c,x in

the standard frame of A3, it is tempting to solve the system of equations




a1 b1 c1

a2 b2 c2

a3 b3 c3






λ0

λ1

λ2


=




x1

x2

x3


 .

However, there is a problem when the origin of the coordinate system belongs to the

plane (a,b,c), since in this case, the matrix is not invertible! What we should really

be doing is to solve the system

λ0
−→
Oa+λ1

−→
Ob+λ2

−→
Oc =

−→
Ox,

where O is any point not in the plane (a,b,c). An alternative is to use certain well-

chosen cross products.

It can be shown that barycentric coordinates correspond to various ratios of areas

and volumes; see the problems.
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2.7 Affine Maps

Corresponding to linear maps we have the notion of an affine map. An affine map is

defined as a map preserving affine combinations.

Definition 2.6. Given two affine spaces
〈
E,
−→
E ,+

〉
and

〈
E ′,
−→
E ′ ,+′

〉
, a function

f : E→ E ′ is an affine map iff for every family ((ai,λi))i∈I of weighted points in E

such that ∑i∈I λi = 1, we have

f

(
∑
i∈I

λiai

)
= ∑

i∈I

λi f (ai).

In other words, f preserves barycenters.

Affine maps can be obtained from linear maps as follows. For simplicity of nota-

tion, the same symbol + is used for both affine spaces (instead of using both + and

+′).

Given any point a ∈ E , any point b ∈ E ′, and any linear map h :
−→
E →

−→
E ′ , we

claim that the map f : E→ E ′ defined such that

f (a+ v) = b+ h(v)

is an affine map. Indeed, for any family (λi)i∈I of scalars with ∑i∈I λi = 1 and any

family (−→vi )i∈I , since

∑
i∈I

λi(a+ vi) = a+∑
i∈I

λi

−−−−−→
a(a+ vi) = a+∑

i∈I

λivi

and

∑
i∈I

λi(b+ h(vi)) = b+∑
i∈I

λi

−−−−−−−→
b(b+ h(vi)) = b+∑

i∈I

λih(vi),

we have

f

(
∑
i∈I

λi(a+ vi)

)
= f

(
a+∑

i∈I

λivi

)

= b+ h

(
∑
i∈I

λivi

)

= b+∑
i∈I

λih(vi)

= ∑
i∈I

λi(b+ h(vi))

= ∑
i∈I

λi f (a+ vi).

⊓⊔
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Note that the condition ∑i∈I λi = 1 was implicitly used (in a hidden call to Lemma

2.1) in deriving that

∑
i∈I

λi(a+ vi) = a+∑
i∈I

λivi

and

∑
i∈I

λi(b+ h(vi)) = b+∑
i∈I

λih(vi).

As a more concrete example, the map

(
x1

x2

)
7→
(

1 2

0 1

)(
x1

x2

)
+

(
3

1

)

defines an affine map in A2. It is a “shear” followed by a translation. The effect of

this shear on the square (a,b,c,d) is shown in Figure 2.10. The image of the square

(a,b,c,d) is the parallelogram (a′,b′,c′,d′).

bc bc

bc bc

bc bc

bc bc

a b

cd

a′ b′

c′d′

Fig. 2.10 The effect of a shear.

Let us consider one more example. The map

(
x1

x2

)
7→
(

1 1

1 3

)(
x1

x2

)
+

(
3

0

)

is an affine map. Since we can write

(
1 1

1 3

)
=
√

2

(√
2/2 −

√
2/2

2/2
√

2/2

)(
1 2

0 1

)
,

this affine map is the composition of a shear, followed by a rotation of angle π/4,

followed by a magnification of ratio
√

2, followed by a translation. The effect of

this map on the square (a,b,c,d) is shown in Figure 2.11. The image of the square

(a,b,c,d) is the parallelogram (a′,b′,c′,d′).
The following lemma shows the converse of what we just showed. Every affine

map is determined by the image of any point and a linear map.
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bc bc

bc bc

bc

bc

bc

bc

a b

cd

a′

b′

c′

d′

Fig. 2.11 The effect of an affine map.

Lemma 2.7. Given an affine map f : E→E ′, there is a unique linear map
−→
f :
−→
E →

−→
E ′ such that

f (a+ v) = f (a)+
−→
f (v),

for every a ∈ E and every v ∈ −→E .

Proof. Let a ∈ E be any point in E . We claim that the map defined such that

−→
f (v) =

−−−−−−−−→
f (a) f (a+ v)

for every v ∈−→E is a linear map
−→
f :
−→
E →

−→
E ′ . Indeed, we can write

a+λ v = λ (a+ v)+ (1−λ )a,

since a+λ v = a+λ
−−−−−→
a(a+ v)+ (1−λ )−→aa, and also

a+ u+ v= (a+ u)+ (a+ v)−a,

since a+ u+ v = a+
−−−−−→
a(a+ u)+

−−−−−→
a(a+ v)−−→aa. Since f preserves barycenters, we

get

f (a+λ v) = λ f (a+ v)+ (1−λ ) f (a).

If we recall that x = ∑i∈I λiai is the barycenter of a family ((ai,λi))i∈I of weighted

points (with ∑i∈I λi = 1) iff

−→
bx = ∑

i∈I

λi
−→
bai for every b ∈ E,

we get

−−−−−−−−−→
f (a) f (a+λ v) = λ

−−−−−−−−→
f (a) f (a+ v)+ (1−λ )

−−−−−→
f (a) f (a) = λ

−−−−−−−−→
f (a) f (a+ v),
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showing that
−→
f (λ v) = λ

−→
f (v). We also have

f (a+ u+ v) = f (a+ u)+ f (a+ v)− f (a),

from which we get

−−−−−−−−−−−→
f (a) f (a+ u+ v) =

−−−−−−−−→
f (a) f (a+ u)+

−−−−−−−−→
f (a) f (a+ v),

showing that
−→
f (u+ v) =

−→
f (u)+

−→
f (v). Consequently,

−→
f is a linear map. For any

other point b ∈ E , since

b+ v = a+
−→
ab+ v = a+

−−−−−→
a(a+ v)−−→aa+

−→
ab,

b+ v = (a+ v)− a+ b, and since f preserves barycenters, we get

f (b+ v) = f (a+ v)− f (a)+ f (b),

which implies that

−−−−−−−−→
f (b) f (b+ v) =

−−−−−−−−→
f (b) f (a+ v)−

−−−−−→
f (b) f (a)+

−−−−−→
f (b) f (b),

=
−−−−−→
f (a) f (b)+

−−−−−−−−→
f (b) f (a+ v),

=
−−−−−−−−→
f (a) f (a+ v).

Thus,
−−−−−−−−→
f (b) f (b+ v) =

−−−−−−−−→
f (a) f (a+ v), which shows that the definition of

−→
f does not

depend on the choice of a ∈ E . The fact that
−→
f is unique is obvious: We must have

−→
f (v) =

−−−−−−−−→
f (a) f (a+ v). ⊓⊔

The unique linear map
−→
f :
−→
E →

−→
E ′ given by Lemma 2.7 is called the linear

map associated with the affine map f .

Note that the condition

f (a+ v) = f (a)+
−→
f (v),

for every a ∈ E and every v ∈ −→E , can be stated equivalently as

f (x) = f (a)+
−→
f (−→ax), or

−−−−−→
f (a) f (x) =

−→
f (−→ax),

for all a,x ∈ E . Lemma 2.7 shows that for any affine map f : E → E ′, there are

points a ∈ E , b ∈ E ′, and a unique linear map
−→
f :
−→
E →

−→
E ′ , such that

f (a+ v) = b+
−→
f (v),
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for all v ∈ −→E (just let b = f (a), for any a ∈ E). Affine maps for which
−→
f is the

identity map are called translations. Indeed, if
−→
f = id,

f (x) = f (a)+
−→
f (−→ax) = f (a)+−→ax = x+−→xa+

−−−→
a f (a)+−→ax

= x+−→xa+
−−−→
a f (a)−−→xa = x+

−−−→
a f (a),

and so −−−→
x f (x) =

−−−→
a f (a),

which shows that f is the translation induced by the vector
−−−→
a f (a) (which does not

depend on a).

Since an affine map preserves barycenters, and since an affine subspace V is

closed under barycentric combinations, the image f (V ) of V is an affine subspace

in E ′. So, for example, the image of a line is a point or a line, and the image of a

plane is either a point, a line, or a plane.

It is easily verified that the composition of two affine maps is an affine map. Also,

given affine maps f : E → E ′ and g : E ′→ E ′′, we have

g( f (a+ v)) = g
(

f (a)+
−→
f (v)

)
= g( f (a))+−→g

(−→
f (v)

)
,

which shows that
−−→
g ◦ f =−→g ◦−→f . It is easy to show that an affine map f : E→ E ′ is

injective iff
−→
f :
−→
E →

−→
E ′ is injective, and that f : E→ E ′ is surjective iff

−→
f :
−→
E →

−→
E ′ is surjective. An affine map f : E → E ′ is constant iff

−→
f :
−→
E →

−→
E ′ is the null

(constant) linear map equal to 0 for all v ∈ −→E .

If E is an affine space of dimension m and (a0,a1, . . . ,am) is an affine frame

for E , then for any other affine space F and for any sequence (b0,b1, . . . ,bm) of

m+ 1 points in F , there is a unique affine map f : E → F such that f (ai) = bi, for

0≤ i≤ m. Indeed, f must be such that

f (λ0a0 + · · ·+λmam) = λ0b0 + · · ·+λmbm,

where λ0 + · · ·+ λm = 1, and this defines a unique affine map on all of E , since

(a0,a1, . . . ,am) is an affine frame for E .

Using affine frames, affine maps can be represented in terms of matrices. We ex-

plain how an affine map f : E→E is represented with respect to a frame (a0, . . . ,an)
in E , the more general case where an affine map f : E → F is represented with re-

spect to two affine frames (a0, . . . ,an) in E and (b0, . . . ,bm) in F being analogous.

Since

f (a0 + x) = f (a0)+
−→
f (x)

for all x ∈ −→E , we have

−−−−−−−→
a0 f (a0 + x) =

−−−−→
a0 f (a0)+

−→
f (x).
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Since x,
−−−−→
a0 f (a0), and

−−−−−−−→
a0 f (a0 + x), can be expressed as

x = x1
−−→a0a1 + · · ·+ xn

−−→a0an,
−−−−→
a0 f (a0) = b1

−−→a0a1 + · · ·+ bn
−−→a0an,

−−−−−−−→
a0 f (a0 + x) = y1

−−→a0a1 + · · ·+ yn
−−→a0an,

if A = (ai j) is the n× n matrix of the linear map
−→
f over the basis (−−→a0a1, . . . ,

−−→a0an),
letting x, y, and b denote the column vectors of components (x1, . . . ,xn), (y1, . . . ,yn),
and (b1, . . . ,bn), −−−−−−−→

a0 f (a0 + x) =
−−−−→
a0 f (a0)+

−→
f (x)

is equivalent to

y = Ax+ b.

Note that b 6= 0 unless f (a0) = a0. Thus, f is generally not a linear transformation,

unless it has a fixed point, i.e., there is a point a0 such that f (a0) = a0. The vector

b is the “translation part” of the affine map. Affine maps do not always have a fixed

point. Obviously, nonnull translations have no fixed point. A less trivial example is

given by the affine map

(
x1

x2

)
7→
(

1 0

0 −1

)(
x1

x2

)
+

(
1

0

)
.

This map is a reflection about the x-axis followed by a translation along the x-axis.

The affine map (
x1

x2

)
7→
(

1 −
√

3√
3/4 1/4

)(
x1

x2

)
+

(
1

1

)

can also be written as

(
x1

x2

)
7→
(

2 0

0 1/2

)(
1/2 −

√
3/2√

3/2 1/2

)(
x1

x2

)
+

(
1

1

)

which shows that it is the composition of a rotation of angle π/3, followed by a

stretch (by a factor of 2 along the x-axis, and by a factor of 1
2

along the y-axis),

followed by a translation. It is easy to show that this affine map has a unique fixed

point. On the other hand, the affine map

(
x1

x2

)
7→
(

8/5 −6/5

3/10 2/5

)(
x1

x2

)
+

(
1

1

)

has no fixed point, even though

(
8/5 −6/5

3/10 2/5

)
=

(
2 0

0 1/2

)(
4/5 −3/5

3/5 4/5

)
,
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and the second matrix is a rotation of angle θ such that cosθ = 4
5

and sinθ = 3
5
. For

more on fixed points of affine maps, see the problems.

There is a useful trick to convert the equation y = Ax+ b into what looks like a

linear equation. The trick is to consider an (n+1)× (n+1)matrix. We add 1 as the

(n+1)th component to the vectors x, y, and b, and form the (n+1)× (n+1) matrix

(
A b

0 1

)

so that y = Ax+ b is equivalent to

(
y

1

)
=

(
A b

0 1

)(
x

1

)
.

This trick is very useful in kinematics and dynamics, where A is a rotation matrix.

Such affine maps are called rigid motions.

If f : E → E ′ is a bijective affine map, given any three collinear points a,b,c in

E , with a 6= b, where, say, c= (1−λ )a+λ b, since f preserves barycenters, we have

f (c) = (1−λ ) f (a)+λ f (b), which shows that f (a), f (b), f (c) are collinear in E ′.
There is a converse to this property, which is simpler to state when the ground field

is K = R. The converse states that given any bijective function f : E → E ′ between

two real affine spaces of the same dimension n ≥ 2, if f maps any three collinear

points to collinear points, then f is affine. The proof is rather long (see Berger [2]

or Samuel [10]).

Given three collinear points a,b,c, where a 6= c, we have b = (1−β )a+β c for

some unique β , and we define the ratio of the sequence a,b, c, as

ratio(a,b,c) =
β

(1−β )
=

−→
ab
−→
bc

,

provided that β 6= 1, i.e., b 6= c. When b = c, we agree that ratio(a,b,c) = ∞. We

warn our readers that other authors define the ratio of a,b,c as −ratio(a,b,c) =
−→
ba−→
bc

.

Since affine maps preserve barycenters, it is clear that affine maps preserve the ratio

of three points.

2.8 Affine Groups

We now take a quick look at the bijective affine maps. Given an affine space E , the

set of affine bijections f : E→ E is clearly a group, called the affine group of E , and

denoted by GA(E). Recall that the group of bijective linear maps of the vector space
−→
E is denoted by GL(

−→
E ). Then, the map f 7→ −→f defines a group homomorphism

L : GA(E)→GL(
−→
E ). The kernel of this map is the set of translations on E .
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The subset of all linear maps of the form λ id−→
E

, where λ ∈ R− {0}, is a

subgroup of GL(
−→
E ), and is denoted by R∗id−→

E
(where λ id−→

E
(u) = λ u, and

R∗ = R−{0}). The subgroup DIL(E) = L−1(R∗id−→
E
) of GA(E) is particularly

interesting. It turns out that it is the disjoint union of the translations and of the

dilatations of ratio λ 6= 1. The elements of DIL(E) are called affine dilatations.

Given any point a ∈ E , and any scalar λ ∈ R, a dilatation or central dilatation

(or homothety) of center a and ratio λ is a map Ha,λ defined such that

Ha,λ (x) = a+λ−→ax,

for every x ∈ E .

Remark: The terminology does not seem to be universally agreed upon. The terms

affine dilatation and central dilatation are used by Pedoe [9]. Snapper and Troyer

use the term dilation for an affine dilatation and magnification for a central dilata-

tion [11]. Samuel uses homothety for a central dilatation, a direct translation of the

French “homothétie” [10]. Since dilation is shorter than dilatation and somewhat

easier to pronounce, perhaps we should use that!

Observe that Ha,λ (a) = a, and when λ 6= 0 and x 6= a, Ha,λ (x) is on the line

defined by a and x, and is obtained by “scaling”−→ax by λ .

Figure 2.12 shows the effect of a central dilatation of center d. The triangle

(a,b,c) is magnified to the triangle (a′,b′,c′). Note how every line is mapped to

a parallel line.

bc

bc

bc

bc

bc

bc

bc

d

a

b

c

a′

b′

c′

Fig. 2.12 The effect of a central dilatation.
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When λ = 1, Ha,1 is the identity. Note that
−−→
Ha,λ = λ id−→

E
. When λ 6= 0, it is clear

that Ha,λ is an affine bijection. It is immediately verified that

Ha,λ ◦Ha,µ = Ha,λ µ .

We have the following useful result.

Lemma 2.8. Given any affine space E, for any affine bijection f ∈GA(E), if
−→
f =

λ id−→
E

, for some λ ∈ R∗ with λ 6= 1, then there is a unique point c ∈ E such that

f = Hc,λ .

Proof. The proof is straightforward, and is omitted. It is also given in Gallier [5].

⊓⊔

Clearly, if
−→
f = id−→

E
, the affine map f is a translation. Thus, the group of affine

dilatations DIL(E) is the disjoint union of the translations and of the dilatations of

ratio λ 6= 0,1. Affine dilatations can be given a purely geometric characterization.

Another point worth mentioning is that affine bijections preserve the ratio of

volumes of parallelotopes. Indeed, given any basis B = (u1, . . . ,um) of the vector

space
−→
E associated with the affine space E , given any m+ 1 affinely independent

points (a0, . . . ,am), we can compute the determinant detB(
−−→a0a1, . . . ,

−−→a0am) w.r.t. the

basis B. For any bijective affine map f : E→ E , since

detB

(−→
f (−−→a0a1), . . . ,

−→
f (−−→a0am)

)
= det

(−→
f
)
detB(

−−→a0a1, . . . ,
−−→a0am)

and the determinant of a linear map is intrinsic (i.e., depends only on
−→
f , and not on

the particular basis B), we conclude that the ratio

detB

(−→
f (−−→a0a1), . . . ,

−→
f (−−→a0am)

)

detB(
−−→a0a1, . . . ,

−−→a0am)
= det

(−→
f
)

is independent of the basis B. Since detB(
−−→a0a1, . . . ,

−−→a0am) is the volume of the par-

allelotope spanned by (a0, . . . ,am), where the parallelotope spanned by any point

a and the vectors (u1, . . . ,um) has unit volume (see Berger [2], Section 9.12), we

see that affine bijections preserve the ratio of volumes of parallelotopes. In fact, this

ratio is independent of the choice of the parallelotopes of unit volume. In particu-

lar, the affine bijections f ∈GA(E) such that det
(−→

f
)
= 1 preserve volumes. These

affine maps form a subgroup SA(E) of GA(E) called the special affine group of E .

We now take a glimpse at affine geometry.
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2.9 Affine Geometry: A Glimpse

In this section we state and prove three fundamental results of affine geometry.

Roughly speaking, affine geometry is the study of properties invariant under affine

bijections. We now prove one of the oldest and most basic results of affine geometry,

the theorem of Thales.

Lemma 2.9. Given any affine space E, if H1,H2,H3 are any three distinct parallel

hyperplanes, and A and B are any two lines not parallel to Hi, letting ai = Hi ∩A

and bi = Hi∩B, then the following ratios are equal:

−−→a1a3
−−→a1a2

=

−−→
b1b3
−−→
b1b2

= ρ .

Conversely, for any point d on the line A, if
−→
a1d−−→a1a2

= ρ , then d = a3.

Proof. Figure 2.13 illustrates the theorem of Thales. We sketch a proof, leaving the

details as an exercise. Since H1,H2, H3 are parallel, they have the same direction
−→
H ,

a hyperplane in
−→
E . Let u ∈ −→E −−→H be any nonnull vector such that A = a1 +Ru.

Since A is not parallel to H, we have
−→
E =

−→
H ⊕Ru, and thus we can define the linear

map p :
−→
E → Ru, the projection on Ru parallel to

−→
H . This linear map induces an

affine map f : E→ A, by defining f such that

f (b1 +w) = a1 + p(w),

for all w ∈ −→E . Clearly, f (b1) = a1, and since H1,H2,H3 all have direction
−→
H , we

also have f (b2) = a2 and f (b3) = a3. Since f is affine, it preserves ratios, and thus

−−→a1a3
−−→a1a2

=

−−→
b1b3
−−→
b1b2

.

The converse is immediate. ⊓⊔

We also have the following simple lemma, whose proof is left as an easy exercise.

Lemma 2.10. Given any affine space E, given any two distinct points a,b ∈ E, and

for any affine dilatation f different from the identity, if a′ = f (a), D = 〈a,b〉 is the

line passing through a and b, and D′ is the line parallel to D and passing through

a′, the following are equivalent:

(i) b′ = f (b);
(ii) If f is a translation, then b′ is the intersection of D′ with the line parallel to

〈a,a′〉 passing through b;

If f is a dilatation of center c, then b′ = D′∩〈c,b〉.
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Fig. 2.13 The theorem of Thales.

The first case is the parallelogram law, and the second case follows easily from

Thales’ theorem.

We are now ready to prove two classical results of affine geometry, Pappus’s

theorem and Desargues’s theorem. Actually, these results are theorems of projective

geometry, and we are stating affine versions of these important results. There are

stronger versions that are best proved using projective geometry.

Lemma 2.11. Given any affine plane E, any two distinct lines D and D′, then for

any distinct points a,b,c on D and a′,b′,c′ on D′, if a,b,c,a′, b′, c′ are distinct from

the intersection of D and D′ (if D and D′ intersect) and if the lines 〈a,b′〉 and 〈a′,b〉
are parallel, and the lines 〈b,c′〉 and 〈b′,c〉 are parallel, then the lines 〈a,c′〉 and

〈a′,c〉 are parallel.

Proof. Pappus’s theorem is illustrated in Figure 2.14. If D and D′ are not parallel,

let d be their intersection. Let f be the dilatation of center d such that f (a) = b,

and let g be the dilatation of center d such that g(b) = c. Since the lines 〈a,b′〉 and

〈a′,b〉 are parallel, and the lines 〈b,c′〉 and 〈b′,c〉 are parallel, by Lemma 2.10 we
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Fig. 2.14 Pappus’s theorem (affine version).

have a′ = f (b′) and b′ = g(c′). However, we observed that dilatations with the same

center commute, and thus f ◦ g = g ◦ f , and thus, letting h = g ◦ f , we get c = h(a)
and a′ = h(c′). Again, by Lemma 2.10, the lines 〈a,c′〉 and 〈a′,c〉 are parallel. If D

and D′ are parallel, we use translations instead of dilatations. ⊓⊔

There is a converse to Pappus’s theorem, which yields a fancier version of Pap-

pus’s theorem, but it is easier to prove it using projective geometry. It should be

noted that in axiomatic presentations of projective geometry, Pappus’s theorem is

equivalent to the commutativity of the ground field K (in the present case, K = R).

We now prove an affine version of Desargues’s theorem.

Lemma 2.12. Given any affine space E, and given any two triangles (a,b,c) and

(a′,b′,c′), where a,b,c,a′,b′,c′ are all distinct, if 〈a,b〉 and 〈a′,b′〉 are parallel

and 〈b,c〉 and 〈b′,c′〉 are parallel, then 〈a,c〉 and 〈a′,c′〉 are parallel iff the lines

〈a,a′〉, 〈b,b′〉, and 〈c,c′〉 are either parallel or concurrent (i.e., intersect in a com-

mon point).

Proof. We prove half of the lemma, the direction in which it is assumed that 〈a,c〉
and 〈a′,c′〉 are parallel, leaving the converse as an exercise. Since the lines 〈a,b〉 and

〈a′,b′〉 are parallel, the points a,b,a′,b′ are coplanar. Thus, either 〈a,a′〉 and 〈b,b′〉
are parallel, or they have some intersection d. We consider the second case where

they intersect, leaving the other case as an easy exercise. Let f be the dilatation



44 2 Basics of Affine Geometry

of center d such that f (a) = a′. By Lemma 2.10, we get f (b) = b′. If f (c) = c′′,
again by Lemma 2.10 twice, the lines 〈b,c〉 and 〈b′,c′′〉 are parallel, and the lines

〈a,c〉 and 〈a′,c′′〉 are parallel. From this it follows that c′′ = c′. Indeed, recall that

〈b,c〉 and 〈b′,c′〉 are parallel, and similarly 〈a,c〉 and 〈a′,c′〉 are parallel. Thus, the

lines 〈b′,c′′〉 and 〈b′,c′〉 are identical, and similarly the lines 〈a′,c′′〉 and 〈a′,c′〉
are identical. Since

−→
a′c′ and

−→
b′c′ are linearly independent, these lines have a unique

intersection, which must be c′′ = c′.
The direction where it is assumed that the lines 〈a,a′〉, 〈b,b′〉 and 〈c,c′〉, are

either parallel or concurrent is left as an exercise (in fact, the proof is quite similar).

⊓⊔

Desargues’s theorem is illustrated in Figure 2.15.
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Fig. 2.15 Desargues’s theorem (affine version).

There is a fancier version of Desargues’s theorem, but it is easier to prove it using

projective geometry. It should be noted that in axiomatic presentations of projective

geometry, Desargues’s theorem is related to the associativity of the ground field K

(in the present case, K = R). Also, Desargues’s theorem yields a geometric charac-

terization of the affine dilatations. An affine dilatation f on an affine space E is a

bijection that maps every line D to a line f (D) parallel to D. We leave the proof as

an exercise.
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2.10 Affine Hyperplanes

We now consider affine forms and affine hyperplanes. In Section 2.5 we observed

that the set L of solutions of an equation

ax+ by = c

is an affine subspace of A2 of dimension 1, in fact, a line (provided that a and b are

not both null). It would be equally easy to show that the set P of solutions of an

equation

ax+ by+ cz= d

is an affine subspace of A3 of dimension 2, in fact, a plane (provided that a,b,c are

not all null). More generally, the set H of solutions of an equation

λ1x1 + · · ·+λmxm = µ

is an affine subspace of Am, and if λ1, . . . ,λm are not all null, it turns out that it is a

subspace of dimension m− 1 called a hyperplane.

We can interpret the equation

λ1x1 + · · ·+λmxm = µ

in terms of the map f : Rm→R defined such that

f (x1, . . . ,xm) = λ1x1 + · · ·+λmxm− µ

for all (x1, . . . ,xm) ∈ Rm. It is immediately verified that this map is affine, and the

set H of solutions of the equation

λ1x1 + · · ·+λmxm = µ

is the null set, or kernel, of the affine map f : Am→R, in the sense that

H = f−1(0) = {x ∈ Am | f (x) = 0},

where x = (x1, . . . ,xm).
Thus, it is interesting to consider affine forms, which are just affine maps f : E→

R from an affine space to R. Unlike linear forms f ∗, for which Ker f ∗ is never

empty (since it always contains the vector 0), it is possible that f−1(0) = /0 for an

affine form f . Given an affine map f : E→R, we also denote f−1(0) by Ker f , and

we call it the kernel of f . Recall that an (affine) hyperplane is an affine subspace

of codimension 1. The relationship between affine hyperplanes and affine forms is

given by the following lemma.

Lemma 2.13. Let E be an affine space. The following properties hold:
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(a) Given any nonconstant affine form f : E → R, its kernel H = Ker f is a hyper-

plane.

(b) For any hyperplane H in E, there is a nonconstant affine form f : E → R such

that H = Ker f . For any other affine form g : E → R such that H = Kerg, there

is some λ ∈ R such that g = λ f (with λ 6= 0).

(c) Given any hyperplane H in E and any (nonconstant) affine form f : E→R such

that H = Ker f , every hyperplane H ′ parallel to H is defined by a nonconstant

affine form g such that g(a) = f (a)−λ , for all a ∈ E and some λ ∈ R.

Proof. The proof is straightforward, and is omitted. It is also given in Gallier [5].

⊓⊔

When E is of dimension n, given an affine frame (a0,(u1, . . . ,un)) of E with

origin a0, recall from Definition 2.5 that every point of E can be expressed uniquely

as x = a0+x1u1+ · · ·+xnun, where (x1, . . . ,xn) are the coordinates of x with respect

to the affine frame (a0,(u1, . . . ,un)).
Also recall that every linear form f ∗ is such that f ∗(x) = λ1x1 + · · ·+λnxn, for

every x = x1u1+ · · ·+xnun and some λ1, . . . ,λn ∈R. Since an affine form f : E→R

satisfies the property f (a0+x) = f (a0)+
−→
f (x), denoting f (a0+x) by f (x1, . . . ,xn),

we see that we have

f (x1, . . . ,xn) = λ1x1 + · · ·+λnxn + µ ,

where µ = f (a0) ∈ R and λ1, . . . ,λn ∈ R. Thus, a hyperplane is the set of points

whose coordinates (x1, . . . ,xn) satisfy the (affine) equation

λ1x1 + · · ·+λnxn + µ = 0.

2.11 Intersection of Affine Spaces

In this section we take a closer look at the intersection of affine subspaces. This

subsection can be omitted at first reading.

First, we need a result of linear algebra. Given a vector space E and any two

subspaces M and N, there are several interesting linear maps. We have the canonical

injections i : M → M +N and j : N → M +N, the canonical injections in1 : M →
M⊕N and in2 : N →M⊕N, and thus, injections f : M ∩N →M⊕N and g : M ∩
N→M⊕N, where f is the composition of the inclusion map from M∩N to M with

in1, and g is the composition of the inclusion map from M∩N to N with in2. Then,

we have the maps f + g : M∩N→M⊕N, and i− j : M⊕N→M+N.

Lemma 2.14. Given a vector space E and any two subspaces M and N, with the

definitions above,

0 −→ M∩N
f+g−→ M⊕N

i− j−→ M+N −→ 0
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is a short exact sequence, which means that f +g is injective, i− j is surjective, and

that Im( f + g) = Ker(i− j). As a consequence, we have the Grassmann relation

dim(M)+ dim(N) = dim(M +N)+ dim(M∩N).

Proof. It is obvious that i− j is surjective and that f + g is injective. Assume that

(i− j)(u+v) = 0, where u∈M, and v∈N. Then, i(u) = j(v), and thus, by definition

of i and j, there is some w∈M∩N, such that i(u) = j(v) =w∈M∩N. By definition

of f and g, u = f (w) and v = g(w), and thus Im( f + g) = Ker(i− j), as desired.

The second part of the lemma follows from standard results of linear algebra (see

Artin [1], Strang [12], or Lang [8]). ⊓⊔

We now prove a simple lemma about the intersection of affine subspaces.

Lemma 2.15. Given any affine space E, for any two nonempty affine subspaces M

and N, the following facts hold:

(1) M∩N 6= /0 iff
−→
ab ∈−→M +

−→
N for some a ∈M and some b ∈ N.

(2) M∩N consists of a single point iff
−→
ab∈−→M +

−→
N for some a∈M and some b∈N,

and
−→
M ∩−→N = {0}.

(3) If S is the least affine subspace containing M and N, then
−→
S =

−→
M +

−→
N +K

−→
ab

(the vector space
−→
E is defined over the field K).

Proof. (1) Pick any a ∈ M and any b ∈ N, which is possible, since M and N are

nonempty. Since
−→
M = {−→ax | x ∈M} and

−→
N = {−→by | y ∈ N}, if M ∩N 6= /0, for any

c∈M∩N we have
−→
ab=−→ac−−→bc, with−→ac ∈−→M and

−→
bc ∈−→N , and thus,

−→
ab∈−→M +

−→
N .

Conversely, assume that
−→
ab ∈ −→M +

−→
N for some a ∈M and some b ∈ N. Then

−→
ab =

−→ax+
−→
by, for some x ∈M and some y ∈ N. But we also have

−→
ab =−→ax+−→xy +

−→
yb,

and thus we get 0 = −→xy +
−→
yb−−→by, that is, −→xy = 2

−→
by. Thus, b is the middle of the

segment [x,y], and since −→yx = 2
−→
yb, x = 2b− y is the barycenter of the weighted

points (b,2) and (y,−1). Thus x also belongs to N, since N being an affine subspace,

it is closed under barycenters. Thus, x ∈M∩N, and M∩N 6= /0.

(2) Note that in general, if M∩N 6= /0, then

−−−→
M∩N =

−→
M ∩−→N ,

because

−−−→
M∩N = {−→ab | a,b ∈M∩N}= {−→ab | a,b ∈M}∩{−→ab | a,b ∈ N}=−→M ∩−→N .

Since M∩N = c+
−−−→
M∩N for any c ∈M∩N, we have
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M∩N = c+
−→
M ∩−→N for any c ∈M∩N.

From this it follows that if M ∩N 6= /0, then M ∩N consists of a single point iff
−→
M ∩−→N = {0}. This fact together with what we proved in (1) proves (2).

(3) This is left as an easy exercise. ⊓⊔

Remarks:

(1) The proof of Lemma 2.15 shows that if M ∩N 6= /0, then
−→
ab ∈ −→M +

−→
N for all

a ∈M and all b ∈ N.

(2) Lemma 2.15 implies that for any two nonempty affine subspaces M and N, if
−→
E =

−→
M ⊕−→N , then M∩N consists of a single point. Indeed, if

−→
E =

−→
M ⊕−→N ,

then
−→
ab ∈ −→E for all a ∈M and all b ∈ N, and since

−→
M ∩−→N = {0}, the result

follows from part (2) of the lemma.

We can now state the following lemma.

Lemma 2.16. Given an affine space E and any two nonempty affine subspaces M

and N, if S is the least affine subspace containing M and N, then the following

properties hold:

(1) If M∩N = /0, then

dim(M)+ dim(N) < dim(E)+ dim(
−→
M +

−→
N )

and

dim(S) = dim(M)+ dim(N)+ 1− dim(
−→
M ∩−→N ).

(2) If M∩N 6= /0, then

dim(S) = dim(M)+ dim(N)− dim(M∩N).

Proof. The proof is not difficult, using Lemma 2.15 and Lemma 2.14, but we leave

it as an exercise. ⊓⊔

2.12 Problems

2.1. Given a triangle (a,b,c), give a geometric construction of the barycenter of

the weighted points (a, 1
4
), (b, 1

4
), and (c, 1

2
). Give a geometric construction of the

barycenter of the weighted points (a, 3
2
), (b, 3

2
), and (c,−2).

2.2. Given a tetrahedron (a,b,c,d) and any two distinct points x,y ∈ {a,b,c,d}, let

let mx,y be the middle of the edge (x,y). Prove that the barycenter g of the weighted

points (a, 1
4
), (b, 1

4
), (c, 1

4
), and (d, 1

4
) is the common intersection of the line seg-

ments (ma,b,mc,d), (ma,c,mb,d), and (ma,d ,mb,c). Show that if gd is the barycenter
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of the weighted points (a, 1
3
),(b, 1

3
),(c, 1

3
), then g is the barycenter of (d, 1

4
) and

(gd ,
3
4
).

2.3. Let E be a nonempty set, and
−→
E a vector space and assume that there is a func-

tion Φ : E×E→−→E , such that if we denote Φ(a,b) by
−→
ab, the following properties

hold:

(1)
−→
ab+

−→
bc =−→ac, for all a,b,c ∈ E;

(2) For every a∈E , the map Φa : E→−→E defined such that for every b∈E , Φa(b)=−→
ab, is a bijection.

Let Ψa :
−→
E → E be the inverse of Φa : E→−→E .

Prove that the function + : E×−→E → E defined such that

a+ u =Ψa(u)

for all a ∈ E and all u ∈ −→E makes (E,
−→
E ,+) into an affine space.

Note. We showed in the text that an affine space (E,
−→
E ,+) satisfies the properties

stated above. Thus, we obtain an equivalent characterization of affine spaces.

2.4. Given any three points a, b, c in the affine plane A2, letting (a1,a2), (b1,b2),
and (c1,c2) be the coordinates of a,b,c, with respect to the standard affine frame for

A2, prove that a,b,c are collinear iff

∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

1 1 1

∣∣∣∣∣∣
= 0,

i.e., the determinant is null.

Letting (a0,a1,a2), (b0,b1,b2), and (c0,c1,c2) be the barycentric coordinates of

a,b,c with respect to the standard affine frame for A2, prove that a,b,c are collinear

iff ∣∣∣∣∣∣

a0 b0 c0

a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣
= 0.

Given any four points a,b,c,d in the affine space A3, letting (a1,a2,a3), (b1,b2,b3),
(c1,c2,c3), and (d1,d2,d3) be the coordinates of a,b,c,d, with respect to the stan-

dard affine frame for A3, prove that a,b,c,d are coplanar iff

∣∣∣∣∣∣∣∣

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

1 1 1 1

∣∣∣∣∣∣∣∣
= 0,

i.e., the determinant is null.
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Letting (a0,a1,a2,a3), (b0,b1,b2,b3), (c0,c1,c2,c3), and (d0,d1,d2,d3) be the

barycentric coordinates of a,b,c,d, with respect to the standard affine frame for A3,

prove that a,b,c,d are coplanar iff

∣∣∣∣∣∣∣∣

a0 b0 c0 d0

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

∣∣∣∣∣∣∣∣
= 0.

2.5. The function f : A→A3 given by

t 7→ (t, t2, t3)

defines what is called a twisted cubic curve. Given any four pairwise distinct values

t1, t2, t3, t4, prove that the points f (t1), f (t2), f (t3), and f (t4) are not coplanar.

Hint. Have you heard of the Vandermonde determinant?

2.6. For any two distinct points a,b ∈A2 of barycentric coordinates (a0,a1,a2) and

(b0,b1,b2) with respect to any given affine frame (O, i, j), show that the equation of

the line 〈a,b〉 determined by a and b is

∣∣∣∣∣∣

a0 b0 x

a1 b1 y

a2 b2 z

∣∣∣∣∣∣
= 0,

or, equivalently,

(a1b2− a2b1)x+(a2b0− a0b2)y+(a0b1− a1b0)z = 0,

where (x,y,z) are the barycentric coordinates of the generic point on the line 〈a,b〉.
Prove that the equation of a line in barycentric coordinates is of the form

ux+ vy+wz = 0,

where u 6= v or v 6= w or u 6= w. Show that two equations

ux+ vy+wz = 0 and u′x+ v′y+w′z = 0

represent the same line in barycentric coordinates iff (u′,v′,w′)= λ (u,v,w) for some

λ ∈ R (with λ 6= 0).

A triple (u,v,w) where u 6= v or v 6= w or u 6= w is called a system of tangential

coordinates of the line defined by the equation

ux+ vy+wz = 0.

2.7. Given two lines D and D′ in A2 defined by tangential coordinates (u,v,w) and

(u′,v′,w′) (as defined in Problem 2.6), let
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d =

∣∣∣∣∣∣

u v w

u′ v′ w′

1 1 1

∣∣∣∣∣∣
= vw′−wv′+wu′− uw′+ uv′− vu′.

(a) Prove that D and D′ have a unique intersection point iff d 6= 0, and that when

it exists, the barycentric coordinates of this intersection point are

1

d
(vw′−wv′, wu′− uw′, uv′− vu′).

(b) Letting (O, i, j) be any affine frame for A2, recall that when x+ y+ z = 0, for

any point a, the vector

x
−→
aO+ y

−→
ai + z

−→
a j

is independent of a and equal to

y
−→
Oi+ z

−→
O j = (y,z).

The triple (x,y,z) such that x+ y+ z= 0 is called the barycentric coordinates of the

vector y
−→
Oi+ z

−→
O j w.r.t. the affine frame (O, i, j).

Given any affine frame (O, i, j), prove that for u 6= v or v 6= w or u 6= w, the line

of equation

ux+ vy+wz= 0

in barycentric coordinates (x,y,z) (where x+ y+ z = 1) has for direction the set of

vectors of barycentric coordinates (x,y,z) such that

ux+ vy+wz= 0

(where x+ y+ z = 0).

Prove that D and D′ are parallel iff d = 0. In this case, if D 6= D′, show that the

common direction of D and D′ is defined by the vector of barycentric coordinates

(vw′−wv′, wu′− uw′, uv′− vu′).

(c) Given three lines D, D′, and D′′, at least two of which are distinct and defined

by tangential coordinates (u,v,w), (u′,v′,w′), and (u′′,v′′,w′′), prove that D, D′, and

D′′ are parallel or have a unique intersection point iff

∣∣∣∣∣∣

u v w

u′ v′ w′

u′′ v′′ w′′

∣∣∣∣∣∣
= 0.

2.8. Let (A,B,C) be a triangle in A2. Let M,N,P be three points respectively on the

lines BC, CA, and AB, of barycentric coordinates (0,m′,m′′), (n,0,n′′), and (p, p′,0),
w.r.t. the affine frame (A,B,C).

(a) Assuming that M 6=C, N 6= A, and P 6= B, i.e., m′n′′p 6= 0, show that
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−→
MB
−→
MC

−→
NC
−→
NA

−→
PA
−→
PB

=−m′′np′

m′n′′p
.

(b) Prove Menelaus’s theorem: The points M,N,P are collinear iff

m′′np′+m′n′′p = 0.

When M 6=C, N 6= A, and P 6= B, this is equivalent to

−→
MB
−→
MC

−→
NC
−→
NA

−→
PA
−→
PB

= 1.

(c) Prove Ceva’s theorem: The lines AM,BN,CP have a unique intersection point

or are parallel iff

m′′np′−m′n′′p = 0.

When M 6=C, N 6= A, and P 6= B, this is equivalent to

−→
MB
−→
MC

−→
NC
−→
NA

−→
PA
−→
PB

=−1.

2.9. This problem uses notions and results from Problems 2.6 and 2.7. In view of (a)

and (b) of Problem 2.7, it is natural to extend the notion of barycentric coordinates

of a point in A2 as follows. Given any affine frame (a,b,c) in A2, we will say that the

barycentric coordinates (x,y,z) of a point M, where x+y+z= 1, are the normalized

barycentric coordinates of M. Then, any triple (x,y,z) such that x+y+ z 6= 0 is also

called a system of barycentric coordinates for the point of normalized barycentric

coordinates
1

x+ y+ z
(x,y,z).

With this convention, the intersection of the two lines D and D′ is either a point or a

vector, in both cases of barycentric coordinates

(vw′−wv′, wu′− uw′, uv′− vu′).

When the above is a vector, we can think of it as a point at infinity (in the direction

of the line defined by that vector).

Let (D0,D
′
0), (D1,D

′
1), and (D2,D

′
2) be three pairs of six distinct lines, such that

the four lines belonging to any union of two of the above pairs are neither parallel

nor concurrent (have a common intersection point). If D0 and D′0 have a unique

intersection point, let M be this point, and if D0 and D′0 are parallel, let M denote

a nonnull vector defining the common direction of D0 and D′0. In either case, let

(m,m′,m′′) be the barycentric coordinates of M, as explained at the beginning of the

problem. We call M the intersection of D0 and D′0. Similarly, define N = (n,n′,n′′)
as the intersection of D1 and D′1, and P = (p, p′, p′′) as the intersection of D2 and

D′2.
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Prove that ∣∣∣∣∣∣

m n p

m′ n′ p′

m′′ n′′ p′′

∣∣∣∣∣∣
= 0

iff either

(i) (D0,D
′
0), (D1,D

′
1), and (D2,D

′
2) are pairs of parallel lines; or

(ii) the lines of some pair (Di,D
′
i) are parallel, each pair (D j,D

′
j) (with j 6= i) has

a unique intersection point, and these two intersection points are distinct and

determine a line parallel to the lines of the pair (Di,D
′
i); or

(iii) each pair (Di,D
′
i) (i = 0,1,2) has a unique intersection point, and these points

M,N,P are distinct and collinear.

2.10. Prove the following version of Desargues’s theorem. Let A,B,C, A′,B′,C′ be

six distinct points of A2. If no three of these points are collinear, then the lines

AA′, BB′, and CC′ are parallel or collinear iff the intersection points M,N,P (in the

sense of Problem 2.7) of the pairs of lines (BC,B′C′), (CA,C′A′), and (AB,A′B′) are

collinear in the sense of Problem 2.9.

2.11. Prove the following version of Pappus’s theorem. Let D and D′ be distinct

lines, and let A,B,C and A′,B′,C′ be distinct points respectively on D and D′. If

these points are all distinct from the intersection of D and D′ (if it exists), then the

intersection points (in the sense of Problem 2.7) of the pairs of lines (BC′,CB′),
(CA′,AC′), and (AB′,BA′) are collinear in the sense of Problem 2.9.

2.12. The purpose of this problem is to prove Pascal’s theorem for the nondegener-

ate conics. In the affine plane A2, a conic is the set of points of coordinates (x,y)
such that

αx2 +β y2 + 2γxy+ 2δx+ 2λ y+µ = 0,

where α 6= 0 or β 6= 0 or γ 6= 0. We can write the equation of the conic as

(x,y,1)




α γ δ
γ β λ
δ λ µ






x

y

1


= 0.

If we now use barycentric coordinates (x,y,z) (where x+ y+ z = 1), we can write




x

y

1


=




1 0 0

0 1 0

1 1 1






x

y

z


 .

Let

B =




α γ δ
γ β λ
δ λ µ


 , C =




1 0 0

0 1 0

1 1 1


 , X =




x

y

z


 .

(a) Letting A =C⊤BC, prove that the equation of the conic becomes
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X⊤AX = 0.

Prove that A is symmetric, that det(A) = det(B), and that X⊤AX is homogeneous of

degree 2. The equation X⊤AX = 0 is called the homogeneous equation of the conic.

We say that a conic of homogeneous equation X⊤AX = 0 is nondegenerate if

det(A) 6= 0, and degenerate if det(A) = 0. Show that this condition does not depend

on the choice of the affine frame.

(b) Given an affine frame (A,B,C), prove that any conic passing through A,B,C
has an equation of the form

ayz+ bxz+ cxy= 0.

Prove that a conic containing more than one point is degenerate iff it contains three

distinct collinear points. In this case, the conic is the union of two lines.

(c) Prove Pascal’s theorem. Given any six distinct points A,B,C, A′,B′, C′, if no

three of the above points are collinear, then a nondegenerate conic passes through

these six points iff the intersection points M,N,P (in the sense of Problem 2.7) of

the pairs of lines (BC′,CB′), (CA′,AC′) and (AB′,BA′) are collinear in the sense of

Problem 2.9.

Hint. Use the affine frame (A,B,C), and let (a,a′,a′′), (b,b′,b′′), and (c,c′,c′′) be

the barycentric coordinates of A′,B′,C′ respectively, and show that M,N,P have

barycentric coordinates

(bc,cb′,c′′b), (c′a,c′a′,c′′a′), (ab′′,a′′b′,a′′b′′).

2.13. The centroid of a triangle (a,b,c) is the barycenter of (a, 1
3
), (b, 1

3
), (c, 1

3
). If

an affine map takes the vertices of triangle ∆1 = {(0,0),(6,0),(0,9)} to the vertices

of triangle ∆2 = {(1,1),(5,4),(3,1)}, does it also take the centroid of ∆1 to the

centroid of ∆2? Justify your answer.

2.14. Let E be an affine space over R, and let (a1, . . . ,an) be any n ≥ 3 points in E .

Let (λ1, . . . ,λn) be any n scalars in R, with λ1 + · · ·+λn = 1. Show that there must

be some i, 1≤ i≤ n, such that λi 6= 1. To simplify the notation, assume that λ1 6= 1.

Show that the barycenter λ1a1 + · · ·+λnan can be obtained by first determining the

barycenter b of the n− 1 points a2, . . . ,an assigned some appropriate weights, and

then the barycenter of a1 and b assigned the weights λ1 and λ2 + · · ·+ λn. From

this, show that the barycenter of any n ≥ 3 points can be determined by repeated

computations of barycenters of two points. Deduce from the above that a nonempty

subset V of E is an affine subspace iff whenever V contains any two points x,y ∈V ,

then V contains the entire line (1−λ )x+λ y, λ ∈R.

2.15. Assume that K is a field such that 2 = 1+ 1 6= 0, and let E be an affine space

over K. In the case where λ1+ · · ·+λn = 1 and λi = 1, for 1≤ i≤ n and n≥ 3, show

that the barycenter a1+a2+ · · ·+an can still be computed by repeated computations

of barycenters of two points.



2.12 Problems 55

Finally, assume that the field K contains at least three elements (thus, there is

some µ ∈ K such that µ 6= 0 and µ 6= 1, but 2 = 1+ 1 = 0 is possible). Prove that

the barycenter of any n ≥ 3 points can be determined by repeated computations of

barycenters of two points. Prove that a nonempty subset V of E is an affine subspace

iff whenever V contains any two points x,y ∈ V , then V contains the entire line

(1−λ )x+λ y, λ ∈ K.

Hint. When 2 = 0, λ1 + · · ·+ λn = 1 and λi = 1, for 1 ≤ i ≤ n, show that n must

be odd, and that the problem reduces to computing the barycenter of three points in

two steps involving two barycenters. Since there is some µ ∈ K such that µ 6= 0 and

µ 6= 1, note that µ−1 and (1− µ)−1 both exist, and use the fact that

−µ

1− µ
+

1

1− µ
= 1.

2.16. (i) Let (a,b,c) be three points in A2, and assume that (a,b,c) are not collinear.

For any point x ∈ A2, if x = λ0a+λ1b+λ2c, where (λ0,λ1,λ2) are the barycentric

coordinates of x with respect to (a,b,c), show that

λ0 =
det(
−→
xb,
−→
bc)

det(
−→
ab,−→ac)

, λ1 =
det(−→ax,−→ac)

det(
−→
ab,−→ac)

, λ2 =
det(
−→
ab,−→ax)

det(
−→
ab,−→ac)

.

Conclude that λ0,λ1,λ2 are certain signed ratios of the areas of the triangles (a,b,c),
(x,a,b), (x,a,c), and (x,b,c).

(ii) Let (a,b,c) be three points in A3, and assume that (a,b,c) are not collinear.

For any point x in the plane determined by (a,b,c), if x = λ0a+λ1b+λ2c, where

(λ0,λ1,λ2) are the barycentric coordinates of x with respect to (a,b,c), show that

λ0 =

−→
xb×−→bc
−→
ab×−→ac

, λ1 =
−→ax×−→ac
−→
ab×−→ac

, λ2 =

−→
ab×−→ax
−→
ab×−→ac

.

Given any point O not in the plane of the triangle (a,b,c), prove that

λ1 =
det(
−→
Oa,
−→
Ox,
−→
Oc)

det(
−→
Oa,
−→
Ob,
−→
Oc)

, λ2 =
det(
−→
Oa,
−→
Ob,
−→
Ox)

det(
−→
Oa,
−→
Ob,
−→
Oc)

,

and

λ0 =
det(
−→
Ox,
−→
Ob,
−→
Oc)

det(
−→
Oa,
−→
Ob,
−→
Oc)

.

(iii) Let (a,b,c,d) be four points in A3, and assume that (a,b,c,d) are not coplanar.

For any point x ∈ A3, if x = λ0a+ λ1b+ λ2c+ λ3d, where (λ0,λ1,λ2,λ3) are the

barycentric coordinates of x with respect to (a,b,c,d), show that

λ1 =
det(−→ax,−→ac,

−→
ad)

det(
−→
ab,−→ac,

−→
ad)

, λ2 =
det(
−→
ab,−→ax,

−→
ad)

det(
−→
ab,−→ac,

−→
ad)

, λ3 =
det(
−→
ab,−→ac,−→ax)

det(
−→
ab,−→ac,

−→
ad)

,
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and

λ0 =
det(
−→
xb,
−→
bc,
−→
bd)

det(
−→
ab,−→ac,

−→
ad)

.

Conclude that λ0,λ1,λ2,λ3 are certain signed ratios of the volumes of the five tetra-

hedra (a,b,c,d), (x,a,b,c), (x,a,b,d), (x,a,c,d), and (x,b,c,d).
(iv) Let (a0, . . . ,am) be m+ 1 points in Am, and assume that they are affinely

independent. For any point x ∈Am, if x = λ0a0 + · · ·+λmam, where (λ0, . . . ,λm) are

the barycentric coordinates of x with respect to (a0, . . . ,am), show that

λi =
det(−−→a0a1, . . . ,

−−−→a0ai−1,
−→a0x,−−−→a0ai+1, . . . ,

−−→a0am)

det(−−→a0a1, . . . ,
−−−→a0ai−1,

−−→a0ai,
−−−→a0ai+1, . . . ,

−−→a0am)

for every i, 1≤ i≤ m, and

λ0 =
det(−→xa1,

−−→a1a2, . . . ,
−−→a1am)

det(−−→a0a1, . . . ,
−−→a0ai, . . . ,

−−→a0am)
.

Conclude that λi is the signed ratio of the volumes of the simplexes (a0, . . ., x, . . .am)
and (a0, . . . ,ai, . . .am), where 0≤ i≤ m.

2.17. With respect to the standard affine frame for the plane A2, consider the three

geometric transformations f1, f2, f3 defined by

x′ = −1

4
x−
√

3

4
y+

3

4
, y′ =

√
3

4
x− 1

4
y+

√
3

4
,

x′ = −1

4
x+

√
3

4
y− 3

4
, y′ =−

√
3

4
x− 1

4
y+

√
3

4
,

x′ =
1

2
x, y′ =

1

2
y+

√
3

2
.

(a) Prove that these maps are affine. Can you describe geometrically what their

action is (rotation, translation, scaling)?

(b) Given any polygonal line L, define the following sequence of polygonal lines:

S0 = L,

Sn+1 = f1(Sn)∪ f2(Sn)∪ f3(Sn).

Construct S1 starting from the line segment L = ((−1,0),(1,0)).
Can you figure out what Sn looks like in general? (You may want to write a

computer program.) Do you think that Sn has a limit?

2.18. In the plane A2, with respect to the standard affine frame, a point of coordi-

nates (x,y) can be represented as the complex number z = x+ iy. Consider the set

of geometric transformations of the form

z 7→ az+ b,
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where a,b are complex numbers such that a 6= 0.

(a) Prove that these maps are affine. Describe what these maps do geometrically.

(b) Prove that the above set of maps is a group under composition.

(c) Consider the set of geometric transformations of the form

z 7→ az+ b or z 7→ az+ b,

where a,b are complex numbers such that a 6= 0, and where z = x− iy if z = x+ iy.

Describe what these maps do geometrically. Prove that these maps are affine and

that this set of maps is a group under composition.

2.19. Given a group G, a subgroup H of G is called a normal subgroup of G iff

xHx−1 = H for all x ∈ G (where xHx−1 = {xhx−1 | h ∈ H}).
(i) Given any two subgroups H and K of a group G, let

HK = {hk | h ∈ H, k ∈ K}.

Prove that every x ∈ HK can be written in a unique way as x = hk for h ∈ H and

k ∈ K iff H ∩K = {1}, where 1 is the identity element of G.

(ii) If H and K are subgroups of G, and H is a normal subgroup of G, prove that

HK is a subgroup of G. Furthermore, if G = HK and H ∩K = {1}, prove that G is

isomorphic to H×K under the multiplication operation

(h1,k1) · (h2,k2) = (h1k1h2k−1
1 , k1k2).

When G = HK, where H,K are subgroups of G, H is a normal subgroup of G,

and H ∩K = {1}, we say that G is the semidirect product of H and K.

(iii) Let (E,
−→
E ) be an affine space. Recall that the affine group of E , denoted by

GA(E), is the set of affine bijections of E , and that the linear group of
−→
E , denoted

by GL(
−→
E ), is the group of bijective linear maps of

−→
E . The map f 7→ −→f defines

a group homomorphism L : GA(E)→ GL(
−→
E ), and the kernel of this map is the

set of translations on E , denoted as T (E). Prove that T (E) is a normal subgroup of

GA(E).
(iv) For any a ∈ E , let

GAa(E) = { f ∈GA(E) | f (a) = a},

the set of affine bijections leaving a fixed. Prove that that GAa(E) is a subgroup of

GA(E), and that GAa(E) is isomorphic to GL(
−→
E ). Prove that GA(E) is isomorphic

to the direct product of T (E) and GAa(E).

Hint. Note that if u =
−−−→
f (a)a and tu is the translation associated with the vector u,

then tu ◦ f ∈GAa(E) (where the translation tu is defined such that tu(a) = a+ u for

every a ∈ E).

(v) Given a group G, let Aut(G) denote the set of isomorphisms f : G→G. Prove

that the set Aut(G) is a group under composition (called the group of automorphisms
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of G). Given any two groups H and K and a homomorphism θ : K→ Aut(H), we

define H×θ K as the set H×K under the multiplication operation

(h1,k1) · (h2,k2) = (h1θ (k1)(h2), k1k2).

Prove that H×θ K is a group.

Hint. The inverse of (h,k) is (θ (k−1)(h−1), k−1).
Prove that the group H×θ K is the semidirect product of the subgroups

{(h,1) | h∈H} and {(1,k) | k ∈ K}. The group H×θ K is also called the semidirect

product of H and K relative to θ .

Note. It is natural to identify {(h,1) | h ∈ H} with H and {(1,k) | k ∈ K} with K.

If G is the semidirect product of two subgroups H and K as defined in (ii), prove

that the map γ : K→Aut(H) defined by conjugation such that

γ(k)(h) = khk−1

is a homomorphism, and that G is isomorphic to H×γ K.

(vi) Define the map θ : GL(
−→
E )→ Aut(

−→
E ) as follows: θ ( f ) = f , where f ∈

GL(
−→
E ) (note that θ can be viewed as an inclusion map). Prove that GA(E) is

isomorphic to the semidirect product
−→
E ×θ GL(

−→
E ).

(vii) Let SL(
−→
E ) be the subgroup of GL(

−→
E ) consisting of the linear maps such

that det( f ) = 1 (the special linear group of
−→
E ), and let SA(E) be the subgroup of

GA(E) (the special affine group of E) consisting of the affine maps f such that
−→
f ∈

SL(
−→
E ). Prove that SA(E) is isomorphic to the semidirect product

−→
E ×θ SL(

−→
E ),

where θ : SL(
−→
E )→Aut(

−→
E ) is defined as in (vi).

(viii) Assume that (E,
−→
E ) is a Euclidean affine space, as defined in Chapter 6.

Let SO(
−→
E ) be the special orthogonal group of

−→
E , as defined in Definition 6.6

(the isometries with determinant +1), and let SE(E) be the subgroup of SA(E) (the

special Euclidean group of E) consisting of the affine isometries f such that
−→
f ∈

SO(
−→
E ). Prove that SE(E) is isomorphic to the semidirect product

−→
E ×θ SO(

−→
E ),

where θ : SO(
−→
E )→ Aut(

−→
E ) is defined as in (vi).

2.20. The purpose of this problem is to study certain affine maps of A2.

(1) Consider affine maps of the form

(
x1

x2

)
7→
(

cosθ −sinθ
sinθ cosθ

)(
x1

x2

)
+

(
b1

b2

)
.

Prove that such maps have a unique fixed point c if θ 6= 2kπ , for all integers k.

Show that these are rotations of center c, which means that with respect to a frame

with origin c (the unique fixed point), these affine maps are represented by rotation

matrices.

(2) Consider affine maps of the form
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(
x1

x2

)
7→
(

λ cosθ −λ sinθ
µ sinθ µ cosθ

)(
x1

x2

)
+

(
b1

b2

)
.

Prove that such maps have a unique fixed point iff (λ + µ)cosθ 6= 1+λ µ . Prove

that if λ µ = 1 and λ > 0, there is some angle θ for which either there is no fixed

point, or there are infinitely many fixed points.

(3) Prove that the affine map

(
x1

x2

)
7→
(

8/5 −6/5

3/10 2/5

)(
x1

x2

)
+

(
1

1

)

has no fixed point.

(4) Prove that an arbitrary affine map

(
x1

x2

)
7→
(

a1 a2

a3 a4

)(
x1

x2

)
+

(
b1

b2

)

has a unique fixed point iff the matrix

(
a1− 1 a2

a3 a4− 1

)

is invertible.

2.21. Let (E,
−→
E ) be any affine space of finite dimension. For every affine map

f : E→ E , let Fix( f ) = {a ∈ E | f (a) = a} be the set of fixed points of f .

(i) Prove that if Fix( f ) 6= /0, then Fix( f ) is an affine subspace of E such that for

every b ∈ Fix( f ),

Fix( f ) = b+Ker(
−→
f − id).

(ii) Prove that Fix( f ) contains a unique fixed point iff

Ker(
−→
f − id) = {0}, i.e.,

−→
f (u) = u iff u = 0.

Hint. Show that

−−−−→
Ω f (a)−−→Ωa =

−−−−→
Ω f (Ω)+

−→
f (
−→
Ωa)−−→Ωa,

for any two points Ω ,a ∈ E .

2.22. Given two affine spaces (E,
−→
E ) and (F,

−→
F ), let A (E,F) be the set of all affine

maps f : E→ F .

(i) Prove that the set A (E,
−→
F ) (viewing

−→
F as an affine space) is a vector space

under the operations f + g and λ f defined such that

( f + g)(a) = f (a)+ g(a),

(λ f )(a) = λ f (a),

for all a ∈ E .
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(ii) Define an action

+ : A (E,F)×A (E,
−→
F )→A (E,F)

of A (E,
−→
F ) on A (E,F) as follows: For every a∈ E , every f ∈A (E,F), and every

h ∈A (E,
−→
F ),

( f + h)(a) = f (a)+ h(a).

Prove that (A (E,F), A (E,
−→
F ),+) is an affine space.

Hint. Show that for any two affine maps f ,g ∈A (E,F), the map
−→
f g defined such

that −→
f g(a) =

−−−−−→
f (a)g(a)

(for every a ∈ E) is affine, and thus
−→
f g ∈A (E,

−→
F ). Furthermore,

−→
f g is the unique

map in A (E,
−→
F ) such that

f +
−→
f g = g.

(iii) If
−→
E has dimension m and

−→
F has dimension n, prove that A (E,

−→
F ) has

dimension n+mn = n(m+ 1).

2.23. Let (c1, . . . ,cn) be n≥ 3 points in Am (where m≥ 2). Investigate whether there

is a closed polygon with n vertices (a1, . . . ,an) such that ci is the middle of the edge

(ai, ai+1) for every i with 1≤ i≤ n− 1, and cn is the middle of the edge (an, a0).
Hint. The parity (odd or even) of n plays an important role. When n is odd, there

is a unique solution, and when n is even, there are no solutions or infinitely many

solutions. Clarify under which conditions there are infinitely many solutions.

2.24. Given an affine space E of dimension n and an affine frame (a0, . . . ,an) for E ,

let f : E → E and g : E → E be two affine maps represented by the two (n+ 1)×
(n+ 1) matrices (

A b

0 1

)
and

(
B c

0 1

)

w.r.t. the frame (a0, . . . ,an). We also say that f and g are represented by (A,b) and

(B,c).
(1) Prove that the composition f ◦ g is represented by the matrix

(
AB Ac+ b

0 1

)
.

We also say that f ◦ g is represented by (A,b)(B,c) = (AB,Ac+ b).
(2) Prove that f is invertible iff A is invertible and that the matrix representing

f−1 is (
A−1 −A−1b

0 1

)
.
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We also say that f−1 is represented by (A,b)−1 = (A−1,−A−1b). Prove that if A is

an orthogonal matrix, the matrix associated with f−1 is

(
A⊤ −A⊤b

0 1

)
.

Furthermore, denoting the columns of A by A1, . . . ,An, prove that the vector A⊤b is

the column vector of components

(A1 ·b, . . . ,An ·b)

(where · denotes the standard inner product of vectors).

(3) Given two affine frames (a0, . . . ,an) and (a′0, . . . ,a
′
n) for E , any affine map

f : E → E has a matrix representation (A,b) w.r.t. (a0, . . . ,an) and (a′0, . . . ,a
′
n) de-

fined such that b =
−−−−→
a′0 f (a0) is expressed over the basis (

−−→
a′0a′1, . . . ,

−−→
a′0a′n), and ai j is

the ith coefficient of f (−−→a0a j) over the basis (
−−→
a′0a′1, . . . ,

−−→
a′0a′n). Given any three frames

(a0, . . . ,an), (a
′
0, . . . ,a

′
n), and (a′′0, . . . ,a

′′
n), for any two affine maps f : E → E and

g : E→ E , if f has the matrix representation (A,b) w.r.t.(a0, . . . ,an) and (a′0, . . . ,a
′
n)

and g has the matrix representation (B,c) w.r.t. (a′0, . . . ,a
′
n) and (a′′0 , . . . ,a

′′
n), prove

that g◦ f has the matrix representation (B,c)(A,b) w.r.t.(a0, . . . ,an) and (a′′0, . . . ,a
′′
n).

(4) Given two affine frames (a0, . . . ,an) and (a′0, . . . ,a
′
n) for E , there is a unique

affine map h : E→ E such that h(ai) = a′i for i = 0, . . . ,n, and we let (P,ω) be its as-

sociated matrix representation with respect to the frame (a0, . . . ,an). Note that ω =−−→
a0a′0, and that pi j is the ith coefficient of

−−→
a′0a′j over the basis (−−→a0a1, . . . ,

−−→a0an). Ob-

serve that (P,ω) is also the matrix representation of idE w.r.t. the frames (a′0, . . . ,a
′
n)

and (a0, . . . ,an), in that order. For any affine map f : E → E , if f has the ma-

trix representation (A,b) over the frame (a0, . . . ,an) and the matrix representation

(A′,b′) over the frame (a′0, . . . ,a
′
n), prove that

(A′,b′) = (P,ω)−1(A,b)(P,ω).

Given any two affine maps f : E→E and g : E→E , where f is invertible, for any

affine frame (a0, . . . ,an) for E , if (a′0, . . . ,a
′
n) is the affine frame image of (a0, . . . ,an)

under f (i.e., f (ai) = a′i for i = 0, . . . ,n), letting (A,b) be the matrix representation

of f w.r.t. the frame (a0, . . . ,an) and (B,c) be the matrix representation of g w.r.t.

the frame (a′0, . . . ,a
′
n) (not the frame (a0, . . . ,an)), prove that g◦ f is represented by

the matrix (A,b)(B,c) w.r.t. the frame (a0, . . . ,an).

Remark: Note that this is the opposite of what happens if f and g are both repre-

sented by matrices w.r.t. the “fixed” frame (a0, . . . ,an), where g◦ f is represented by

the matrix (B,c)(A,b). The frame (a′0, . . . ,a
′
n) can be viewed as a “moving” frame.

The above has applications in robotics, for example to rotation matrices expressed

in terms of Euler angles, or “roll, pitch, and yaw.”
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2.25. (a) Let E be a vector space, and let U and V be two subspaces of E such that

they form a direct sum E = U ⊕V . Recall that this means that every vector x ∈ E

can be written as x = u+ v, for some unique u ∈U and some unique v ∈V . Define

the function pU : E →U (resp. pV : E → V ) so that pU(x) = u (resp. pV (x) = v),

where x = u+ v, as explained above. Check that that pU and pV are linear.

(b) Now assume that E is an affine space (nontrivial), and let U and V be affine

subspaces such that
−→
E =

−→
U ⊕−→V . Pick any Ω ∈V , and define qU : E →−→U (resp.

qV : E→−→V , with Ω ∈U) so that

qU(a) = p−→
U
(
−→
Ωa) (resp. qV (a) = p−→

V
(
−→
Ωa)), for every a ∈ E.

Prove that qU does not depend on the choice of Ω ∈V (resp. qV does not depend on

the choice of Ω ∈U). Define the map pU : E→U (resp. pV : E→V ) so that

pU(a) = a− qV(a) (resp. pV (a) = a− qU(a)), for every a ∈ E.

Prove that pU (resp. pV ) is affine.

The map pU (resp. pV ) is called the projection onto U parallel to V (resp. pro-

jection onto V parallel to U).

(c) Let (a0, . . . ,an) be n+1 affinely independent points inAn and let ∆(a0, . . . ,an)
denote the convex hull of (a0, . . . ,an) (an n-simplex). Prove that if f : An → An is

an affine map sending ∆(a0, . . . ,an) inside itself, i.e.,

f (∆(a0, . . . ,an))⊆ ∆(a0, . . . ,an),

then f has some fixed point b ∈ ∆(a0, . . . ,an), i.e., f (b) = b.

Hint: Proceed by induction on n. First, treat the case n = 1. The affine map is deter-

mined by f (a0) and f (a1), which are affine combinations of a0 and a1. There is an

explicit formula for some fixed point of f . For the induction step, compose f with

some suitable projections.
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Chapter 3

Basic Properties of Convex Sets

3.1 Convex Sets

Convex sets play a very important role in geometry. In this chapter we state and

prove some of the “classics” of convex affine geometry: Carathéodory’s theorem,

Radon’s theorem, Helly’s theorem, and Krein and Millman’s theorem. These the-

orems share the property that they are easy to state, but they are deep, and their

proof, although rather short, requires a lot of creativity. We introduce the notions of

separating and supporting hyperplanes, of vertices, and of extreme points. We also

define centerpoints and prove their existence.

Given an affine space E , recall that a subset V of E is convex if for any two points

a,b ∈V , we have c ∈V for every point c = (1−λ )a+λ b, with 0≤ λ ≤ 1 (λ ∈R).

Given any two points a,b, the notation [a,b] is often used to denote the line segment

between a and b, that is,

[a,b] = {c ∈ E | c = (1−λ )a+λ b, 0≤ λ ≤ 1},

and thus a set V is convex if [a,b]⊆V for any two points a,b∈V (a= b is allowed).

The empty set is trivially convex, every one-point set {a} is convex, and the entire

affine space E is, of course, convex.

It is obvious that the intersection of any family (finite or infinite) of convex sets

is convex. Then, given any (nonempty) subset S of E , there is a smallest convex set

containing S, denoted by C (S) or conv(S) and called the convex hull of S (namely,

the intersection of all convex sets containing S). The affine hull of a subset S of E is

the smallest affine set containing S, and it will be denoted by 〈S〉 or aff(S).

Definition 3.1. Given any affine space E the dimension of a nonempty convex sub-

set S of E , denoted by dim S, is the dimension of the smallest affine subset aff(S)
containing S.

A good understanding of what C (S) is, and good methods for computing it, are

essential. First, we have the following simple but crucial lemma:

65
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(a) (b)

Fig. 3.1 (a) A convex set; (b) A nonconvex set.

Lemma 3.1. Given an affine space
〈
E,
−→
E ,+

〉
, for any family (ai)i∈I of points in

E, the set V of convex combinations ∑i∈I λiai (where ∑i∈I λi = 1 and λi ≥ 0) is the

convex hull of (ai)i∈I .

Proof. If (ai)i∈I is empty, then V = /0, because of the condition ∑i∈I λi = 1. As in the

case of affine combinations, it is easily shown by induction that any convex combi-

nation can be obtained by computing convex combinations of two points at a time.

As a consequence, if (ai)i∈I is nonempty, then the smallest convex subspace contain-

ing (ai)i∈I must contain the set V of all convex combinations ∑i∈I λiai. Thus, it is

enough to show that V is closed under convex combinations, which is immediately

verified. ⊓⊔

In view of Lemma 3.1, it is obvious that any affine subspace of E is convex.

Convex sets also arise in terms of hyperplanes. Given a hyperplane H, if f : E→ R
is any nonconstant affine form defining H (i.e., H = Ker f ), we can define the two

subsets

H+( f ) = {a ∈ E | f (a)≥ 0} and H−( f ) = {a ∈ E | f (a)≤ 0},

called (closed) half-spaces associated with f .

Observe that if λ > 0, then H+(λ f ) = H+( f ), but if λ < 0, then H+(λ f ) =
H−( f ), and similarly for H−(λ f ). However, the set

{H+( f ),H−( f )}

depends only on the hyperplane H, and the choice of a specific f defining H amounts

to the choice of one of the two half-spaces. For this reason, we will also say that

H+( f ) and H−( f ) are the closed half-spaces associated with H. Clearly, H+( f )∪
H−( f ) = E and H+( f ) ∩H−( f ) = H. It is immediately verified that H+( f ) and

H−( f ) are convex. Bounded convex sets arising as the intersection of a finite family



3.2 Carathéodory’s Theorem 67

H+(f)

H
−
(f)

H

Fig. 3.2 The two half-spaces determined by a hyperplane H.

of half-spaces associated with hyperplanes play a major role in convex geometry

and topology (they are called convex polytopes).

It is natural to wonder whether Lemma 3.1 can be sharpened in two directions:

(1) Is it possible to have a fixed bound on the number of points involved in the

convex combinations? (2) Is it necessary to consider convex combinations of all

points, or is it possible to consider only a subset with special properties?

The answer is yes in both cases. In case 1, assuming that the affine space E has

dimension m, Carathéodory’s theorem asserts that it is enough to consider convex

combinations of m+ 1 points. For example, in the plane A2, the convex hull of a

set S of points is the union of all triangles (interior points included) with vertices in

S. In case 2, the theorem of Krein and Milman asserts that a convex set that is also

compact is the convex hull of its extremal points (given a convex set S, a point a∈ S

is extremal if S−{a} is also convex; see Berger [2] or Lang [4]). Next, we prove

Carathéodory’s theorem.

3.2 Carathéodory’s Theorem

The proof of Carathéodory’s theorem is really beautiful. It proceeds by contradiction

and uses a minimality argument.

Theorem 3.1. (Carathéodory, 1907) Given any affine space E of dimension m, for

any (nonvoid) family S = (ai)i∈L in E, the convex hull C (S) of S is equal to the set

of convex combinations of families of m+ 1 points of S.

Proof. By Lemma 3.1,

C (S) =

{
∑
i∈I

λiai | ai ∈ S, ∑
i∈I

λi = 1, λi ≥ 0, I ⊆ L, I finite

}
.
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We would like to prove that

C (S) =

{
∑
i∈I

λiai | ai ∈ S,∑
i∈I

λi = 1, λi ≥ 0, I ⊆ L, |I|= m+ 1

}
.

We proceed by contradiction. If the theorem is false, there is some point b ∈ C (S)
such that b can be expressed as a convex combination b = ∑i∈I λiai, where I ⊆ L is

a finite set of cardinality |I| = q with q ≥ m+ 2, and b cannot be expressed as any

convex combination b = ∑ j∈J µ ja j of strictly fewer than q points in S, that is, where

|J|< q. Such a point b ∈ C (S) is a convex combination

b = λ1a1 + · · ·+λqaq,

where λ1 + · · ·+λq = 1 and λi > 0 (1≤ i≤ q). We shall prove that b can be written

as a convex combination of q− 1 of the ai. Pick any origin O in E . Since there are

q > m+1 points a1, . . . ,aq, these points are affinely dependent, and by Lemma 2.6,

there is a family (µ1, . . . ,µq) of scalars not all null, such that µ1 + · · ·+ µq = 0 and

q

∑
i=1

µi
−→
Oai = 0.

Consider the set T ⊆ R defined by

T = {t ∈ R | λi + tµi ≥ 0, µi 6= 0, 1≤ i≤ q}.

The set T is nonempty, since it contains 0. Since ∑
q
i=1 µi = 0 and the µi are not

all null, there are some µh,µk such that µh < 0 and µk > 0, which implies that

T = [α,β ], where

α = max
1≤i≤q

{−λi/µi | µi > 0} and β = min
1≤i≤q

{−λi/µi | µi < 0}

(T is the intersection of the closed half-spaces {t ∈ R | λi + tµi ≥ 0, µi 6= 0}). Ob-

serve that α < 0 < β , since λi > 0 for all i = 1, . . . ,q.

We claim that there is some j (1≤ j ≤ q) such that

λ j +αµ j = 0.

Indeed, since

α = max
1≤i≤q

{−λi/µi | µi > 0},

and since the set on the right-hand side is finite, the maximum is achieved and there

is some index j such that α = −λ j/µ j. If j is some index such that λ j +αµ j = 0,

since ∑
q
i=1 µi

−→
Oai = 0, we have
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b =
q

∑
i=1

λiai = O+
q

∑
i=1

λi
−→
Oai + 0,

= O+
q

∑
i=1

λi
−→
Oai +α

( q

∑
i=1

µi
−→
Oai

)
,

= O+
q

∑
i=1

(λi +αµi)
−→
Oai,

=
q

∑
i=1

(λi +αµi)ai,

=
q

∑
i=1, i6= j

(λi +αµi)ai,

since λ j +αµ j = 0. Since ∑
q
i=1 µi = 0, ∑

q
i=1 λi = 1, and λ j +αµ j = 0, we have

q

∑
i=1, i6= j

λi +αµi = 1,

and since λi +αµi ≥ 0 for i = 1, . . . ,q, the above shows that b can be expressed as a

convex combination of q−1 points from S. However, this contradicts the assumption

that b cannot be expressed as a convex combination of strictly fewer than q points

from S, and the theorem is proved. ⊓⊔

If S is a finite (of infinite) set of points in the affine plane A2, Theorem 3.1

confirms our intuition that C (S) is the union of triangles (including interior points)

whose vertices belong to S. Similarly, the convex hull of a set S of points in A3 is

the union of tetrahedra (including interior points) whose vertices belong to S. We

get the feeling that triangulations play a crucial role, which is of course true!

An interesting consequence of Carathéodory’s theorem is the following result:

Proposition 3.1. If K is any compact subset of Am, then the convex hull conv(K) of

K is also compact.

Proposition 3.1 can be proved by showing that conv(K) is the image of some

compact subset of Rm+1× (Am)m+1 under some well-chosen continuous map.

A closer examination of the proof of Theorem 3.1 reveals that the fact that the

µi’s add up to zero is actually not needed in the proof. This fact ensures that T is a

closed interval, but all we need is that T be bounded from below, and this requires

only that some µ j be strictly positive. As a consequence, we can prove a version

of Theorem 3.1 for convex cones. This is a useful result, since cones play such an

important role in convex optimization. Let us recall some basic definitions about

cones.

Definition 3.2. Given any vector space E a subset C ⊆ E is a convex cone iff C is

closed under positive linear combinations, that is, linear combinations of the form
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∑
i∈I

λivi, with vi ∈C and λi ≥ 0 for all i ∈ I,

where I has finite support (all λi = 0 except for finitely many i ∈ I). Given any set

of vectors S, the positive hull of S, or cone spanned by S, denoted by cone(S), is the

set of all positive linear combinations of vectors in S,

cone(S) =

{
∑
i∈I

λivi | vi ∈ S, λi ≥ 0

}
.

Note that a cone always contains 0. When S consists of a finite number of vectors,

the convex cone cone(S) is called a polyhedral cone. We have the following version

of Carathéodory’s theorem for convex cones:

Theorem 3.2. Given any vector space E of dimension m, for any (nonvoid) family

S = (vi)i∈L of vectors in E, the cone cone(S) spanned by S is equal to the set of

positive combinations of families of m vectors in S.

The proof of Theorem 3.2 can be easily adapted from the proof of Theorem 3.1

and is left as an exercise.

There is an interesting generalization of Carathéodory’s theorem known as the

colorful Carathéodory theorem. This theorem, due to Bárány and proved in 1982,

can be used to give a fairly short proof of a generalization of Helly’s theorem known

as Tverberg’s theorem (see Section 3.4).

Theorem 3.3. (Colorful Carathéodory theorem) Let E be any affine space of di-

mension m. For any point b ∈ E and for any sequence of m+ 1 nonempty subsets

(S1, . . . ,Sm+1) of E, if b ∈ conv(Si) for i = 1, . . . ,m+1, then there exists a sequence

of m+1 points (a1, . . . ,am+1) with ai ∈ Si, such that b ∈ conv(a1, . . . ,am+1), that is,

b is a convex combination of the ai’s.

Although Theorem 3.3 is not hard to prove, we will not prove it here. Instead,

we refer the reader to Matousek [6], Chapter 8, Section 8.2. There is also a stronger

version of Theorem 3.3, in which it is enough to assume that b ∈ conv(Si ∪ S j) for

all i, j with 1≤ i < j ≤ m+ 1.

Now that we have given an answer to the first question posed at the end of Section

3.1, we give an answer to the second question.

3.3 Vertices, Extremal Points, and Krein and Milman’s Theorem

First, we define the notions of separation and of separating hyperplanes. For this,

recall the definition of the closed (or open) half-spaces determined by a hyperplane.

Given a hyperplane H, if f : E → R is any nonconstant affine form defining H

(i.e., H = Ker f ), recall that we define the closed half-spaces associated with f by
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H+( f ) = {a ∈ E | f (a)≥ 0},
H−( f ) = {a ∈ E | f (a)≤ 0}.

We also define the open half-spaces associated with f as the two sets

◦
H+ ( f ) = {a ∈ E | f (a)> 0},
◦
H− ( f ) = {a ∈ E | f (a)< 0}.

The set {
◦
H+ ( f ),

◦
H− ( f )} depends only on the hyperplane H. Clearly, we have

◦
H+ ( f ) = H+( f )−H and

◦
H− ( f ) = H−( f )−H.

Definition 3.3. Given an affine space X and two nonempty subsets A and B of X , we

say that a hyperplane H separates (resp. strictly separates) A and B if A is in one

and B is in the other of the two half-spaces (resp. open half-spaces) determined by

H.

B

A

H

(a)

B

A

H

H ′

(b)

Fig. 3.3 (a) A separating hyperplane H. (b) Strictly separating hyperplanes H and H ′.

In Figure 3.3 (a), the two closed convex sets A and B are unbounded and B has

the hyperplane H for its boundary, while A is asymptotic to H. The hyperplane H

is a separating hyperplane for A and B but A and B can’t be strictly separated. In

Figure 3.3 (b), both A and B are convex and closed, B is unbounded and asymptotic

to the hyperplane, H ′, but A is bounded. Both hyperplanes H and H ′ strictly separate

A and B.

The special case of separation in which A is convex and B = {a} for some point

a in A is of particular importance.

Definition 3.4. Let X be an affine space and let A be any nonempty subset of X . A

supporting hyperplane of A is any hyperplane H containing some point a of A and

separating {a} and A. We say that H is a supporting hyperplane of A at a.
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Observe that if H is a supporting hyperplane of A at a, then we must have a∈ ∂A.

Otherwise, there would be some open ball B(a,ε) of center a contained in A, and

so there would be points of A (in B(a,ε)) in both half-spaces determined by H,

contradicting the fact that H is a supporting hyperplane of A at a. Furthermore,

H ∩
◦
A= /0.

One should experiment with various pictures and realize that supporting hyper-

planes at a point may not exist (for example, if A is not convex), may not be unique,

and may have several distinct supporting points! (See Figure 3.4).

Fig. 3.4 Examples of supporting hyperplanes.

Next, we need to define various types of boundary points of closed convex sets.

Definition 3.5. Let X be an affine space of dimension d. For any nonempty closed

and convex subset A of dimension d, a point a∈ ∂A has order k(a) if the intersection

of all the supporting hyperplanes of A at a is an affine subspace of dimension k(a).
We say that a ∈ ∂A is a vertex if k(a) = 0; we say that a is smooth if k(a) = d− 1,

i.e., if the supporting hyperplane at a is unique.

A vertex is a boundary point a such that there are d independent supporting

hyperplanes at a. A d-simplex has boundary points of order 0,1, . . . ,d − 1. The

following proposition is proved in Berger [2] (Proposition 11.6.2):

Proposition 3.2. The set of vertices of a closed and convex subset is countable.

Another important concept is that of an extremal point.

Definition 3.6. Let X be an affine space. For any nonempty convex subset A a point

a ∈ ∂A is extremal (or extreme) if A−{a} is still convex.

It is fairly obvious that a point a ∈ ∂A is extremal if it does not belong to the

interior of any closed nontrivial line segment [x,y]⊆ A (x 6= y, a 6= x and a 6= y).

Observe that a vertex is extremal, but the converse is false. For example, in Figure

3.5, all the points on the arc of the parabola, including v1 and v2, are extreme points.
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v1
v2

Fig. 3.5 Examples of vertices and extreme points.

However, only v1 and v2 are vertices. Also, if dim X ≥ 3, the set of extremal points

of a compact convex may not be closed.

Actually, it is not at all obvious that a nonempty compact convex set possesses

extremal points. In fact, a stronger results holds (Krein and Milman’s theorem).

In preparation for the proof of this important theorem, observe that any compact

(nontrivial) interval of A1 has two extremal points, its two endpoints. We need the

following lemma:

Lemma 3.2. Let X be an affine space of dimension n, and let A be a nonempty

compact and convex set. Then A = C (∂A), i.e., A is equal to the convex hull of its

boundary.

Proof. Pick any a in A, and consider any line D through a. Then, D∩A is closed

and convex. However, since A is compact, it follows that D∩A is a closed interval

[u,v] containing a, and u,v ∈ ∂A. Therefore, a ∈ C (∂A), as desired. ⊓⊔

The following important theorem shows that only extremal points matter in de-

termining a compact and convex subset from its boundary. The proof of Theorem

3.4 makes use of a proposition due to Minkowski (Proposition 7.4), which will be

proved in Section 7.2.

Theorem 3.4. (Krein and Milman, 1940) Let X be an affine space of dimension n.

Every compact and convex nonempty subset A is equal to the convex hull of its set

of extremal points.

Proof. Denote the set of extremal points of A by Extrem(A). We proceed by in-

duction on d = dim X . When d = 1, the convex and compact subset A must be a

closed interval [u,v] or a single point. In either case, the theorem holds trivially.

Now assume d ≥ 2, and assume that the theorem holds for d−1. It is easily verified

that

Extrem(A∩H) = (Extrem(A))∩H,

for every supporting hyperplane H of A (such hyperplanes exist, by Minkowski’s

proposition (Proposition 7.4)). Observe that Lemma 3.2 implies that if we can prove

that
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∂A⊆ C (Extrem(A)),

then, since A = C (∂A), we will have established that

A = C (Extrem(A)).

Let a ∈ ∂A, and let H be a supporting hyperplane of A at a (which exists, by

Minkowski’s proposition). Now A and H are convex, so A ∩H is convex; H is

closed and A is compact, so H ∩A is a closed subset of a compact subset A, and

thus A∩H is also compact. Since A∩H is a compact and convex subset of H and H

has dimension d− 1, by the induction hypothesis, we have

A∩H = C (Extrem(A∩H)).

However,

C (Extrem(A∩H)) = C ((Extrem(A))∩H)

= C (Extrem(A))∩H ⊆ C (Extrem(A)),

and so a ∈ A∩H ⊆ C (Extrem(A)). Therefore, we have proved that

∂A⊆ C (Extrem(A)),

from which we deduce that A = C (Extrem(A)), as explained earlier. ⊓⊔

Remark: Observe that Krein and Milman’s theorem implies that any nonempty

compact and convex set has a nonempty subset of extremal points. This is intuitively

obvious, but hard to prove! Krein and Milman’s theorem also applies to infinite-

dimensional affine spaces, provided that they are locally convex; see Valentine [7],

Chapter 11, Bourbaki [3], Chapter II, Barvinok [1], Chapter 3, or Lax [5], Chapter

13.

An important consequence of Krein and Milman’s theorem is that every convex

function on a convex and compact set achieves its maximum at some extremal point.

Definition 3.7. Let A be a nonempty convex subset of An. A function f : A→ R is

convex if

f ((1−λ )a+λ b)≤ (1−λ ) f (a)+λ f (b)

for all a,b ∈ A and for all λ ∈ [0,1]. The function f : A→ R is strictly convex if

f ((1−λ )a+λ b)< (1−λ ) f (a)+λ f (b)

for all a,b ∈ A with a 6= b and for all λ with 0 < λ < 1. A function f : A→ R is

concave (resp. strictly concave) iff − f is convex (resp.− f is strictly convex).

If f is convex, a simple induction shows that

f

(
∑
i∈I

λiai

)
≤∑

i∈I

λi f (ai)
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for every finite convex combination in A, i.e., for any finite family (ai)i∈I of points

in A and any family (λi)i∈I with ∑i∈I λi = 1 and λi ≥ 0 for all i ∈ I.

Proposition 3.3. Let A be a nonempty convex and compact subset of An and let

f : A→ R be any function. If f is convex and continuous, then f achieves its maxi-

mum at some extreme point of A.

Proof. Since A is compact and f is continuous, f (A) is a closed interval [m,M] in

R, and so f achieves its minimum m and its maximum M. Say f (c) = M, for some

c ∈ A. By Krein and Milman’s theorem, c is some convex combination of extreme

points of A,

c =
k

∑
i=1

λiai,

with ∑k
i=1 λi = 1, λi ≥ 0, and each ai an extreme point in A. But then, since f is

convex,

M = f (c) = f

(
k

∑
i=1

λiai

)
≤

k

∑
i=1

λi f (ai),

and if we let

f (ai0) = max
1≤i≤k

{ f (ai)}

for some i0 such that 1≤ i0 ≤ k, then we get

M = f (c)≤
k

∑
i=1

λi f (ai)≤
(

k

∑
i=1

λi

)
f (ai0) = f (ai0),

since ∑k
i=1 λi = 1. Since M is the maximum value of the function f over A, we have

f (ai0)≤M, and so

M = f (ai0),

and f achieves its maximum at the extreme point ai0 , as claimed. ⊓⊔

Proposition 3.3 plays an important role in convex optimization: It guarantees that

the maximum value of a convex objective function on a compact and convex set is

achieved at some extreme point. Thus, it is enough to look for a maximum at some

extreme point of the domain.

Proposition 3.3 fails for minimal values of a convex function. For example, the

function x 7→ f (x) = x2 defined on the compact interval [−1,1] achieves it minimum

at x = 0, which is not an extreme point of [−1,1]. However, if f is concave, then f

achieves its minimum value at some extreme point of A. In particular, if f is affine,

it achieves its minimum and its maximum at some extreme points of A.

We conclude this chapter with three further classics of convex geometry.



76 3 Basic Properties of Convex Sets

3.4 Radon’s, Helly’s, Tverberg’s Theorems and Centerpoints

We begin with Radon’s theorem.

Theorem 3.5. (Radon, 1921) Given any affine space E of dimension m, for every

subset X of E, if X has at least m+ 2 points, then there is a partition of X into two

nonempty disjoint subsets X1 and X2 such that the convex hulls of X1 and X2 have a

nonempty intersection.

Proof. Pick some origin O in E . Write X = (xi)i∈L for some index set L (we can

let L = X). Since by assumption |X | ≥ m + 2, where m = dim(E), X is affinely

dependent, and by Lemma 2.6, there is a family (µk)k∈L (of finite support) of scalars,

not all null, such that

∑
k∈L

µk = 0 and ∑
k∈L

µk
−−→
Oxk = 0.

Since ∑k∈L µk = 0, the µk are not all null, and (µk)k∈L has finite support, the sets

I = {i ∈ L | µi > 0} and J = { j ∈ L | µ j < 0}

are nonempty, finite, and obviously disjoint. Let

X1 = {xi ∈ X | µi > 0} and X2 = {xi ∈ X | µi ≤ 0}.

Again, since the µk are not all null and ∑k∈L µk = 0, the sets X1 and X2 are nonempty,

and obviously

X1∩X2 = /0 and X1∪X2 = X .

Furthermore, the definition of I and J implies that (xi)i∈I ⊆ X1 and (x j) j∈J ⊆ X2. It

remains to prove that C (X1)∩C (X2) 6= /0. The definition of I and J implies that

∑
k∈L

µk

−−→
Oxk = 0

can be written as

∑
i∈I

µi
−→
Oxi + ∑

j∈J

µ j
−→
Ox j = 0,

that is, as

∑
i∈I

µi
−→
Oxi = ∑

j∈J

−µ j
−→
Ox j,

where

∑
i∈I

µi = ∑
j∈J

−µ j = µ ,

with µ > 0. Thus, we have

∑
i∈I

µi

µ

−→
Oxi = ∑

j∈J

−µ j

µ

−→
Ox j,
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with

∑
i∈I

µi

µ
= ∑

j∈J

−µ j

µ
= 1,

proving that ∑i∈I(µi/µ)xi ∈ C (X1) and ∑ j∈J−(µ j/µ)x j ∈ C (X2) are identical, and

thus that C (X1)∩C (X2) 6= /0. ⊓⊔

A partition (X1,X2) of X satisfying the conditions of Theorem 3.5 is sometimes

called a Radon partition of X , and any point in conv(X1)∩ conv(X2) is called a

Radon point of X . Figure 3.6 shows two Radon partitions of five points in the plane.

Fig. 3.6 Examples of Radon partitions.

It can be shown that a finite set X ⊆ E has a unique Radon partition iff it has

m+ 2 elements and any m+ 1 points of X are affinely independent. For example,

there are exactly two possible cases in the plane, as shown in Figure 3.7.

Fig. 3.7 The Radon partitions of four points (in A2).

There is also a version of Radon’s theorem for the class of cones with an apex.

Say that a convex cone C ⊆ E has an apex (or is a pointed cone) iff there is some

hyperplane H such that C ⊆ H+ and H ∩C = {0}. For example, the cone obtained

as the intersection of two half-spaces in R3 is not pointed, since it is a wedge with

a line as part of its boundary. Here is the version of Radon’s theorem for convex

cones:
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Theorem 3.6. Given any vector space E of dimension m, for every subset X of E, if

cone(X) is a pointed cone such that X has at least m+1 nonzero vectors, then there

is a partition of X into two nonempty disjoint subsets X1 and X2 such that the cones

cone(X1) and cone(X2) have a nonempty intersection not reduced to {0}.

The proof of Theorem 3.6 is left as an exercise.

There is a beautiful generalization of Radon’s theorem known as Tverberg’s the-

orem.

Theorem 3.7. (Tverberg’s theorem, 1966) Let E be any affine space of dimension m.

For any natural number r ≥ 2 and every subset X of E, if X has at least (m+1)(r−
1)+ 1 points, then there is a partition (X1, . . . ,Xr) of X into r nonempty pairwise

disjoint subsets such that
⋂r

i=1 conv(Xi) 6= /0.

A partition as in Theorem 3.7 is called a Tverberg partition, and a point in⋂r
i=1 conv(Xi) is called a Tverberg point. Theorem 3.7 was conjectured by Birch

and proved by Tverberg in 1966. Tverberg’s original proof was technically quite

complicated. Tverberg then gave a simpler proof in 1981, and other simpler proofs

were given later, notably by Sarkaria (1992) and Onn (1997), using the colorful

Carathéodory theorem. A proof along those lines can be found in Matousek [6],

Chapter 8, Section 8.3. A colored Tverberg theorem and more can also be found in

Matousek [6] (Section 8.3).

Next, we prove a version of Helly’s theorem.

Theorem 3.8. (Helly, 1913) Given any affine space E of dimension m, for every

family {K1, . . . ,Kn} of n convex subsets of E, if n≥m+2 and the intersection
⋂

i∈I Ki

of any m+ 1 of the Ki is nonempty (where I ⊆ {1, . . . ,n}, |I|= m+ 1), then
⋂n

i=1 Ki

is nonempty.

Proof. The proof is by induction on n ≥ m+ 1 and uses Radon’s theorem in the

induction step. For n = m+1, the assumption of the theorem is that the intersection

of any family of m+ 1 of the Ki’s is nonempty, and the theorem holds trivially.

Next, let L = {1,2, . . . ,n+ 1}, where n+ 1 ≥ m+ 2. By the induction hypothesis,

Ci =
⋂

j∈(L−{i})K j is nonempty for every i ∈ L.

We claim that Ci ∩C j 6= /0 for some i 6= j. If so, since Ci ∩C j =
⋂n+1

k=1 Kk, we

are done. So let us assume that the Ci’s are disjoint. Then we can pick a set X =
{a1, . . . ,an+1} such that ai ∈Ci, for every i ∈ L. By Radon’s theorem, there are two

nonempty disjoint sets X1,X2 ⊆ X such that X = X1 ∪X2 and C (X1)∩C (X2) 6= /0.

However, X1 ⊆ K j for every j with a j /∈ X1. This is because a j /∈ K j for every j, and

so we get

X1 ⊆
⋂

a j /∈X1

K j.

Symmetrically, we also have

X2 ⊆
⋂

a j /∈X2

K j.
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Since the K j’s are convex and


 ⋂

a j /∈X1

K j


∩


 ⋂

a j /∈X2

K j


=

n+1⋂

i=1

Ki,

it follows that C (X1)∩C (X2)⊆
⋂n+1

i=1 Ki, so that
⋂n+1

i=1 Ki is nonempty, contradicting

the fact that Ci∩C j = /0 for all i 6= j. ⊓⊔

A more general version of Helly’s theorem is proved in Berger [2]. An amusing

corollary of Helly’s theorem is the following result: Consider n ≥ 4 parallel line

segments in the affine plane A2. If every three of these line segments meet a line,

then all of these line segments meet a common line.

We conclude this chapter with a nice application of Helly’s theorem to the ex-

istence of centerpoints. Centerpoints generalize the notion of median to higher di-

mensions. Recall that if we have a set of n data points S = {a1, . . . ,an} on the real

line, a median for S is a point x such that both intervals [x,∞) and (−∞,x] contain

at least n/2 of the points in S (by n/2, we mean the largest integer greater than or

equal to n/2).

Given any hyperplane H, recall that the closed half-spaces determined by H are

denoted by H+ and H− and that H ⊆ H+ and H ⊆ H−. We let
◦

H+= H+−H and
◦

H−= H−−H be the open half-spaces determined by H.

Definition 3.8. Let S = {a1, . . . ,an} be a set of n points in Ad . A point c ∈ Ad is

a centerpoint of S iff for every hyperplane H, whenever the closed half-space H+

(resp. H−) contains c, then H+ (resp. H−) contains at least n
d+1

points from S (by
n

d+1
, we mean the largest integer greater than or equal to n

d+1
, namely the ceiling

⌈ n
d+1
⌉ of n

d+1
).

So for d = 2, for each line D, if the closed half-plane D+ (resp. D−) contains

c, then D+ (resp. D−) contains at least a third of the points from S. For d = 3, for

each plane H, if the closed half-space H+ (resp. H−) contains c, then H+ (resp. H−)

contains at least a fourth of the points from S, etc. Figure 3.8 shows nine points in

the plane and one of their centerpoints (in red). This example shows that the bound
1
3

is tight.

Observe that a point c ∈ Ad is a centerpoint of S iff c belongs to every open

half-space
◦

H+ (resp.
◦

H−) containing at least dn
d+1

+1 points from S (again, we mean

⌈ dn
d+1
⌉+ 1).

Indeed, if c is a centerpoint of S and H is any hyperplane such that
◦

H+ (resp.
◦

H−) contains at least dn
d+1

+ 1 points from S, then
◦

H+ (resp.
◦

H−) must contain c,

since otherwise, the closed half-space H− (resp. H+) would contain c and at most

n− dn
d+1
− 1 = n

d+1
− 1 points from S, a contradiction. Conversely, assume that c

belongs to every open half-space
◦

H+ (resp.
◦

H−) containing at least dn
d+1

+ 1 points

from S. Then for any hyperplane H, if c ∈ H+ (resp. c ∈ H−) but H+ contains at
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Fig. 3.8 Example of a centerpoint.

most n
d+1
− 1 points from S, then the open half-space

◦
H− (resp.

◦
H+) would contain

at least n− n
d+1

+ 1 = dn
d+1

+ 1 points from S but not c, a contradiction.

We are now ready to prove the existence of centerpoints.

Theorem 3.9. (Existence of centerpoints) Every finite set S = {a1, . . ., an} of n

points in Ad has some centerpoint.

Proof. We will use the second characterization of centerpoints involving open half-

spaces containing at least dn
d+1

+ 1 points.

Consider the family of sets

C =

{
conv(S∩

◦
H+) | (∃H)

(
|S∩

◦
H+ |>

dn

d+ 1

)}

∪
{

conv(S∩
◦

H−) | (∃H)

(
|S∩

◦
H− |>

dn

d + 1

)}
,

where H is a hyperplane.

Since S is finite, C consists of a finite number of convex sets, say {C1, . . . ,Cm}.
If we prove that

⋂m
i=1 Ci 6= /0, we are done, because

⋂m
i=1 Ci is the set of centerpoints

of S.

First, we prove by induction on k (with 1≤ k≤ d+1) that any intersection of k of

the Ci’s has at least
(d+1−k)n

d+1
+k elements from S. For k = 1, this holds by definition

of the Ci’s.

Next, consider the intersection of k+ 1 ≤ d + 1 of the Ci’s, say Ci1 ∩ ·· · ∩Cik ∩
Cik+1

. Let

A = S∩ (Ci1 ∩·· ·∩Cik ∩Cik+1
),

B = S∩ (Ci1 ∩·· ·∩Cik ),

C = S∩Cik+1
.
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Note that A = B∩C. By the induction hypothesis, B contains at least
(d+1−k)n

d+1
+ k

elements from S. Since C contains at least dn
d+1

+ 1 points from S, and since

|B∪C|= |B|+ |C|− |B∩C|= |B|+ |C|− |A|

and |B∪C| ≤ n, we get n≥ |B|+ |C|− |A|, that is,

|A| ≥ |B|+ |C|− n.

It follows that

|A| ≥ (d + 1− k)n

d+ 1
+ k+

dn

d+ 1
+ 1− n,

that is,

|A| ≥ (d+ 1− k)n+ dn− (d+ 1)n

d + 1
+ k+ 1 =

(d + 1− (k+ 1))n

d+ 1
+ k+ 1,

establishing the induction hypothesis.

Now if m ≤ d + 1, the above claim for k = m shows that
⋂m

i=1 Ci 6= /0, and we

are done. If m ≥ d + 2, the above claim for k = d + 1 shows that any intersection

of d + 1 of the Ci’s is nonempty. Consequently, the conditions for applying Helly’s

theorem are satisfied, and therefore

m⋂

i=1

Ci 6= /0.

However,
⋂m

i=1 Ci is the set of centerpoints of S, and we are done. ⊓⊔

Remark: The above proof actually shows that the set of centerpoints of S is a con-

vex set. In fact, it is a finite intersection of convex hulls of finitely many points, so it

is the convex hull of finitely many points, in other words, a polytope. It should also

be noted that Theorem 3.9 can be proved easily using Tverberg’s theorem (Theorem

3.7). Indeed, for a judicious choice of r, any Tverberg point is a centerpoint!

Jadhav and Mukhopadhyay have given a linear-time algorithm for computing a

centerpoint of a finite set of points in the plane. For d ≥ 3, it appears that the best

that can be done (using linear programming) is O(nd). However, there are good

approximation algorithms (Clarkson, Eppstein, Miller, Sturtivant, and Teng), and

in E3 there is a near-quadratic algorithm (Agarwal, Sharir, and Welzl). Recently,

Miller and Sheehy (2009) gave an algorithm for finding an approximate centerpoint

in subexponential time together with a polynomial-checkable proof of the approxi-

mation guarantee.
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3.5 Problems

3.1. Let a,b,c, be any distinct points in A3, and assume that they are not collinear.

Let H be the plane of the equation

αx+β y+ γz+ δ = 0.

(i) What is the intersection of the plane H and the solid triangle determined by

a,b,c (the convex hull of a,b,c)?

(ii) Give an algorithm to find the intersection of the plane H and the triangle deter-

mined by a,b,c.

(iii) (extra credit) Implement the above algorithm so that the intersection can be

visualized (you may use Maple, Mathematica, Matlab, etc.).

3.2. Given any two affine spaces E and F , for any affine map f : E→ F , any convex

set U in E , and any convex set V in F , prove that f (U) is convex and that f−1(V ) is

convex. Recall that

f (U) = {b ∈ F | ∃a ∈U, b = f (a)}

is the direct image of U under f , and that

f−1(V ) = {a ∈ E | ∃b ∈V, b = f (a)}

is the inverse image of V under f .

3.3. Consider the subset S of A2 consisting the points belonging to the right branch

of the hyperbola of the equation x2− y2 = 1, i.e.,

S = {(x,y) ∈R2 | x2− y2 ≥ 1, x≥ 0}.

Prove that S is convex. What is the convex hull of S∪{(0,0)}? Is the convex hull of

a closed subset of Am necessarily a closed set?

3.4. Use the theorem of Carathéodory to prove that if S is a compact subset of Am,

then its convex hull conv(S) is also compact.

3.5. Let S be any nonempty subset of an affine space E . Given some point a ∈ S, we

say that S is star-shaped with respect to a if the line segment [a,x] is contained in S

for every x ∈ S, i.e., (1−λ )a+λ x∈ S for all λ such that 0≤ λ ≤ 1. We say that S

is star-shaped if it is star-shaped w.r.t. to some point a ∈ S.

(1) Prove that every nonempty convex set is star-shaped.

(2) Show that there are star-shaped subsets that are not convex. Show that there are

nonempty subsets that are not star-shaped (give an example in An, n = 1,2,3).

(3) Given a star-shaped subset S of E , let N(S) be the set of all points a ∈ S such

that S is star-shaped with respect to a. Prove that N(S) is convex.
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3.6. Consider n ≥ 4 parallel line segments in the affine plane A2. If every three of

these line segments meet a line, then all of these line segments meet a common line.

Hint. Choose a coordinate system such that the y-axis is parallel to the common

direction of the line segments. For any line segment S, let

CS = {(α,β ) ∈R2, the line y = αx+β meets S}.

Show that CS is convex and apply Helly’s theorem.

3.7. Given any two convex sets S and T in the affine space Am, and given λ ,µ ∈ R
such that λ + µ = 1, the Minkowski sum λ S+ µT is the set

λ S+ µT = {λ p+ µq | p ∈ S, q ∈ T}.

(i) Prove that λ S+µT is convex. Draw some Minkowski sums, in particular when

S and T are tetrahedra (with T upside down).

(ii) Show that the Minkowski sum does not preserve the center of gravity.

3.8. Prove the version of Carathéodory’s theorem for cones (Theorem 3.2), that is:

Given any vector space E of dimension m, for any (nonvoid) family S = (vi)i∈L of

vectors in E, the cone cone(S) spanned by S is equal to the set of positive combina-

tions of families of m vectors in S.

3.9. (i) Show that if E is an affine space of dimension m and S is a finite subset of E

with n elements, if either n ≥ m+ 3 or n = m+ 2 and some family of m+ 1 points

of S is affinely dependent, then S has at least two Radon partitions.

(ii) Prove the version of Radon’s theorem for cones (Theorem 3.6), namely:

Given any vector space E of dimension m, for every subset X of E, if cone(X) is a

pointed cone such that X has at least m+1 nonzero vectors, then there is a partition

of X into two nonempty disjoint subsets X1 and X2 such that the cones cone(X1) and

cone(X2) have a nonempty intersection not reduced to {0}.
(iii) (Extra Credit) Does the converse of (i) hold?
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Chapter 4

Embedding an Affine Space in a Vector Space

4.1 The “Hat Construction,” or Homogenizing

For all practical purposes, curves and surfaces live in affine spaces. A disadvantage

of the affine world is that points and vectors live in disjoint universes. It is often

more convenient, at least mathematically, to deal with linear objects (vector spaces,

linear combinations, linear maps), rather than affine objects (affine spaces, affine

combinations, affine maps). Actually, it would also be advantageous if we could

manipulate points and vectors as if they lived in a common universe, using perhaps

an extra bit of information to distinguish between them if necessary.

Such a “homogenization” (or “hat construction”) can be achieved. As a matter

of fact, such a homogenization of an affine space and its associated vector space

will be very useful to define and manipulate rational curves and surfaces. Indeed,

the hat construction yields a canonical construction of the projective completion

of an affine space. It also leads to a very elegant method for obtaining the various

formulae giving the derivatives of a polynomial curve, or the directional derivatives

of polynomial surfaces. However, these formulae are not needed in the main text.

Thus we omit this topic, referring the readers to Gallier [2].

This chapter proceeds as follows. First, the construction of a vector space Ê in

which both E and
−→
E are embedded as (affine) hyperplanes is described. It is shown

how affine frames in E become bases in Ê. It turns out that Ê is characterized by a

universality property: Affine maps to vector spaces extend uniquely to linear maps.

As a consequence, affine maps between affine spaces E and F extend to linear maps

between Ê and F̂ .

Let us first explain how to distinguish between points and vectors practically,

using what amounts to a “hacking trick”. Then, we will show that such a procedure

can be put on firm mathematical grounds.

Assume that we consider the real affine space E of dimension 3, and that we have

some affine frame (a0,(v1,v2,v2)). With respect to this affine frame, every point

x∈E is represented by its coordinates (x1,x2,x3), where a= a0+x1v1+x2v2+x3v3.

A vector u ∈ −→E is also represented by its coordinates (u1,u2,u3) over the basis

85
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(v1,v2,v2). One way to distinguish between points and vectors is to add a fourth

coordinate, and to agree that points are represented by (row) vectors (x1,x2,x3,1)
whose fourth coordinate is 1, and that vectors are represented by (row) vectors

(v1,v2,v3,0) whose fourth coordinate is 0. This “programming trick” actually

works very well. Of course, we are opening the door for strange elements such

as (x1,x2,x3,5), where the fourth coordinate is neither 1 nor 0.

The question is, can we make sense of such elements, and of such a construc-

tion? The answer is yes. We will present a construction in which an affine space(
E,
−→
E
)

is embedded in a vector space Ê , in which
−→
E is embedded as a hyperplane

passing through the origin, and E itself is embedded as an affine hyperplane, de-

fined as ω−1(1), for some linear form ω : Ê → R. In the case of an affine space E

of dimension 2, we can think of Ê as the vector space R3 of dimension 3 in which
−→
E corresponds to the xy-plane, and E corresponds to the plane of equation z = 1,

parallel to the xy-plane and passing through the point on the z-axis of coordinates

(0,0,1). The construction of the vector space Ê is presented in some detail in Berger

[1]. Berger explains the construction in terms of vector fields. Ramshaw explains the

construction using the symmetric tensor power of an affine space. We prefer a more

geometric and simpler description in terms of simple geometric transformations,

translations, and dilatations.

Remark: Readers with a good knowledge of geometry will recognize the first step

in embedding an affine space into a projective space. We will also show that the

homogenization Ê of an affine space
(
E,
−→
E
)
, satisfies a universal property with

respect to the extension of affine maps to linear maps. As a consequence, the vector

space Ê is unique up to isomorphism, and its actual construction is not so important.

However, it is quite useful to visualize the space Ê, in order to understand well

rational curves and rational surfaces.

As usual, for simplicity, it is assumed that all vector spaces are defined over

the field R of real numbers, and that all families of scalars (points and vectors) are

finite. The extension to arbitrary fields and to families of finite support is immediate.

We begin by defining two very simple kinds of geometric (affine) transformations.

Given an affine space
(
E,
−→
E
)
, every u ∈ −→E induces a mapping tu : E→ E , called a

translation, and defined such that tu(a) = a+ u for every a ∈ E . Clearly, the set of

translations is a vector space isomorphic to
−→
E . Thus, we will use the same notation

u for both the vector u and the translation tu. Given any point a and any scalar

λ ∈R, we define the mapping Ha,λ : E→ E , called dilatation (or central dilatation,

or homothety) of center a and ratio λ , and defined such that

Ha,λ (x) = a+λ−→ax,

for every x ∈ E . We have Ha,λ (a) = a, and when λ 6= 0 and x 6= a, Ha,λ (x) is on the

line defined by a and x, and is obtained by “scaling”−→ax by λ . The effect is a uniform

dilatation (or contraction, if λ < 1). When λ = 0, Ha,0(x) = a for all x∈ E , and Ha,0
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is the constant affine map sending every point to a. If we assume λ 6= 1, note that

Ha,λ is never the identity, and since a is a fixed point, Ha,λ is never a translation.

We now consider the set Ê of geometric transformations from E to E , consisting

of the union of the (disjoint) sets of translations and dilatations of ratio λ 6= 1. We

would like to give this set the structure of a vector space, in such a way that both E

and
−→
E can be naturally embedded into Ê . In fact, it will turn out that barycenters

show up quite naturally too!

In order to “add” two dilatations Ha1,λ1
and Ha2,λ2

, it turns out that it is more

convenient to consider dilatations of the form Ha,1−λ , where λ 6= 0. To see this, let

us see the effect of such a dilatation on a point x ∈ E: We have

Ha,1−λ (x) = a+(1−λ )−→ax = a+−→ax−λ−→ax = x+λ−→xa.

For simplicity of notation, let us denote Ha,1−λ by 〈a,λ 〉. Then, we have

〈a,λ 〉(x) = x+λ−→xa.

Remarks:

(1) Note that Ha,1−λ (x) = Hx,λ (a).

(2) Berger defines a map h : E → −→E as a vector field. Thus, each 〈a,λ 〉 can be

viewed as the vector field x 7→ λ−→xa. Similarly, a translation u can be viewed as

the constant vector field x 7→ u. Thus, we could define Ê as the (disjoint) union

of these two vector fields. We prefer our view in terms of geometric transforma-

tions.

Then, since

〈a1,λ1〉(x) = x+λ1
−→xa1 and 〈a2,λ2〉(x) = x+λ2

−→xa2,

if we want to define 〈a1,λ1〉 +̂ 〈a2,λ2〉, we see that we have to distinguish between

two cases:

(1) λ1 +λ2 = 0. In this case, since

λ1
−→xa1 +λ2

−→xa2 = λ1
−→xa1−λ1

−→xa2 = λ1
−−→a2a1,

we let

〈a1,λ1〉 +̂ 〈a2,λ2〉= λ1
−−→a2a1,

where λ1
−−→a2a1 denotes the translation associated with the vector λ1

−−→a2a1.

(2) λ1 +λ2 6= 0. In this case, the points a1 and a2 assigned the weights λ1/(λ1 +
λ2) and λ2/(λ1 +λ2) have a barycenter

b =
λ1

λ1 +λ2

a1 +
λ2

λ1 +λ2

a2,

such that
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−→
xb =

λ1

λ1 +λ2

−→xa1 +
λ2

λ1 +λ2

−→xa2.

Since

λ1
−→xa1 +λ2

−→xa2 = (λ1 +λ2)
−→
xb,

we let

〈a1,λ1〉 +̂ 〈a2,λ2〉=
〈

λ1

λ1 +λ2

a1 +
λ2

λ1 +λ2

a2,λ1 +λ2

〉
,

the dilatation associated with the point b and the scalar λ1 +λ2.

Given a translation defined by u and a dilatation 〈a,λ 〉, since λ 6= 0, we have

λ−→xa+ u = λ (−→xa+λ−1u),

and so, letting b = a+λ−1u, since
−→
ab = λ−1u, we have

λ−→xa+ u = λ (−→xa+λ−1u) = λ (−→xa+
−→
ab) = λ

−→
xb,

and we let

〈a,λ 〉 +̂u = 〈a+λ−1u,λ 〉,
the dilatation of center a+λ−1u and ratio λ .

The sum of two translations u and v is of course defined as the translation u+ v.

It is also natural to define multiplication by a scalar as follows:

µ · 〈a,λ 〉= 〈a,λ µ〉,

and

λ ·u = λ u,

where λ u is the product by a scalar in
−→
E .

We can now use the definition of the above operations to state the following

lemma, showing that the “hat construction” described above has allowed us to

achieve our goal of embedding both E and
−→
E in the vector space Ê .

Lemma 4.1. The set Ê consisting of the disjoint union of the translations and the

dilatations Ha,1−λ = 〈a,λ 〉, λ ∈ R,λ 6= 0, is a vector space under the following

operations of addition and multiplication by a scalar: If λ1 +λ2 = 0, then

〈a1,λ1〉 +̂ 〈a2,λ2〉= λ1
−−→a2a1;

if λ1 +λ2 6= 0, then

〈a1,λ1〉 +̂ 〈a2,λ2〉 =
〈

λ1

λ1 +λ2

a1 +
λ2

λ1 +λ2

a2,λ1 +λ2

〉
,

〈a,λ 〉 +̂u = u +̂ 〈a,λ 〉= 〈a+λ−1u,λ 〉,
u +̂v = u+ v;
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if µ 6= 0, then

µ · 〈a,λ 〉 = 〈a,λ µ〉,
0 · 〈a,λ 〉 = 0;

and

λ ·u = λ u.

Furthermore, the map ω : Ê→ R defined such that

ω(〈a,λ 〉) = λ ,

ω(u) = 0,

is a linear form, ω−1(0) is a hyperplane isomorphic to
−→
E under the injective linear

map i :
−→
E → Ê such that i(u) = tu (the translation associated with u), and ω−1(1)

is an affine hyperplane isomorphic to E with direction i(
−→
E ), under the injective

affine map j : E → Ê, where j(a) = 〈a,1〉 for every a ∈ E. Finally, for every a ∈ E,

we have

Ê = i
(−→

E
)
⊕R j(a).

Proof. The verification that Ê is a vector space is straightforward. The linear map

mapping a vector u to the translation defined by u is clearly an injection i :
−→
E → Ê

embedding
−→
E as an hyperplane in Ê. It is also clear that ω is a linear form. Note

that

j(a+ u) = 〈a+ u,1〉= 〈a,1〉 +̂u,

where u stands for the translation associated with the vector u, and thus j is an affine

injection with associated linear map i. Thus, ω−1(1) is indeed an affine hyperplane

isomorphic to E with direction i
(−→

E
)
, under the map j : E → Ê . Finally, from the

definition of +̂ , for every a ∈ E and every u ∈ −→E , since

i(u) +̂λ · j(a) = u +̂ 〈a,λ 〉= 〈a+λ−1u,λ 〉,

when λ 6= 0, we get any arbitrary v ∈ Ê by picking λ = 0 and u = v, and we get any

arbitrary element 〈b,µ〉, µ 6= 0, by picking λ = µ and u = µ
−→
ab. Thus,

Ê = i
(−→

E
)
+R j(a),

and since i
(−→

E
)
∩R j(a) = {0}, we have

Ê = i
(−→

E
)
⊕R j(a),

for every a ∈ E . ⊓⊔
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Figure 4.1 illustrates the embedding of the affine space E into the vector space

Ê , when E is an affine plane.

bc

b

b

Ω

〈a,1〉= a

〈a,λ 〉

i
(−→

E
)
= ω−1(0)

j(E) = ω−1(1)

u

Fig. 4.1 Embedding an affine space
(
E,
−→
E
)

into a vector space Ê.

Note that Ê is isomorphic to
−→
E ∪(E×R∗). Other authors, such as Ramshaw, use

the notation E∗ for Ê. Ramshaw calls the linear form ω : Ê→R a weight (or flavor),

and he says that an element z ∈ Ê such that ω(z) = λ is λ -heavy (or has flavor λ )

([3]). The elements of j(E) are 1-heavy and are called points, and the elements

of i
(−→

E
)

are 0-heavy and are called vectors. In general, the λ -heavy elements all

belong to the hyperplane ω−1(λ ) parallel to i
(−→

E
)
. Thus, intuitively, we can think

of Ê as a stack of parallel hyperplanes, one for each λ , a little bit like an infinite

stack of very thin pancakes! There are two privileged pancakes: one corresponding

to E , for λ = 1, and one corresponding to
−→
E , for λ = 0.

From now on, we will identify j(E) and E , and i
(−→

E
)

and
−→
E . We will also write

λ a instead of 〈a,λ 〉, which we will call a weighted point, and write 1a just as a.

When we want to be more precise, we may also write 〈a,1〉 as a (as Ramshaw does).

In particular, when we consider the homogenized version Â of the affine space A
associated with the field R considered as an affine space, we write λ for 〈λ ,1〉, when

viewing λ as a point in both A and Â, and simply λ , when viewing λ as a vector in

R and in Â. The elements of Â are called Bézier sites by Ramshaw. As an example,

the expression 2+3 denotes the real number 5, in A, (2+3)/2 denotes the midpoint

of the segment
[
2,3
]
, which can be denoted by 2.5, and 2+ 3 does not make sense
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in A, since it is not a barycentric combination. However, in Â, the expression 2+ 3

makes sense: It is the weighted point
〈
2.5,2

〉
.

Then, in view of the fact that

〈a+ u,1〉= 〈a,1〉 +̂u,

and since we are identifying a+ u with 〈a + u,1〉 (under the injection j), in the

simplified notation the above reads as a+ u = a +̂u. Thus, we go one step further,

and denote a +̂u by a+ u. However, since

〈a,λ 〉 +̂u = 〈a+λ−1u,λ 〉,

we will refrain from writing λ a +̂ u as λ a+ u, because we find it too confusing.

From Lemma 4.1, for every a ∈ E , every element of Ê can be written uniquely as

u +̂λ a. We also denote

λ a +̂ (−µ)b

by

λ a −̂µb.

We can now justify rigorously the programming trick of the introduction of an

extra coordinate to distinguish between points and vectors. First, we make a few

observations. Given any family (ai)i∈I of points in E , and any family (λi)i∈I of

scalars in R, it is easily shown by induction on the size of I that the following holds:

(1) If ∑i∈I λi = 0, then

∑
i∈I

〈ai,λi〉=
−−−→
∑
i∈I

λiai,

where −−−→
∑
i∈I

λiai = ∑
i∈I

λi
−→
bai

for any b ∈ E , which, by Lemma 2.1, is a vector independent of b, or

(2) If ∑i∈I λi 6= 0, then

∑
i∈I

〈ai,λi〉=
〈

∑
i∈I

λi

∑i∈I λi
ai,∑

i∈I

λi

〉
.

Thus, we see how barycenters reenter the scene quite naturally, and that in Ê , we

can make sense of ∑i∈I〈ai,λi〉, regardless of the value of ∑i∈I λi. When ∑i∈I λi = 1,

the element ∑i∈I〈ai,λi〉 belongs to the hyperplane ω−1(1), and thus it is a point.

When ∑i∈I λi = 0, the linear combination of points ∑i∈I λiai is a vector, and when

I = {1, . . . ,n}, we allow ourselves to write

λ1a1 +̂ · · · +̂λnan,
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where some of the occurrences of +̂ can be replaced by −̂ , as

λ1a1 + · · ·+λnan,

where the occurrences of −̂ (if any) are replaced by −.

In fact, we have the following slightly more general property, which is left as an

exercise.

Lemma 4.2. Given any affine space
(
E,
−→
E
)
, for any family (ai)i∈I of points in E,

any family (λi)i∈I of scalars in R, and any family (−→v j ) j∈J of vectors in
−→
E , with

I∩ J = /0, the following properties hold:

(1) If ∑i∈I λi = 0, then

∑
i∈I

〈ai,λi〉 +̂ ∑
j∈J

v j =
−−−→
∑
i∈I

λiai + ∑
j∈J

v j,

where −−−→
∑
i∈I

λiai = ∑
i∈I

λi
−→
bai

for any b ∈ E, which, by Lemma 2.1, is a vector independent of b, or

(2) If ∑i∈I λi 6= 0, then

∑
i∈I

〈ai,λi〉 +̂ ∑
j∈J

v j =

〈
∑
i∈I

λi

∑i∈I λi
ai + ∑

j∈J

v j

∑i∈I λi
,∑

i∈I

λi

〉
.

Proof. By induction on the size of I and the size of J. ⊓⊔

The above formulae show that we have some kind of extended barycentric calcu-

lus. Operations on weighted points and vectors were introduced by H. Grassmann,

in his book published in 1844! This calculus will be helpful in dealing with rational

curves.

4.2 Affine Frames of E and Bases of Ê

There is also a nice relationship between affine frames in
(
E,
−→
E
)

and bases of Ê ,

stated in the following lemma.

Lemma 4.3. Given any affine space
(
E,
−→
E
)
, for any affine frame (a0, (−−→a0a1, . . .,

−−→a0am)) for E, the family (−−→a0a1, . . . ,
−−→a0am,a0) is a basis for Ê, and for any affine

frame (a0, . . . ,am) for E, the family (a0, . . . ,am) is a basis for Ê. Furthermore, given

any element 〈x,λ 〉 ∈ Ê, if

x = a0 + x1
−−→a0a1 + · · ·+ xm

−−→a0am
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over the affine frame (a0,(
−−→a0a1, . . . ,

−−→a0am)) in E, then the coordinates of 〈x,λ 〉 over

the basis (−−→a0a1, . . . ,−−→a0am,a0) in Ê are

(λ x1, . . . ,λ xm,λ ).

For any vector v ∈ −→E , if

v = v1
−−→a0a1 + · · ·+ vm

−−→a0am

over the basis (−−→a0a1, . . . ,
−−→a0am) in

−→
E , then over the basis (−−→a0a1, . . . ,

−−→a0am, a0) in Ê,

the coordinates of v are

(v1, . . . ,vm,0).

For any element 〈a,λ 〉, where λ 6= 0, if the barycentric coordinates of a w.r.t. the

affine basis (a0, . . . ,am) in E are (λ0, . . . ,λm) with λ0 + · · ·+λm = 1, then the coor-

dinates of 〈a,λ 〉 w.r.t. the basis (a0, . . . ,am) in Ê are

(λ λ0, . . . ,λ λm).

If a vector v ∈ −→E is expressed as

v = v1
−−→a0a1 + · · ·+ vm

−−→a0am =−(v1 + · · ·+ vm)a0 + v1a1 + · · ·+ vmam,

with respect to the affine basis (a0, . . . ,am) in E, then its coordinates w.r.t. the basis

(a0, . . . ,am) in Ê are

(−(v1 + · · ·+ vm),v1, . . . ,vm).

Proof. We sketch parts of the proof, leaving the details as an exercise. Figure 4.2

shows the basis (−−→a0a1,
−−→a0a2,a0) corresponding to the affine frame (a0,a1,a2) in E .

If we assume that we have a nontrivial linear combination

λ1
−−→a0a1 +̂ · · · +̂λm

−−→a0am +̂ µa0 = 0,

if µ 6= 0, then we have

λ1
−−→a0a1 +̂ · · · +̂λm

−−→a0am +̂µa0 = 〈a0 + µ−1λ1
−−→a0a1 + · · ·+ µ−1λm

−−→a0am,µ〉,

which is never null, and thus, µ = 0, but since (−−→a0a1, . . . ,
−−→a0am) is a basis of

−→
E , we

must also have λi = 0 for all i,1≤ i≤ m.

Given any element 〈x,λ 〉 ∈ Ê , if

x = a0 + x1
−−→a0a1 + · · ·+ xm

−−→a0am

over the affine frame (a0,(
−−→a0a1, . . . ,

−−→a0am)) in E , in view of the definition of +̂ , we

have
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bc

bc

b

b

bc

bc

Ω

〈a,1〉= a

〈a,λ 〉

−−→a0a1

−−→a0a2

a0

a1

a2

u

E

Fig. 4.2 The basis (−−→a0a1,
−−→a0a2,a0) in Ê.

〈x,λ 〉 = 〈a0 + x1
−−→a0a1 + · · ·+ xm

−−→a0am,λ 〉
= 〈a0,λ 〉 +̂λ x1

−−→a0a1 +̂ · · · +̂λ xm
−−→a0am,

which shows that over the basis (−−→a0a1, . . . ,
−−→a0am,a0) in Ê , the coordinates of 〈x,λ 〉

are

(λ x1, . . . ,λ xm,λ ).

⊓⊔

If (x1, . . . ,xm) are the coordinates of x w.r.t. the affine frame (a0,(
−−→a0a1, . . . ,−−→a0am))

in E , then (x1, . . . ,xm,1) are the coordinates of x in Ê , i.e., the last coordinate is 1,

and if u has coordinates (u1, . . . ,um) with respect to the basis (−−→a0a1, . . . ,
−−→a0am) in

−→
E , then u has coordinates (u1, . . . ,um,0) in Ê , i.e., the last coordinate is 0. Figure

4.3 shows the affine frame (a0,a1,a2) in E viewed as a basis in Ê .

Now that we have defined Ê and investigated the relationship between affine

frames in E and bases in Ê, we can give another construction of a vector space F

from E and
−→
E that will allow us to “visualize” in a much more intuitive fashion the

structure of Ê and of its operations +̂ and ·.
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bc

b

b

bc bc

bc

Ω

〈a,1〉= a

〈a,λ 〉

a1 a2

a0

u

E

Fig. 4.3 The basis (a0,a1,a2) in Ê .

4.3 Another Construction of Ê

One would probably wish that we could start with this construction of F first, and

then define Ê using the isomorphism Ω̂ : Ê→F defined below. Unfortunately, we

first need the vector space structure on Ê to show that Ω̂ is linear!

Definition 4.1. Given any affine space
(
E,
−→
E
)
, we define the vector space F as the

direct sum
−→
E ⊕R, where R denotes the field R considered as a vector space (over

itself). Denoting the unit vector in R by 1, since F =
−→
E ⊕R, every vector v ∈F

can be written as v = u+λ 1, for some unique u∈−→E and some unique λ ∈R. Then,

for any choice of an origin Ω1 in E , we define the map Ω̂ : Ê→F , as follows:

Ω̂(θ ) =

{
λ (1+

−−→
Ω1a) if θ = 〈a,λ 〉, where a ∈ E and λ 6= 0;

u if θ = u, where u ∈ −→E .

The idea is that, once again, viewing F as an affine space under its canonical

structure, E is embedded in F as the hyperplane H = 1+
−→
E , with direction

−→
E ,

the hyperplane
−→
E in F . Then, every point a ∈ E is in bijection with the point

A = 1+
−−→
Ω1a, in the hyperplane H. If we denote the origin 0 of the canonical affine

space F by Ω , the map Ω̂ maps a point 〈a,λ 〉 ∈ E to a point in F , as follows:

Ω̂(〈a,λ 〉) is the point on the line passing through both the origin Ω of F and the

point A = 1+
−−→
Ω1a in the hyperplane H = 1+

−→
E , such that
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Ω̂(〈a,λ 〉) = λ
−→
ΩA = λ (1+

−−→
Ω1a).

The following lemma shows that Ω̂ is an isomorphism of vector spaces.

Lemma 4.4. Given any affine space (E,
−→
E ), for any choice Ω1 of an origin in E,

the map Ω̂ : Ê →F is a linear isomorphism between Ê and the vector space F of

Definition 4.1. The inverse of Ω̂ is given by

Ω̂−1(u+λ 1) =

{
〈Ω1 +λ−1u,λ 〉) if λ 6= 0;

u if λ = 0.

Proof. It is a straightforward verification. We check that Ω̂ is invertible, leaving the

verification that it is linear as an exercise. We have

〈a,λ 〉 7→ λ 1+λ
−−→
Ω1a 7→ 〈Ω1 +

−−→
Ω1a,λ 〉= 〈a,λ 〉

and

u+λ 1 7→ 〈Ω1 +λ−1u,λ 〉 7→ u+λ 1,

and since Ω̂ is the identity on
−→
E , we have shown that Ω̂ ◦Ω̂−1 = id, and Ω̂−1◦Ω̂ =

id. This shows that Ω̂ is a bijection. ⊓⊔

Figure 4.4 illustrates the embedding of the affine space E into the vector space

F , when E is an affine plane.

bc

b

b

Ω

A = 1+
−−→
Ω1a

λ
−→
ΩA

−→
E

H = 1+
−→
E

u

Fig. 4.4 Embedding an affine space
(
E,
−→
E
)

into a vector space F .
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Lemma 4.4 gives a nice interpretation of the sum operation +̂ of Ê . Given two

weighted points 〈a1,λ1〉 and 〈a2,λ2〉, we have

〈a1,λ1〉 +̂ 〈a2,λ2〉= Ω̂−1(Ω̂ (〈a1,λ1〉)+ Ω̂(〈a2,λ2〉)).

The operation Ω̂(〈a1,λ1〉)+ Ω̂(〈a2,λ2〉) has a simple geometric interpretation. If

λ1 +λ2 6= 0, then find the points M1 and M2 on the lines passing through the origin

Ω of F and the points A1 = Ω̂ (a1) and A2 = Ω̂(a2) in the hyperplane H, such that−−−→
ΩM1 = λ1

−−→
ΩA1 and

−−−→
ΩM2 = λ2

−−→
ΩA2, add the vectors

−−−→
ΩM1 and

−−−→
ΩM2, getting a point

N such that
−−→
ΩN =

−−−→
ΩM1 +

−−−→
ΩM2, and consider the intersection G of the line passing

through Ω and N with the hyperplane H. Then, G is the barycenter of A1 and A2

assigned the weights λ1/(λ1 + λ2) and λ2/(λ1 + λ2), and if g = Ω̂−1(
−−→
ΩG), then

Ω̂−1(
−−→
ΩN) = 〈g,λ1 +λ2〉.

Instead of adding the vectors
−−−→
ΩM1 and

−−−→
ΩM2, we can take the middle N′ of the

segment M1M2, and G is the intersection of the line passing through Ω and N′ with

the hyperplane H.

If λ1 +λ2 = 0, then 〈a1,λ1〉 +̂ 〈a2,λ2〉 is a vector determined as follows. Again,

find the points M1 and M2 on the lines passing through the origin Ω of F and the

points A1 = Ω̂(a1) and A2 = Ω̂(a2) in the hyperplane H, such that
−−−→
ΩM1 = λ1

−−→
ΩA1

and
−−−→
ΩM2 = λ2

−−→
ΩA2, and add the vectors

−−−→
ΩM1 and

−−−→
ΩM2, getting a point N such that−−→

ΩN =
−−−→
ΩM1 +

−−−→
ΩM2. The desired vector is

−−→
ΩN, which is parallel to the line A1A2.

Equivalently, let N′ be the middle of the segment M1M2, and the desired vector is

2
−−→
ΩN′.

We can also give a geometric interpretation of 〈a,λ 〉+ u. Let A = Ω̂ (a) in the

hyperplane H, let D be the line determined by A and u, let M1 be the point such that−−−→
ΩM1 = λ

−→
ΩA, and let M2 be the point such that

−−−→
ΩM2 = u, that is, M2 = Ω + u. By

construction, the line D is in the hyperplane H, and it is parallel to
−−−→
ΩM2, so that D,

M1, and M2 are coplanar. Then, add the vectors
−−−→
ΩM1 and

−−−→
ΩM2, getting a point N

such that
−−→
ΩN =

−−−→
ΩM1+

−−−→
ΩM2, and let G be the intersection of the line determined by

Ω and N with the line D. If g = Ω̂−1(
−−→
ΩG), then, Ω̂−1(

−−→
ΩN) = 〈g,λ 〉. Equivalently,

if N′ is the middle of the segment M1M2, then G is the intersection of the line

determined by Ω and N′, with the line D.

We now consider the universal property of Ê mentioned at the beginning of this

section.

4.4 Extending Affine Maps to Linear Maps

Roughly, the vector space Ê has the property that for any vector space
−→
F and any

affine map f : E →−→F , there is a unique linear map f̂ : Ê →−→F extending f : E →
−→
F . As a consequence, given two affine spaces E and F , every affine map f : E→ F
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extends uniquely to a linear map f̂ : Ê → F̂ . Other authors, such as Ramshaw, use

the notation f∗ for f̂ . First, we define rigorously the notion of homogenization of an

affine space.

Definition 4.2. Given any affine space
(
E,
−→
E
)
, a homogenization (or linearization)

of (E,
−→
E ) is a triple 〈E , j,ω〉, where E is a vector space, j : E → E is an injective

affine map with associated injective linear map i :
−→
E → E , ω : E → R is a linear

form such that ω−1(0) = i
(−→

E
)
, ω−1(1) = j(E), and for every vector space

−→
F and

every affine map f : E →−→F there is a unique linear map f̂ : E →−→F extending f ,

i.e., f = f̂ ◦ j, as in the following diagram:

E
j

//

f
��
❄
❄
❄
❄
❄
❄
❄
❄

E

f̂
��

−→
F

Thus, j(E) = ω−1(1) is an affine hyperplane with direction i
(−→

E
)
= ω−1(0). Note

that we could have defined a homogenization of an affine space (E,
−→
E ), as a triple

〈E , j,H〉, where E is a vector space, H is an affine hyperplane in E , and j : E → E

is an injective affine map such that j(E) = H, and such that the universal property

stated above holds. However, Definition 4.2 is more convenient for our purposes,

since it makes the notion of weight more evident.

The obvious candidate for E is the vector space Ê that we just constructed. The

next lemma will show that Ê indeed has the required extension property. As usual,

objects defined by a universal property are unique up to isomorphism. This property

is left as an exercise.

Lemma 4.5. Given any affine space
(
E,
−→
E
)

and any vector space
−→
F , for any affine

map f : E →−→F , there is a unique linear map f̂ : Ê→−→F extending f such that

f̂ (u +̂λ a) = λ f (a)+
−→
f (u)

for all a ∈ E, all u ∈−→E , and all λ ∈R, where
−→
f is the linear map associated with

f . In particular, when λ 6= 0, we have

f̂ (u +̂λ a) = λ f (a+λ−1u).

Proof. Assuming that f̂ exists, recall that from Lemma 4.1, for every a ∈ E , every

element of Ê can be written uniquely as u+̂λ a. By linearity of f̂ and since f̂ extends

f , we have

f̂ (u +̂λ a) = f̂ (u)+λ f̂ (a) = f̂ (u)+λ f (a) = λ f (a)+ f̂ (u).
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If λ = 1, since a +̂ u and a+ u are identified, and since f̂ extends f , we must

have

f (a)+ f̂ (u) = f̂ (a)+ f̂ (u) = f̂ (a +̂u) = f (a+ u) = f (a)+
−→
f (u),

and thus f̂ (u) =
−→
f (u) for all u ∈ −→E . Then we have

f̂ (u +̂λ a) = λ f (a)+
−→
f (u),

which proves the uniqueness of f̂ . On the other hand, the map f̂ defined as above is

clearly a linear map extending f .

When λ 6= 0, we have

f̂ (u +̂λ a) = f̂ (λ (a+λ−1u)) = λ f̂ (a+λ−1u) = λ f (a+λ−1u).

⊓⊔

Lemma 4.5 shows that
〈
Ê, j,ω

〉
, is a homogenization of

(
E,
−→
E
)
. As a corollary,

we obtain the following lemma.

Lemma 4.6. Given two affine spaces E and F and an affine map f : E → F, there

is a unique linear map f̂ : Ê→ F̂ extending f , as in the diagram below,

E
f

//

j

��

F

j

��

Ê
f̂

// F̂

such that

f̂ (u +̂λ a) =
−→
f (u) +̂λ f (a),

for all a ∈ E, all u ∈−→E , and all λ ∈R, where
−→
f is the linear map associated with

f . In particular, when λ 6= 0, we have

f̂ (u +̂λ a) = λ f (a+λ−1u).

Proof. Consider the vector space F̂ and the affine map j ◦ f : E → F̂ . By Lemma

4.5, there is a unique linear map f̂ : Ê → F̂ extending j ◦ f , and thus extending f .

⊓⊔

Note that f̂ : Ê→ F̂ has the property that f̂
(−→

E
)
⊆−→F . More generally, since

f̂ (u +̂λ a) =
−→
f (u) +̂λ f (a),

the linear map f̂ is weight-preserving. Also observe that we recover f from f̂ , by

letting λ = 1 in f̂ (u +̂λ a) = λ f (a+λ−1u), that is, we have
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f (a+ u) = f̂ (u +̂a).

From a practical point of view, Lemma 4.6 shows us how to homogenize an affine

map to turn it into a linear map between the two homogenized spaces. Assume that

E and F are of finite dimension, that (a0,(u1, . . . ,un)) is an affine frame of E with

origin a0, and (b0,(v1, . . . ,vm)) is an affine frame of F with origin b0. Then, with

respect to the two bases (u1, . . . ,un,a0) in Ê and (v1, . . . ,vm,b0) in F̂ , a linear map

h : Ê→ F̂ is given by an (m+ 1)× (n+ 1) matrix A. Assume that this linear map h

is equal to the homogenized version f̂ of an affine map f . Since

f̂ (u +̂λ a) =
−→
f (u) +̂λ f (a),

and since over the basis (u1, . . . ,un,a0) in Ê , points are represented by vectors whose

last coordinate is 1 and vectors are represented by vectors whose last coordinate is

0, the following properties hold.

1. The last row of the matrix A = M( f̂ ) with respect to the given bases is

(0,0, . . . ,0,1)

with m occurrences of 0.

2. The last column of A contains the coordinates

(µ1, . . . ,µm,1)

of f (a0) with respect to the basis (v1, . . . ,vm,b0).
3. The submatrix of A obtained by deleting the last row and the last column

is the matrix of the linear map
−→
f with respect to the bases (u1, . . . ,un) and

(v1, . . . ,vm),

Finally, since

f (a0 + u) = f̂ (u +̂a0),

given any x ∈ E and y ∈ F with coordinates (x1, . . . ,xn,1) and (y1, . . . ,ym, 1), for

X = (x1, . . . ,xn,1)
⊤ and Y = (y1, . . . ,ym,1)

⊤, we have y = f (x) iff

Y = AX .

For example, consider the following affine map f : A2→ A2 defined as follows:

y1 = ax1 + bx2 + µ1,

y2 = cx1 + dx2 + µ2.

The matrix of f̂ is 


a b µ1

c d µ2

0 0 1


 ,
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and we have 


y1

y2

1


=




a b µ1

c d µ2

0 0 1






x1

x2

1


 .

In Ê , we have 


y1

y2

y3


=




a b µ1

c d µ2

0 0 1






x1

x2

x3


 ,

which means that the homogeneous map f̂ is is obtained from f by “adding the

variable of homogeneity x3”:

y1 = ax1 + bx2+ µ1x3,

y2 = cx1 + dx2 + µ2x3,

y3 = x3.

4.5 Problems

4.1. Prove that Ê as defined in Lemma 4.1 is indeed a vector space.

4.2. Prove Lemma 4.2.

4.3. Fill in the missing details in the proof of Lemma 4.3.

4.4. Fill in the missing details in the proof of Lemma 4.4.
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Chapter 5

Basics of Projective Geometry

Think geometrically, prove algebraically.

—John Tate

5.1 Why Projective Spaces?

For a novice, projective geometry usually appears to be a bit odd, and it is not

obvious to motivate why its introduction is inevitable and in fact fruitful. One of the

main motivations arises from algebraic geometry.

The main goal of algebraic geometry is to study the properties of geometric ob-

jects, such as curves and surfaces, defined implicitly in terms of algebraic equations.

For instance, the equation

x2 + y2− 1 = 0

defines a circle in R2. More generally, we can consider the curves defined by general

equations

ax2 + by2 + cxy+ dx+ ey+ f = 0

of degree 2, known as conics. It is then natural to ask whether it is possible to classify

these curves according to their generic geometric shape. This is indeed possible.

Except for so-called singular cases, we get ellipses, parabolas, and hyperbolas. The

same question can be asked for surfaces defined by quadratic equations, known

as quadrics, and again, a classification is possible. However, these classifications

are a bit artificial. For example, an ellipse and a hyperbola differ by the fact that

a hyperbola has points at infinity, and yet, their geometric properties are identical,

provided that points at infinity are handled properly.

Another important problem is the study of intersection of geometric objects (de-

fined algebraically). For example, given two curves C1 and C2 of degree m and n,

respectively, what is the number of intersection points of C1 and C2? (by degree of

the curve we mean the total degree of the defining polynomial).

103
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Well, it depends! Even in the case of lines (when m = n = 1), there are three

possibilities: either the lines coincide, or they are parallel, or there is a single inter-

section point. In general, we expect mn intersection points, but some of these points

may be missing because they are at infinity, because they coincide, or because they

are imaginary.

What begins to transpire is that “points at infinity” cause trouble. They cause ex-

ceptions that invalidate geometric theorems (for example, consider the more general

versions of the theorems of Pappus and Desargues from Section 2.12), and make it

difficult to classify geometric objects. Projective geometry is designed to deal with

“points at infinity” and regular points in a uniform way, without making a distinc-

tion. Points at infinity are now just ordinary points, and many things become sim-

pler. For example, the classification of conics and quadrics becomes simpler, and

intersection theory becomes cleaner (although, to be honest, we need to consider

complex projective spaces).

Technically, projective geometry can be defined axiomatically, or by buidling

upon linear algebra. Historically, the axiomatic approach came first (see Veblen and

Young [28, 29], Emil Artin [1], and Coxeter [7, 8, 5, 6]). Although very beautiful and

elegant, we believe that it is a harder approach than the linear algebraic approach. In

the linear algebraic approach, all notions are considered up to a scalar. For example,

a projective point is really a line through the origin. In terms of coordinates, this

corresponds to “homogenizing.” For example, the homogeneous equation of a conic

is

ax2 + by2+ cxy+ dxz+ eyz+ f z2 = 0.

Now, regular points are points of coordinates (x,y,z) with z 6= 0, and points at infinity

are points of coordinates (x,y,0) (with x, y, z not all null, and up to a scalar). There is

a useful model (interpretation) of plane projective geometry in terms of the central

projection in R3 from the origin onto the plane z = 1. Another useful model is the

spherical (or the half-spherical) model. In the spherical model, a projective point

corresponds to a pair of antipodal points on the sphere.

As affine geometry is the study of properties invariant under affine bijections,

projective geometry is the study of properties invariant under bijective projective

maps. Roughly speaking, projective maps are linear maps up to a scalar. In analogy

with our presentation of affine geometry, we will define projective spaces, projective

subspaces, projective frames, and projective maps. The analogy will fade away when

we define the projective completion of an affine space, and when we define duality.

One of the virtues of projective geometry is that it yields a very clean presentation

of rational curves and rational surfaces. The general idea is that a plane rational

curve is the projection of a simpler curve in a larger space, a polynomial curve in

R3, onto the plane z = 1, as we now explain.

Polynomial curves are curves defined parametrically in terms of polynomi-

als. More specifically, if E is an affine space of finite dimension n ≥ 2 and

(a0,(e1, . . . ,en)) is an affine frame for E , a polynomial curve of degree m is a map

F : A→ E such that

F(t) = a0 +F1(t)e1 + · · ·+Fn(t)en,
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for all t ∈ A, where F1(t), . . . ,Fn(t) are polynomials of degree at most m.

Although many curves can be defined, it is somewhat embarassing that a circle

cannot be defined in such a way. In fact, many interesting curves cannot be defined

this way, for example, ellipses and hyperbolas. A rather simple way to extend the

class of curves defined parametrically is to allow rational functions instead of poly-

nomials. A parametric rational curve of degree m is a function F : A→ E such

that

F(t) = a0 +
F1(t)

Fn+1(t)
e1 + · · ·+

Fn(t)

Fn+1(t)
en,

for all t ∈ A, where F1(t), . . . ,Fn(t),Fn+1(t) are polynomials of degree at most m.

For example, a circle in A2 can be defined by the rational map

F(t) = a0 +
1− t2

1+ t2
e1 +

2t

1+ t2
e2.

In the above example, the denominator F3(t) = 1+ t2 never takes the value 0

when t ranges over A, but consider the following curve in A2:

G(t) = a0 +
t2

t
e1 +

1

t
e2.

Observe that G(0) is undefined. The curve defined above is a hyperbola, and for t

close to 0, the point on the curve goes toward infinity in one of the two asymptotic

directions.

A clean way to handle the situation in which the denominator vanishes is to work

in a projective space. Intuitively, this means viewing a rational curve in An as some

appropriate projection of a polynomial curve in An+1, back onto An.

Given an affine space E , for any hyperplane H in E and any point a0 not in H, the

central projection (or conic projection, or perspective projection) of center a0 onto

H, is the partial map p defined as follows: For every point x not in the hyperplane

passing through a0 and parallel to H, we define p(x) as the intersection of the line

defined by a0 and x with the hyperplane H.

For example, we can view G as a rational curve in A3 given by

G1(t) = a0 + t2e1 + e2 + te3.

If we project this curve G1 (in fact, a parabola in A3) using the central projection

(perspective projection) of center a0 onto the plane of equation x3 = 1, we get the

previous hyperbola. For t = 0, the point G1(0) = a0 + e2 in A3 is in the plane of

equation x3 = 0, and its projection is undefined. We can consider that G1(0) = a0 +
e2 in A3 is projected to infinity in the direction of e2 in the plane x3 = 0. In the setting

of projective spaces, this direction corresponds rigorously to a point at infinity.

Let us verify that the central projection used in the previous example has the de-

sired effect. Let us assume that E has dimension n+ 1 and that (a0,(e1, . . . ,en+1))
is an affine frame for E . We want to determine the coordinates of the central projec-

tion p(x) of a point x ∈ E onto the hyperplane H of equation xn+1 = 1 (the center of



106 5 Basics of Projective Geometry

projection being a0). If

x = a0 + x1e1 + · · ·+ xnen + xn+1en+1,

assuming that xn+1 6= 0; a point on the line passing through a0 and x has coordinates

of the form (λ x1, . . . ,λ xn+1); and p(x), the central projection of x onto the hyper-

plane H of equation xn+1 = 1, is the intersection of the line from a0 to x and this

hyperplane H. Thus we must have λ xn+1 = 1, and the coordinates of p(x) are

(
x1

xn+1

, . . . ,
xn

xn+1

,1

)
.

Note that p(x) is undefined when xn+1 = 0. In projective spaces, we can make sense

of such points.

The above calculation confirms that G(t) is a central projection of G1(t). Simi-

larly, if we define the curve F1 in A3 by

F1(t) = a0 +(1− t2)e1 + 2te2 +(1+ t2)e3,

the central projection of the polynomial curve F1 (again, a parabola in A3) onto the

plane of equation x3 = 1 is the circle F .

What we just sketched is a general method to deal with rational curves. We can

use our “hat construction” to embed an affine space E into a vector space Ê having

one more dimension, then construct the projective space P
(
Ê
)
. This turns out to

be the “projective completion” of the affine space E . Then we can define a rational

curve in P
(
Ê
)
, basically as the central projection of a polynomial curve in Ê back

onto P
(
Ê
)
. The same approach can be used to deal with rational surfaces. Due to

the lack of space, such a presentation is omitted from the main text. However, it

can be found in the additional material on the web site; see http://www.cis.

upenn.edu/˜jean/gbooks/geom2.html.

More generally, the projective completion of an affine space is a very convenient

tool to handle “points at infinity” in a clean fashion.

This chapter contains a brief presentation of concepts of projective geometry.

The following concepts are presented: projective spaces, projective frames, homo-

geneous coordinates, projective maps, projective hyperplanes, multiprojective maps,

affine patches. The projective completion of an affine space is presented using the

“hat construction.” The theorems of Pappus and Desargues are proved, using the

method in which points are “sent to infinity.” We also discuss the cross-ratio and

duality. The chapter ends with a very brief explanation of the use of the complexifi-

cation of a projective space in order to define the notion of angle and orthogonality

in a projective setting. We also include a short section on applications of projective

geometry, notably to computer vision (camera calibration), efficient communication,

and error-correcting codes.
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5.2 Projective Spaces

As in the case of affine geometry, our presentation of projective geometry is rather

sketchy and biased toward the algorithmic geometry of curves and surfaces. For a

systematic treatment of projective geometry, we recommend Berger [3, 4], Samuel

[23], Pedoe [21], Coxeter [7, 8, 5, 6], Beutelspacher and Rosenbaum [2], Fres-

nel [14], Sidler [24], Tisseron [26], Lehmann and Bkouche [20], Vienne [30],

and the classical treatise by Veblen and Young [28, 29], which, although slightly

old-fashioned, is definitely worth reading. Emil Artin’s famous book [1] contains,

among other things, an axiomatic presentation of projective geometry, and a wealth

of geometric material presented from an algebraic point of view. Other “oldies but

goodies” include the beautiful books by Darboux [9] and Klein [19]. For a devel-

opment of projective geometry addressing the delicate problem of orientation, see

Stolfi [25], and for an approach geared towards computer graphics, see Penna and

Patterson [22].

First, we define projective spaces, allowing the field K to be arbitrary (which

does no harm, and is needed to allow finite and complex projective spaces). Roughly

speaking, every projective concept is a linea–algebraic concept “up to a scalar.” For

spaces, this is made precise as follows

Definition 5.1. Given a vector space E over a field K, the projective space P(E)
induced by E is the set (E−{0})/∼ of equivalence classes of nonzero vectors in E

under the equivalence relation ∼ defined such that for all u,v ∈ E−{0},

u∼ v iff v = λ u, for some λ ∈ K−{0}.

The canonical projection p : (E − {0}) → P(E) is the function associating the

equivalence class [u]∼ modulo ∼ to u 6= 0. The dimension dim(P(E)) of P(E) is

defined as follows: If E is of infinite dimension, then dim(P(E)) = dim(E), and if

E has finite dimension, dim(E) = n≥ 1 then dim(P(E)) = n− 1.

Mathematically, a projective space P(E) is a set of equivalence classes of vectors

in E . The spirit of projective geometry is to view an equivalence class p(u) = [u]∼
as an “atomic” object, forgetting the internal structure of the equivalence class. For

this reason, it is customary to call an equivalence class a = [u]∼ a point (the entire

equivalence class [u]∼ is collapsed into a single object viewed as a point).

Remarks:

(1) If we view E as an affine space, then for any nonnull vector u ∈ E , since

[u]∼ = {λ u | λ ∈ K, λ 6= 0},

letting

Ku = {λ u | λ ∈ K}
denote the subspace of dimension 1 spanned by u, the map
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[u]∼ 7→ Ku

from P(E) to the set of one-dimensional subspaces of E is clearly a bijection,

and since subspaces of dimension 1 correspond to lines through the origin in

E , we can view P(E) as the set of lines in E passing through the origin. So,

the projective space P(E) can be viewed as the set obtained from E when lines

through the origin are treated as points.

However, this is a somewhat deceptive view. Indeed, depending on the structure

of the vector space E , a line (through the origin) in E may be a fairly complex

object, and treating a line just as a point is really a mental game. For example,

E may be the vector space of real homogeneous polynomials P(x,y,z) of de-

gree 2 in three variables x,y,z (plus the null polynomial), and a “line” (through

the origin) in E corresponds to an algebraic curve of degree 2. Lots of details

need to be filled in, but roughly speaking, the curve defined by P is the “zero

locus of P,” i.e., the set of points (x,y,z) ∈ P(R3) (or perhaps in P(C3)) for

which P(x,y,z) = 0. We will come back to this point in Section 5.4 after having

introduced homogeneous coordinates.

More generally, E may be a vector space of homogeneous polynomials of de-

gree m in 3 or more variables (plus the null polynomial), and the lines in E

correspond to such objects as algebraic curves, algebraic surfaces, and alge-

braic varieties. The point of view where a complex object such as a curve or a

surface is treated as a point in a (projective) space is actually very fruitful and

is one of the themes of algebraic geometry (see Fulton [15] or Harris [16]).

(2) When dim(E) = 1, we have dim(P(E)) = 0. When E = {0}, we have P(E) = /0.

By convention, we give it the dimension −1.

We denote the projective space P(Kn+1) by Pn
K . When K = R, we also denote

Pn
R by RPn, and when K = C, we denote Pn

C by CPn. The projective space P0
K is a

(projective) point. The projective space P1
K is called a projective line. The projective

space P2
K is called a projective plane.

The projective space P(E) can be visualized in the following way. For simplicity,

assume that E = Rn+1, and thus P(E) = RPn (the same reasoning applies to E =
Kn+1, where K is any field).

Let H be the affine hyperplane consisting of all points (x1, . . . ,xn+1) such that

xn+1 = 1. Every nonzero vector u in E determines a line D passing through the ori-

gin, and this line intersects the hyperplane H in a unique point a, unless D is parallel

to H. When D is parallel to H, the line corresponding to the equivalence class of u

can be thought of as a point at infinity, often denoted by u∞. Thus, the projective

space P(E) can be viewed as the set of points in the hyperplane H, together with

points at infinity associated with lines in the hyperplane H∞ of equation xn+1 = 0.

We will come back to this point of view when we consider the projective completion

of an affine space. Figure 5.1 illustrates the above representation of the projective

space when E = R3.

We refer to the above model of P(E) as the hyperplane model. In this model some

hyperplane H∞ (through the origin) in Rn+1 is singled out, and the points of P(E)
arising from the hyperplane H∞ are declared to be “points at infinity.” The purpose
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Fig. 5.1 A representation of the projective space RP2.

of the affine hyperplane H parallel to H∞ and distinct from H∞ is to get images for

the other points in P(E) (i.e., those that arise from lines not contained in H∞). It

should be noted that the choice of which points should be considered as infinite is

relative to the choice of H∞. Viewing certain points of P(E) as points at infinity is

convenient for getting a mental picture of P(E), but there is nothing intrinsic about

that. Points of P(E) are all equal, and unless some additional structure in introduced

in P(E) (such as a hyperplane), a point in P(E) doesn’t know whether it is infinite!

The notion of point at infinity is really an affine notion. This point will be made

precise in Section 5.6.

Again, for RPn = P(Rn+1), instead of considering the hyperplane H, we can

consider the n-sphere Sn of center 0 and radius 1, i.e., the set of points (x1, . . . ,xn+1)
such that

x2
1 + · · ·+ x2

n + x2
n+1 = 1.

In this case, every line D through the center of the sphere intersects the sphere Sn

in two antipodal points a+ and a−. The projective space RPn is the quotient space

obtained from the sphere Sn by identifying antipodal points a+ and a−. It is hard to

visualize such an object! Nevertheless, some nice projections in A3 of an embedding

of RP2 into A4 are given in the surface gallery on the web cite (see http://www.

cis.upenn.edu/˜jean/gbooks/geom2.html, Section 24.7). We call this

model of P(E) the spherical model.

A more subtle construction consists in considering the (upper) half-sphere in-

stead of the sphere, where the upper half-sphere Sn
+ is set of points on the sphere Sn

such that xn+1 ≥ 0. This time, every line through the center intersects the (upper)
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half-sphere in a single point, except on the boundary of the half-sphere, where it

intersects in two antipodal points a+ and a−. Thus, the projective space RPn is the

quotient space obtained from the (upper) half-sphere Sn
+ by identifying antipodal

points a+ and a− on the boundary of the half-sphere. We call this model of P(E)
the half-spherical model.

When n= 2, we get a circle. When n= 3, the upper half-sphere is homeomorphic

to a closed disk (say, by orthogonal projection onto the xy-plane), and RP2 is in

bijection with a closed disk in which antipodal points on its boundary (a unit circle)

have been identified. This is hard to visualize! In this model of the real projective

space, projective lines are great semicircles on the upper half-sphere, with antipodal

points on the boundary identified. Boundary points correspond to points at infinity.

By orthogonal projection, these great semicircles correspond to semiellipses, with

antipodal points on the boundary identified. Traveling along such a projective “line,”

when we reach a boundary point, we “wrap around”! In general, the upper half-

sphere Sn
+ is homeomorphic to the closed unit ball in Rn, whose boundary is the (n−

1)-sphere Sn−1. For example, the projective space RP3 is in bijection with the closed

unit ball in R3, with antipodal points on its boundary (the sphere S2) identified!

Remarks:

(1) A projective space P(E) has been defined as a set without any topological struc-

ture. When the field K is either the field R of reals or the field C of complex

numbers, the vector space E is a topological space. Thus, the projection map

p : (E−{0})→ P(E) induces a topology on the projective space P(E), namely

the quotient topology. This means that a subset V of P(E) is open iff p−1(V ) is

an open set in E . Then, for example, it turns out that the real projective space

RPn is homeomorphic to the space obtained by taking the quotient of the (up-

per) half-sphere Sn
+, by the equivalence relation identifying antipodal points a+

and a− on the boundary of the half-sphere. Another interesting fact is that the

complex projective line CP1 = P(C2) is homeomorphic to the (real) 2-sphere

S2, and that the real projective space RP3 is homeomorphic to the group of

rotations SO(3) of R3.

(2) If H is a hyperplane in E , recall from Lemma 21.1 that there is some nonnull

linear form f ∈ E∗ such that H = Ker f . Also, given any nonnull linear form

f ∈E∗, its kernel H =Ker f = f−1(0) is a hyperplane, and if Ker f =Kerg=H,

then g = λ f for some λ 6= 0. These facts can be concisely stated by saying that

the map

[ f ]∼ 7→Ker f

mapping the equivalence class [ f ]∼ = {λ f | λ 6= 0} of a nonnull linear form

f ∈ E∗ to the hyperplane H = Ker f in E is a bijection between the projective

space P(E∗) and the set of hyperplanes in E . When E is of finite dimension, this

bijection yields a useful duality, which will be investigated in Section 5.9.

We now define projective subspaces.
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5.3 Projective Subspaces

Projective subspaces of a projective space P(E) are induced by subspaces of the

vector space E .

Definition 5.2. Given a nontrivial vector space E , a projective subspace (or linear

projective variety) of P(E) is any subset W of P(E) such that there is some subspace

V 6= {0} of E with W = p(V −{0}). The dimension dim(W ) of W is defined as

follows: If V is of infinite dimension, then dim(W ) = dim(V ), and if dim(V ) =
p ≥ 1, then dim(W ) = p− 1. We say that a family (ai)i∈I of points of P(E) is

projectively independent if there is a linearly independent family (−→ui )i∈I in E such

that ai = p(ui) for every i ∈ I.

Remark: If we allow the empty subset to be a projective subspace, then we have

a bijection between the subspaces of E and the projective subspaces of P(E). In

fact, P(V ) is the projective space induced by the vector space V , and we also denote

p(V −{0}) by P(V ), or even by p(V ), even though p(0) is undefined.

A projective subspace of dimension 0 is a called a (projective) point. A projec-

tive subspace of dimension 1 is called a (projective) line, and a projective subspace

of dimension 2 is called a (projective) plane. If H is a hyperplane in E , then P(H)
is called a projective hyperplane. It is easily verified that any arbitrary intersection

of projective subspaces is a projective subspace. A single point is projectively inde-

pendent. Two points a,b are projectively independent if a 6= b. Two distinct points

define a (unique) projective line. Three points a,b,c are projectively independent if

they are distinct, and neither belongs to the projective line defined by the other two.

Three projectively independent points define a (unique) projective plane.

A closer look at projective subspaces will show some of the advantages of pro-

jective geometry: In considering intersection properties, there are no exceptions due

to parallelism, as in affine spaces.

Let E be a nontrivial vector space. Given any nontrivial subset S of E , the subset S

defines a subset U = p(S−{0}) of the projective space P(E), and if 〈S〉 denotes the

subspace of E spanned by S, it is immediately verified that P(〈S〉) is the intersection

of all projective subspaces containing U , and this projective subspace is denoted by

〈U〉. Given any subspaces M and N of E , recall from Lemma 2.14 that we have the

Grassmann relation

dim(M)+ dim(N) = dim(M +N)+ dim(M∩N).

Then the following lemma is easily shown.

Lemma 5.1. Given a projective space P(E), for any two projective subspaces U,V
of P(E), we have

dim(U)+ dim(V ) = dim(〈U ∪V 〉)+ dim(U ∩V ).



112 5 Basics of Projective Geometry

Furthermore, if dim(U) + dim(V ) ≥ dim(P(E)), then U ∩V is nonempty and if

dim(P(E)) = n, then:

(i) The intersection of any n hyperplanes is nonempty.

(ii) For every hyperplane H and every point a /∈H, every line D containing a inter-

sects H in a unique point.

(iii) In a projective plane, every two distinct lines intersect in a unique point.

As a corollary, in the projective space (dim(P(E)) = 3), for every plane H, every

line not contained in H intersects H in a unique point.

It is often useful to deal with projective hyperplanes in terms of nonnull linear

forms and equations. Recall that the map

[ f ]∼ 7→Ker f

is a bijection between P(E∗) and the set of hyperplanes in E , mapping the equiva-

lence class [ f ]∼ = {λ f | λ 6= 0} of a nonnull linear form f ∈ E∗ to the hyperplane

H =Ker f . Furthermore, if u∼ v, which means that u= λ v for some λ 6= 0, we have

f (u) = 0 iff f (v) = 0,

since f (v) = λ f (u) and λ 6= 0. Thus, there is a bijection

{λ f | λ 6= 0} 7→ P(Ker f )

mapping points in P(E∗) to hyperplanes in P(E). Any nonnull linear form f associ-

ated with some hyperplane P(H) in the above bijection (i.e., H = Ker f ) is called an

equation of the projective hyperplane P(H). We also say that f = 0 is the equation

of the hyperplane P(H).
Before ending this section, we give an example of a projective space where lines

have a nontrivial geometric interpretation, namely as “pencils of lines.” If E = R3,

recall that the dual space E∗ is the set of all linear maps f : R3 → R. As we have

just explained, there is a bijection

p( f ) 7→ P(Ker f )

between P(E∗) and the set of lines in P(E), mapping every point a = p( f ) to the

line Da = P(Ker f ).
Is there a way to give a geometric interpretation in P(E) of a line ∆ in P(E∗)?

Well, a line ∆ in P(E∗) is defined by two distinct points a = p( f ) and b = p(g),
where f ,g ∈ E∗ are two linearly independent linear forms. But f and g define two

distinct planes H1 = Ker f and H2 = Kerg through the origin (in E = R3), and H1

and H2 define two distinct lines D1 = p(H1) and D2 = p(H2) in P(E). The line ∆ in

P(E∗) is of the form ∆ = p(V ), where

V = {λ f + µg | λ ,µ ∈R}
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is the plane in E∗ spanned by f ,g. Every nonnull linear form λ f +µg∈V defines a

plane H =Ker(λ f + µg) in E , and since H1 and H2 (in E) are distinct, they intersect

in a line L that is also contained in every plane H as above. Thus, the set of planes

in E associated with nonnull linear forms in V is just the set of all planes containing

the line L. Passing to P(E) using the projection p, the line L in E corresponds to the

point c = p(L) in P(E), which is just the intersection of the lines D1 and D2. Thus,

every point of the line ∆ in P(E∗) corresponds to a line in P(E) passing through c

(the intersection of the lines D1 and D2), and this correspondence is bijective.

In summary, a line ∆ in P(E∗) corresponds to the set of all lines in P(E) through

some given point. Such sets of lines are called pencils of lines.

The above discussion can be generalized to higher dimensions and is discussed

quite extensively in Section 5.9. In brief, letting E =Rn+1, there is a bijection map-

ping points in P(E∗) to hyperplanes in P(E). A line in P(E∗) corresponds to a pencil

of hyperplanes in P(E), i.e., the set of all hyperplanes containing some given pro-

jective subspace W = p(V ) of dimension n− 2. For n = 3, a pencil of planes in

RP3 = P(R4) is the set of all planes (in RP3) containing some given line W . Other

examples of unusual projective spaces and pencils will be given in Section 5.4.

Next, we define the projective analogues of bases (or frames) and linear maps.

5.4 Projective Frames

As all good notions in projective geometry, the concept of a projective frame turns

out to be uniquely defined up to a scalar.

Definition 5.3. Given a nontrivial vector space E of dimension n + 1, a family

(ai)1≤i≤n+2 of n+ 2 points of the projective space P(E) is a projective frame (or

basis) of P(E) if there exists some basis (e1, . . . ,en+1) of E such that ai = p(ei) for

1 ≤ i ≤ n+ 1, and an+2 = p(e1 + · · ·+ en+1). Any basis with the above property is

said to be associated with the projective frame (ai)1≤i≤n+2.

The justification of Definition 5.3 is given by the following lemma.

Lemma 5.2. If (ai)1≤i≤n+2 is a projective frame of P(E), for any two bases (u1, . . .,
un+1), (v1, . . . ,vn+1) of E such that ai = p(ui) = p(vi) for 1≤ i≤ n+1, and an+2 =
p(u1 + · · ·+ un+1) = p(v1 + · · ·+ vn+1), there is a nonzero scalar λ ∈ K such that

vi = λ ui, for all i, 1≤ i≤ n+ 1.

Proof. Since p(ui) = p(vi) for 1≤ i≤ n+1, there exist some nonzero scalars λi ∈K

such that vi = λiui for all i, 1≤ i≤ n+ 1. Since we must have

p(u1 + · · ·+ un+1) = p(v1 + · · ·+ vn+1),

there is some λ 6= 0 such that

λ (u1 + · · ·+ un+1) = v1 + · · ·+ vn+1 = λ1u1 + · · ·+λn+1un+1,
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and thus we have

(λ −λ1)u1 + · · ·+(λ −λn+1)un+1 = 0,

and since (u1, . . . ,un+1) is a basis, we have λi = λ for all i, 1 ≤ i ≤ n+ 1, which

implies λ1 = · · ·= λn+1 = λ . ⊓⊔

Lemma 5.2 shows that a projective frame determines a unique basis of E , up to

a (nonzero) scalar. This would not necessarily be the case if we did not have a point

an+2 such that an+2 = p(u1 + · · ·+ un+1).
When n = 0, the projective space consists of a single point a, and there is only

one projective frame, the pair (a,a). When n = 1, the projective space is a line,

and a projective frame consists of any three pairwise distinct points a,b,c on this

line. When n = 2, the projective space is a plane, and a projective frame consists of

any four distinct points a,b,c,d such that a,b,c are the vertices of a nondegenerate

triangle and d is not on any of the lines determined by the sides of this triangle. The

reader can easily generalize to higher dimensions.

Given a projective frame (ai)1≤i≤n+2 of P(E), let (u1, . . . ,un+1) be a basis of E

associated with (ai)1≤i≤n+2. For every a ∈ P(E), there is some u ∈ E −{0} such

that

a = [u]∼ = {λ u | λ ∈ K−{0}},
the equivalence class of u, and the set

{(x1, . . . ,xn+1) ∈ Kn+1 | v = x1u1 + · · ·+ xn+1un+1, v ∈ [u]∼ = a}

of coordinates of all the vectors in the equivalence class [u]∼ is called the set of

homogeneous coordinates of a over the basis (u1, . . . ,un+1).
Note that for each homogeneous coordinate (x1, . . . ,xn+1) we must have xi 6= 0

for some i, 1≤ i≤ n+ 1, and any two homogeneous coordinates (x1, . . . ,xn+1) and

(y1, . . . ,yn+1) for a differ by a nonzero scalar, i.e., there is some λ 6= 0 such that

yi = λ xi, 1 ≤ i ≤ n+ 1. Homogeneous coordinates (x1, . . . ,xn+1) are sometimes

denoted by (x1 : · · · : xn+1), for instance in algebraic geometry.

By Lemma 5.2, any other basis (v1, . . . ,vn+1) associated with the projective frame

(ai)1≤i≤n+2 differs from (u1, . . . ,un+1) by a nonzero scalar, which implies that the

set of homogeneous coordinates of a∈ P(E) over the basis (v1, . . . ,vn+1) is identical

to the set of homogeneous coordinates of a ∈ P(E) over the basis (u1, . . . ,un+1).
Consequently, we can associate a unique set of homogeneous coordinates to every

point a ∈ P(E) with respect to the projective frame (ai)1≤i≤n+2. With respect to this

projective frame, note that an+2 has homogeneous coordinates (1, . . . ,1), and that

ai has homogeneous coordinates (0, . . . ,1, . . . ,0), where the 1 is in the ith position,

where 1≤ i≤ n+1. We summarize the above discussion in the following definition.

Definition 5.4. Given a nontrivial vector space E of dimension n+1, for any projec-

tive frame (ai)1≤i≤n+2 of P(E) and for any point a ∈ P(E), the set of homogeneous

coordinates of a with respect to (ai)1≤i≤n+2 is the set of (n+ 1)-tuples
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{(λ x1, . . . ,λ xn+1) ∈ Kn+1 | xi 6= 0 for some i, λ 6= 0,

a = p(x1u1 + · · ·+ xn+1un+1)},

where (u1, . . . ,un+1) is any basis of E associated with (ai)1≤i≤n+2.

Given a projective frame (ai)1≤i≤n+2 for P(E), if (x1, . . . ,xn+1) are homoge-

neous coordinates of a point a∈ P(E), we write a = (x1, . . . ,xn+1), and with a slight

abuse of language, we may even talk about a point (x1, . . . ,xn+1) in P(E) and write

(x1, . . . ,xn+1) ∈ P(E).
The special case of the projective line P1

K is worth examining. The projective line

P1
K consists of all equivalence classes [x,y] of pairs (x,y) ∈ K2 such that (x,y) 6=

(0,0), under the equivalence relation ∼ defined such that

(x1,y1)∼ (x2,y2) iff x2 = λ x1 and y2 = λ y1,

for some λ ∈ K −{0}. When y 6= 0, the equivalence class of (x,y) contains the

representative (xy−1,1), and when y = 0, the equivalence class of (x,0) contains the

representative (1,0). Thus, there is a bijection between K and the set of equivalence

classes containing some representative of the form (x,1), and we denote the class

[x,1] by x. The equivalence class [1,0] is denoted by ∞ and it is called the point at

infinity. Thus, the projective line P1
K is in bijection with K ∪{∞}. The three points

∞ = [1,0], 0 = [0,1], and 1 = [1,1], form a projective frame for P1
K . The projective

frame (∞,0,1) is often called the canonical frame of P1
K .

Homogeneous coordinates are also very useful to handle hyperplanes in terms

of equations. If (ai)1≤i≤n+2 is a projective frame for P(E) associated with a ba-

sis (u1, . . . ,un+1) for E , a nonnull linear form f is determined by n + 1 scalars

α1, . . . ,αn+1 (not all null), and a point x ∈ P(E) of homogeneous coordinates

(x1, . . . ,xn+1) belongs to the projective hyperplane P(H) of equation f iff

α1x1 + · · ·+αn+1xn+1 = 0.

In particular, if P(E) is a projective plane, a line is defined by an equation of the form

αx+β y+ γz = 0. If P(E) is a projective space, a plane is defined by an equation of

the form αx+β y+ γz+ δw= 0.

We also have the following lemma giving another characterization of projective

frames.

Lemma 5.3. A family (ai)1≤i≤n+2 of n+ 2 points is a projective frame of P(E) iff

for every i, 1≤ i≤ n+ 2, the subfamily (a j) j 6=i is projectively independent.

Proof. We leave as an (easy) exercise the fact that if (ai)1≤i≤n+2 is a projective

frame, then each subfamily (a j) j 6=i is projectively independent. Conversely, pick

some ui ∈E−{0} such that ai = p(ui), 1≤ i≤ n+2. Since (a j) j 6=n+2 is projectively

independent, (u1, . . . ,un+1) is a basis of E . Thus, we must have

un+2 = λ1u1 + · · ·+λn+1un+1,
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for some λi ∈ K. However, since for every i, 1 ≤ i ≤ n+ 1, the family (a j) j 6=i is

projectively independent, we must have λi 6= 0, and thus (λ1u1, . . . ,λn+1un+1) is

also a basis of E , and since

un+2 = λ1u1 + · · ·+λn+1un+1,

it induces the projective frame (ai)1≤i≤n+2. ⊓⊔

Figure 5.2 shows a projective frame (a,b,c,d) in a projective plane. With respect

bc

bc

bc

bc

bc

bc

bc

bc
a b

c

d

b′ (1,0,1)

c′ (1,1,0)

a′ (0,1,1)

g (−1,1,0)

Fig. 5.2 A projective frame (a,b,c,d).

to this projective frame, the points a,b,c,d have homogeneous coordinates (1,0,0),
(0,1,0), (0,0,1), and (1,1,1). Let a′ be the intersection of 〈d,a〉 and 〈b,c〉, b′ be the

intersection of 〈d,b〉 and 〈a,c〉, and c′ be the intersection of 〈d,c〉 and 〈a,b〉. Then

the points a′,b′,c′ have homogeneous coordinates (0,1,1), (1,0,1), and (1,1,0).
The diagram formed by the line segments 〈a,c′〉, 〈a,b′〉, 〈b,b′〉, 〈c,c′〉, 〈a,d〉, and

〈b,c〉 is sometimes called a Möbius net. It is easily verified that the equations of the

lines 〈a,b〉, 〈a,c〉, 〈b,c〉, are z = 0, y = 0, and x = 0, and the equations of the lines

〈a,d〉, 〈b,d〉, and 〈c,d〉, are y = z, x = z, and x = y. If we let e be the intersection of

〈b,c〉 and 〈b′,c′〉, f be the intersection of 〈a,c〉 and 〈a′,c′〉, and g be the intersection

of 〈a,b〉 and 〈a′,b′〉, then it easily seen that e, f ,g have homogeneous coordinates

(0,−1,1), (1,0,−1), and (−1,1,0). These coordinates satisfy the equation x+ y+
z = 0, which shows that the points e, f ,g are collinear. This is a special case of

the projective version of Desargues’s theorem. This line is called the polar line (or

fundamental line) of d with respect to the triangle (a,b,c). The diagram also shows

the intersection g of 〈a,b〉 and 〈a′,b′〉.
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The projective space of circles provides a nice illustration of homogeneous coor-

dinates. Let E be the vector space (over R) consisting of all homogeneous polyno-

mials of degree 2 in x,y,z of the form

ax2 + ay2 + bxz+ cyz+ dz2

(plus the null polynomial). The projective space P(E) consists of all equivalence

classes

[P]∼ = {λ P | λ 6= 0},
where P(x,y,z) is a nonnull homogeneous polynomial in E . We want to give a ge-

ometric interpretation of the points of the projective space P(E). In order to do so,

pick some projective frame (a1,a2,a3,a4) for the projective plane RP2, and asso-

ciate to every [P] ∈ P(E) the subset of RP2 known as its its zero locus (or zero set,

or variety) V ([P]), and defined such that

V ([P]) = {a ∈RP2 | P(x,y,z) = 0},

where (x,y,z) are homogeneous coordinates for a.

As explained earlier, we also use the simpler notation

V ([P]) = {(x,y,z) ∈ RP2 | P(x,y,z) = 0}.

Actually, in order for V ([P]) to make sense, we have to check that V ([P]) does not

depend on the representative chosen in the equivalence class [P] = {λ P | λ 6= 0}.
This is because

P(x,y,z) = 0 iff λ P(x,y,z) = 0 when λ 6= 0.

For simplicity of notation, we also denote V ([P]) by V (P). We also have to check

that if (λ x,λ y,λ z) are other homogeneous coordinates for a ∈ RP2, where λ 6= 0,

then

P(x,y,z) = 0 iff P(λ x,λ y,λ z) = 0.

However, since P(x,y,z) is homogeneous of degree 2, we have

P(λ x,λ y,λ z) = λ 2P(x,y,z),

and since λ 6= 0,

P(x,y,z) = 0 iff λ 2P(x,y,z) = 0.

The above argument applies to any homogeneous polynomial P(x1, . . . ,xn) in n vari-

ables of any degree m, since

P(λ x1, . . . ,λ xn) = λ mP(x1, . . . ,xn).

Thus, we can associate to every [P] ∈ P(E) the curve V (P) in RP2. One might

wonder why we are considering only homogeneous polynomials of degree 2, and
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not arbitrary polynomials of degree 2? The first reason is that the polynomials in

x,y,z of degree 2 do not form a vector space. For example, if P = x2 + x and Q =
−x2 + y, the polynomial P+Q = x+ y is not of degree 2. We could consider the set

of polynomials of degree ≤ 2, which is a vector space, but now the problem is that

V (P) is not necessarily well defined!. For example, if P(x,y,z) =−x2 + 1, we have

P(1,0,0) = 0 and P(2,0,0) =−3,

and yet (2,0,0) = 2(1,0,0), so that P(x,y,z) takes different values depending on the

representative chosen in the equivalence class [1,0,0]. Thus, we are led to restrict

ourselves to homogeneous polynomials. Actually, this is usually an advantage more

than a disadvantage, because homogeneous polynomials tend to be well behaved.

For example, by polarization, they yield multilinear maps.

What are the curves V (P)? One way to “see” such curves is to go back to the

hyperplane model of RP2 in terms of the plane H of equation z = 1 in R3. Then the

trace of V (P) on H is the circle of equation

ax2 + ay2 + bx+ cy+ d = 0.

Thus, we may think of P(E) as a projective space of circles. However, there are

some problems. For example, V (P) may be empty! This happens, for instance, for

P(x,y,z) = x2 + y2 + z2, since the equation

x2 + y2 + z2 = 0

has only the trivial solution (0,0,0), which does not correspond to any point in RP2.

Indeed, only nonnull vectors in R3 yield points in RP2. It is also possible that V (P)
is reduced to a single point, for instance when P(x,y,z) = x2 + y2, since the only

homogeneous solution of

x2 + y2 = 0

is (0,0,1). Also, note that the map

[P] 7→V (P)

is not injective. For instance, P = x2 + y2 and Q = x2 + 2y2 define the same degen-

erate circle reduced to the point (0,0,1). We also accept as circles the union of two

lines, as in the case

(bx+ cy+ dz)z = 0,

where a = 0, and even a double line, as in the case

z2 = 0,

where a = b = c = 0.

A clean way to resolve most of these problems is to switch to homogeneous

polynomials over the complex field C and to consider curves in CP2. This is what

is done in algebraic geometry (see Fulton [15] or Harris [16]). If P(x,y,z) is a ho-
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mogeneous polynomial over C of degree 2 (plus the null polynomial), it is easy to

show that V (P) is always nonempty, and in fact infinite. It can also be shown that

V (P) = V (Q) implies that Q = λ P for some λ ∈ C, with λ 6= 0 (see Samuel [23]).

Another advantage of switching to the complex field C is that the theory of inter-

section is cleaner. Thus, any two circles that do not contain a common line always

intersect in four points, some of which might be multiple points (as in the case of

tangent circles). This may seem surprising, since in the real plane, two circles inter-

sect in at most two points. Where are the other two points? They turn out to be the

points (1, i,0) and (1,−i,0), as one can immediately verify. We can think of them

as complex points at infinity! Not only are they at infinity, but they are not real. No

wonder we cannot see them! We will come back to these points, called the circular

points, in Section 5.11.

Going back to the vector space E over R, it is worth saying that it can be shown

that if V (P) = V (Q) contains at least two points (in which case, V (P) is actually

infinite), then Q = λ P for some λ ∈ R with λ 6= 0. Thus, even over R, the mapping

[P] 7→V (P)

is injective whenever V (P) is neither empty nor reduced to a single point. Note that

the projective space P(E) of circles has dimension 3. In fact, it is easy to show that

three distinct points that are not collinear determine a unique circle (see Samuel

[23]).

In a similar vein, we can define the projective space of conics P(E) where E is

the vector space (over R) consisting of all homogeneous polynomials of degree 2 in

x,y,z,

ax2 + by2 + cxy+ dxz+ eyz+ f z2

(plus the null polynomial). The curves V (P) are indeed conics, perhaps degenerate.

To see this, we can use the hyperplane model of RP2. The trace of V (P) on the plane

of equation z = 1 is the conic of equation

ax2 + by2 + cxy+ dx+ ey+ f = 0.

Another way to see that V (P) is a conic is to observe that in R3,

ax2 + by2 + cxy+ dxz+ eyz+ f z2 = 0

defines a cone with vertex (0,0,0), and since its section by the plane z = 1 is a conic,

all of its sections by planes are conics. The mapping

[P] 7→V (P)

is still injective when E is defined over the ground field C, or if V (P) has at least

two points when E is defined over R. Note that the projective space P(E) of conics

has dimension 5. In fact, it is easy to show that five distinct points no four of which

are collinear determine a unique conic (see Samuel [23]).
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It is also interesting to see what are lines in the space of circles or in the space of

conics. In both cases we get pencils (of circles and conics, respectively). For more

details, see Samuel [23], Sidler [24], Tisseron [26], Lehmann and Bkouche [20],

Pedoe [21], Coxeter [7, 8], and Veblen and Young [28, 29].

We could also investigate algebraic plane curves of any degree m, by letting E

be the vector space of homogeneous polynomials of degree m in x,y,z (plus the null

polynomial). The zero locus V (P) of P is defined just as before as

V (P) = {(x,y,z) ∈ RP2 | P(x,y,z) = 0}.

Observe that when m = 1, since homogeneous polynomials of degree 1 are linear

forms, we are back to the case where E = (R3)∗, the dual space of R3, and P(E) can

be identified with the set of lines in RP2. But when m ≥ 3, things are even worse

regarding the injectivity of the map [P] 7→ V (P). For instance, both P = xy2 and

Q = x2y define the same union of two lines. It is necessary to consider irreducible

curves, i.e., curves that are defined by irreducible polynomials, and to work over the

field C of complex numbers (recall that a polynomial P is irreducible if it cannot be

written as the product P = Q1Q2 of two polynomials Q1,Q2 of degree≥ 1).

We can also investigate algebraic surfaces in RP3 (or CP3), by letting E be the

vector space of homogeneous polynomials of degree m in four variables x,y,z, t
(plus the null polynomial). We can also consider the zero locus of a set of equations

E = {P1 = 0, P2 = 0, . . . , Pn = 0},

where P1, . . . ,Pn are homogeneous polynomials of degree m in x,y,z, t, defined as

V (E ) = {(x,y,z, t) ∈ RP3 | Pi(x,y,z, t) = 0, 1≤ i≤ n}.

This way, we can also deal with space curves.

Finally, we can consider homogeneous polynomials P(x1, . . . ,xN+1) in N + 1

variables and of degree m (plus the null polynomial), and study the subsets of RPN

(or CPN) defined as the zero locus of a set of equations

E = {P1 = 0, P2 = 0, . . . , Pn = 0},

where P1, . . . ,Pn are homogeneous polynomials of degree m in the variables x1, . . .,
xN+1. For example, it turns out that the set of lines in RP3 forms a surface of degree

2 in RP5 (the Klein quadric). However, all this would really take us too far into al-

gebraic geometry, and we simply refer the interested reader to Fulton [15] or Harris

[16].

We now consider projective maps.
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5.5 Projective Maps

Given two nontrivial vector spaces E and F and a linear map f : E→F , observe that

for every u,v∈ (E−Ker f ), if v= λ u for some λ ∈K−{0}, then f (v) = λ f (u), and

thus f restricted to (E−Ker f ) induces a function P( f ) : (P(E)−P(Ker f ))→P(F)
defined such that

P( f )([u]∼) = [ f (u)]∼,

as in the following commutative diagram:

E−Ker f
f

//

p

��

F−{0}
p

��

P(E)−P(Ker f )
P( f )

// P(F)

When f is injective, i.e., when Ker f = {0}, then P( f ) : P(E)→ P(F) is indeed a

well-defined function. The above discussion motivates the following definition.

Definition 5.5. Given two nontrivial vector spaces E and F , any linear map f : E→
F induces a partial map P( f ) : P(E)→ P(F) called a projective map, such that if

Ker f = {u∈ E | f (u) = 0} is the kernel of f , then P( f ) : (P(E)−P(Ker f ))→P(F)
is a total map defined such that

P( f )([u]∼) = [ f (u)]∼,

as in the following commutative diagram:

E−Ker f
f

//

p

��

F−{0}
p

��

P(E)−P(Ker f )
P( f )

// P(F)

If f is injective, i.e., when Ker f = {0}, then P( f ) : P(E)→ P(F) is a total func-

tion called a projective transformation, and when f is bijective, we call P( f ) a

projectivity, or projective isomorphism, or homography. The set of projectivities

P( f ) : P(E)→ P(E) is a group called the projective (linear) group, and is denoted

by PGL(E).

� One should realize that if a linear map f : E → F is not injective, then

the projective map P( f ) : P(E)→ P(F) is only a partial map, i.e., it is

undefined on P(Ker f ). In particular, if f : E → F is the null map (i.e., Ker f = E),

the domain of P( f ) is empty and P( f ) is the partial function undefined everywhere.

We might want to require in Definition 5.5 that f not be the null map to avoid this

degenerate case. Projective maps are often defined only when they are induced by

bijective linear maps.
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We take a closer look at the projectivities of the projective line P1
K , since they play

a role in the “change of parameters” for projective curves. A projectivity f : P1
K →

P1
K is induced by some bijective linear map g : K2 → K2 given by some invertible

matrix

M(g) =

(
a b

c d

)

with ad− bc 6= 0. Since the projective line P1
K is isomorphic to K∪{∞}, it is easily

verified that f is defined as follows:

c 6= 0





z 7→ az+ b

cz+ d
if z 6=−d

c
,

−d

c
7→ ∞,

∞ 7→ a

c
;

c = 0

{
z 7→ az+ b

d
,

∞ 7→ ∞.

If K =R or K =C, note that a/c is the limit of (az+b)/(cz+d), as z approaches

infinity, and the limit of (az+ b)/(cz+ d) as z approaches−d/c is ∞ (when c 6= 0).

Projections between hyperplanes form an important example of projectivities.

Definition 5.6. Given a projective space P(E), for any two distinct hyperplanes

P(H) and P(H ′), for any point c∈ P(E) neither in P(H) nor in P(H ′), the projection

(or perspectivity) of center c between P(H) and P(H ′) is the map f : P(H)→ P(H ′)
defined such that for every a ∈ P(H), the point f (a) is the intersection of the line

〈c,a〉 through c and a with P(H ′).

Let us verify that f is well–defined and a bijective projective transformation.

Since the hyperplanes P(H) and P(H ′) are distinct, the hyperplanes H and H ′ in E

are distinct, and since c is neither in P(H) nor in P(H ′), letting c = p(u) for some

nonnull vector u ∈ E , then u /∈ H and u /∈ H ′, and thus E = H⊕Ku = H ′⊕Ku. If

π : E →H ′ is the linear map (projection onto H ′ parallel to u) defined such that

π(w+λ u) = w,

for all w∈H ′ and all λ ∈K, since E =H⊕Ku =H ′⊕Ku, the restriction g : H→H ′

of π : E → H ′ to H is a linear bijection between H and H ′, and clearly f = P(g),
which shows that f is a projectivity.

Remark: Going back to the linear map π : E → H ′ (projection onto H ′ parallel to

u), note that P(π) : P(E)→P(H ′) is also a projective map, but it is not injective, and

thus only a partial map. More generally, given a direct sum E =V ⊕W , the projec-

tion π : E→V onto V parallel to W induces a projective map P(π) : P(E)→ P(V ),
and given another direct sum E =U⊕W , the restriction of π to U induces a perspec-

tivity f between P(U) and P(V ). Geometrically, f is defined as follows: Given any

point a ∈ P(U), if 〈P(W ),a〉 is the smallest projective subspace containing P(W )
and a, the point f (a) is the intersection of 〈P(W ),a〉 with P(V ).
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Figure 5.3 illustrates a projection f of center c between two projective lines ∆
and ∆ ′ (in the real projective plane).

bc

bc bc
bc bc

bc bc bc bc

c

d1 d2

d3 d4

d′1 d′2 d′3 d′4

D1 D2 D3 D4

∆

∆ ′

Fig. 5.3 A projection of center c between two lines ∆ and ∆ ′.

If we consider three distinct points d1,d2,d3 on ∆ and their images d′1,d
′
2,d
′
3 on

∆ ′ under the projection f , then ratios are not preserved, that is,

−−→
d3d1
−−→
d3d2

6=
−−→
d′3d′1−−→
d′3d′2

.

However, if we consider four distinct points d1,d2,d3,d4 on ∆ and their images

d′1,d
′
2,d
′
3,d
′
4 on ∆ ′ under the projection f , we will show later that we have the fol-

lowing preservation of the so-called “cross-ratio”

−−→
d3d1
−−→
d3d2

/−−→
d4d1
−−→
d4d2

=

−−→
d′3d′1−−→
d′3d′2

/−−→
d′4d′1−−→
d′4d′2

.

Cross-ratios and projections play an important role in geometry (for some very ele-

gant illustrations of this fact, see Sidler [24]).

We now turn to the issue of determining when two linear maps f ,g determine

the same projective map, i.e., when P( f ) = P(g). The following lemma gives us a

complete answer.

Lemma 5.4. Given two nontrivial vector spaces E and F, for any two linear maps

f : E→ F and g : E→ F, we have P( f ) = P(g) iff there is some scalar λ ∈ K−{0}
such that g = λ f .

Proof. If g = λ f , it is clear that P( f ) = P(g). Conversely, in order to have P( f ) =
P(g), we must have Ker f = Kerg. If Ker f = Kerg = E , then f and g are both the

null map, and this case is trivial. If E −Ker f 6= /0, by taking a basis of Im f and

some inverse image of this basis, we obtain a basis B of a subspace G of E such that
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E = Ker f ⊕G. If dim(G) = 1, the restriction of any linear map f : E → F to G is

determined by some nonzero vector u∈ E and some scalar λ ∈ K, and the lemma is

obvious. Thus, assume that dim(G)≥ 2. For any two distinct basis vectors u,v ∈ B,

since P( f ) = P(g), there must be some nonzero scalars λ (u), λ (v), and λ (u+ v)
such that

g(u) = λ (u) f (u), g(v) = λ (v) f (v), g(u+ v) = λ (u+ v) f (u+ v).

Since f and g are linear, we get

g(u)+ g(v) = λ (u) f (u)+λ (v) f (v) = λ (u+ v)( f (u)+ f (v)),

that is,

(λ (u+ v)−λ (u)) f (u)+ (λ (u+ v)−λ (v)) f (v)= 0.

Since f is injective on G and u,v ∈ B⊆ G are linearly independent, f (u) and f (v)
are also linearly independent, and thus we have

λ (u+ v) = λ (u) = λ (v).

Now we have shown that λ (u) = λ (v), for any two distinct basis vectors in B, which

proves that λ (u) is independent of u ∈ G, and proves that g = λ f . ⊓⊔

Lemma 5.4 shows that the projective linear group PGL(E) is isomorphic to the

quotient group of the linear group GL(E) modulo the subgroup K∗idE (where K∗ =
K−{0}). Using projective frames, we prove the following useful result.

Lemma 5.5. Given two nontrivial vector spaces E and F of the same dimension

n+1, for any two projective frames (ai)1≤i≤n+2 for P(E) and (bi)1≤i≤n+2 for P(F),
there is a unique projectivity h : P(E)→ P(F) such that h(ai) = bi for 1≤ i≤ n+2.

Proof. Let (u1, . . . ,un+1) be a basis of E associated with the projective frame

(ai)1≤i≤n+2, and let (v1, . . . ,vn+1) be a basis of F associated with the projective

frame (bi)1≤i≤n+2. Since (u1, . . . ,un+1) is a basis, there is a unique linear bijection

g : E→ F such that g(ui) = vi, for 1≤ i≤ n+ 1. Clearly, h = P(g) is a projectivity

such that h(ai) = bi, for 1 ≤ i ≤ n+ 2. Let h′ : P(E)→ P(F) be any projectivity

such that h′(ai) = bi, for 1 ≤ i≤ n+ 2. By definition, there is a linear isomorphism

f : E → F such that h′ = P( f ). Since h′(ai) = bi, for 1 ≤ i ≤ n+ 2, we must have

f (ui) = λivi, for some λi ∈ K−{0}, where 1≤ i≤ n+ 1, and

f (u1 + · · ·+ un+1) = λ (v1 + · · ·+ vn+1),

for some λ ∈ K−{0}. By linearity of f , we have

λ1v1 + · · ·+λn+1vn+1 = λ v1 + · · ·+λ vn+1,

and since (v1, . . . ,vn+1) is a basis of F , we must have

λ1 = · · ·= λn+1 = λ .



5.5 Projective Maps 125

This shows that f = λ g, and thus that

h′ = P( f ) = P(g) = h,

and h is uniquely determined. ⊓⊔

� The above lemma and Lemma 5.4 are false if K is a skew field. Also,

Lemma 5.5 fails if (bi)1≤i≤n+2 is not a projective frame, or if an+2 is

dropped.

As a corollary of Lemma 5.5, given a projective space P(E), two distinct projec-

tive lines D and D′ in P(E), three distinct points a,b,c on D, and any three distinct

points a′,b′,c′ on D′, there is a unique projectivity from D to D′, mapping a to a′, b

to b′, and c to c′. This is because, as we mentioned earlier, any three distinct points

on a line form a projective frame.

Remark: As in the affine case, there is “fundamental theorem of projective geom-

etry.” For simplicity, we state this theorem assuming that vector spaces are over the

field K = R. Given any two projective spaces P(E) and P(F) of the same dimen-

sion n≥ 2, for any bijective function f : P(E)→ P(F), if f maps any three distinct

collinear points a,b,c to collinear points f (a), f (b), f (c), then f is a projectivity.

For more general fields, f = P(g) for some “semilinear” bijection g : E → F . A

map such as f (preserving collinearity of any three distinct points) is often called a

collineation. For K = R, collineations and projectivities coincide. For more details,

see Samuel [23].

Before closing this section, we illustrate the power of Lemma 5.5 by proving two

interesting results. We begin by characterizing perspectivities between lines.

Lemma 5.6. Given any two distinct lines D and D′ in the real projective plane RP2,

a projectivity f : D→D′ is a perspectivity iff f (O) = O, where O is the intersection

of D and D′.

Proof. If f : D→ D′ is a perspectivity, then by the very definition of f , we have

f (O) = O. Conversely, let f : D→D′ be a projectivity such that f (O) = O. Let a,b
be any two distinct points on D also distinct from O, and let a′ = f (a) and b′ = f (b)
on D′. Since f is a bijection and since a,b,O are pairwise distinct, a′ 6= b′. Let c be

the intersection of the lines 〈a,a′〉 and 〈b,b′〉, which by the assumptions on a,b,O,

cannot be on D or D′. Then we can define the perspectivity g : D→ D′ of center c,

and by the definition of c, we have

g(a) = a′, g(b) = b′, g(O) = O.

However, f agrees with g on O,a,b, and since (O,a,b) is a projective frame for D,

by Lemma 5.5, we must have f = g. ⊓⊔
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Using Lemma 5.6, we can give an elegant proof of a version of Desargues’s

theorem (in the plane).

Lemma 5.7. Given two triangles (a,b,c) and (a′,b′,c′) in RP2, where the points

a,b,c,a′,b′,c′ are pairwise distinct and the lines A = 〈b,c〉, B = 〈a,c〉, C = 〈a,b〉,
A′= 〈b′,c′〉, B′= 〈a′,c′〉, C′= 〈a′,b′〉 are pairwise distinct, if the lines 〈a,a′〉, 〈b,b′〉,
and 〈c,c′〉 intersect in a common point d distinct from a,b,c, a′,b′,c′, then the inter-

section points p = 〈b,c〉∩〈b′,c′〉, q = 〈a,c〉∩〈a′,c′〉, and r = 〈a,b〉∩〈a′,b′〉 belong

to a common line distinct from A,B,C, A′,B′,C′.

Proof. In view of the assumptions on a,b,c, a′,b′,c′, and d, the point r is on neither

〈a,a′〉 nor 〈b,b′〉, the point p is on neither 〈b,b′〉 nor 〈c,c′〉, and the point q is on

neither 〈a,a′〉 nor 〈c,c′〉. It is also immediately shown that the line 〈p,q〉 is distinct

from the lines A,B,C, A′,B′,C′. Let f : 〈a,a′〉→ 〈b,b′〉 be the perspectivity of center

r and g : 〈b,b′〉 → 〈c,c′〉 be the perspectivity of center p. Let h = g ◦ f . Since both

f (d) = d and g(d) = d, we also have h(d) = d. Thus by Lemma 5.6, the projectivity

h : 〈a,a′〉 → 〈c,c′〉 is a perspectivity. Since

h(a) = g( f (a)) = g(b) = c,

h(a′) = g( f (a′)) = g(b′) = c′,

the intersection q of 〈a,c〉 and 〈a′,c′〉 is the center of the perspectivity h. Also note

that the point m = 〈a,a′〉∩〈p,r〉 and its image h(m) are both on the line 〈p,r〉, since

r is the center of f and p is the center of g. Since h is a perspectivity of center q, the

line 〈m,h(m)〉= 〈p,r〉 passes through q, which proves the lemma. ⊓⊔

Desargues’s theorem is illustrated in Figure 5.4. It can also be shown that every

projectivity between two distinct lines is the composition of two perspectivities (not

in a unique way). An elegant proof of Pappus’s theorem can also be given using

perspectivities. For all this and more, the reader is referred to the problems.

We now consider the projective completion of an affine space.

5.6 Projective Completion of an Affine Space, Affine Patches

Given an affine space E with associated vector space
−→
E , we can form the vector

space Ê , the homogenized version of E , and then, the projective space P
(
Ê
)

induced

by Ê. This projective space, also denoted by Ẽ, has some very interesting properties.

In fact, it satisfies a universal property, but before we can say what it is, we have to

take a closer look at Ẽ .

Since the vector space Ê is the disjoint union of elements of the form 〈a,λ 〉,
where a ∈ E and λ ∈ K−{0}, and elements of the form u ∈ −→E , observe that if ∼
is the equivalence relation on Ê used to define the projective space P

(
Ê
)
, then the

equivalence class [〈a,λ 〉]∼ of a weighted point contains the special representative
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Fig. 5.4 Desargues’s theorem (projective version in the plane).

a = 〈a,1〉, and the equivalence class [u]∼ of a nonzero vector u ∈ −→E is just a point

of the projective space P
(−→

E
)
. Thus, there is a bijection

P
(
Ê
)
←→ E ∪P

(−→
E
)

between P
(
Ê
)

and the disjoint union E∪P
(−→

E
)
, which allows us to view E as being

embedded in P
(
Ê
)
. The points of P

(
Ê
)

in P
(−→

E
)

will be called points at infinity,

and the projective hyperplane P
(−→

E
)

is called the hyperplane at infinity. We will

also denote the point [u]∼ of P
(−→

E
)

(where u 6= 0) by u∞.

Thus, we can think of Ẽ = P
(
Ê
)

as the projective completion of the affine space

E obtained by adding points at infinity forming the hyperplane P
(−→

E
)
. As we com-

mented in Section 5.2 when we presented the hyperplane model of P(E), the notion

of point at infinity is really an affine notion. But even if a vector space E doesn’t

arise from the completion of an affine space, there is an affine structure on the com-

plement of any hyperplane P(H) in the projective space P(E). In the case of Ẽ , the

complement E of the projective hyperplane P
(−→

E
)

is indeed an affine space. This is

a general property that is needed in order to figure out the universal property of Ẽ .
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Lemma 5.8. Given a vector space E and a hyperplane H in E, the complement

EH = P(E)−P(H) of the projective hyperplane P(H) in the projective space P(E)
can be given an affine structure such that the associated vector space of EH is H.

The affine structure on EH depends only on H, and under this affine structure, EH is

isomorphic to an affine hyperplane in E.

Proof. Since H is a hyperplane in E , there is some w∈E−H such that E =Kw⊕H.

Thus, every vector u in E−H can be written in a unique way as λ w+h, where λ 6= 0

and h ∈ H. As a consequence, for every point [u] in EH , the equivalence class [u]
contains a representative of the form w+λ−1h, with λ 6= 0. Then we see that the

map ϕ : (w+H)→ EH , defined such that

ϕ(w+ h) = [w+ h],

is a bijection. In order to define an affine structure on EH , we define + : EH ×H→
EH as follows: For every point [w+ h1] ∈ EH and every h2 ∈ H, we let

[w+ h1]+ h2 = [w+ h1 + h2].

The axioms of an affine space are immediately verified. Now, w+H is an affine

hyperplane is E , and under the affine structure just given to EH , the map ϕ : (w+
H)→ EH is an affine map that is bijective. Thus, EH is isomorphic to the affine

hyperplane w+H. If we had chosen a different vector w′ ∈ E−H such that E =
Kw′⊕H, then EH would be isomorphic to the affine hyperplane w′+H parallel to

w+H. But these two hyperplanes are clearly isomorphic by translation, and thus

the affine structure on EH depends only on H. ⊓⊔
An affine space of the form EH is called an affine patch on P(E). Lemma 5.8

allows us to view a projective space P(E) as the result of gluing some affine spaces

together, at least when E is of finite dimension. For example, when E is of dimension

2, a hyperplane in E is just a line, and the complement of a point in the projective line

P(E) can be viewed as an affine line. Thus, we can view P(E) as being covered by

two affine lines glued together. When K =R, this shows that topologically, the pro-

jective line RP1 is equivalent to a circle. When E is of dimension 3, a hyperplane in

E is just a plane, and the complement of a projective line in the projective plane P(E)
can be viewed as an affine plane. Thus, we can view P(E) as being covered by three

affine planes glued together. However, even when K = R, it is much more difficult

to come up with a geometric embedding of the projective plane RP2 in A3, and in

fact, this is impossible! Nevertheless, there are some fascinating immersions of the

projective space RP2 as 3D surfaces with self-intersection, one of which is known as

the Boy surface. We urge our readers to consult the remarkable book by Hilbert and

Cohn-Vossen [17] for drawings of the Boy surface, and more. Some nice projections

in A3 of an embedding of RP2 into A4 are given in the surface gallery on the web

page (see http://www.cis.upenn.edu/˜jean/gbooks/geom2.html,

Section 24.7). In fact, we give a control net in A4 specifying an explicit rational

surface homeomorphic to RP2. One should also consult Fischer’s books [12, 11],

where many beautiful models of surfaces are displayed, and the commentaries in
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Chapter 6 of [11] regarding models of RP2. More generally, when E is of dimen-

sion n+1, the projective space P(E) is covered by n+1 affine patches (hyperplanes)

glued together. This idea is very fruitful, since it allows the treatment of projective

spaces as manifolds, and it is essential in algebraic geometry.

We can now go back to the projective completion Ẽ of an affine space E .

Definition 5.7. Given any affine space E with associated vector space
−→
E , a projec-

tive completion of the affine space E with hyperplane at infinity P(H ) is a triple

〈P(E ),P(H ), i〉, where E is a vector space, H is a hyperplane in E , i : E→ P(E )
is an injective map such that i(E) = EH and i is affine (where EH = P(E )−P(H )
is an affine patch), and for every projective space P(F), every hyperplane H in F ,

and every map f : E → P(F) such that f (E) ⊆ FH and f is affine (where FH =

P(F)−P(H) is an affine patch), there is a unique projective map f̃ : P(E )→ P(F)
such that

f = f̃ ◦ i and P
(−→

f
)
= f̃ ◦P(i)

(where i :
−→
E →H and

−→
f :
−→
E → H are the linear maps associated with the affine

maps i : E→ P(E ) and f : E→ P(F)), as in the following diagram:

E
i //

f
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼ EH ⊆ P(E )⊇ P(H )

f̃

��

P
(−→

E
)P(i)

oo

P
(−→

f
)

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦

FH ⊆ P(F)⊇ P(H)

The points of P(E ) in P(H ) are called points at infinity, and the projective hy-

perplane P(H ) is called the hyperplane at infinity. We will also denote the point

[u]∼ of P(H ) (where u 6= 0) by u∞. As usual, objects defined by a universal property

are unique up to isomorphism. We leave the proof as an exercise. The importance

of the notion of projective completion stems from the fact that every affine map

f : E→ F extends in a unique way to a projective map f̃ : Ẽ→ F̃ (provided that the

restriction of f̃ to P
(−→

E
)

agrees with P
(−→

f
)
).

We will now show that
〈
Ẽ,P

(−→
E
)
, i
〉

is the projective completion of E , where

i : E → Ẽ is the injection of E into Ẽ = E ∪P
(−→

E
)
. For example, if E = A1

K is an

affine line, its projective completion Ã1
K is isomorphic to the projective line P(K2),

and they both can be identified with A1
K ∪{∞}, the result of adding a point at in-

finity (∞) to A1
K . In general, the projective completion Ãm

K of the affine space Am
K is

isomorphic to P(Km+1). Thus, Ãm is isomorphic to RPm, and Ãm
C is isomorphic to

CPm.

First, let us observe that if E is a vector space and H is a hyperplane in E , then

the homogenization ÊH of the affine patch EH (the complement of the projective

hyperplane P(H) in P(E)) is isomorphic to E . The proof is rather simple and uses

the fact that there is an affine bijection between EH and the affine hyperplane w+H
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in E , where w ∈ E−H is any fixed vector. Choosing w as an origin in EH , we know

that ÊH = H +̂Kw, and since E = H ⊕Kw, it is obvious how to define a linear

bijection between ÊH = H +̂Kw and E = H⊕Kw. As a consequence the projective

spaces ẼH and P(E) are isomorphic, i.e., there is a projectivity between them.

Lemma 5.9. Given any affine space
(
E,
−→
E
)
, for every projective space P(F), every

hyperplane H in F, and every map f : E→P(F) such that f (E)⊆FH and f is affine

(FH being viewed as an affine patch), there is a unique projective map f̃ : Ẽ→ P(F)
such that

f = f̃ ◦ i and P
(−→

f
)
= f̃ ◦P(i),

(where i :
−→
E →−→E and

−→
f :
−→
E →H are the linear maps associated with the affine

maps i : E→ Ẽ and f : E → P(F)), as in the following diagram:

E
i //

f
&&▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

E ⊆ Ẽ ⊇ P
(−→

E
)

f̃

��

P
(−→

E
)P(i)

oo

P
(−→

f
)

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

FH ⊆ P(F)⊇ P(H)

Proof. The existence of f̃ is a consequence of Lemma 4.5, where we observe that F̂H

is isomorphic to F . Just take the projective map P
(

f̂
)

: Ẽ → P(F), where f̂ : Ê →
F is the unique linear map extending f . It remains to prove its uniqueness. Since

f : E→ FH is affine, for any a ∈ E and any u ∈ −→E , we have

f (a+ u) = f (a)+
−→
f (u),

where
−→
f :
−→
E →H is a linear map. If we fix some a ∈ E , then f (a) = [w], for some

w ∈ F −H and F = Kw⊕H. Assume that f̃ : Ẽ → P(F) exists with the desired

property. Then there is some linear map g : Ê → F such that f̃ = P(g). Since f =

f̃ ◦ i, we must have f (a) = [w] = [g(a)], and thus g(a) = µw, for some µ 6= 0. Also,

for every u ∈ −→E ,

f (a+ u) = [w]+
−→
f (u) =

[
w+
−→
f (u)

]
= [g(a+ u)]

= [g(a)+ g(u)] = [µw+ g(u)],

and thus we must have

λ (u)w+λ (u)
−→
f (u) = µw+ g(u),

for some λ (u) 6= 0. If Ker
−→
f =
−→
E , the linear map

−→
f is the null map, and since we

are requiring that the restriction of f̃ to P
(−→

E
)

be equal to P
(−→

f
)
, the linear map g
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must also be the null map on
−→
E . Thus, f̃ is unique, and the restriction of f̃ to P

(−→
E
)

is the partial map undefined everywhere.

If
−→
E −Ker

−→
f 6= /0, by taking a basis of Im

−→
f and some inverse image of this

basis, we obtain a basis B of a subspace
−→
G of

−→
E such that

−→
E = Ker

−→
f ⊕−→G . Since

−→
E = Ker

−→
f ⊕−→G where dim

(−→
G
)
≥ 1, for any x ∈ Ker

−→
f and any nonnull vector

y ∈ −→G , we have

λ (x)w = µw+ g(x),

λ (y)w+λ (y)
−→
f (y) = µw+ g(y),

and

λ (x+ y)w+λ (x+ y)
−→
f (x+ y) = µw+ g(x+ y),

which by linearity yields

(λ (x+ y)−λ (x)−λ (y)+ µ)w+(λ (x+ y)−λ(y))
−→
f (y) = 0.

Since F = Kw⊕H and
−→
f :
−→
E →H, we must have λ (x+ y) = λ (y) and λ (x) = µ .

Thus, g agrees with
−→
f on Ker

−→
f .

If dim
(−→

G
)
= 1 then for any y ∈ −→G we have

λ (y)w+λ (y)
−→
f (y) = µw+ g(y),

and for any ν 6= 0 we have

λ (νy)w+λ (νy)
−→
f (νy) = µw+ g(νy),

which by linearity yields

(λ (νy)−νλ (y)− µ +νµ)w+(νλ (νy)−νλ (y))
−→
f (y) = 0.

Since F = Kw⊕H,
−→
f :
−→
E →H, and ν 6= 0, we must have λ (νy) = λ (y). Then we

must also have (λ (y)− µ)(1−ν) = 0.

If K = {0,1}, since the only nonzero scalar is 1, it is immediate that g(y)=
−→
f (y),

and we are done. Otherwise, for ν 6= 0,1, we get λ (y) = µ for all y ∈ −→G . Then

g = µ
−→
f on

−→
E , and the restriction of f̃ = P(g) to P

(−→
E
)

is equal to P
(−→

f
)
. But

now g is completely determined by

g(u +̂λ a) = λ g(a)+ g(u) = λ µw+ µ
−→
f (u).

Thus, we have g = µ f̂ .
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Otherwise, if dim
(−→

G
)
≥ 2, then for any two distinct basis vectors u and v in B,

λ (u)w+λ (u)
−→
f (u) = µw+ g(u),

λ (v)w+λ (v)
−→
f (v) = µw+ g(v),

and

λ (u+ v)w+λ (u+ v)
−→
f (u+ v) = µw+ g(u+ v),

and by linearity, we get

(λ (u+ v)−λ (u)−λ (v)+ µ)w+(λ (u+ v)−λ(u))
−→
f (u)

+ (λ (u+ v)−λ (v))
−→
f (v) = 0.

Since F = Kw⊕H,
−→
f :
−→
E → H, and

−→
f (u) and

−→
f (v) are linearly independent

(because
−→
f in injective on

−→
G ), we must have

λ (u+ v) = λ (u) = λ (v) = µ ,

which implies that g = µ
−→
f on

−→
E , and the restriction of f̃ = P(g) to P

(−→
E
)

is equal

to P
(−→

f
)
. As in the previous case, g is completely determined by

g(u +̂λ a) = λ g(a)+ g(u) = λ µw+ µ
−→
f (u).

Again, we have g = µ f̂ , and thus f̃ is unique. ⊓⊔

� The requirement that the restriction of f̃ = P(g) to P
(−→

E
)

be equal to

P
(−→

f
)

is necessary for the uniqueness of f̃ . The problem comes up when

f is a constant map. Indeed, if f is the constant map defined such that f (a) = [w]
for some fixed vector w ∈ F , it can be shown that any linear map g : Ê→ F defined

such that g(a) = µw and g(u) = ϕ(u)w for all u ∈ −→E , for some µ 6= 0, and some

linear form ϕ :
−→
E → F satisfies f = P(g)◦ i.

Lemma 5.9 shows that
〈
Ẽ,P

(−→
E
)
, i
〉

is the projective completion of the affine

space E .

The projective completion Ẽ of an affine space E is a very handy place in which

to do geometry in, mainly because the following facts can be easily established.

There is a bijection between affine subspaces of E and projective subspaces of Ẽ

not contained in P
(−→

E
)
. Two affine subspaces of E are parallel iff the corresponding

projective subspaces of Ẽ have the same intersection with the hyperplane at infinity

P
(−→

E
)
. There is also a bijection between affine maps from E to F and projective

maps from Ẽ to F̃ mapping the hyperplane at infinity P
(−→

E
)

into the hyperplane at
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infinity P
(−→

F
)
. In the projective plane, two distinct lines intersect in a single point

(possibly at infinity, when the lines are parallel). In the projective space, two distinct

planes intersect in a single line (possibly at infinity, when the planes are parallel).

In the projective space, a plane and a line not contained in that plane intersect in a

single point (possibly at infinity, when the plane and the line are parallel).

5.7 Making Good Use of Hyperplanes at Infinity

Given a vector space E and a hyperplane H in E , we have already observed that

the projective spaces ẼH and P(E) are isomorphic. Thus, P(H) can be viewed as

the hyperplane at infinity in P(E), and the considerations applying to the projective

completion of an affine space apply to the affine patch EH on P(E). This fact yields

a powerful and elegant method for proving theorems in projective geometry. The

general schema is to choose some projective hyperplane P(H) in P(E), view it as

the “hyperplane at infinity,” then prove an affine version of the desired result in the

affine patch EH (the complement of P(H) in P(E), which has an affine structure),

and then transfer this result back to the projective space P(E). This technique is

often called “sending objects to infinity.” We refer the reader to geometry textbooks

for a comprehensive development of these ideas (for example, Berger [3, 4], Samuel

[23], Sidler [24], Tisseron [26], or Pedoe [21]), but we cannot resist presenting the

projective versions of the theorems of Pappus and Desargues. Indeed, the method

of sending points to infinity provides some strikingly elegant proofs. We begin with

Pappus’s theorem, illustrated in Figure 5.5.

Lemma 5.10. Given any projective plane P(E) and any two distinct lines D and

D′, for any distinct points a,b,c,a′,b′,c′, with a,b,c on D and a′,b′,c′ on D′, if

a,b,c,a′,b′,c′ are distinct from the intersection of D and D′, then the intersection

points p = 〈b,c′〉∩〈b′,c〉, q = 〈a,c′〉∩〈a′,c〉, and r = 〈a,b′〉∩〈a′,b〉 are collinear.

Proof. First, since any two lines in a projective plane intersect in a single point, the

points p,q,r are well defined. Choose ∆ = 〈p,r〉 as the line at infinity, and consider

the affine plane X = P(E)−∆ . Since 〈a,b′〉 and 〈a′,b〉 intersect at a point at infinity

r on ∆ , 〈a,b′〉 and 〈a′,b〉 are parallel, and similarly 〈b,c′〉 and 〈b′,c〉 are parallel.

Thus, by the affine version of Pappus’s theorem (Lemma 2.11), the lines 〈a,c′〉 and

〈a′,c〉 are parallel, which means that their intersection q is on the line at infinity

∆ = 〈p,r〉, which means that p,q,r are collinear. ⊓⊔
By working in the projective completion of an affine plane, we can obtain an

improved version of Pappus’s theorem for affine planes. The reader will have to

figure out how to deal with the special cases where some of p,q,r go to infinity.

Now, we prove a projective version of Desargues’s theorem slightly more general

than that given in Lemma 5.7. It is interesting that the proof is radically different,

depending on the dimension of the projective space P(E). This is not surprising.

In axiomatic presentations of projective plane geometry, Desargues’s theorem is

independent of the other axioms. Desargues’s theorem is illustrated in Figure 5.6.
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Fig. 5.5 Pappus’s theorem (projective version).
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Fig. 5.6 Desargues’s theorem (projective version).
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Lemma 5.11. Let P(E) be a projective space. Given two triangles (a,b,c) and

(a′,b′,c′), where the points a,b,c,a′,b′,c′ are pairwise distinct and the lines A =
〈b,c〉, B = 〈a,c〉, C = 〈a,b〉, A′ = 〈b′,c′〉, B′ = 〈a′,c′〉, C′ = 〈a′,b′〉 are pairwise dis-

tinct, if the lines 〈a,a′〉, 〈b,b′〉, and 〈c,c′〉 intersect in a common point d distinct from

a,b,c, a′,b′,c′, then the intersection points p = 〈b,c〉∩ 〈b′,c′〉, q = 〈a,c〉∩ 〈a′,c′〉,
and r = 〈a,b〉∩ 〈a′,b′〉 belong to a common line distinct from A,B,C, A′,B′,C′.

Proof. First, it is immediately shown that the line 〈p,q〉 is distinct from the lines

A,B,C, A′,B′,C′. Let us assume that P(E) has dimension n ≥ 3. If the seven points

d,a,b,c,a′,b′,c′ generate a projective subspace of dimension 3, then by Lemma 5.1,

the intersection of the two planes 〈a,b,c〉 and 〈a′,b′,c′〉 is a line, and thus p,q,r are

collinear.

If P(E) has dimension n = 2 or the seven points d,a,b,c,a′,b′,c′ generate a

projective subspace of dimension 2, we use the following argument. In the projective

plane X generated by the seven points d,a,b,c,a′,b′,c′, choose the projective line

∆ = 〈p,r〉 as the line at infinity. Then in the affine plane Y = X−∆ , the lines 〈b,c〉
and 〈b′,c′〉 are parallel, and the lines 〈a,b〉 and 〈a′,b′〉 are parallel, and the lines

〈a,a′〉, 〈b,b′〉, and 〈c,c′〉 are either parallel or concurrent. Then by the converse of

the affine version of Desargues’s theorem (Lemma 2.12), the lines 〈a,c〉 and 〈a′,c′〉
are parallel, which means that their intersection q belongs to the line at infinity

∆ = 〈p,r〉, and thus that p,q,r are collinear. ⊓⊔

The converse of Desargues’s theorem also holds (see the problems). Using the

projective completion of an affine space, it is easy to state an improved affine version

of Desargues’s theorem. The reader will have to figure out how to deal with the case

where some of the points p,q,r go to infinity. It can also be shown that Pappus’s

theorem implies Desargues’s theorem. Many results of projective or affine geometry

can be obtained using the method of “sending points to infinity.”

We now discuss briefly the notion of cross-ratio, since it is a major concept of

projective geometry.

5.8 The Cross-Ratio

Recall that affine maps preserve the ratio of three collinear points. In general, projec-

tive maps do not preserve the ratio of three collinear points. However, bijective pro-

jective maps preserve the “ratio of ratios” of any four collinear points (three of which

are distinct). Such ratios are called cross-ratios (in French, “birapport”). There are

several ways of introducing cross-ratios, but since we already have Lemma 5.5 at

our disposal, we can circumvent some of the tedious calculations needed if other

approaches are chosen.

Given a field K, say K =R, recall that the projective line P1
K consists of all equiv-

alence classes [x,y] of pairs (x,y) ∈ K2 such that (x,y) 6= (0,0), under the equiva-

lence relation ∼ defined such that
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(x1,y1)∼ (x2,y2) iff x2 = λ x1 and y2 = λ y1,

for some λ ∈ K−{0}. Letting ∞ = [1,0], the projective line P1
K is in bijection with

K ∪{∞}. Furthermore, letting 0 = [0,1] and 1 = [1,1], the triple (∞,0,1) forms a

projective frame for P1
K . Using this projective frame and Lemma 5.5, we define the

cross-ratio of four collinear points as follows.

Definition 5.8. Given a projective line ∆ = P(D) over a field K, for any sequence

(a,b,c,d) of four points in ∆ , where a,b,c are distinct (i.e., (a,b,c) is a projective

frame), the cross-ratio [a,b,c,d] is defined as the element h(d)∈ P1
K , where h : ∆ →

P1
K is the unique projectivity such that h(a) = ∞, h(b) = 0, and h(c) = 1 (which

exists by Lemma 5.5, since (a,b,c) is a projective frame for ∆ and (∞,0,1) is a

projective frame for P1
K). For any projective space P(E) (of dimension ≥ 2) over a

field K and any sequence (a,b,c,d) of four collinear points in P(E), where a,b,c
are distinct, the cross-ratio [a,b,c,d] is defined using the projective line ∆ that the

points a,b,c,d define. For any affine space E and any sequence (a,b,c,d) of four

collinear points in E , where a,b,c are distinct, the cross-ratio [a,b,c,d] is defined

by considering E as embedded in Ẽ .

It should be noted that the definition of the cross-ratio [a,b,c,d] depends on the

order of the points. Thus, there could be 24= 4! different possible values depending

on the permutation of {a,b,c,d}. In fact, there are at most 6 distinct values. Also,

note that [a,b,c,d] =∞ iff d = a, [a,b,c,d] = 0 iff d = b, and [a,b,c,d] = 1 iff d = c.

Thus, [a,b,c,d] ∈ K−{0,1} iff d /∈ {a,b,c}.
The following lemma is almost obvious, but very important. It shows that projec-

tivities between projective lines are characterized by the preservation of the cross-

ratio of any four points (three of which are distinct).

Lemma 5.12. Given any two projective lines ∆ and ∆ ′, for any sequence (a,b,c,d)
of points in ∆ and any sequence (a′,b′,c′,d′) of points in ∆ ′, if a,b,c are distinct and

a′,b′,c′ are distinct, there is a unique projectivity f : ∆ → ∆ ′ such that f (a) = a′,
f (b) = b′, f (c) = c′, and f (d) = d′ iff [a,b,c,d] = [a′,b′,c′,d′].

Proof. First, assume that f : ∆ → ∆ ′ is a projectivity such that f (a) = a′, f (b) =
b′, f (c) = c′, and f (d) = d′. Let h : ∆ → P1

K be the unique projectivity such that

h(a) = ∞, h(b) = 0, and h(c) = 1, and let h′ : ∆ ′ → P1
K be the unique projectivity

such that h′(a′) = ∞, h′(b′) = 0, and h′(c′) = 1. By definition, [a,b,c,d] = h(d)
and [a′,b′,c′,d′] = h′(d′). However, h′ ◦ f : ∆ → P1

K is a projectivity such that (h′ ◦
f )(a) = ∞, (h′ ◦ f )(b) = 0, and (h′ ◦ f )(c) = 1, and by the uniqueness of h, we get

h = h′ ◦ f . But then, [a,b,c,d] = h(d) = h′( f (d)) = h′(d′) = [a′,b′,c′,d′].
Conversely, assume that [a,b,c,d] = [a′,b′,c′,d′]. Since (a,b,c) and (a′, b′, c′)

are projective frames, by Lemma 5.5, there is a unique projectivity g : ∆ → ∆ ′ such

that g(a) = a′, g(b) = b′, and g(c) = c′. Now, h′ ◦ g : ∆ → P1
K is a projectivity such

that (h′◦g)(a)=∞, (h′◦g)(b)= 0, and (h′◦g)(c)= 1, and thus, h= h′◦g. However,

h′(d′) = [a′,b′,c′,d′] = [a,b,c,d] = h(d) = h′(g(d)), and since h′ is injective, we get

d′ = g(d). ⊓⊔
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As a corollary of Lemma 5.12, given any three distinct points a,b,c on a projec-

tive line ∆ , for every λ ∈ P1
K there is a unique point d ∈ ∆ such that [a,b,c,d] = λ .

In order to compute explicitly the cross-ratio, we show the following easy lemma.

Lemma 5.13. Given any projective line ∆ = P(D), for any three distinct points

a,b,c in ∆ , if a = p(u), b = p(v), and c = p(u+ v), where (u,v) is a basis of D,

and for any [λ ,µ ]∼ ∈ P1
K and any point d ∈ ∆ , we have

d = p(λ u+ µv) iff [a,b,c,d] = [λ ,µ ]∼.

Proof. If (e1,e2) is the basis of K2 such that e1 = (1,0) and e2 = (0,1), it is obvious

that p(e1) = ∞, p(e2) = 0, and p(e1+e2) = 1. Let f : D→K2 be the bijective linear

map such that f (u) = e1 and f (v) = e2. Then f (u+v) = e1+e2, and thus f induces

the unique projectivity P( f ) : P(D)→ P1
K such that P( f )(a) = ∞, P( f )(b) = 0, and

P( f )(c) = 1. Then

P( f )(p(λ u+ µv)) = [ f (λ u+ µv)]∼ = [λ e1 + µe2]∼ = [λ ,µ ]∼,

that is,

d = p(λ u+ µv) iff [a,b,c,d] = [λ ,µ ]∼.

⊓⊔

We can now compute the cross-ratio explicitly for any given basis (u,v) of D.

Assume that a,b,c,d have homogeneous coordinates [λ1,µ1], [λ2,µ2], [λ3,µ3], and

[λ4,µ4] over the projective frame induced by (u,v). Letting wi = λiu+µiv, we have

a = p(w1), b = p(w2), c = p(w3), and d = p(w4). Since a and b are distinct, w1 and

w2 are linearly independent, and we can write w3 =αw1+β w2 and w4 = γw1+δw2,

which can also be written as

w4 =
γ

α
α w1 +

δ

β
β w2,

and by Lemma 5.13, [a,b,c,d] =
[
γ/α,δ/β

]
. However, since w1 and w2 are lin-

early independent, it is possible to solve for α,β ,γ,δ in terms of the homogeneous

coordinates, obtaining expressions involving determinants:

α =
det(w3,w2)

det(w1,w2)
, β =

det(w1,w3)

det(w1,w2)
,

γ =
det(w4,w2)

det(w1,w2)
, δ =

det(w1,w4)

det(w1,w2)
,

and thus, assuming that d 6= a, we get

[a,b,c,d] =

∣∣∣∣
λ3 λ1

µ3 µ1

∣∣∣∣
∣∣∣∣
λ3 λ2

µ3 µ2

∣∣∣∣

/
∣∣∣∣
λ4 λ1

µ4 µ1

∣∣∣∣
∣∣∣∣
λ4 λ2

µ4 µ2

∣∣∣∣
.
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When d = a, we have [a,b,c,d] = ∞. In particular, if ∆ is the projective completion

of an affine line D, then µi = 1, and we get

[a,b,c,d] =
λ3−λ1

λ3−λ2

/
λ4−λ1

λ4−λ2

=
−→ca
−→
cb

/−→
da
−→
db

.

When d = ∞, we get

[a,b,c,∞] =
−→ca
−→
cb

,

which is just the usual ratio (although we defined it as −ratio(a,c,b)).
We briefly mention some of the properties of the cross-ratio. For example, the

cross-ratio [a,b,c,d] is invariant if any two elements and the complementary two

elements are transposed, and letting 0−1 = ∞ and ∞−1 = 0, we have

[a,b,c,d] = [b,a,c,d]−1 = [a,b,d,c]−1

and

[a,b,c,d] = 1− [a,c,b,d].

Since the permutations of {a,b,c,d} are generated by the above transpositions, the

cross-ratio takes at most six values. Letting λ = [a,b,c,d], if λ ∈ {∞,0,1}, then any

permutation of {a,b,c,d} yields a cross-ratio in {∞,0,1}, and if λ /∈ {∞,0,1}, then

there are at most the six values

λ ,
1

λ
, 1−λ , 1− 1

λ
,

1

1−λ
,

λ

λ − 1
.

We also define when four points form a harmonic division. For this, we need to

assume that K is not of characteristic 2.

Definition 5.9. Given a projective line ∆ , we say that a sequence of four collinear

points (a,b,c,d) in ∆ (where a,b,c are distinct) forms a harmonic division if

[a,b,c,d] =−1. When [a,b,c,d] =−1, we also say that c and d are harmonic con-

jugates of a and b.

If a,b,c are distinct collinear points in some affine space, from

[a,b,c,∞] =
−→ca
−→
cb

,

we note that c is the midpoint of (a,b) iff [a,b,c,∞] = −1, that is, if (a,b,c,∞)
forms a harmonic division. Figure 5.7 shows a harmonic division (a,b,c,d) on the

real line, where the coordinates of (a,b,c,d) are (−2,2,1,4).

bc bcbc bca bc d

Fig. 5.7 Four points forming a harmonic division.
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There is a nice geometric interpretation of harmonic divisions in terms of quad-

rangles (or complete quadrilaterals). Consider the quadrangle (projective frame)

(a,b,c,d) in a projective plane, and let a′ be the intersection of 〈d,a〉 and 〈b,c〉,
b′ be the intersection of 〈d,b〉 and 〈a,c〉, and c′ be the intersection of 〈d,c〉 and

〈a,b〉. If we let g be the intersection of 〈a,b〉 and 〈a′,b′〉, then it is an interesting

exercise to show that (a,b,g,c′) is a harmonic division.

bc

bc

bc

bc

bc

bc

bc

bc
a b

c

d

b′

c′

a′

g

Fig. 5.8 A quadrangle, and harmonic divisions.

In fact, it can be shown that the following quadruples of lines form harmonic

divisions: (〈c,a〉,〈b′,a′〉, 〈d,b〉,〈b′,c′〉), (〈b,a〉,〈c′,a′〉, 〈d,c〉,〈c′,b′〉), and (〈b,c〉,
〈a′,c′〉,〈a,d〉,〈a′,b′〉); see Figure 5.8. For more on harmonic divisions, the inter-

ested reader should consult any text on projective geometry (for example, Berger

[3, 4], Samuel [23], Sidler [24], Tisseron [26], or Pedoe [21]).

Having the notion of cross-ratio at our disposal, we can interpret linear interpola-

tion in the homogenization Ê of an affine space E as determining a cross-ratio in the

projective completion Ẽ of E! This simple fact provides a geometric interpretation

of the rational version of the de Casteljau algorithm; see the additional material on

the web site (see http://www.cis.upenn.edu/˜jean/gbooks/geom2.

html).

Given any affine space E , let θ1 and θ2 be two linearly independent vectors in Ê ,

and let t ∈ K be any scalar. Consider

θ3 = θ1 +̂θ2

and

θ4 = (1− t) ·θ1 +̂ t ·θ2.
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Observe that the conditions for applying Lemma 5.13 are satisfied, and that the

cross-ratio of the points p(θ1), p(θ2), p(θ3), and p(θ4) in the projective space Ẽ is

given by

[p(θ1), p(θ2), p(θ3), p(θ4)] = [1− t, t]∼.

Assuming t 6= 0 (the case where θ4 6= θ2), this yields

[p(θ1), p(θ2), p(θ3), p(θ4)] =
1− t

t
.

Thus, determining θ4 using the affine interpolation

θ4 = (1− t) ·θ1 +̂ t ·θ2

in Ê is equivalent to finding the point p(θ4) in the projective space Ẽ such that the

cross-ratio of the four points (p(θ1), p(θ2), p(θ3), p(θ4)) is equal to (1− t)/t. In the

particular case where θ1 = 〈a,α〉 and θ2 = 〈b,β 〉, where a and b are distinct points

of E , if α +β 6= 0 and (1− t)α + tβ 6= 0, we know that

θ3 =

〈
α

α +β
a+

β

α +β
b, α +β

〉

and

θ4 =

〈
(1− t)α

(1− t)α + tβ
a+

tβ

(1− t)α + tβ
b, (1− t)α + tβ

〉
,

and letting

c =
α

α +β
a+

β

α +β
b

and

d =
(1− t)α

(1− t)α + tβ
a+

tβ

(1− t)α + tβ
b,

we also have

[a,b,c,d] =
1− t

t
.

Readers may have fun in verifying that when t = 2
3
, the points (a,d,b,c) form a

harmonic division!

When α + β = 0 or (1− t)α + tβ = 0, we have to consider points at infinity,

which is better handled in Ẽ. In any case, the computation of d can be viewed as

determining the unique point d such that [a,b,c,d] = (1− t)/t, using

c =
α

α +β
a+

β

α +β
b.
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5.9 Duality in Projective Geometry

We now consider duality in projective geometry. Given a vector space E of finite

dimension n+ 1, recall that its dual space E∗ is the vector space of all linear forms

f : E → K and that E∗ is isomorphic to E . We also have a canonical isomorphism

between E and its bidual E∗∗, which allows us to identify E and E∗∗.
Let H (E) denote the set of hyperplanes in P(E). In Section 5.3 we observed

that the map

p( f ) 7→ P(Ker f )

is a bijection between P(E∗) and H (E), in which the equivalence class p( f ) =
{λ f | λ 6= 0} of a nonnull linear form f ∈ E∗ is mapped to the hyperplane P(Ker f ).
Using the above bijection between P(E∗) and H (E), a projective subspace P(U)
of P(E∗) (where U is a subspace of E∗) can be identified with a subset of H (E),
namely the family

{P(H) | H = Ker f , f ∈U−{0}}
consisting of the projective hyperplanes in H (E) corresponding to nonnull linear

forms in U . Such subsets of H (E) are called linear systems (of hyperplanes).

The bijection between P(E∗) and H (E) allows us to view H (E) as a projective

space, and linear systems as projective subspaces of H (E). In the projective space

H (E), a point is a hyperplane in P(E)! The duality between subspaces of E and

subspaces of E∗ (reviewed below) and the fact that there is a bijection between

P(E∗) and H (E) yields a powerful duality between the set of projective subspaces

of P(E) and the set of linear systems in H (E) (or equivalently, the set of projective

subspaces of P(E∗)).
The idea of duality in projective geometry goes back to Gergonne and Poncelet,

in the early nineteenth century. However, Poncelet had a more restricted type of

duality in mind (polarity with respect to a conic or a quadric), whereas Gergonne

had the more general idea of the duality between points and lines (or points and

planes). This more general duality arises from a specific pairing between E and E∗

(a nonsingular bilinear form). Here we consider the pairing 〈−,−〉 : E∗×E → K,

defined such that

〈 f ,v〉 = f (v),

for all f ∈ E∗ and all v ∈ E . Recall that given a subset V of E (respectively a subset

U of E∗), the orthogonal V 0 of V is the subspace of E∗ defined such that

V 0 = { f ∈ E∗ | 〈 f ,v〉 = 0, for every v ∈V},

and that the orthogonal U0 of U is the subspace of E defined such that

U0 = {v ∈ E | 〈 f ,v〉= 0, for every f ∈U}.

Then, by a standard theorem (since E and E∗ have the same finite dimension n+1),

U =U00, V =V 00, and the maps
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V 7→V 0 and U 7→U0

are inverse bijections, where V is a subspace of E , and U is a subspace of E∗.
These maps set up a duality between subspaces of E and subspaces of E∗. Fur-

thermore, we know that U has dimension k iff U0 has dimension n+ 1− k, and

similarly for V and V 0.

Since a linear system P = P(U) of hyperplanes in H (E) corresponds to a sub-

space U of E∗, and since U0 is the intersection of all the hyperplanes defined by

nonnull linear forms in U , we can view a linear system P = P(U) in H (E) as the

family of hyperplanes containing P(U0).
In view of the identification of P(E∗) with the set H (E) of hyperplanes in P(E),

by passing to projective spaces, the above bijection between the set of subspaces

of E and the set of subspaces of E∗ yields a bijection between the set of projective

subspaces of P(E) and the set of linear systems in H (E) (or equivalently, the set of

projective subspaces of P(E∗)).
More specifically, assuming that E has dimension n+1, so that P(E) has dimen-

sion n, if Q = P(V ) is any projective subspace of P(E) (where V is any subspace of

E) and if P = P(U) is any linear system in H (E) (where U is any subspace of E∗),
we get a subspace Q0 of H (E) defined by

Q0 = {P(H) | Q⊆ P(H), P(H) a hyperplane in H (E)},

and a subspace P0 of P(E) defined by

P0 =
⋂
{P(H) | P(H) ∈ P, P(H) a hyperplane in H (E)}.

We have P= P00 and Q=Q00. Since Q0 is determined by P(V 0), if Q=P(V ) has

dimension k (i.e., if V has dimension k+1), then Q0 has dimension n− k−1 (since

V has dimension k+1 and dim(E) = n+1, then V 0 has dimension n+1−(k+1) =
n− k). Thus,

dim(Q)+ dim(Q0) = n− 1,

and similarly, dim(P)+ dim(P0) = n− 1.

A linear system P = P(U) of hyperplanes in H (E) is called a pencil of hy-

perplanes if it corresponds to a projective line in P(E∗), which means that U is a

subspace of dimension 2 of E∗. From dim(P)+dim(P0) = n−1, a pencil of hyper-

planes P is the family of hyperplanes in H (E) containing some projective subspace

P(V ) of dimension n− 2 (where P(V ) is a projective subspace of P(E), and P(E)
has dimension n). When n= 2, a pencil of hyperplanes in H (E), also called a pencil

of lines, is the family of lines passing through a given point. When n = 3, a pencil of

hyperplanes in H (E), also called a pencil of planes, is the family of planes passing

through a given line.

When n = 2, the above duality takes a rather simple form. In this case (of a

projective plane P(E)), the duality is a bijection between points and lines with the

following properties:
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• A point a maps to a line Da (the pencil of lines in H (E) containing a, also

denoted by a∗)
• A line D maps to a point pD (the line D in H (E)!)
• Two points a,b map to lines Da,Db, such that the intersection of Da and Db is

the point p〈a,b〉 corresponding to the line 〈a,b〉 via duality

• A line D containing two points a,b maps to the intersection pD of the lines Da

and Db.

• If a ∈ D, where a is a point and D is a line, then pD ∈ Da.

The reader will discover that the dual of Desargues’s theorem is its converse.

This is a nice way of getting the converse for free! We will not spoil the reader’s fun

and let him discover the dual of Pappus’s theorem.

To conclude our quick tour of projective geometry, we estabish a connection

between the cross-ratio of hyperplanes in a pencil of hyperplanes with the cross-

ratio of the intersection points of any line not contained in any hyperplane in this

pencil with four hyperplanes in this pencil.

5.10 Cross-Ratios of Hyperplanes

Given a pencil P = P(U) of hyperplanes in H (E), for any sequence (H1, H2, H3,

H4) of hyperplanes in this pencil, if H1,H2,H3 are distinct, we define the cross-ratio

[H1,H2,H3,H4] as the cross-ratio of the hyperplanes Hi considered as points on the

projective line P in P(E∗). In particular, in a projective plane P(E), given any four

concurrent lines D1, D2, D3, D4, where D1, D2, D3 are distinct, for any two distinct

lines ∆ and ∆ ′ not passing through the common intersection c of the lines Di, letting

di = ∆ ∩Di, and d′i = ∆ ′∩Di, note that the projection of center c from ∆ to ∆ ′ maps

each di to d′i .
Since such a projection is a projectivity, and since projectivities between lines

preserve cross-ratios, we have

[d1,d2,d3,d4] = [d′1,d
′
2,d
′
3,d
′
4],

which means that the cross-ratio of the di is independent of the line ∆ (see Figure

5.9).

In fact, this cross-ratio is equal to [D1,D2,D3,D4], as shown in the next lemma.

Lemma 5.14. Let P = P(U) be a pencil of hyperplanes in H (E), and let ∆ = P(D)
be any projective line such that ∆ /∈ H for all H ∈ P. The map h : P→ ∆ defined

such that h(H) = H ∩∆ for every hyperplane H ∈ P is a projectivity. Furthermore,

for any sequence (H1,H2,H3,H4) of hyperplanes in the pencil P, if H1,H2,H3 are

distinct and di = ∆ ∩Hi, then [d1,d2,d3,d4] = [H1,H2,H3,H4].

Proof. First, the map h : P→ ∆ is well–defined, since in a projective space, every

line ∆ = P(D) not contained in a hyperplane intersects this hyperplane in exactly

one point. Since P = P(U) is a pencil of hyperplanes in H (E), U has dimension 2,
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bc bc bc bc

c

d1 d2

d3 d4

d′1 d′2 d′3 d′4

D1 D2 D3 D4

∆

∆ ′

Fig. 5.9 A pencil of lines and its cross-ratio with intersecting lines.

and let ϕ and ψ be two nonnull linear forms in E∗ that constitute a basis of U , and let

F = ϕ−1(0) and G = ψ−1(0). Let a = P(F)∩∆ and b = P(G)∩∆ . There are some

vectors u,v ∈ D such that a = p(u) and b = p(v), and since ϕ and ψ are linearly

independent, we have a 6= b, and we can choose ϕ and ψ such that ϕ(v) = −1 and

ψ(u) = 1. Also, (u,v) is a basis of D. Then a point p(αu+β v) on ∆ belongs to the

hyperplane H = p(γϕ + δψ) of the pencil P iff

(γϕ + δψ)(αu+β v) = 0,

which, since ϕ(u) = 0, ψ(v) = 0, ϕ(v) =−1, and ψ(u) = 1, yields γβ = δα , which

is equivalent to [α,β ] = [γ,δ ] in P(K2). But then the map h : P→∆ is a projectivity.

Letting di = ∆ ∩Hi, since by Lemma 5.12 a projectivity of lines preserves the cross-

ratio, we get [d1,d2,d3,d4] = [H1,H2,H3,H4]. ⊓⊔

5.11 Complexification of a Real Projective Space

Notions such as orthogonality, angles, and distance between points are not projec-

tive concepts. In order to define such notions, one needs an inner product on the

underlying vector space. We say that such notions belong to Euclidean geometry.

At first glance, the fact that some important Euclidean concepts are not covered by

projective geometry seems a major drawback of projective geometry. Fortunately,

geometers of the nineteenth century (including Laguerre, Monge, Poncelet, Chasles,

von Staudt, Cayley, and Klein) found an astute way of recovering certain Euclidean

notions such as angles and orthogonality (also circles) by embedding real projec-

tive spaces into complex projective spaces. In the next two sections we will give a

brief account of this method. More details can be found in Berger [3, 4], Pedoe [21],

Samuel [23], Coxeter [5, 6], Sidler [24], Tisseron [26], Lehmann and Bkouche [20],

and, of course, Volume II of Veblen and Young [29]. Readers may want to consult



5.11 Complexification of a Real Projective Space 145

Chapter 6, which gives a review of Euclidean geometry, especially Section 8.8, on

angles.

The first step is to embed a real vector space E into a complex vector space EC.

A quick but somewhat bewildering way to do so is to define the complexification

of E as the tensor product C⊗E . A more tangible way is to define the following

structure.

Definition 5.10. Given a real vector space E , let EC be the structure E ×E under

the addition operation

(u1, u2)+ (v1, v2) = (u1 + v1, u2 + v2),

and let multiplication by a complex scalar z = x+ iy be defined such that

(x+ iy) · (u, v) = (xu− yv, yu+ xv).

It is easily shown that the structure EC is a complex vector space. It is also im-

mediate that

(0, v) = i(v, 0),

and thus, identifying E with the subspace of EC consisting of all vectors of the form

(u, 0), we can write

(u, v) = u+ iv.

Given a vector w = u+ iv, its conjugate w is the vector w = u− iv. Then conjugation

is a map from EC to itself that is an involution. If (e1, . . . ,en) is any basis of E , then

((e1,0), . . . ,(en,0)) is a basis of EC. We call such a basis a real basis.

Given a linear map f : E → E , the map f can be extended to a linear map

fC : EC→ EC defined such that

fC(u+ iv) = f (u)+ i f (v).

We define the complexification of P(E) as P(EC). If
(
E,
−→
E
)

is a real affine space,

we define the complexified projective completion of
(
E,
−→
E
)

as P(ÊC) and denote it

by ẼC. Then Ẽ is naturally embedded in ẼC, and it is called the set of real points of

ẼC.

If E has dimension n+ 1 and (e1, . . . ,en+1) is a basis of E , given any homoge-

neous polynomial P(x1, . . . ,xn+1) over C of total degree m, because P is homoge-

neous, it is immediately verified that

P(x1, . . . ,xn+1) = 0

iff

P(λ x1, . . . ,λ xn+1) = 0,

for any λ 6= 0. Thus, we can define the hypersurface V (P) of equation P(x1, . . . ,xn+1)
= 0 as the subset of ẼC consisting of all points of homogeneous coordinates

(x1, . . . ,xn+1) such that P(x1, . . . ,xn+1) = 0. We say that the hypersurface V (P)
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of equation P(x1, . . . ,xn+1) = 0 is real whenever P(x1, . . . ,xn+1) = 0 implies that

P(x1, . . . ,xn+1) = 0.

� Note that a real hypersurface may have points other than real points, or

no real points at all. For example,

x2 + y2− z2 = 0

contains real and complex points such as (1, i,0) and (1,−i,0), and

x2 + y2 + z2 = 0

contains only complex points. When m = 2 (where m is the total degree of P), a

hypersurface is called a quadric, and when m = 2 and n = 2, a conic. When m = 1,

a hypersurface is just a hyperplane.

Given any homogeneous polynomial P(x1, . . . ,xn+1) over R of total degree m,

since R⊆C, P viewed as a homogeneous polynomial over C defines a hypersurface

V (P)C in ẼC, and also a hypersurface V (P) in P(E). It is clear that V (P) is naturally

embedded in V (P)C, and V (P)C is called the complexification of V (P).
We now show how certain real quadrics without real points can be used to define

orthogonality and angles.

5.12 Similarity Structures on a Projective Space

We begin with a real Euclidean plane
(
E,
−→
E
)
. We will show that the angle of two

lines D1 and D2 can be expressed as a certain cross-ratio involving the lines D1, D2

and also two lines DI and DJ joining the intersection point D1∩D2 of D1 and D2 to

two complex points at infinity I and J called the circular points. However, there is

a slight problem, which is that we haven’t yet defined the angle of two lines! Recall

from Section 8.8 that we define the (oriented) angle û1u2 of two unit vectors u1,

u2 as the equivalence class of pairs of unit vectors under the equivalence relation

defined such that

〈u1,u2〉 ≡ 〈u3,u4〉
iff there is some rotation r such that r(u1) = u3 and r(u2) = u4. The set of (oriented)

angles of vectors is a group isomorphic to the group SO(2) of plane rotations. If the

Euclidean plane is oriented, the measure of the angle of two vectors is defined up

to 2kπ (k ∈ Z). The angle of two vectors has a measure that is either θ or 2π − θ ,

where θ ∈ [0,2π [ , depending on the orientation of the plane. The problem with

lines is that they are not oriented: A line is defined by a point a and a vector u, but

also by a and −u. Given any two lines D1 and D2, if r is a rotation of angle θ such

that r(D1) = D2, note that the rotation −r of angle θ +π also maps D1 onto D2.

Thus, in order to define the (oriented) angle D̂1D2 of two lines D1, D2, we define an

equivalence relation on pairs of lines as follows:
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〈D1,D2〉 ≡ 〈D3,D4〉

if there is some rotation r such that r(D1) = D2 and r(D3) = D4.

It can be verified that the set of (oriented) angles of lines is a group isomorphic

to the quotient group SO(2)/{id,−id}, also denoted by PSO(2). In order to define

the measure of the angle of two lines, the Euclidean plane E must be oriented. The

measure of the angle D̂1D2 of two lines is defined up to kπ (k ∈ Z). The angle of

two lines has a measure that is either θ or π−θ , where θ ∈ [0,π [ , depending on the

orientation of the plane. We now go back to the circular points.

Let (a0,a1,a2,a3) be any projective frame for ẼC such that (a0,a1) arises from

an orthonormal basis (u1,u2) of
−→
E and the line at infinity H corresponds to z = 0

(where (x,y,z) are the homogeneous coordinates of a point w.r.t. (a0,a1,a2,a3)).
Consider the points belonging to the intersection of the real conic Σ of equation

x2 + y2− z2 = 0

with the line at infinity z = 0. For such points, x2 + y2 = 0 and z = 0, and since

x2 + y2 = (y− ix)(y+ ix),

we get exactly two points I and J of homogeneous coordinates (1,−i,0) and (1, i,0).
The points I and J are called the circular points, or the absolute points, of ẼC. They

are complex points at infinity. Any line containing either I or J is called an isotropic

line.

What is remarkable about I and J is that they allow the definition of the angle

of two lines in terms of a certain cross-ratio. Indeed, consider two distinct real lines

D1 and D2 in E , and let DI and DJ be the isotropic lines joining D1 ∩D2 to I and

J. We will compute the cross-ratio [D1,D2,DI ,DJ]. For this, we simply have to

compute the cross-ratio of the four points obtained by intersecting D1,D2,DI ,DJ

with any line not passing through D1∩D2. By changing frame if necessary, so that

D1 ∩D2 = a0, we can assume that the equations of the lines D1,D2,DI ,DJ are of

the form

y = m1x,

y = m2x,

y = −ix,

y = ix,

leaving the cases m1 = ∞ and m2 = ∞ as a simple exercise. If we choose z = 0 as the

intersecting line, we need to compute the cross-ratio of the points (D1)∞ =(1,m1,0),
(D2)∞ = (1,m2,0), I = (1,−i,0), and J = (1, i,0), and we get

[D1,D2,DI ,DJ] = [(D1)∞,(D2)∞, I,J] =
(−i−m1)

(i−m1)

(i−m2)

(−i−m2)
,
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that is,

[D1,D2,DI ,DJ] =
m1m2 + 1+ i(m2−m1)

m1m2 + 1− i(m2−m1)
.

However, since m1 and m2 are the slopes of the lines D1 and D2, it is well known

that if θ is the (oriented) angle between D1 and D2, then

tanθ =
m2−m1

m1m2 + 1
.

Thus, we have

[D1,D2,DI ,DJ] =
m1m2 + 1+ i(m2−m1)

m1m2 + 1− i(m2−m1)
=

1+ i tanθ

1− i tanθ
,

that is,

[D1,D2,DI,DJ ] = cos2θ + i sin2θ = ei2θ .

One can check that the formula still holds when m1 = ∞ or m2 = ∞, and also when

D1 = D2. The formula

[D1,D2,DI ,DJ] = ei2θ

is known as Laguerre’s formula.

If U denotes the group {eiθ | −π ≤ θ ≤ π} of complex numbers of modulus 1,

recall that the map Λ : R→U defined such that

Λ(t) = eit

is a group homomorphism such that Λ−1(1) = 2kπ , where k ∈ Z. The restriction

Λ : ]−π , π [→ (U−{−1})

of Λ to ]−π , π [ is a bijection, and its inverse will be denoted by

logU : (U−{−1})→ ]−π , π [ .

For stating Lemma 5.15 more conveniently, we will extend logU to U by letting

logU(−1) = π , even though the resulting function is not continuous at −1!. Then

we can write

θ =
1

2
logU([D1,D2,DI ,DJ ]).

If the orientation of the plane E is reversed, θ becomes π−θ , and since

ei2(π−θ) = e2iπ−i2θ = e−i2θ ,

logU(e
i2(π−θ)) =− logU(e

i2θ ), and

θ =−1

2
logU([D1,D2,DI ,DJ ]).
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In all cases, we have

θ =
1

2
| logU([D1,D2,DI ,DJ ])|,

a formula due to Cayley. We summarize the above in the following lemma.

Lemma 5.15. Given any two lines D1,D2 in a real Euclidean plane
(
E,
−→
E
)
, letting

DI and DJ be the isotropic lines in ẼC joining the intersection point D1∩D2 of D1

and D2 to the circular points I and J, if θ is the angle of the two lines D1, D2, we

have

[D1,D2,DI,DJ ] = ei2θ ,

known as Laguerre’s formula, and independently of the orientation of the plane, we

have

θ =
1

2
| logU([D1,D2,DI ,DJ ])|,

known as Cayley’s formula.

In particular, note that θ = π/2 iff [D1,D2,DI,DJ ] = −1, that is, if (D1,D2,DI ,

DJ) forms a harmonic division. Thus, two lines D1 and D2 are orthogonal iff they

form a harmonic division with DI and DJ .

The above considerations show that it is not necessary to assume that
(
E,
−→
E
)

is

a real Euclidean plane to define the angle of two lines and orthogonality. Instead, it

is enough to assume that two complex conjugate points I,J on the line H at infinity

are given. We say that 〈I,J〉 provides a similarity structure on ẼC. Note in passing

that a circle can be defined as a conic in ẼC that contains the circular points I,J.

Indeed, the equation of a conic is of the form

ax2 + by2+ cxy+ dxz+ eyz+ f z2 = 0.

If this conic contains the circular points I = (1,−i,0) and J = (1, i,0), we get the

two equations

a− b− ic = 0,

a− b+ ic = 0,

from which we get 2ic= 0 and a= b, that is, c= 0 and a= b. The resulting equation

ax2 + ay2 + dxz+ eyz+ f z2 = 0

is indeed that of a circle.

Instead of using the function logU : (U −{−1})→ ]− π , π [ as logarithm, one

may use the complex logarithm function log : C∗→ B, where C∗ = C−{0} and

B = {x+ iy | x,y ∈ R,−π < y≤ π}.

Indeed, the restriction of the complex exponential function z 7→ ez to B is bijective,

and thus, log is well-defined on C∗ (note that log is a homeomorphism from C−{x |
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x ∈R, x≤ 0} onto {x+ iy | x,y ∈R,−π < y < π}, the interior of B). Then Cayley’s

formula reads as

θ =
1

2i
log([D1,D2,DI ,DJ ]),

with a± in front when the plane is nonoriented. Observe that this formula allows the

definition of the angle of two complex lines (possibly a complex number) and the

notion of orthogonality of complex lines. In this case, note that the isotropic lines

are orthogonal to themselves!

The definition of orthogonality of two lines D1,D2 in terms of (D1,D2, DI ,DJ)
forming a harmonic division can be used to give elegant proofs of various results.

Cayley’s formula can even be used in computer vision to explain modeling and cali-

brating cameras! (see Faugeras [10]). As an illustration, consider a triangle (a,b,c),
and recall that the line a′ passing through a and orthogonal to (b,c) is called the

altitude of a, and similarly for b and c. It is well known that the altitudes a′,b′,c′

intersect in a common point called the orthocenter of the triangle (a,b,c). This can

be shown in a number of ways using the circular points. Indeed, letting bc∞,ab∞,

ac∞,a
′
∞, b′∞, and c′∞ denote the points at infinity of the lines 〈b,c〉,〈a,b〉, 〈a,c〉, a′,b′,

and c′, we have

[bc∞,a
′
∞, I,J] =−1, [ab∞,c

′
∞, I,J] =−1, [ac∞,b

′
∞, I,J] =−1,

and it is easy to show that there is an involution σ of the line at infinity such that

σ(I) = J,

σ(J) = I,

σ(bc∞) = a′∞,

σ(ab∞) = c′∞,

σ(ac∞) = b′∞.

Then, using the result stated in Problem 5.28, the lines a′,b′,c′ are concurrent. For

more details and other results, notably on the conics, see Sidler [24], Berger [4], and

Samuel [23].

The generalization of what we just did to real Euclidean spaces
(
E,
−→
E
)

of di-

mension n is simple. Let (a0, . . . ,an+1) be any projective frame for ẼC such that

(a0, . . . ,an−1) arises from an orthonormal basis (u1, . . . ,un) of
−→
E and the hyper-

plane at infinity H corresponds to xn+1 = 0 (where (x1, . . . ,xn+1) are the homo-

geneous coordinates of a point with respect to (a0, . . . ,an+1)). Consider the points

belonging to the intersection of the real quadric Σ of equation

x2
1 + · · ·+ x2

n− x2
n+1 = 0

with the hyperplane at infinity xn+1 = 0. For such points,

x2
1 + · · ·+ x2

n = 0 and xn+1 = 0.
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Such points belong to a quadric called the absolute quadric of ẼC, and denoted

by Ω . Any line containing any point on the absolute quadric is called an isotropic

line. Then, given any two coplanar lines D1 and D2 in E , these lines intersect the

hyperplane at infinity H in two points (D1)∞ and (D2)∞, and the line ∆ joining

(D1)∞ and (D2)∞ intersects the absolute quadric Ω in two conjugate points I∆ and

J∆ (also called circular points). It can be shown that the angle θ between D1 and D2

is defined by Laguerre’s formula:

[(D1)∞,(D2)∞, I∆ ,J∆ ] = [D1,D2,DI∆ ,DJ∆
] = ei2θ ,

where DI∆ and DJ∆
are the lines joining the intersection D1 ∩D2 of D1 and D2 to

the circular points I∆ and J∆ .

As in the case of a plane, the above considerations show that it is not necessary

to assume that
(
E,
−→
E
)

is a real Euclidean space to define the angle of two lines and

orthogonality. Instead, it is enough to assume that a nondegenerate real quadric Ω
in the hyperplane at infinity H and without real points is given. In particular, when

n = 3, the absolute quadric Ω is a nondegenerate real conic consisting of complex

points at infinity. We say that Ω provides a similarity structure on ẼC.

It is also possible to show that the real projectivities of ẼC that leave both the

hyperplane H at infinity and the absolute quadric Ω (globally) invariant form a

group which is none other than the group of similarities. A similarity is a map that

is the composition of an isometry (a member of O(n)), a central dilatation, and a

translation. For more details on the use of absolute quadrics to obtain some very

sophisticated results, the reader should consult Berger [3, 4], Pedoe [21], Samuel

[23], Coxeter [5], Sidler [24], Tisseron [26], Lehmann and Bkouche [20], and, of

course, Volume II of Veblen and Young [29], which also explains how some non-

Euclidean geometries are obtained by chosing the absolute quadric in an appropriate

fashion (after Cayley and Klein).

5.13 Some Applications of Projective Geometry

Projective geometry is definitely a jewel of pure mathematics and one of the major

mathematical achievements of the nineteenth century. It turns out to be a prerequi-

site for algebraic geometry, but to our surprise (and pleasure), it also turns out to

have applications in engineering. In this short section we summarize some of these

applications.

We first discuss applications of projective geometry to camera calibration, a cru-

cial problem in computer vision. Our brief presentation follows quite closely Trucco

and Verri [27] (Chapter 2 and Chapter 6). One should also consult Faugeras [10], or

Jain, Katsuri, and Schunck [18].

The pinhole (or perspective) model of a camera is a typical example from com-

puter vision that can be explained very simply in terms of projective transformations.

A pinhole camera consists of a point O called the center or focus of projection, and
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a plane π (not containing O) called the image plane. The distance f from the image

plane π to the center O is called the focal length. The line through O and perpen-

dicular to π is called the optical axis, and the point o, intersection of the optical

axis with the image plane is called the principal point or image center. The way the

camera works is that a point P in 3D space is projected onto the image plane (the

film) to a point p via the central projection of center O.

It is assumed that an orthonormal frame Fc is attached to the camera, with its

origin at O and its z-axis parallel to the optical axis. Such a frame is called the

camera reference frame. With respect to the camera reference frame, it is very easy

to write the equations relating the coordinates (x,y) (omitting z = f ) of the image p

(in the image plane π) of a point P of coordinates (X ,Y,Z):

x = f
X

Z
, y = f

Y

Z
.

Typically, points in 3D space are defined by their coordinates not with respect to

the camera reference frame, but with respect to another frame Fw, called the world

reference frame. However, for most computer vision algorithms, it is necessary to

know the coordinates of a point in 3D space with respect to the camera reference

frame. Thus, it is necessary to know the position and orientation of the camera with

respect to the frame Fw. The position and orientation of the camera are given by

some affine transformation (R,T) mapping the frame Fw to the frame Fc, where

R is a rotation matrix and T is a translation vector. Furthermore, the coordinates

of an image point are typically known in terms of pixel coordinates, and it is also

necessary to transform the coordinates of an image point with respect to the camera

reference frame to pixel coordinates. In summary, it is necessary to know the trans-

formation that maps a point P in world coordinates (w.r.t. Fw) to pixel coordinates.

This transformation of world coordinates to pixel coordinates turns out to be a

projective transformation that depends on the extrinsic and the intrinsic parameters

of the camera. The extrinsic parameters of a camera are the location and orientation

of the camera with respect to the world reference frame Fw. It is given by an affine

map (in fact, a rigid motion, see Chapter 8, Section 8.4). The intrinsic parameters of

a camera are the parameters needed to link the pixel coordinates of an image point to

the corresponding coordinates in the camera reference frame. If Pw = (Xw,Yw,Zw)
and Pc = (Xc,Yc,Zc) are the coordinates of the 3D point P with respect to the frames

Fw and Fc, respectively, we can write

Pc = R(Pw−T).

Neglecting distorsions possibly introduced by the optics, the correspondence be-

tween the coordinates (x,y) of the image point with respect to Fc and the pixel

coordinates (xim,yim) is given by

x = −(xim− ox)sx,

y = −(yim− oy)sy,



5.13 Some Applications of Projective Geometry 153

where (ox,oy) are the pixel coordinates the principal point o and sx,sy are scaling

parameters.

After some simple calculations, the upshot of all this is that the transformation

between the homogeneous coordinates (Xw,Yw,Zw,1) of a 3D point and its homo-

geneous pixel coordinates (x1,x2,x3) is given by




x1

x2

x3


= M




Xw

Yw

Zw

1




where the matrix M, known as the projection matrix, is a 3×4 matrix depending on

R, T, ox,oy, f (the focal length), and sx,sy (for the derivation of this equation, see

Trucco and Verri [27], Chapter 2).

The problem of estimating the extrinsic and the instrinsic parameters of a camera

is known as the camera calibration problem. It is an important problem in computer

vision. Now, using the equations

x = −(xim− ox)sx,

y = −(yim− oy)sy,

we get

xim = − f

sx

Xc

Zc
+ ox,

yim = − f

sy

Yc

Zc
+ oy,

relating the coordinates w.r.t. the camera reference frame to the pixel coordinates.

This suggests using the parameters fx = f/sx and fy = f/sy instead of the parame-

ters f ,sx,sy. In fact, all we need are the parameters fx = f/sx and α = sy/sx, called

the aspect ratio. Without loss of generality, it can also be assumed that (ox,oy) are

known. Then we have a total of eight parameters.

One way of solving the calibration problem is to try estimating fx,α , the rotation

matrix R, and the translation vector T from N image points (xi,yi), projections of

N suitably chosen world points (Xi,Yi,Zi), using the system of equations obtained

from the projection matrix. It turns out that if N ≥ 7 and the points are not coplanar,

the rank of the system is 7, and the system has a nontrivial solution (up to a scalar)

that can be found using SVD methods (see Chapter 13, Trucco and Verri [27], or

Jain, Katsuri, and Schunck [18]).

Another method consists in estimating the whole projection matrix M, which

depends on 11 parameters, and then extracting extrinsic and intrinsic parameters.

Again, SVD methods are used (see Trucco and Verri [27], and Faugeras [10]).

Cayley’s formula can also be used to solve the calibration cameras, as explained

in Faugeras [10]. Other problems in computer vision can be reduced to problems in

projective geometry (see Faugeras [10]).
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In computer graphics, it is also necessary to convert the 3D world coordinates of

a point to a two-dimensional representation on a view plane. This is achieved by a

so-called viewing system using a projective transformation. For details on viewing

systems see Watt [31] or Foley, van Dam, Feiner, and Hughes [13].

Projective spaces are also the right framework to deal with rational curves and

rational surfaces. Indeed, in the projective framework it is easy to deal with vanish-

ing denominators and with “infinite” values of the parameter(s). Such an approach

is presented in Chapter 22 for rational curves, and in Chapter 23 and 24 for rational

surfaces. In fact, working in a projective framework yields a very simple proof of

the method for drawing a rational curve as two Bézier segments (and similarly for

surfaces).

It is much less obvious that projective geometry has applications to efficient com-

munication, error-correcting codes, and cryptography, as very nicely explained by

Beutelspacher and Rosenbaum [2]. We sketch these applications very briefly, refer-

ring our readers to [2] for details. We begin with efficient communication. Suppose

that eight students would like to exchange information to do their homework eco-

nomically. The idea is that each student solves part of the exercises and copies the

rest from the others (which we do not recommend, of course!). It is assumed that

each student solves his part of the homework at home, and that the solutions are

communicated by phone. The problem is to minimize the number of phone calls.

An obvious but expensive method is for each student to call each of the other seven

students. A much better method is to imagine that the eight students are the vertices

of a cube, say with coordinates from {0,1}3. There are three types of edges:

1. Those parallel to the z-axis, called type 1;

2. Those parallel to the y-axis, called type 2;

3. Those parallel to the x-axis, called type 3.

The communication can proceed in three rounds as follows: All nodes connected

by type 1 edges exchange solutions; all nodes connected by type 2 edges exchange

solutions; and finally all nodes connected by type 3 edges exchange solutions.

It is easy to see that everybody has all the answers at the end of the three rounds.

Furthermore, each student is involved only in three calls (making a call or receiving

it), and the total number of calls is twelve.

In the general case, N nodes would like to exchange information in such a way

that eventually every node has all the information. A good way to to this is to con-

struct certain finite projective spaces, as explained in Beutelspacher and Rosenbaum

[2]. We pick q to be an integer (for instance, a prime number) such that there is a

finite projective space of any dimension over the finite field of order q. Then, we

pick d such that

qd−1 < N ≤ qd .

Since q is prime, there is a projective space P(Kd+1) of dimension d over the finite

field K of order q, and letting H be the hyperplane at infinity in P(Kd+1), we pick

a frame P1, . . . ,Pd in H . It turns out that the affine space A = P(Kd+1)−H has

qd points. Then the communication nodes can be identified with points in the affine

space A . Assuming for simplicity that N = qd , the algorithm proceeds in d rounds.
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During round i, each node Q ∈A sends the information it has received to all nodes

in A on the line QPi.

It can be shown that at the end of the d rounds, each node has the total informa-

tion, and that the total number of transactions is at most

(q− 1) logq(N)N.

Other applications of projective spaces to communication systems with switches

are described in Chapter 2, Section 8, of Beutelspacher and Rosenbaum [2]. Appli-

cations to error-correcting codes are described in Chapter 5 of the same book. In-

troducing even the most elementary notions of coding theory would take too much

space. Let us simply say that the existence of certain types of good codes called lin-

ear [n,n−r]-codes with minimum distance d is equivalent to the existence of certain

sets of points called (n,d− 1)-sets in the finite projective space P({0,1}r). For the

sake of completeness, a set of n points in a projective space is an (n,s)-set if s is

the largest integer such that every subset of s points is projectively independent. For

example, an (n,3)-set is a set of n points no three of which are collinear, but at least

four of them are coplanar.

Other applications of projective geometry to cryptography are given in Chapter

6 of Beutelspacher and Rosenbaum [2].

5.14 Problems

5.1. (a) Prove that for any field K and any n ≥ 0, there is a bijection between

P(Kn+1) and Kn∪P(Kn) (which allows us to identify them).

(b) For K = R or C, prove that RPn and CPn are connected and compact.

Hint. Recall that RPn = p(Rn+1) and CPn = p(Cn+1). If

Sn = {(x1, . . . ,xn+1) ∈ Kn+1 | x2
1 + · · ·+ x2

n+1 = 1},

prove that p(Sn) = p(Kn+1) = P(Kn+1), and recall that Sn is compact for all n ≥ 0

and connected for n≥ 1. For n = 0, P(K) consists of a single point.

5.2. Recall that R2 and C can be identified using the bijection (x,y) 7→ x+ iy. Also

recall that the subset U(1) ⊆ C consisting of all complex numbers of the form

cosθ + i sinθ is homeomorphic to the circle S1 = {(x,y) ∈ R2 | x2 + y2 = 1}. If

c : U(1)→U(1) is the map defined such that

c(z) = z2,

prove that c(z1) = c(z2) iff either z2 = z1 or z2 = −z1, and thus that c induces a

bijective map ĉ : RP1→ S1. Prove that ĉ is a homeomorphism (remember that RP1

is compact).
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5.3. (i) In R3, the sphere S2 is the set of points of coordinates (x,y,z) such that

x2 + y2 + z2 = 1. The point N = (0,0,1) is called the north pole, and the point

S = (0,0,−1) is called the south pole. The stereographic projection map σN : (S2−
{N})→ R2 is defined as follows: For every point M 6= N on S2, the point σN(M) is

the intersection of the line through N and M and the plane of equation z = 0. Show

that if M has coordinates (x,y,z) (with x2 + y2 + z2 = 1), then

σN(M) =

(
x

1− z
,

y

1− z

)
.

Prove that σN is bijective and that its inverse is given by the map τN : R2→ (S2−
{N}), with

(x,y) 7→
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

x2 + y2− 1

x2 + y2 + 1

)
.

Similarly, σS : (S2−{S})→ R2 is defined as follows: For every point M 6= S on

S2, the point σS(M) is the intersection of the line through S and M and the plane of

equation z = 0. Show that

σS(M) =

(
x

1+ z
,

y

1+ z

)
.

Prove that σS is bijective and that its inverse is given by the map τS : R2 → (S2−
{S}), with

(x,y) 7→
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

1− x2− y2

x2 + y2 + 1

)
.

Using the complex number u = x + iy to represent the point (x,y), the maps

τN : R2→ (S2−{N}) and σN : (S2−{N})→R2 can be viewed as maps from C to

(S2−{N}) and from (S2−{N}) to C, defined such that

τN(u) =

(
2u

|u|2 + 1
,
|u|2− 1

|u|2 + 1

)

and

σN(u,z) =
u

1− z
,

and similarly for τS and σS. Prove that if we pick two suitable orientations for the

xy-plane, we have

σN(M)σS(M) = 1,

for every M ∈ S2−{N,S}.
(ii) Identifying C2 and R4, for z = x+ iy and z′ = x′+ iy′, we define

‖(z,z′)‖=
√

x2 + y2 + x′2 + y′2.
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The sphere S3 is the subset of C2 (or R4) consisting of those points (z,z′) such that

‖(z,z′)‖2 = 1.

Prove that P(C2) = p(S3), where p : (C2−{(0,0)})→ P(C2) is the projection

map. If we let u = z/z′ (where z,z′ ∈ C) in the map

u 7→
(

2u

|u|2 + 1
,
|u|2− 1

|u|2 + 1

)

and require that ‖(z,z′)‖2 = 1, show that we get the map HF : S3→ S2 defined such

that

HF((z,z′)) = (2zz′, |z|2−|z′|2).

Prove that HF : S3→ S2 induces a bijection ĤF : P(C2)→ S2, and thus that CP1 =
P(C2) is homeomorphic to S2.

(iii) Prove that the inverse image HF−1(s) of every point s ∈ S2 is a circle. Thus

S3 can be viewed as a union of disjoint circles. The map HF is called the Hopf

fibration.

5.4. (i) Prove that the Veronese map V2 : R3→ R6 defined such that

V2(x,y,z) = (x2, y2, z2, yz, zx, xy)

induces a homeomorphism of RP2 onto V2(S
2). Show that V2(S

2) is a subset of the

hyperplane x1 + x2 + x3 = 1 in R6, and thus that RP2 is homeomorphic to a subset

of R5. Prove that this homeomorphism is smooth.

(ii) Prove that the Veronese map V3 : R4→ R10 defined such that

V3(x,y,z, t) = (x2, y2, z2, t2, xy, yz, xz, xt, yt, zt)

induces a homeomorphism of RP3 onto V3(S
3). Show that V3(S

3) is a subset of the

hyperplane x1 + x2 + x3 + x4 = 1 in R10, and thus that RP3 is homeomorphic to a

subset of R9. Prove that this homeomorphism is smooth.

5.5. (i) Given a projective plane P(E) (over any field K) and any projective frame

(a,b,c,d) in P(E), recall that a line is defined by an equation of the form ux+
vy+wz = 0, where u,v,w are not all zero, and that two lines ux+ vy+wz = 0 and

u′x+ v′y+w′z = 0 are identical iff u′ = λ u, v′ = λ v, and w′ = λ w, for some λ 6= 0.

Show that any two distinct lines ux+ vy+wz = 0 and u′x+ v′y+w′z = 0 intersect

in a unique point of homogeneous coordinates

(vw′−wv′, wu′− uw′, uv′− vu′).

(ii) Given a projective frame (a,b,c,d), let a′ be the intersection of 〈d,a〉 and

〈b,c〉, b′ be the intersection of 〈d,b〉 and 〈a,c〉, and c′ be the intersection of 〈d,c〉
and 〈a,b〉. Show that the points a′,b′,c′ have homogeneous coordinates (0,1,1),
(1,0,1), and (1,1,0). Let e be the intersection of 〈b,c〉 and 〈b′,c′〉, f be the inter-

section of 〈a,c〉 and 〈a′,c′〉, and g be the intersection of 〈a,b〉 and 〈a′,b′〉. Show that
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e, f ,g have homogeneous coordinates (0,−1,1), (1,0,−1), and (−1,1,0), and thus

that the points e, f ,g are on the line of equation x+ y+ z = 0.

5.6. Prove that if (ai)1≤i≤n+2 is a projective frame, then each subfamily (a j) j 6=i is

projectively independent.

5.7. (i) Given a projective space P(E) of dimension 3 (over any field K) and any

projective frame (A,B,C,D,E) in P(E), recall that a plane is defined by an equation

of the form ux0 + vx1 +wx2 + tx3 = 0 where u,v,w, t are not all zero.

Letting (a0,a1,a2,a3), (b0,b1,b2,b3), (c0,c1,c2,c3), and (d0,d1,d2,d3) be the

homogeneous coordinates of some points a,b,c,d with respect to the projective

frame (A,B,C,D,E), prove that a,b,c,d are coplanar iff

∣∣∣∣∣∣∣∣

a0 b0 c0 d0

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

∣∣∣∣∣∣∣∣
= 0.

(ii) Two tetrahedra (A,B,C,D) and (A′,B′,C′,D′) are called Möbius tetrahedra if

A,B, C,D belong respectively to the planes 〈B′,C′,D′〉, 〈C′,D′,A′〉, 〈D′,A′,B′〉, and

〈A′,B′, C′〉, and also if A′,B′,C′,D′ belong respectively to the planes 〈B,C,D〉,
〈C,D,A〉, 〈D,A,B〉, and 〈A,B,C〉.

Prove that if A,B,C,D belong respectively to the planes 〈B′,C′,D′〉, 〈C′,D′,A′〉,
〈D′,A′, B′〉, and 〈A′,B′, C′〉, and if A′,B′,C′ belong respectively to the planes

〈B,C,D〉, 〈C,D,A〉, and 〈D,A,B〉, then D′ belongs to 〈A,B,C〉. Prove that Möbius

tetrahedra exist (Möbius, 1828).

Hint. Let (A,B,C,D,E) be a projective frame based on A,B,C,D. Find the con-

ditions expressing that A′,B′,C′,D′ belong respectively to the planes 〈B,C,D〉,
〈C,D,A〉, 〈D,A,B〉, and 〈A,B,C〉, that A′,B′,C′,D′ are not coplanar, and that A,B,C,

D belong respectively to the planes 〈B′,C′,D′〉, 〈C′,D′,A′〉, 〈D′,A′,B′〉, and 〈A′,B′,
C′〉. Show that these conditions are compatible.

5.8. Show that if we relax the hypotheses of Lemma 5.5 to (ai)1≤i≤n+2 being a

projective frame in P(E) and (bi)1≤i≤n+2 being any n+2 points in P(F), then there

may be no projective map h : P(E)→ P(F) such that h(ai) = bi for 1 ≤ i ≤ n+ 2,

or h may not be necessarily unique or bijective.

5.9. For every i, 1≤ i≤ n+ 1, let Ui be the subset of RPn = P(Rn+1) consisting of

all points of homogeneous coordinates (x1, . . . ,xi, . . ., xn+1) such that xi 6= 0. Show

that Ui is an open subset of RPn. Show that Ui∩U j 6= /0 for all i, j. Show that there

is a bijection between Ui and An defined such that

(x1, . . . ,xi−1,xi,xi+1, . . . ,xn+1) 7→
(

x1

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xn+1

xi

)
,

whose inverse is the map

(x1, . . . ,xn) 7→ (x1, . . . ,xi−1,1,xi, . . . ,xn).
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Does the above result extend to Pn
K where K is any field?

5.10. (i) Given an affine space
(
E,
−→
E
)

(over any field K), prove that there is a bi-

jection between affine subspaces of E and projective subspaces of Ẽ not contained

in P
(−→

E
)
.

(ii) Prove that two affine subspaces of E are parallel iff the corresponding pro-

jective subspaces of Ẽ have the same intersection with the hyperplane at infinity

P
(−→

E
)
.

(iii) Prove that there is a bijection between affine maps from E to F and projective

maps from Ẽ to F̃ mapping the hyperplane at infinity P
(−→

E
)

into the hyperplane at

infinity P
(−→

F
)
.

5.11. (i) Consider the map ϕ : RP1×RP1→RP3 defined such that

ϕ((x0,x1), (y0,y1)) = (x0y0, x0y1, x1y0, x1y1),

where (x0,x1) and (y0,y1) are homogeneous coordinates on RP1. Prove that ϕ is

well-defined and that ϕ(RP1×RP1) is equal the algebraic subset of RP3 defined

by the homogeneous equation

w0,0 w1,1 = w0,1 w1,0,

where (w0,0,w0,1,w1,0,w1,1) are homogeneous coordinates on RP3.

Hint. Show that if w0,0 w1,1 = w0,1 w1,0 and for instance w0,0 6= 0, then

ϕ((w0,0, w1,0), (w0,0, w0,1)) = w0,0(w0,0, w0,1, w1,0, w1,1),

and since w0,0(w0,0, w0,1, w1,0, w1,1) and (w0,0, w0,1, w1,0, w1,1) are equivalent ho-

mogeneous coordinates, the result follows.

Prove that ϕ is injective.

For x=(x0,x1)∈RP1, show that ϕ({x}×RP1) is a line L1
x in RP3, that L1

x∩L1
x′ =

/0 whenever L1
x 6= L1

x′ , and that the union of all these lines is equal to ϕ(RP1×RP1).

Similarly, for y = (y0,y1) ∈ RP1, show that ϕ(RP1×{y}) is a line L2
y in RP3, that

L2
y ∩ L2

y′ = /0 whenever L2
y 6= L2

y′ , and that the union of all these lines is equal to

ϕ(RP1×RP1). Also prove that L1
x ∩L2

y consists of a single point.

The embedding ϕ is called the Segre embedding. It shows that RP1×RP1 can be

embedded as a quadric surface in RP3. Do the above results extend to P1
K×P1

K and

P3
K where K is any field? Draw as well as possible the affine part of ϕ(RP1×RP1)

in R3 corresponding to w1,1 = 1.

(ii) Consider the map ϕ : RPm×RPn → RPN where N = (m+ 1)(n+ 1)− 1,

defined such that

ϕ((x0, . . . ,xm), (y0, . . . ,yn)) = (x0y0, . . . ,x0yn, x1y0, . . . ,x1yn, . . . ,xmy0, . . . ,xmyn),
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where (x0, . . . ,xm) and (y0, . . . ,yn) are homogeneous coordinates on RPm and RPn.

Prove that ϕ is well-defined and that ϕ(RPm×RPn) is equal the algebraic subset of

RPN defined by the set of homogeneous equations

∣∣∣∣
wi, j wi,l

wk, j wk,l

∣∣∣∣= 0,

where 0 ≤ i,k ≤ m and 0 ≤ j, l ≤ n, and where (w0,0, . . . ,w0,m, . . . ,wm,0, . . . ,wm,n)
are homogeneous coordinates on RPN .

Hint. Show that if ∣∣∣∣
wi, j wi,l

wk, j wk,l

∣∣∣∣= 0,

where 0≤ i,k ≤ m and 0≤ j, l ≤ n and for instance w0,0 6= 0, then

ϕ(x,y) = w0,0(w0,0, . . . ,w0,m, . . . ,wm,0, . . . ,wm,n),

where x = (w0,0, . . . ,wm,0) and y = (w0,0, . . . ,w0,n).
Prove that ϕ is injective. The embedding ϕ is also called the Segre embedding.

It shows that RPm×RPn can be embedded as an algebraic variety in RPN . Do the

above results extend to Pm
K×Pn

K and PN
K where K is any field?

5.12. (i) In the projective space RP3, a line D is determined by two distinct hyper-

planes of equations

αx+β y+ γz+ δ t = 0,

α ′x+β ′y+ γ ′z+ δ ′t = 0,

where (α,β ,γ,δ ) and (α ′,β ′,γ ′,δ ′) are linearly independent.

Prove that the equations of the two hyperplanes defining D can always be written

either as

x1 = ax3 + a′x4,

x2 = bx3 + b′x4,

where {x1,x2,x3,x4} = {x,y,z, t}, {x1,x2} ⊆ {x,y,z}, and either a 6= 0 or b 6= 0, or

as

t = 0,

lx+my+ nz = 0,

where l 6= 0, m 6= 0, or n 6= 0.

In the first case, prove that D is also determined by the intersection of three

hyperplanes whose equations are of the form

cy− bz = lt,
az− cx = mt,
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bx− ay = nt,

where the equation

al+ bm+ cn= 0

holds, and where a 6= 0, b 6= 0, or c 6= 0. We can view (a,b,c, l,m,n) as homogeneous

coordinates in RP5 associated with D. In the case where the equations of D are

t = 0,

lx+my+ nz = 0,

we let (0,0,0, l,m,n) be the homogeneous coordinates associated with D. Of course,

al+bm+cn= 0 holds. The homogeneous coordinates (a,b,c, l,m,n) such that al+
bm+ cn = 0 are called the Plücker coordinates of D.

(ii) Conversely, given some homogeneous coordinates (a,b,c, l,m,n) in RP5 sat-

isfying the equation

al+ bm+ cn= 0,

show that there is a unique line D with Plücker coordinates (a,b,c, l,m,n).
Hint. If a = b = c = 0, the corresponding line has equations

t = 0,

lx+my+ nz = 0.

Otherwise, the equations

cy− bz = lt,

az− cx = mt,

bx− ay = nt,

are compatible, and they determine a unique line D with Plücker coordinates

(a,b,c, l,m,n).
Conclude that the lines in RP3 can be viewed as the algebraic subset of RP5

defined by the homogeneous equation

x1x3 + x2x5 + x3x6 = 0.

This quadric surface in RP5 is an example of a Grassmannian variety. It is often

called the Klein quadric. Do the above results extend to lines in P3
K and P5

K where

K is any field?

5.13. Given any two distinct point a,b ∈ RP3 of homogeneous coordinates (a1,a2,

a3,a4) and (b1,b2,b3,b4), let p12, p13, p14, p34, p42, p23 be the numbers defined as

follows:
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p12 =

∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ , p13 =

∣∣∣∣
a1 a3

b1 b3

∣∣∣∣ , p14 =

∣∣∣∣
a1 a4

b1 b4

∣∣∣∣ ,

p34 =

∣∣∣∣
a3 a4

b3 b4

∣∣∣∣ , p42 =

∣∣∣∣
a4 a2

b4 b2

∣∣∣∣ , p23 =

∣∣∣∣
a2 a3

b2 b3

∣∣∣∣ .

(i) Prove that

p12 p34 + p13p42 + p14p23 = 0.

Hint. Expand the determinant

∣∣∣∣∣∣∣∣

a1 b1 a1 b1

a2 b2 a2 b2

a3 b3 a3 b3

a4 b4 a4 b4.

∣∣∣∣∣∣∣∣

Conversely, given any six numbers satisfying the equation

p12 p34 + p13p42 + p14p23 = 0,

prove that two points a = (a1,a2,a3,0) and b = (b1,0,b3,b4) can be determined

such that the pi j are associated with a and b.

Hint. Show that the equations

−a2b1 = p12,

a3b4 = p34,

a1b3− a3b1 = p13,

−a2b4 = p42,

a1b4 = p14,

a2b3 = p23,

are solvable iff

p12 p34 + p13p42 + p14p23 = 0.

The tuple (p12, p13, p14, p34, p42, p23) can be viewed as homogeneous coordi-

nates in RP5 of the line 〈a,b〉. They are the Plücker coordinates of 〈a,b〉.
(ii) Prove that two lines of Plücker coordinates (p12, p13, p14, p34, p42, p23) and

(p′12, p′13, p′14, p′34, p′42, p′23) intersect iff

p12 p′34 + p13 p′42 + p14p′23 + p34p′12 + p42p′13 + p23 p′14 = 0.

Thus, the set of lines that meet a given line in RP3 correspond to a set of points in

RP5 belonging to a hyperplane, as well as to the Klein quadric. Do the above results

extend to lines in P3
K and P5

K where K is any field?

(iii) Three lines L1,L2,L3 in RP3 are mutually skew lines iff no pairs of any two

of these lines are coplanar. Given any three mutually skew lines L1,L2,L3 and any

four lines M1,M2,M3,M4 in RP3 such that each line Mi meets every line L j , show
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that if any line L meets three of the four lines M1,M2,M3,M4, then it also meets the

fourth. Does the above result extend to P3
K where K is any field? Show that the set

of lines meeting three given mutually skew lines L1,L2,L3 in P3
K is a ruled quadric

surface. What do the affine pieces of this quadric look like in R3?

(iv) Four lines L1,L2,L3,L4 in RP3 are mutually skew lines iff no pairs of any

two of these lines are coplanar. Given any four mutually skew lines L1,L2,L3,L4,

show that there are at most two lines meeting all four of them. In CP3, show that

there are either two distinct lines or a double line meeting all four of them.

5.14. (i) Prove that the cross-ratio [a,b,c,d] is invariant if any two elements and the

complementary two elements are transposed. Prove that

[a,b,c,d] = [b,a,c,d]−1 = [a,b,d,c]−1

and that

[a,b,c,d] = 1− [a,c,b,d].

(ii) Letting λ = [a,b,c,d], prove that if λ ∈ {∞,0,1}, then any permutation of

{a,b,c,d} yields a cross-ratio in {∞,0,1}, and if λ /∈ {∞,0,1}, then there are at

most the six values

λ ,
1

λ
, 1−λ , 1− 1

λ
,

1

1−λ
,

λ

λ − 1
.

(iii) Prove that the function

λ 7→ (λ 2−λ + 1)3

λ 2(1−λ )2

takes a constant value on the six values listed in part (ii).

5.15. Viewing a point (x,y) in A2 as the complex number z = x+ iy, prove that

four points (a,b,c,d) are cocyclic or collinear iff the cross-ratio [a,b,c,d] is a real

number.

5.16. Given any distinct points (x1,x2,x3,x4) in RP1, prove that they form a har-

monic division, i.e., [x1,x2,x3,x4] =−1 iff

2(x1x2 + x3x4) = (x1 + x2)(x3 + x4).

Prove that [0,x2,x3,x4] =−1 iff

2

x2

=
1

x3

+
1

x4

.

Prove that [x1,x2,x3,∞] =−1 iff

2x3 = x1 + x2.

Do the above results extend to P1
K where K is any field?
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5.17. Consider the quadrangle (projective frame) (a,b,c,d) in a projective plane,

and let a′ be the intersection of 〈d,a〉 and 〈b,c〉, b′ be the intersection of 〈d,b〉
and 〈a,c〉, and c′ be the intersection of 〈d,c〉 and 〈a,b〉. Show that the follow-

ing quadruples of lines form harmonic divisions: (〈c,a〉,〈b′,a′〉,〈d,b〉,〈b′,c′〉),
(〈b,a〉,〈c′,a′〉,〈d,c〉,〈c′,b′〉), and (〈b,c〉, 〈a′,b′〉, 〈a,d〉, 〈a′,c′〉).
Hint. Send some suitable lines to infinity.

5.18. Let P(E) be a projective space over any field. For any projective map

P( f ) : P(E)→ P(E), a point a= p(u) is a fixed point of P( f ) iff P( f )(a) = a. Prove

that a= p(u) is a fixed point of P( f ) iff u is an eigenvector of the linear map f : E→
E . Prove that if E = R2n+1, then every projective map P( f ) : RP2n → RP2n has a

fixed point. Prove that if E = Cn+1, then every projective map P( f ) : CPn→ CPn

has a fixed point.

5.19. A projectivity P( f ) : RPn → RPn is an involution if P( f ) is not the identity

and if P( f )◦P( f ) = id. Prove that a projectivity P( f ) : RP1→RP1 is an involution

iff the trace of the matrix of f is null. Does the above result extend to P1
K where K

is any field?

5.20. Recall Desargues’s theorem in the plane: Given any two triangles (a,b,c) and

(a′,b′,c′) in RP2, where the points a,b,c,a′,b′,c′ are distinct and the lines A =
〈b,c〉, B = 〈a,c〉, C = 〈a,b〉, A′ = 〈b′,c′〉, B′ = 〈a′,c′〉, C′ = 〈a′,b′〉 are distinct,

if the lines 〈a,a′〉, 〈b,b′〉, and 〈c,c′〉 intersect in a common point d distinct from

a,b,c,a′,b′,c′, then the intersection points p = 〈b,c〉∩ 〈b′,c′〉, q = 〈a,c〉∩ 〈a′,c′〉,
and r = 〈a,b〉∩ 〈a′,b′〉 belong to a common line distinct from A,B,C, A′,B′,C′.

Prove that the dual of the above result is its converse. Deduce Desargues’s the-

orem: Given any two triangles (a,b,c) and (a′,b′,c′) in RP2, where the points

a,b,c,a′,b′,c′ are distinct and the lines A= 〈b,c〉, B= 〈a,c〉, C = 〈a,b〉, A′= 〈b′,c′〉,
B′ = 〈a′,c′〉, C′ = 〈a′,b′〉 are distinct, the lines 〈a,a′〉, 〈b,b′〉, and 〈c,c′〉 inter-

sect in a common point d distinct from a,b,c,a′,b′,c′ iff the intersection points

p = 〈b,c〉∩〈b′,c′〉, q = 〈a,c〉∩〈a′,c′〉, and r = 〈a,b〉∩〈a′,b′〉 belong to a common

line distinct from A,B,C, A′,B′,C′.
Do the above results extend to P2

K where K is any field?

5.21. Let D and D′ be any two distinct lines in the real projective plane RP2, and let

f : D→ D′ be a projectivity. Prove the following facts.

(1) If f is a perspectivity, then for any two distinct points m,n on D, the lines

〈m, f (n)〉 and 〈n, f (m)〉 intersect on some fixed line passing through D∩D′.
Hint. Consider any three distinct points a,b,c on D and use Desargues’s theorem.

(2) If f is not a perspectivity, then for any two distinct points m,n on D, the

lines 〈m, f (n)〉 and 〈n, f (m)〉 intersect on the line passing through f (D∩D′) and

f−1(D∩D′).
Hint. Use some suitable composition of perspectivities. The line passing through

f (D∩D′) and f−1(D∩D′) is called the axis of the projectivity.

(iii) Prove that any projectivity f : D→D′ between distinct lines is the composi-

tion of two perspectivities.
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(iv) Use the above facts to give a quick proof of Pappus’s theorem: Given any two

distinct lines D and D′ in a projective plane, for any distinct points a,b,c,a′,b′,c′

with a,b,c on D and a′,b′,c′ on D′, if a,b,c,a′,b′,c′ are distinct from the intersection

of D and D′, then the intersection points p = 〈b,c′〉∩〈b′,c〉, q = 〈a,c′〉∩〈a′,c〉, and

r = 〈a,b′〉∩ 〈a′,b〉 are collinear.

Do the above results extend to P2
K where K is any field?

5.22. Recall that in the real projective plane RP2, by duality, a point a corresponds

to the pencil of lines a∗ passing through a.

(i) Given any two distinct points a and b in the real projective plane RP2 and any

line L containing neither a nor b, the perspectivity of axis L between a∗ and b∗ is

the map f : a∗→ b∗ defined such that for every line D ∈ a∗, the line f (D) is the line

through b and the intersection of D and L.

Prove that a projectivity f : a∗→ b∗ is a perspectivity iff f (〈a,b〉) = 〈b,a〉.
(ii) Prove that a bijection f : a∗→ b∗ is a projectivity iff it preserves the cross-

ratios of any four distinct lines in the pencil a∗.
(iii) State and prove the dual of Pappus’s theorem.

Do the above results extend to P2
K where K is any field?

5.23. (i) Prove that every projectivity f : RP1→ RP1 has at most 2 fixed points. A

projectivity f : RP1 → RP1 is called elliptic if it has no fixed points, parabolic if

it has a single fixed point, hyperbolic if it has two distinct fixed points. Prove that

every projectivity f : CP1→CP1 has 2 distinct fixed points or a double fixed point.

(ii) Recall that a projectivity f : RP1→RP1 is an involution if f is not the iden-

tity and if f ◦ f = id. Prove that f is an involution iff there is some point a ∈ RP1

such that f (a) 6= a and f ( f (a)) = a.

(iii) Given any two distinct points a,b ∈ RP1, prove that there is a unique invo-

lution f : RP1→RP1 having a and b as fixed points. Furthermore, for all m 6= a,b,

we have

[a,b,m, f (m)] =−1.

Conversely, the above formula defines an involution with fixed points a and b.

(iv) Prove that every projectivity f : RP1 → RP1 is the composition of at most

two involutions.

Do the above results extend to P1
K where K is any field?

5.24. Prove that an involution f : RP1→ RP1 has zero or two distinct fixed points.

Prove that an involution f : CP1→ CP1 has two distinct fixed points.

5.25. Prove that a bijection f : RP1→ RP1 having two distinct fixed points a and b

is a projectivity iff there is some k 6= 0 in R such that for all m 6= a,b, we have

[a,b,m, f (m)] = k.

Does the above result extend to P1
K where K is any field?

5.26. Prove that every projectivity f : RP1 → RP1 is the composition of at most

three perspectivities.
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Hint. Consider some appropriate perspectivities.

Does the above result extend to P1
K where K is any field?

5.27. Let (a,b,c,d) be a projective frame in RP2, and let D be a line not passing

through any of a,b,c,d. The line D intersects 〈a,b〉 and 〈c,d〉 in p and p′, 〈b,c〉
and 〈a,d〉 in q and q′, and 〈b,d〉 and 〈a,c〉 in r and r′. Prove that there is a unique

involution mapping p to p′, q to q′, and r to r′.
Hint. Consider some appropriate perspectivities.

Does the above result extend to P2
K where K is any field?

5.28. Let (a,b,c) be a triangle in RP2, and let D be a line not passing through any

of a,b,c, so that D intersects 〈b,c〉 in p, 〈c,a〉 in q, and 〈a,b〉 in r. Let La,Lb,Lc be

three lines passing through a,b,c, respectively, and intersecting D in p′,q′,r′. Prove

that there is a unique involution mapping p to p′, q to q′, and r to r′ iff the lines

La,Lb,Lc are concurrent.

Hint. Use Problem 5.27.

Does the above result extend to P2
K where K is any field?

5.29. In a projective plane P(E) where E is a vector space of dimension 3 over any

field K, a conic is the set of points of homogeneous coordinates (x,y,z) such that

αx2 +β y2 + 2γxy+ 2δxz+ 2λ yz+ µz2 = 0,

where (α,β ,γ,δ ,λ ,µ) 6= (0,0,0,0,0,0). We can write the equation of the conic as

(x,y,z)




α γ δ
γ β λ
δ λ µ






x

y

z


= 0,

and letting

A =




α γ δ
γ β λ
δ λ µ


 , X =




x

y

z


 ,

the equation of the conic becomes

X⊤AX = 0.

We say that a conic of equation X⊤AX = 0 is nondegenerate if det(A) 6= 0 and

degenerate if det(A) = 0.

(i) For K = R, show that there is only one type of nondegenerate conic, and that

there are three kinds of degenerate conics: two distinct lines, a double line, a point,

and the empty set. For K = C, show that there is only one type of nondegenerate

conic, and that there are two kinds of degenerate conics: two distinct lines or a

double line.

(ii) Given any two distinct points a and b in RP2 and any projectivity f : a∗→ b∗

that is not a perspectivity, prove that the set of points of the form L∩ f (L) is a

nondegenerate conic, where L is any line in the pencil a∗.
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What happens when f is a perspectivity? Does the above result hold for any field

K?

(iii) Given a nondegenerate conic C, for any point a ∈ C we can define a bijec-

tion ja : a∗→C as follows: For every line L through a, we define ja(L) as the other

intersection of L and C when L is not the tangent to C at a, and ja(L) = a otherwise.

Given any two distinct points a,b ∈ C, show that the map f = j−1
b ◦ ja is a projec-

tivity f : a∗ → b∗ that is not a perspectivity. In fact, if O is the intersection of the

tangents to C at a and b, show that f (〈O,a〉) = 〈b,a〉, f (〈a,b〉) = 〈b,O〉, and for any

point m 6= a,b on C, f (〈a,m〉) = 〈b,m〉. Conclude that C is the set of points of the

form L∩ f (L), where L is any line in the pencil a∗.
Hint. In a projective frame where a = (1,0,0) and b = (0,1,0), the equation of a

conic is of the form

pz2 + qxy+ ryz+ sxz= 0.

Remark: The above characterization of the conics is due to Steiner (and Chasles).

(iv) Prove that six points (a,b,c,d,e, f ) such that no three of them are collinear

belong to a conic iff

[〈a,c〉,〈a,d〉,〈a,e〉,〈a, f 〉] = [〈b,c〉,〈b,d〉,〈b,e〉,〈b, f 〉].

5.30. Given a nondegenerate conic C and any six points a,b, c, d,e, f on C such that

no three of them are collinear, prove Pascal’s theorem: The points z = 〈a,b〉∩〈d,e〉,
w = 〈b,c〉∩ 〈e, f 〉, and t = 〈c,d〉∩ 〈 f ,a〉 are collinear.

Recall that the line 〈a,a〉 is interpreted as the tangent to C at a.

Hint. By Problem 5.29, for any point m on the conic C, the bijection jm : m∗→ C

allows the definition of the cross-ratio of four points a,b,c,d on C as the cross ratio

of the lines 〈m,a〉, 〈m,b〉, 〈m,c〉, and 〈m,d〉 (which does not depend on m). Also

recall that the cross-ratio of four lines in the pencil m∗ is equal to the cross-ratio of

the four intersection points with any line not passing through m. Prove that

[z,x,d,e] = [t,c,d,y],

and use the perspectivity of center w between 〈c,y〉 and 〈e,x〉.

5.31. In a projective plane P(E) where E is a vector space of dimension 3 over any

field K of characteristic different from 2 (say, K = R or K = C), given a conic C of

equation F(x,y,z) = 0 where

F(x,y,z) = αx2 +β y2 + 2γxy+ 2δxz+ 2λ yz+ µz2 = 0

(with (α,β ,γ,δ ,λ ,µ) 6= (0,0,0,0,0,0)), using the notation of Problem 5.29 with

X⊤ = (x,y,z) and Y⊤ = (u,v,w), verify that

Y⊤AX =
1

2
(uF ′x + vF ′y +wF ′z ),
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where F ′x ,F
′
y ,F

′
z denote the partial derivatives of F(x,y,z).

If the conic C of equation X⊤AX = 0 is nondegenerate, it is well known (and

easy to prove) that the tangent line to C at (x0,y0,z0) is given by the equation

xF ′x0
+ yF ′y0

+ zF ′z0
= 0,

and thus by the equation X⊤AX0 = 0, with X⊤ = (x,y,z) and X⊤0 = (x0,y0,z0).
Therefore, the equation of the tangent to C at (x0,y0,z0) is of the form

ux+ vy+wz = 0,

where 


u

v

w


= A




x0

y0

z0


 and (x0,y0,z0)A




x0

y0

z0


= 0.

(i) If C is a nondegenerate conic of equation X⊤AX = 0 in the projective plane

P(E), prove that the set C∗ of tangent lines to C is a conic of equation Y⊤A−1Y = 0

in the projective plane P(E∗), where E∗ is the dual of the vector space E . Prove that

C∗∗ =C.

Remark: The conic C is sometimes called a point conic and the conic C∗ a line

conic. The set of lines defined by the conic C∗ is said to be the envelope of the conic

C.

Conclude that duality transforms the points of a nondegenerate conic into the

tangents of the conic, and the tangents of the conic into the points of the conic.

(ii) Given any two distinct lines L and M in RP2 and any projectivity f : L→M

that is not a perspectivity, prove that the lines of the form 〈a, f (a)〉 are the tangents

enveloping a nondegenerate conic, where a is any point on the line L (use duality).

What happens when f is a perspectivity? Does the above result hold for any field

K?

(iii) Given a nondegenerate conic C, for any two distinct tangents L and M to C

at a and b, if O = L∩M, show that the map f : L→M defined such that f (a) = O,

f (O) = b, and f (L∩T )=M∩T for any tangent T 6= L,M is a projectivity. Conclude

that C is the envelope of the set of lines of the form 〈m, f (m)〉, where m is any point

on L (use duality).

5.32. Given a nondegenerate conic C, prove Brianchon’s theorem: For any hexagon

(a,b,c,d, e, f ) circumscribed about C (which means that 〈a,b〉, 〈b,c〉, 〈c,d〉, 〈d,e〉,
〈e, f 〉, and 〈 f ,a〉 are tangent to C), the diagonals 〈a,d〉, 〈b,e〉, and 〈c, f 〉 are concur-

rent.

Hint. Use duality.

5.33. (a) Consider the map H : R3→R4 defined such that

(x,y,z) 7→ (xy,yz,xz,x2− y2).
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Prove that when it is restricted to the sphere S2 (in R3), we have H (x,y,z) =
H (x′,y′,z′) iff (x′,y′,z′) = (x,y,z) or (x′,y′,z′) = (−x,−y,−z). In other words, the

inverse image of every point in H (S2) consists of two antipodal points.

Prove that the map H induces an injective map from the projective plane onto

H (S2), and that it is a homeomorphism.

(b) The map H allows us to realize concretely the projective plane in R4 by

choosing any parametrization of the sphere S2 and applying the map H to it. Actu-

ally, it turns out to be more convenient to use the map A defined such that

(x,y,z) 7→ (2xy,2yz,2xz,x2− y2),

because it yields nicer parametrizations. For example, using the stereographic rep-

resentation where

x(u,v) =
2u

u2 + v2 + 1
,

y(u,v) =
2v

u2 + v2 + 1
,

z(u,v) =
u2 + v2− 1

u2 + v2 + 1
,

show that the following parametrization of the projective plane in R4 is obtained:

x(u,v) =
8uv

(u2 + v2 + 1)2
,

y(u,v) =
4v(u2 + v2− 1)

(u2 + v2 + 1)2
,

z(u,v) =
4u(u2 + v2− 1)

(u2 + v2 + 1)2
,

t(u,v) =
4(u2− v2)

(u2 + v2 + 1)2
.

Investigate the surfaces in R3 obtained by dropping one of the four coordinates.

Show that there are only two of them (up to a rigid motion).

5.34. Give the details of the proof that the altitudes of a triangle are concurrent.

5.35. Let K be the finite field K = {0,1}. Prove that the projective plane P(K3)
contains 7 points and 7 lines. Draw the configuration formed by these seven points

and lines.

5.36. Prove that if P and Q are two homogeneous polynomials of degree 2 over R
and if V (P) =V (Q) contains at least three elements, then there is some λ ∈ R such

that Q = λ P, with λ 6= 0.

Hint. Choose some convenient frame.
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5.37. In the Euclidean space En (where En is the affine space An equipped with

its usual inner product on Rn), given any k ∈ R with k 6= 0 and any point a, an

inversion of pole a and power k is a map h : (En−{a})→ En defined such that for

every x ∈ En−{a},
h(x) = a+ k

−→ax

‖−→ax‖2
.

For example, when n = 2, choosing any orthonormal frame with origin a, h is de-

fined by the map

(x, y) 7→
(

kx

x2 + y2
,

ky

x2 + y2

)
.

(a) Assuming for simplicity that n= 2, viewing RP2 as the projective completion

of E2, we can extend h to a partial map h : RP2→RP2 as follows. Pick any projec-

tive frame (a0,a1,a2,a3) where a0 = a+ e1, a1 = a+ e2, a2 = a, a3 = a+ e1 + e2,

and where (e1,e2) is an orthonormal basis for R2, and define h such that in homo-

geneous coordinates

(x, y, z) 7→ (kxz, kyz, x2 + y2).

Show that h is defined on RP2−{a}. Show that h ◦ h = id, except for points on

the line at infinity (that are all mapped onto a=(0,0,1)). Deduce that h is a bijection

except for a and the points on the line at infinity. Show that the fixed points of h are

on the circle of equation

x2 + y2 = kz2.

(b) We can also extend h to a partial map h : CP2→CP2 as in the real case, and

define h such that in homogeneous (complex) coordinates

(x, y, z) 7→ (kxz, kyz, x2 + y2).

Show that h is defined on CP2−{a, I,J}, where I = (1,−i,0) and J = (1, i,0)
are the circular points. Show that every point of the line 〈I,J〉 other than I and J is

mapped to A, every point of the line 〈A, I〉 other than A and I is mapped to I, and

every point of the line 〈A,J〉 other than A and J is mapped to J. Show that h◦h= id

on the complement of the three lines 〈I,J〉, 〈A, I〉, and 〈A,J〉. Show that the fixed

points of h are on the circle of equation

x2 + y2 = kz2.

Say that a circle of equation

ax2 + ay2 + bxz+ cyz+ dz2 = 0

is a true circle if a 6= 0. We define the center of a circle as above (true or not) as

the point of homogeneous coordinates (b,c,−2a) and the radius R of a true circle

is defined as follows: If

b2 + c2− 4ad > 0,



5.14 Problems 171

then R =
√

b2 + c2− 4ad/(2a); otherwise R = i
√

4ad− b2− c2/(2a). Note that R

can be a complex number. Also, when a = 0, we let R = ∞.

Verify that in the affine Euclidean plane E2 (the complement of the line at infinity

z = 0) the notions of center and radius have the usual meaning (when R is real).

(c) Show that the image of a circle of equation

ax2 + ay2 + bxz+ cyz+ dz2 = 0

is the circle of equation

dx2 + dy2 + kbxz+ kcyz+ k2az2 = 0.

When does a true circle map to a true circle?

(d) Recall the definition of the stereographic projection map σ : (S2−{N})→
R2 from Problem 5.3. Prove that the stereographic projection map is the restriction

to S2 of an inversion of pole N and power 2R2 in E3 (where S2 a sphere of radius R,

N is the north pole of S2, and the plane of projection is a plane through the center of

the sphere).

5.38. As in Problem 5.37, we consider inversions in RP2 and CP2, and we assume

that some projective frame (a0,a1,a2,a3) is chosen.

(a) Given two distinct real circles C1 and C2 of equations

x2 + y2−R2z2 = 0,

x2 + y2− 2bxz+ dz2 = 0,

prove that C1 and C2 intersect in two real points iff the line

2bx− (d+R2)z = 0

intersects C1 in two real points iff

(R2 + d− 2bR)(R2+ d+ 2bR)< 0.

The line 2bx− (d+R2)z = 0 is called the radical axis D of the circles C1 and C2. If

b = 0, then C1 and C2 have the same center, and the radical axis is the line at infinity.

Otherwise, if b 6= 0, by chosing a new frame (b0,b1,b2,b3) such that

b0 =

(
R2 + d

2b
+ 1, 0,0

)
, b1 =

(
R2 + d

2b
, 1,0

)
, b2 =

(
R2 + d

2b
, 0,1

)
,

and

b3 =

(
R2 + d

2b
, 1,1

)
,

show that the equations of the circles C1,C2 become



172 5 Basics of Projective Geometry

4b2(x2 + y2)+ 4b(R2+ d)xz+∆z2 = 0,

4b2(x2 + y2)+ 4b(R2+ d− 2b2)xz+∆z2 = 0,

where ∆ = (R2 + d− 2bR)(R2+ d+ 2bR).
Letting C = ∆/(4b2), the above equations are of the form

x2 + y2− 2uxz+Cz2 = 0,

x2 + y2− 2vxz+Cz2 = 0,

where u 6= v.

(b) Consider the pencil of circles defined by C1 and C2, i.e., the set of all circles

having an equation of the form

(λ + µ)(x2 + y2)− 2(λ u+ µv)xz+(λ + µ)Cz2 = 0,

where (λ ,µ) 6= (0,0).
If C < 0, letting K2 = −C where K > 0, prove that the circles in the pencil are

exactly the circles passing through the points A=(0,K,1) and B=(0,−K,1), called

base points of the pencil. In this case, prove that the image of all the circles in the

pencil by an inversion h of center A is the union of the line at infinity together with

the set of all lines through the image h(B) of B under the inversion (pick a convenient

frame).

(c) If C = 0, in which case A = B = (0,0,1), prove that the circles in the pencil

are exactly the circles tangent to the radical axis D (at the origin). In this case, prove

that the image of all the circles in the pencil by an inversion h of center A is the

union of the line at infinity together with the set of all lines parallel to the radical

axis D.

(d) If C > 0, letting K2 = C where K > 0, prove that there exist two circles in

the pencil of radius 0 and of centers P1 = (K,0,1) and P2 = (−K,0,1), called the

Poncelet points of the pencil. In this case, prove that the image of all the circles in

the pencil by an inversion of center P1 is the set of all circles of center h(P2) (pick a

convenient frame).

Conclude that given any two distinct nonconcentric real circles C1 and C2, there

is an inversion such that if C1 and C2 intersect in two real points, then C1 and C2 are

mapped to two lines (plus the line at infinity), and if C1 and C2 are disjoint (as real

circles), then C1 and C2 are mapped to two concentric circles.

(e) Given two C1-curves Γ ,∆ in E2, if Γ and ∆ intersect in p, prove that for any

inversion h of pole c 6= p, h preserves the absolute value of the angle of the tangents

to Γ and ∆ at p. Conclude that inversions preserve tangency and orthogonality.

Hint. Express Γ ,∆ , and h in polar coordinates.

(f) Using (e), prove the following beautiful theorem of Steiner. Let C1 and C2 be

two disjoint real circles such that C2 is inside C1. Construct any sequence (Γn)n≥0 of

circles such that Γn is any circle interior to C1, exterior to C2, tangent to C1 and C2,

and furthermore that Γn+1 6= Γn−1 and Γn+1 is tangent to Γn.
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Given a starting circle Γ0, two cases may arise: Either Γn = Γ0 for some n≥ 1, or

Γn 6= Γ0 for all n≥ 1.

Prove that the outcome is independent of the starting circle Γ0. In other words,

either for every Γ0 we have Γn = Γ0 for some n≥ 1, or for every Γ0 we have Γn 6= Γ0

for all n≥ 1.

5.39. (a) Let h : RP2→ RP2 be the projectivity (w.r.t. any projective frame (a0,a1,

a2,a3)) defined such that

(x, y, z) 7→ (x, y, ax+ by+ cz),

where c 6= 0 and h is not the identity.

Prove that the fixed points of h (i.e., those points M such that h(M) = M) are the

origin O = a2 = (0,0,1) and every point on the line ∆ of equation

ax+ by+(c− 1)z= 0.

Prove that every line through the origin is globally invariant under h. Give a geo-

metric construction of h(M) for every point M distinct from O and not on ∆ , given

any point A distinct from O and not on ∆ and its image A′ = h(A).
Hint. Consider the intersection P of the line 〈A,M〉 with the line ∆ .

Such a projectivity is called a homology of center O and of axis ∆ (Poncelet).

Show that in the situation of Desargues’s theorem, the triangles (a,b,c) and

(a′,b′,c′) are homologous. What is the axis of homology?

(b) Let h : RP3→RP3 be the projectivity (w.r.t. any projective frame (a0,a1,a2,

a3,a4)) defined such that

(x, y, z, t) 7→ (x, y, z, ax+ by+ cz+ dt),

where d 6= 0 and h is not the identity.

Prove that the fixed points of h (i.e., those points M such that h(M) = M) are the

origin O = a3 = (0,0,0,1) and every point on the plane Π of equation

ax+ by+ cz+(d− 1)t = 0.

Prove that every line through the origin is globally invariant under h. Give a geo-

metric construction of h(M) for every point M distinct from O and not on Π , given

any point A distinct from O and not on Π and its image A′ = h(A).
Hint. Consider the intersection P of the line 〈A,M〉 with the plane Π .

Such a projectivity is called a homology of center O and of plane of homology Π
(Poncelet).

(c) Let h : RP2 → RP2 be a projectivity, and assume that h does not preserve

(globally) the line at infinity z = 0. Prove that there is a rotation R and a point at

infinity a1 such that h ◦R maps all lines through a1 to lines through a1.

Chosing a projective frame (a0,a1,a2,a3) (where a1 is the point mentioned

above), show that h ◦R is defined by a matrix of the form
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a b c

0 b′ c′

0 b′′ c′′




where a 6= 0 and b′′ 6= 0. Prove that there exist two translations t1, t2 such that t2 ◦h◦
R◦ t1 is a homology.

If h preserves globally the line at infinity, show that there is a translation t such

that t ◦ h is defined by a matrix of the form




a b c

a′ b′ c′

0 0 1




where ab′−a′b 6= 0. Prove that there exist two rotations R1,R2 such that R2◦t ◦h◦R1

has a matrix of the form 


A 0 0

0 B 0

0 0 1




where AB = ab′−a′b. Conclude that R2 ◦ t ◦h◦R1 is a homology only when A = B.

Remark: The above problem is adapted from Darboux.

5.40. Prove that every projectivity h : RP2→ RP2 where h 6= id and h is not a ho-

mology is the composition of two homologies.

5.41. Given any two tetrahedra (a,b,c,d) and (a′,b′,c′,d′) in RP3 where a,b,c,d,

a′,b′,c′,d′ are pairwise distinct and the lines containing the edges of the two tetra-

hedra are pairwise distinct, if the lines 〈a,a′〉, 〈b,b′〉, 〈c,c′〉, and 〈d,d′〉 intersect

in a common point O distinct from a,b,c,d, a′,b′,c′,d′, prove that the intersec-

tion points (of lines) p = 〈b,c〉 ∩ 〈b′,c′〉, q = 〈a,c〉 ∩ 〈a′,c′〉, r = 〈a,b〉 ∩ 〈a′,b′〉,
s = 〈c,d〉∩ 〈c′,d′〉, t = 〈b,d〉∩ 〈b′,d′〉, u = 〈a,d〉∩ 〈a′,d′〉, are coplanar.

Prove that the lines of intersection (of planes) P = 〈b,c,d〉 ∩ 〈b′,c′,d′〉, Q =
〈a,c,d〉 ∩ 〈a′,c′,d′〉, R = 〈a,b,d〉 ∩ 〈a′,b′,d′〉, S = 〈a,b,c〉 ∩ 〈a′,b′,c′〉, are copla-

nar.

Hint. Show that there is a homology whose center is O and whose plane of homol-

ogy is determined by p,q,r,s, t,u.

5.42. Prove that Pappus’s theorem implies Desargues’s theorem (in the plane).

5.43. If K is a finite field of q elements (q≥ 2), prove that the finite projective space

P(Kn+1) has qn + qn−1+ · · ·+ q+ 1 points and

(qn+1− 1)(qn− 1)

(q− 1)2(q+ 1)

lines.
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Chapter 6

Basics of Euclidean Geometry

Rien n’est beau que le vrai.

—Hermann Minkowski

6.1 Inner Products, Euclidean Spaces

In affine geometry it is possible to deal with ratios of vectors and barycenters of

points, but there is no way to express the notion of length of a line segment or to

talk about orthogonality of vectors. A Euclidean structure allows us to deal with

metric notions such as orthogonality and length (or distance).

This chapter covers the bare bones of Euclidean geometry. Deeper aspects of

Euclidean geometry are investigated in Chapter 8, in particular the structure of the

orthogonal group and the structure of the group of affine rigid motions. One of

our main goals is to give the basic properties of the transformations that preserve

the Euclidean structure, rotations and reflections, since they play an important role

in practice. As affine geometry is the study of properties invariant under bijective

affine maps and projective geometry is the study of properties invariant under bijec-

tive projective maps, Euclidean geometry is the study of properties invariant under

certain affine maps called rigid motions. Rigid motions are the maps that preserve

the distance between points. Such maps are, in fact, affine and bijective (at least

in the finite-dimensional case; see Lemma 8.8). They form a group Is(n) of affine

maps whose corresponding linear maps form the group O(n) of orthogonal trans-

formations. The subgroup SE(n) of Is(n) corresponds to the orientation preserving

rigid motions, and there is a corresponding subgroup SO(n) of O(n), the group of

rotations. These groups play a very important role in geometry, and we will study

their structure in some detail in Chapter 8.

Before going any further, a potential point of confusion should be cleared up.

Euclidean geometry deals with affine spaces
(
E,
−→
E
)
, where the associated vector

177
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space
−→
E is equipped with an inner product. Such spaces are called Euclidean affine

spaces. However, inner products are defined on vector spaces. Thus, we must first

study the properties of vector spaces equipped with an inner product, and the lin-

ear maps preserving an inner product (the orthogonal group SO(n)). Such spaces

are called Euclidean spaces (omitting the word affine). It should be clear from the

context whether we are dealing with a Euclidean vector space or a Euclidean affine

space, but we will try to be clear about that. For instance, in this chapter, except for

Definition 6.3, we are dealing with Euclidean vector spaces and linear maps.

We begin by defining inner products and Euclidean spaces. The Cauchy–Schwarz

inequality and the Minkowski inequality are shown. We define orthogonality of vec-

tors and of subspaces, orthogonal bases, and orthonormal bases. We offer a glimpse

of Fourier series in terms of the orthogonal families (sin px)p≥1∪ (cosqx)q≥0 and

(eikx)k∈Z. We prove that every finite-dimensional Euclidean space has orthonormal

bases. Orthonormal bases are the Euclidean analogue for affine frames. The first

proof uses duality, and the second one the Gram–Schmidt orthogonalization pro-

cedure. The QR-decomposition for invertible matrices is shown as an application

of the Gram–Schmidt procedure. Linear isometries (also called orthogonal transfor-

mations) are defined and studied briefly. We conclude with a short section in which

some applications of Euclidean geometry are sketched. One of the most important

applications, the method of least squares, is discussed in Chapter 14.

For a more detailed treatment of Euclidean geometry, see Berger [2, 3], Snapper

and Troyer [22], or any other book on geometry, such as Pedoe [18], Coxeter [6],

Fresnel [8], Tisseron [25], or Cagnac, Ramis, and Commeau [4]. Serious readers

should consult Emil Artin’s famous book [1], which contains an in-depth study of

the orthogonal group, as well as other groups arising in geometry. It is still worth

consulting some of the older classics, such as Hadamard [10, 11] and Rouché and

de Comberousse [19]. The first edition of [10] was published in 1898, and finally

reached its thirteenth edition in 1947! In this chapter it is assumed that all vector

spaces are defined over the field R of real numbers unless specified otherwise (in a

few cases, over the complex numbers C).

First, we define a Euclidean structure on a vector space. Technically, a Euclidean

structure over a vector space E is provided by a symmetric bilinear form on the

vector space satisfying some extra properties. Recall that a bilinear form ϕ : E ×
E → R is definite if for every u ∈ E , u 6= 0 implies that ϕ(u,u) 6= 0, and positive if

for every u ∈ E , ϕ(u,u)≥ 0.

Definition 6.1. A Euclidean space is a real vector space E equipped with a symmet-

ric bilinear form ϕ : E×E→R that is positive definite. More explicitly, ϕ : E×E→
R satisfies the following axioms:
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ϕ(u1 + u2,v) = ϕ(u1,v)+ϕ(u2,v),

ϕ(u,v1 + v2) = ϕ(u,v1)+ϕ(u,v2),

ϕ(λ u,v) = λ ϕ(u,v),

ϕ(u,λ v) = λ ϕ(u,v),

ϕ(u,v) = ϕ(v,u),

u 6= 0 implies that ϕ(u,u)> 0.

The real number ϕ(u,v) is also called the inner product (or scalar product) of u and

v. We also define the quadratic form associated with ϕ as the function Φ : E→R+

such that

Φ(u) = ϕ(u,u),

for all u ∈ E .

Since ϕ is bilinear, we have ϕ(0,0) = 0, and since it is positive definite, we have

the stronger fact that

ϕ(u,u) = 0 iff u = 0,

that is, Φ(u) = 0 iff u = 0.

Given an inner product ϕ : E×E→R on a vector space E , we also denote ϕ(u,v)
by

u · v or 〈u,v〉 or (u|v),
and

√
Φ(u) by ‖u‖.

Example 6.1. The standard example of a Euclidean space is Rn, under the inner

product · defined such that

(x1, . . . ,xn) · (y1, . . . ,yn) = x1y1 + x2y2 + · · ·+ xnyn.

There are other examples.

Example 6.2. For instance, let E be a vector space of dimension 2, and let (e1,e2)
be a basis of E . If a > 0 and b2− ac < 0, the bilinear form defined such that

ϕ(x1e1 + y1e2, x2e1 + y2e2) = ax1x2 + b(x1y2 + x2y1)+ cy1y2

yields a Euclidean structure on E . In this case,

Φ(xe1 + ye2) = ax2 + 2bxy+ cy2.

Example 6.3. Let C [a,b] denote the set of continuous functions f : [a,b]→ R. It is

easily checked that C [a,b] is a vector space of infinite dimension. Given any two

functions f ,g ∈ C [a,b], let

〈 f ,g〉=
∫ b

a
f (t)g(t)dt.
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We leave as an easy exercise that 〈−,−〉 is indeed an inner product on C [a,b]. In

the case where a = −π and b = π (or a = 0 and b = 2π , this makes basically no

difference), one should compute

〈sin px,sinqx〉, 〈sin px,cosqx〉, and 〈cos px,cosqx〉,

for all natural numbers p,q ≥ 1. The outcome of these calculations is what makes

Fourier analysis possible!

Let us observe that ϕ can be recovered from Φ . Indeed, by bilinearity and sym-

metry, we have

Φ(u+ v) = ϕ(u+ v, u+ v)

= ϕ(u, u+ v)+ϕ(v, u+ v)

= ϕ(u, u)+ 2ϕ(u, v)+ϕ(v, v)

= Φ(u)+ 2ϕ(u, v)+Φ(v).

Thus, we have

ϕ(u, v) =
1

2
[Φ(u+ v)−Φ(u)−Φ(v)].

We also say that ϕ is the polar form of Φ . We will generalize polar forms to poly-

nomials, and we will see that they play a very important role.

One of the very important properties of an inner product ϕ is that the map u 7→√
Φ(u) is a norm.

Lemma 6.1. Let E be a Euclidean space with inner product ϕ , and let Φ be the

corresponding quadratic form. For all u,v ∈ E, we have the Cauchy–Schwarz in-

equality

ϕ(u,v)2 ≤Φ(u)Φ(v),

the equality holding iff u and v are linearly dependent.

We also have the Minkowski inequality

√
Φ(u+ v)≤

√
Φ(u)+

√
Φ(v),

the equality holding iff u and v are linearly dependent, where in addition if u 6= 0

and v 6= 0, then u = λ v for some λ > 0.

Proof. For any vectors u,v ∈ E , we define the function T : R→R such that

T (λ ) = Φ(u+λ v),

for all λ ∈R. Using bilinearity and symmetry, we have
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Φ(u+λ v) = ϕ(u+λ v, u+λ v)

= ϕ(u, u+λ v)+λ ϕ(v, u+λ v)

= ϕ(u, u)+ 2λ ϕ(u, v)+λ 2ϕ(v, v)

= Φ(u)+ 2λ ϕ(u, v)+λ 2Φ(v).

Since ϕ is positive definite, Φ is nonnegative, and thus T (λ ) ≥ 0 for all λ ∈ R.

If Φ(v) = 0, then v = 0, and we also have ϕ(u, v) = 0. In this case, the Cauchy–

Schwarz inequality is trivial, and v = 0 and u are linearly dependent.

Now, assume Φ(v) > 0. Since T (λ )≥ 0, the quadratic equation

λ 2Φ(v)+ 2λ ϕ(u, v)+Φ(u) = 0

cannot have distinct real roots, which means that its discriminant

∆ = 4(ϕ(u, v)2−Φ(u)Φ(v))

is null or negative, which is precisely the Cauchy–Schwarz inequality

ϕ(u,v)2 ≤Φ(u)Φ(v).

If

ϕ(u,v)2 = Φ(u)Φ(v),

then the above quadratic equation has a double root λ0, and we have Φ(u+λ0v) = 0.

If λ0 = 0, then ϕ(u, v) = 0, and since Φ(v) > 0, we must have Φ(u) = 0, and thus

u = 0. In this case, of course, u = 0 and v are linearly dependent. Finally, if λ0 6= 0,

since Φ(u+λ0v) = 0 implies that u+λ0v = 0, then u and v are linearly dependent.

Conversely, it is easy to check that we have equality when u and v are linearly

dependent.

The Minkowski inequality

√
Φ(u+ v)≤

√
Φ(u)+

√
Φ(v)

is equivalent to

Φ(u+ v)≤Φ(u)+Φ(v)+ 2
√

Φ(u)Φ(v).

However, we have shown that

2ϕ(u, v) = Φ(u+ v)−Φ(u)−Φ(v),

and so the above inequality is equivalent to

ϕ(u, v)≤
√

Φ(u)Φ(v),

which is trivial when ϕ(u, v)≤ 0, and follows from the Cauchy–Schwarz inequality

when ϕ(u, v)≥ 0. Thus, the Minkowski inequality holds. Finally, assume that u 6= 0

and v 6= 0, and that
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√
Φ(u+ v) =

√
Φ(u)+

√
Φ(v).

When this is the case, we have

ϕ(u, v) =
√

Φ(u)Φ(v),

and we know from the discussion of the Cauchy–Schwarz inequality that the equal-

ity holds iff u and v are linearly dependent. The Minkowski inequality is an equality

when u or v is null. Otherwise, if u 6= 0 and v 6= 0, then u = λ v for some λ 6= 0, and

since

ϕ(u, v) = λ ϕ(v, v) =
√

Φ(u)Φ(v),

by positivity, we must have λ > 0. ⊓⊔

Note that the Cauchy–Schwarz inequality can also be written as

|ϕ(u,v)| ≤
√

Φ(u)
√

Φ(v).

Remark: It is easy to prove that the Cauchy–Schwarz and the Minkowski inequal-

ities still hold for a symmetric bilinear form that is positive, but not necessarily

definite (i.e., ϕ(u,v) ≥ 0 for all u,v ∈ E). However, u and v need not be linearly

dependent when the equality holds.

The Minkowski inequality

√
Φ(u+ v)≤

√
Φ(u)+

√
Φ(v)

shows that the map u 7→
√

Φ(u) satisfies the convexity inequality (also known as

triangle inequality), condition (N3) of Definition 21.2, and since ϕ is bilinear and

positive definite, it also satisfies conditions (N1) and (N2) of Definition 21.2, and

thus it is a norm on E . The norm induced by ϕ is called the Euclidean norm induced

by ϕ .

Note that the Cauchy–Schwarz inequality can be written as

|u · v| ≤ ‖u‖‖v‖,

and the Minkowski inequality as

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Figure 6.1 illustrates the triangle inequality.

We now define orthogonality.
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u v

u+ v

Fig. 6.1 The triangle inequality.

6.2 Orthogonality, Duality, Adjoint of a Linear Map

An inner product on a vector space gives the ability to define the notion of orthog-

onality. Families of nonnull pairwise orthogonal vectors must be linearly indepen-

dent. They are called orthogonal families. In a vector space of finite dimension it is

always possible to find orthogonal bases. This is very useful theoretically and prac-

tically. Indeed, in an orthogonal basis, finding the coordinates of a vector is very

cheap: It takes an inner product. Fourier series make crucial use of this fact. When

E has finite dimension, we prove that the inner product on E induces a natural iso-

morphism between E and its dual space E∗. This allows us to define the adjoint of

a linear map in an intrinsic fashion (i.e., independently of bases). It is also possi-

ble to orthonormalize any basis (certainly when the dimension is finite). We give

two proofs, one using duality, the other more constructive using the Gram–Schmidt

orthonormalization procedure.

Definition 6.2. Given a Euclidean space E , any two vectors u,v∈ E are orthogonal,

or perpendicular, if u · v = 0. Given a family (ui)i∈I of vectors in E , we say that

(ui)i∈I is orthogonal if ui ·u j = 0 for all i, j ∈ I, where i 6= j. We say that the family

(ui)i∈I is orthonormal if ui ·u j = 0 for all i, j ∈ I, where i 6= j, and ‖ui‖= ui ·ui = 1,

for all i ∈ I. For any subset F of E , the set

F⊥ = {v ∈ E | u · v = 0, for all u ∈ F},

of all vectors orthogonal to all vectors in F , is called the orthogonal complement of

F .

Since inner products are positive definite, observe that for any vector u ∈ E , we

have

u · v = 0 for all v ∈ E iff u = 0.

It is immediately verified that the orthogonal complement F⊥ of F is a subspace of

E .

Example 6.4. Going back to Example 6.3 and to the inner product

〈 f ,g〉 =
∫ π

−π
f (t)g(t)dt

on the vector space C [−π ,π ], it is easily checked that
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〈sin px,sinqx〉=
{

π if p = q, p,q≥ 1,

0 if p 6= q, p,q≥ 1,

〈cos px,cosqx〉=
{

π if p = q, p,q≥ 1,

0 if p 6= q, p,q≥ 0,

and

〈sin px,cosqx〉= 0,

for all p ≥ 1 and q≥ 0, and of course, 〈1,1〉=
∫ π
−π dx = 2π .

As a consequence, the family (sin px)p≥1 ∪ (cosqx)q≥0 is orthogonal. It is not

orthonormal, but becomes so if we divide every trigonometric function by
√

π , and

1 by
√

2π .

Remark: Observe that if we allow complex–valued functions, we obtain simpler

proofs. For example, it is immediately checked that

∫ π

−π
eikxdx =

{
2π if k = 0,

0 if k 6= 0,

because the derivative of eikx is ikeikx.

� However, beware that something strange is going on. Indeed, unless k =
0, we have

〈eikx,eikx〉= 0,

since

〈eikx,eikx〉=
∫ π

−π
(eikx)2dx =

∫ π

−π
ei2kxdx = 0.

The inner product 〈eikx,eikx〉 should be strictly positive. What went wrong?

The problem is that we are using the wrong inner product. When we use complex-

valued functions, we must use the Hermitian inner product

〈 f ,g〉=
∫ π

−π
f (x)g(x)dx,

where g(x) is the conjugate of g(x). The Hermitian inner product is not symmetric.

Instead,

〈g, f 〉= 〈 f ,g〉.
(Recall that if z = a+ ib, where a,b∈R, then z = a− ib. Also, eiθ = cosθ + i sinθ ).

With the Hermitian inner product, everything works out beautifully! In particular,

the family (eikx)k∈Z is orthogonal. Hermitian spaces and some basics of Fourier

series will be discussed more rigorously in Chapter 11.

We leave the following simple two results as exercises.
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Lemma 6.2. Given a Euclidean space E, for any family (ui)i∈I of nonnull vectors

in E, if (ui)i∈I is orthogonal, then it is linearly independent.

Lemma 6.3. Given a Euclidean space E, any two vectors u,v ∈ E are orthogonal

iff

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

One of the most useful features of orthonormal bases is that they afford a very

simple method for computing the coordinates of a vector over any basis vector.

Indeed, assume that (e1, . . . ,em) is an orthonormal basis. For any vector

x = x1e1 + · · ·+ xmem,

if we compute the inner product x · ei, we get

x · ei = x1e1 · ei + · · ·+ xiei · ei + · · ·+ xmem · ei = xi,

since

ei · e j =

{
1 if i = j,

0 if i 6= j

is the property characterizing an orthonormal family. Thus,

xi = x · ei,

which means that xiei = (x · ei)ei is the orthogonal projection of x onto the sub-

space generated by the basis vector ei. If the basis is orthogonal but not necessarily

orthonormal, then

xi =
x · ei

ei · ei
=

x · ei

‖ei‖2
.

All this is true even for an infinite orthonormal (or orthogonal) basis (ei)i∈I .

� However, remember that every vector x is expressed as a linear combina-

tion

x = ∑
i∈I

xiei

where the family of scalars (xi)i∈I has finite support, which means that xi = 0 for

all i ∈ I − J, where J is a finite set. Thus, even though the family (sin px)p≥1 ∪
(cosqx)q≥0 is orthogonal (it is not orthonormal, but becomes so if we divide every

trigonometric function by
√

π , and 1 by
√

2π; we won’t because it looks messy!),

the fact that a function f ∈ C 0[−π ,π ] can be written as a Fourier series as

f (x) = a0 +
∞

∑
k=1

(ak coskx+ bk sin kx)

does not mean that (sin px)p≥1∪ (cosqx)q≥0 is a basis of this vector space of func-

tions, because in general, the families (ak) and (bk) do not have finite support! In
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order for this infinite linear combination to make sense, it is necessary to prove that

the partial sums

a0 +
n

∑
k=1

(ak coskx+ bk sinkx)

of the series converge to a limit when n goes to infinity. This requires a topology on

the space.

Still, a small miracle happens. If f ∈ C [−π ,π ] can indeed be expressed as a

Fourier series

f (x) = a0 +
∞

∑
k=1

(ak coskx+ bk sinkx),

the coefficients a0 and ak,bk, k≥ 1, can be computed by projecting f over the basis

functions, i.e., by taking inner products with the basis functions in (sin px)p≥1 ∪
(cosqx)q≥0. Indeed, for all k≥ 1, we have

a0 =
〈 f ,1〉
‖1‖2

,

and

ak =
〈 f ,cos kx〉
‖coskx‖2

, bk =
〈 f ,sin kx〉
‖sinkx‖2

,

that is,

a0 =
1

2π

∫ π

−π
f (x)dx,

and

ak =
1

π

∫ π

−π
f (x)cos kxdx, bk =

1

π

∫ π

−π
f (x)sin kxdx.

If we allow f to be complex-valued and use the family (eikx)k∈Z, which is is

indeed orthogonal w.r.t. the Hermitian inner product

〈 f ,g〉=
∫ π

−π
f (x)g(x)dx,

we consider functions f ∈ C [−π ,π ] that can be expressed as the sum of a series

f (x) = ∑
k∈Z

ckeikx.

Note that the index k is allowed to be a negative integer. Then, the formula giving

the ck is very nice:

ck =
〈 f ,eikx〉
‖eikx‖2

,

that is,

ck =
1

2π

∫ π

−π
f (x)e−ikxdx.
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Note the presence of the negative sign in e−ikx, which is due to the fact that the inner

product is Hermitian. Of course, the real case can be recovered from the complex

case. If f is a real-valued function, then we must have

ak = ck + c−k and bk = i(ck− c−k).

Also note that
1

2π

∫ π

−π
f (x)e−ikxdx

is defined not only for all discrete values k ∈ Z, but for all k ∈ R, and that if f is

continuous over R, the integral makes sense. This suggests defining

f̂ (k) =
∫ ∞

−∞
f (x)e−ikxdx,

called the Fourier transform of f . The Fourier transform analyzes the function f in

the “frequency domain” in terms of its spectrum of harmonics. Amazingly, there is

an inverse Fourier transform (change e−ikx to e+ikx and divide by the scale factor

2π) that reconstructs f (under certain assumptions on f ).

Some basics of Fourier series will be discussed more rigorously in Chapter 11.

For more on Fourier analysis, we highly recommend Strang [23] for a lucid intro-

duction with lots of practical examples, and then move on to a good real analysis

text, for instance Lang [15, 16], or [20].

A very important property of Euclidean spaces of finite dimension is that the

inner product induces a canonical bijection (i.e., independent of the choice of bases)

between the vector space E and its dual E∗.
Given a Euclidean space E , for any vector u ∈ E , let ϕu : E → R be the map

defined such that

ϕu(v) = u · v,
for all v ∈ E .

Since the inner product is bilinear, the map ϕu is a linear form in E∗. Thus, we

have a map ♭ : E→ E∗, defined such that

♭(u) = ϕu.

Lemma 6.4. Given a Euclidean space E, the map ♭ : E→ E∗ defined such that

♭(u) = ϕu

is linear and injective. When E is also of finite dimension, the map ♭ : E → E∗ is a

canonical isomorphism.

Proof. That ♭ : E → E∗ is a linear map follows immediately from the fact that the

inner product is bilinear. If ϕu = ϕv, then ϕu(w) = ϕv(w) for all w ∈ E , which by

definition of ϕu means that
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u ·w = v ·w
for all w ∈ E , which by bilinearity is equivalent to

(v− u) ·w = 0

for all w ∈ E , which implies that u = v, since the inner product is positive definite.

Thus, ♭ : E→ E∗ is injective. Finally, when E is of finite dimension n, we know that

E∗ is also of dimension n, and then ♭ : E → E∗ is bijective. ⊓⊔

The inverse of the isomorphism ♭ : E→ E∗ is denoted by ♯ : E∗→ E .

As a consequence of Lemma 6.4, if E is a Euclidean space of finite dimension,

every linear form f ∈ E∗ corresponds to a unique u ∈ E such that

f (v) = u · v,

for every v ∈ E . In particular, if f is not the null form, the kernel of f , which is a

hyperplane H, is precisely the set of vectors that are orthogonal to u.

Remarks:

(1) The “musical map” ♭ : E→ E∗ is not surjective when E has infinite dimension.

The result can be salvaged by restricting our attention to continuous linear maps,

and by assuming that the vector space E is a Hilbert space (i.e., E is a complete

normed vector space w.r.t. the Euclidean norm). This is the famous “little” Riesz

theorem (or Riesz representation theorem).

(2) Lemma 6.4 still holds if the inner product on E is replaced by a nondegenerate

symmetric bilinear form ϕ . We say that a symmetric bilinear form ϕ : E×E→
R is nondegenerate if for every u ∈ E ,

if ϕ(u, v) = 0 for all v ∈ E , then u = 0.

For example, the symmetric bilinear form on R4 defined such that

ϕ((x1,x2,x3,x4), (y1,y2,y3,y4)) = x1y1 + x2y2 + x3y3− x4y4

is nondegenerate. However, there are nonnull vectors u∈R4 such that ϕ(u, u)=
0, which is impossible in a Euclidean space. Such vectors are called isotropic.

The existence of the isomorphism ♭ : E → E∗ is crucial to the existence of ad-

joint maps. The importance of adjoint maps stems from the fact that the linear maps

arising in physical problems are often self-adjoint, which means that f = f ∗. More-

over, self-adjoint maps can be diagonalized over orthonormal bases of eigenvectors.

This is the key to the solution of many problems in mechanics, and engineering in

general (see Strang [23]).

Let E be a Euclidean space of finite dimension n, and let f : E → E be a linear

map. For every u ∈ E , the map

v 7→ u · f (v)
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is clearly a linear form in E∗, and by Lemma 6.4, there is a unique vector in E

denoted by f ∗(u) such that

f ∗(u) · v = u · f (v),

for every v ∈ E . The following simple lemma shows that the map f ∗ is linear.

Lemma 6.5. Given a Euclidean space E of finite dimension, for every linear map

f : E→ E, there is a unique linear map f ∗ : E → E such that

f ∗(u) · v = u · f (v),

for all u,v ∈ E. The map f ∗ is called the adjoint of f (w.r.t. to the inner product).

Proof. Given u1,u2 ∈ E , since the inner product is bilinear, we have

(u1 + u2) · f (v) = u1 · f (v)+ u2 · f (v),

for all v ∈ E , and

( f ∗(u1)+ f ∗(u2)) · v = f ∗(u1) · v+ f ∗(u2) · v,

for all v ∈ E , and since by assumption,

f ∗(u1) · v = u1 · f (v)

and

f ∗(u2) · v = u2 · f (v),

for all v ∈ E , we get

( f ∗(u1)+ f ∗(u2)) · v = (u1 + u2) · f (v),

for all v ∈ E . Since ♭ is bijective, this implies that

f ∗(u1 + u2) = f ∗(u1)+ f ∗(u2).

Similarly,

(λ u) · f (v) = λ (u · f (v)),

for all v ∈ E , and

(λ f ∗(u)) · v = λ ( f ∗(u) · v),
for all v ∈ E , and since by assumption,

f ∗(u) · v = u · f (v),

for all v ∈ E , we get

(λ f ∗(u)) · v = (λ u) · f (v),

for all v ∈ E . Since ♭ is bijective, this implies that
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f ∗(λ u) = λ f ∗(u).

Thus, f ∗ is indeed a linear map, and it is unique, since ♭ is a bijection. ⊓⊔

Linear maps f : E→ E such that f = f ∗ are called self-adjoint maps. They play

a very important role because they have real eigenvalues, and because orthonormal

bases arise from their eigenvectors. Furthermore, many physical problems lead to

self-adjoint linear maps (in the form of symmetric matrices).

Remark: Lemma 6.5 still holds if the inner product on E is replaced by a nonde-

generate symmetric bilinear form ϕ .

Linear maps such that f−1 = f ∗, or equivalently

f ∗ ◦ f = f ◦ f ∗ = id,

also play an important role. They are linear isometries, or isometries. Rotations are

special kinds of isometries. Another important class of linear maps are the linear

maps satisfying the property

f ∗ ◦ f = f ◦ f ∗,

called normal linear maps. We will see later on that normal maps can always be

diagonalized over orthonormal bases of eigenvectors, but this will require using a

Hermitian inner product (over C).

Given two Euclidean spaces E and F , where the inner product on E is denoted

by 〈−,−〉1 and the inner product on F is denoted by 〈−,−〉2, given any linear map

f : E→ F , it is immediately verified that the proof of Lemma 6.5 can be adapted to

show that there is a unique linear map f ∗ : F → E such that

〈 f (u),v〉2 = 〈u, f ∗(v)〉1

for all u ∈ E and all v ∈ F . The linear map f ∗ is also called the adjoint of f .

Remark: Given any basis for E and any basis for F , it is possible to characterize the

matrix of the adjoint f ∗ of f in terms of the matrix of f , and the symmetric matrices

defining the inner products. We will do so with respect to orthonormal bases. Also,

since inner products are symmetric, the adjoint f ∗ of f is also characterized by

f (u) · v = u · f ∗(v),

for all u,v ∈ E .

We can also use Lemma 6.4 to show that any Euclidean space of finite dimension

has an orthonormal basis.

Lemma 6.6. Given any nontrivial Euclidean space E of finite dimension n≥ 1, there

is an orthonormal basis (u1, . . . ,un) for E.
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Proof. We proceed by induction on n. When n = 1, take any nonnull vector v ∈ E ,

which exists, since we assumed E nontrivial, and let

u =
v

‖v‖ .

If n≥ 2, again take any nonnull vector v ∈ E , and let

u1 =
v

‖v‖ .

Consider the linear form ϕu1
associated with u1. Since u1 6= 0, by Lemma 6.4, the

linear form ϕu1
is nonnull, and its kernel is a hyperplane H. Since ϕu1

(w) = 0 iff

u1 ·w = 0, the hyperplane H is the orthogonal complement of {u1}. Furthermore,

since u1 6= 0 and the inner product is positive definite, u1 ·u1 6= 0, and thus, u1 /∈H,

which implies that E = H ⊕Ru1. However, since E is of finite dimension n, the

hyperplane H has dimension n−1, and by the induction hypothesis, we can find an

orthonormal basis (u2, . . . ,un) for H. Now, because H and the one dimensional space

Ru1 are orthogonal and E = H⊕Ru1, it is clear that (u1, . . . ,un) is an orthonormal

basis for E . ⊓⊔
There is a more constructive way of proving Lemma 6.6, using a procedure

known as the Gram–Schmidt orthonormalization procedure. Among other things,

the Gram–Schmidt orthonormalization procedure yields the QR-decomposition for

matrices, an important tool in numerical methods.

Lemma 6.7. Given any nontrivial Euclidean space E of finite dimension n≥ 1, from

any basis (e1, . . . ,en) for E we can construct an orthonormal basis (u1, . . . ,un)
for E, with the property that for every k, 1 ≤ k ≤ n, the families (e1, . . . ,ek) and

(u1, . . . ,uk) generate the same subspace.

Proof. We proceed by induction on n. For n = 1, let

u1 =
e1

‖e1‖
.

For n≥ 2, we also let

u1 =
e1

‖e1‖
,

and assuming that (u1, . . . ,uk) is an orthonormal system that generates the same

subspace as (e1, . . . ,ek), for every k with 1≤ k < n, we note that the vector

u′k+1 = ek+1−
k

∑
i=1

(ek+1 ·ui)ui

is nonnull, since otherwise, because (u1, . . . ,uk) and (e1, . . . ,ek) generate the same

subspace, (e1, . . . ,ek+1) would be linearly dependent, which is absurd, since (e1, . . .,
en) is a basis. Thus, the norm of the vector u′k+1 being nonzero, we use the following

construction of the vectors uk and u′k:
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u′1 = e1, u1 =
u′1
‖u′1‖

,

and for the inductive step

u′k+1 = ek+1−
k

∑
i=1

(ek+1 ·ui)ui, uk+1 =
u′k+1

‖u′k+1‖
,

where 1≤ k≤ n−1. It is clear that ‖uk+1‖= 1, and since (u1, . . . ,uk) is an orthonor-

mal system, we have

u′k+1 ·ui = ek+1 ·ui− (ek+1 ·ui)ui ·ui = ek+1 ·ui− ek+1 ·ui = 0,

for all i with 1≤ i≤ k. This shows that the family (u1, . . . ,uk+1) is orthonormal, and

since (u1, . . . ,uk) and (e1, . . . ,ek) generates the same subspace, it is clear from the

definition of uk+1 that (u1, . . . ,uk+1) and (e1, . . . ,ek+1) generate the same subspace.

This completes the induction step and the proof of the lemma. ⊓⊔

Note that u′k+1 is obtained by subtracting from ek+1 the projection of ek+1 itself

onto the orthonormal vectors u1, . . . ,uk that have already been computed. Then, u′k+1

is normalized. The Gram–Schmidt orthonormalization procedure is illustrated in

Figure 6.2.

e1

e2

e3

u1

(e2 ·u1)u1

(e3 ·u1)u1

(e3 ·u2)u2u2 u′2

u3

u′3

Fig. 6.2 The Gram–Schmidt orthonormalization procedure.

Remarks:

(1) The QR-decomposition can now be obtained very easily, but we postpone this

until Section 6.4.
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(2) We could compute u′k+1 using the formula

u′k+1 = ek+1−
k

∑
i=1

(
ek+1 ·u′i
‖u′i‖2

)
u′i,

and normalize the vectors u′k at the end. This time, we are subtracting from ek+1

the projection of ek+1 itself onto the orthogonal vectors u′1, . . . ,u
′
k. This might

be preferable when writing a computer program.

(3) The proof of Lemma 6.7 also works for a countably infinite basis for E , produc-

ing a countably infinite orthonormal basis.

Example 6.5. If we consider polynomials and the inner product

〈 f ,g〉=
∫ 1

−1
f (t)g(t)dt,

applying the Gram–Schmidt orthonormalization procedure to the polynomials

1,x,x2, . . . ,xn, . . . ,

which form a basis of the polynomials in one variable with real coefficients, we get

a family of orthonormal polynomials Qn(x) related to the Legendre polynomials.

The Legendre polynomials Pn(x) have many nice properties. They are orthogo-

nal, but their norm is not always 1. The Legendre polynomials Pn(x) can be defined

as follows. Letting fn be the function

fn(x) = (x2− 1)n,

we define Pn(x) as follows:

P0(x) = 1, and Pn(x) =
1

2nn!
f
(n)
n (x),

where f
(n)
n is the nth derivative of fn.

They can also be defined inductively as follows:

P0(x) = 1,

P1(x) = x,

Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x).

It turns out that the polynomials Qn are related to the Legendre polynomials Pn

as follows:

Qn(x) =

√
2n+ 1

2
Pn(x).

As a consequence of Lemma 6.6 (or Lemma 6.7), given any Euclidean space of

finite dimension n, if (e1, . . . ,en) is an orthonormal basis for E , then for any two
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vectors u = u1e1 + · · ·+ unen and v = v1e1 + · · ·+ vnen, the inner product u · v is

expressed as

u · v = (u1e1 + · · ·+ unen) · (v1e1 + · · ·+ vnen) =
n

∑
i=1

uivi,

and the norm ‖u‖ as

‖u‖= ‖u1e1 + · · ·+ unen‖=
√

n

∑
i=1

u2
i .

We can also prove the following lemma regarding orthogonal spaces.

Lemma 6.8. Given any nontrivial Euclidean space E of finite dimension n≥ 1, for

any subspace F of dimension k, the orthogonal complement F⊥ of F has dimension

n− k, and E = F⊕F⊥. Furthermore, we have F⊥⊥ = F.

Proof. From Lemma 6.6, the subspace F has some orthonormal basis (u1, . . . ,uk).
This linearly independent family (u1, . . . ,uk) can be extended to a basis (u1, . . . ,uk,

vk+1, . . . ,vn), and by Lemma 6.7, it can be converted to an orthonormal basis

(u1, . . . ,un), which contains (u1, . . . ,uk) as an orthonormal basis of F . Now, any

vector w = w1u1 + · · ·+ wnun ∈ E is orthogonal to F iff w · ui = 0, for every i,

where 1 ≤ i ≤ k, iff wi = 0 for every i, where 1 ≤ i ≤ k. Clearly, this shows that

(uk+1, . . . ,un) is a basis of F⊥, and thus E = F⊕F⊥, and F⊥ has dimension n− k.

Similarly, any vector w = w1u1 + · · ·+wnun ∈ E is orthogonal to F⊥ iff w ·ui = 0,

for every i, where k+ 1 ≤ i ≤ n, iff wi = 0 for every i, where k+ 1 ≤ i ≤ n. Thus,

(u1, . . . ,uk) is a basis of F⊥⊥, and F⊥⊥ = F . ⊓⊔

We now define Euclidean affine spaces.

Definition 6.3. An affine space
(
E,
−→
E
)

is a Euclidean affine space if its underlying

vector space
−→
E is a Euclidean vector space. Given any two points a,b∈E , we define

the distance between a and b, or length of the segment (a,b), as ‖−→ab‖, the Euclidean

norm of
−→
ab. Given any two pairs of points (a,b) and (c,d), we define their inner

product as
−→
ab ·−→cd. We say that (a,b) and (c,d) are orthogonal, or perpendicular, if−→

ab ·−→cd = 0. We say that two affine subspaces F1 and F2 of E are orthogonal if their

directions F1 and F2 are orthogonal.

The verification that the distance defined in Definition 6.3 satisfies the axioms of

Definition 21.1 is immediate. Note that a Euclidean affine space is a normed affine

space, in the sense of Definition 21.3. We denote by Em the Euclidean affine space

obtained from the affine space Am by defining on the vector space Rm the standard

inner product

(x1, . . . ,xm) · (y1, . . . ,ym) = x1y1 + · · ·+ xmym.

The corresponding Euclidean norm is
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‖(x1, . . . ,xm)‖ =
√

x2
1 + · · ·+ x2

m.

6.3 Linear Isometries (Orthogonal Transformations)

In this section we consider linear maps between Euclidean spaces that preserve the

Euclidean norm. These transformations, sometimes called rigid motions, play an

important role in geometry.

Definition 6.4. Given any two nontrivial Euclidean spaces E and F of the same

finite dimension n, a function f : E→F is an orthogonal transformation, or a linear

isometry, if it is linear and

‖ f (u)‖= ‖u‖,
for all u ∈ E .

Remarks:

(1) A linear isometry is often defined as a linear map such that

‖ f (v)− f (u)‖= ‖v− u‖,

for all u,v∈ E . Since the map f is linear, the two definitions are equivalent. The

second definition just focuses on preserving the distance between vectors.

(2) Sometimes, a linear map satisfying the condition of Definition 6.4 is called a

metric map, and a linear isometry is defined as a bijective metric map.

An isometry (without the word linear) is sometimes defined as a function f : E→
F (not necessarily linear) such that

‖ f (v)− f (u)‖= ‖v− u‖,

for all u,v ∈ E , i.e., as a function that preserves the distance. This requirement turns

out to be very strong. Indeed, the next lemma shows that all these definitions are

equivalent when E and F are of finite dimension, and for functions such that f (0) =
0.

Lemma 6.9. Given any two nontrivial Euclidean spaces E and F of the same finite

dimension n, for every function f : E→ F, the following properties are equivalent:

(1) f is a linear map and ‖ f (u)‖= ‖u‖, for all u ∈ E;

(2) ‖ f (v)− f (u)‖= ‖v− u‖, for all u,v ∈ E, and f (0) = 0;

(3) f (u) · f (v) = u · v, for all u,v ∈ E.

Furthermore, such a map is bijective.
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Proof. Clearly, (1) implies (2), since in (1) it is assumed that f is linear.

Assume that (2) holds. In fact, we shall prove a slightly stronger result. We prove

that if

‖ f (v)− f (u)‖= ‖v− u‖
for all u,v ∈ E , then for any vector τ ∈ E , the function g : E→ F defined such that

g(u) = f (τ + u)− f (τ)

for all u ∈ E is a linear map such that g(0) = 0 and (3) holds. Clearly, g(0) =
f (τ)− f (τ) = 0.

Note that from the hypothesis

‖ f (v)− f (u)‖= ‖v− u‖

for all u,v ∈ E , we conclude that

‖g(v)− g(u)‖ = ‖ f (τ + v)− f (τ)− ( f (τ + u)− f (τ))‖,
= ‖ f (τ + v)− f (τ + u)‖,
= ‖τ + v− (τ + u)‖,
= ‖v− u‖,

for all u,v ∈ E . Since g(0) = 0, by setting u = 0 in

‖g(v)− g(u)‖= ‖v− u‖,

we get

‖g(v)‖= ‖v‖
for all v ∈ E . In other words, g preserves both the distance and the norm.

To prove that g preserves the inner product, we use the simple fact that

2u · v = ‖u‖2 + ‖v‖2−‖u− v‖2

for all u,v ∈ E . Then, since g preserves distance and norm, we have

2g(u) ·g(v) = ‖g(u)‖2+ ‖g(v)‖2−‖g(u)− g(v)‖2

= ‖u‖2+ ‖v‖2−‖u− v‖2

= 2u · v,

and thus g(u) ·g(v) = u · v, for all u,v ∈ E , which is (3).

In particular, if f (0) = 0, by letting τ = 0, we have g = f , and f preserves the

scalar product, i.e., (3) holds.

Now assume that (3) holds. Since E is of finite dimension, we can pick an or-

thonormal basis (e1, . . . ,en) for E . Since f preserves inner products, ( f (e1), . . .,
f (en)) is also orthonormal, and since F also has dimension n, it is a basis of F .

Then note that for any u = u1e1 + · · ·+ unen, we have
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ui = u · ei,

for all i, 1≤ i≤ n. Thus, we have

f (u) =
n

∑
i=1

( f (u) · f (ei)) f (ei),

and since f preserves inner products, this shows that

f (u) =
n

∑
i=1

(u · ei) f (ei) =
n

∑
i=1

ui f (ei),

which shows that f is linear. Obviously, f preserves the Euclidean norm, and (3)

implies (1).

Finally, if f (u) = f (v), then by linearity f (v− u) = 0, so that ‖ f (v− u)‖ = 0,

and since f preserves norms, we must have ‖v− u‖= 0, and thus u = v. Thus, f is

injective, and since E and F have the same finite dimension, f is bijective. ⊓⊔

Remarks:

(i) The dimension assumption is needed only to prove that (3) implies (1) when f

is not known to be linear, and to prove that f is surjective, but the proof shows

that (1) implies that f is injective.

(ii) In (2), when f does not satisfy the condition f (0) = 0, the proof shows that f

is an affine map. Indeed, taking any vector τ as an origin, the map g is linear,

and

f (τ + u) = f (τ)+ g(u)

for all u ∈ E , proving that f is affine with associated linear map g.

(iii) Paul Hughett showed me a nice proof of the following interesting fact: The

implication that (3) implies (1) holds if we also assume that f is surjective,

even if E has infinite dimension. Indeed, observe that

( f (λ u+ µv)−λ f (u)− µ f (v)) · f (w)

= f (λ u+ µv) · f (w)−λ f (u) · f (w)− µ f (v) · f (w)

= (λ u+ µv) ·w−λ u ·w−µv ·w= 0,

since f preserves the inner product. However, if f is surjective, every z ∈ F is

of the form z = f (w) for some w ∈ E , and the above equation implies that

( f (λ u+ µv)−λ f (u)− µ f (v)) · z= 0

for all z ∈ E , which implies that

f (λ u+ µv)−λ f (u)− µ f (v) = 0,

proving that f is linear.
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In view of Lemma 6.9, we will drop the word “linear” in “linear isometry,” unless

we wish to emphasize that we are dealing with a map between vector spaces.

We are now going to take a closer look at the isometries f : E→E of a Euclidean

space of finite dimension.

6.4 The Orthogonal Group, Orthogonal Matrices

In this section we explore some of the basic properties of the orthogonal group and

of orthogonal matrices.

Lemma 6.10. Let E be any Euclidean space of finite dimension n, and let f : E→ E

be any linear map. The following properties hold:

(1) The linear map f : E → E is an isometry iff

f ◦ f ∗ = f ∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . ,en) of E, if the matrix of f is A, then the

matrix of f ∗ is the transpose A⊤ of A, and f is an isometry iff A satisfies the

identities

AA⊤ = A⊤A = In,

where In denotes the identity matrix of order n, iff the columns of A form an

orthonormal basis of E, iff the rows of A form an orthonormal basis of E.

Proof. (1) The linear map f : E→ E is an isometry iff

f (u) · f (v) = u · v,

for all u,v ∈ E , iff

f ∗( f (u)) · v = f (u) · f (v) = u · v
for all u,v ∈ E , which implies

( f ∗( f (u))− u) · v = 0

for all u,v ∈ E . Since the inner product is positive definite, we must have

f ∗( f (u))− u = 0

for all u ∈ E , that is,

f ∗ ◦ f = f ◦ f ∗ = id.

(2) If (e1, . . . ,en) is an orthonormal basis for E , let A = (ai, j) be the matrix of f ,

and let B = (bi, j) be the matrix of f ∗. Since f ∗ is characterized by

f ∗(u) · v = u · f (v)
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for all u,v ∈ E , using the fact that if w = w1e1 + · · ·+wnen we have wk = w · ek for

all k, 1≤ k≤ n, letting u = ei and v = e j, we get

b j,i = f ∗(ei) · e j = ei · f (e j) = ai, j,

for all i, j, 1 ≤ i, j ≤ n. Thus, B = A⊤. Now, if X and Y are arbitrary matrices over

the basis (e1, . . . ,en), denoting as usual the jth column of X by X j, and similarly for

Y , a simple calculation shows that

X⊤Y = (Xi ·Yj)1≤i, j≤n.

Then it is immediately verified that if X = Y = A, then

A⊤A = AA⊤ = In

iff the column vectors (A1, . . . ,An) form an orthonormal basis. Thus, from (1), we

see that (2) is clear (also because the rows of A are the columns of A⊤). ⊓⊔
Lemma 6.10 shows that the inverse of an isometry f is its adjoint f ∗. Lemma

6.10 also motivates the following definition. The set of all real n× n matrices is

denoted by Mn(R).

Definition 6.5. A real n× n matrix is an orthogonal matrix if

AA⊤ = A⊤A = In.

Remark: It is easy to show that the conditions AA⊤= In, A⊤A = In, and A−1 = A⊤,

are equivalent. Given any two orthonormal bases (u1, . . . ,un) and (v1, . . . ,vn), if

P is the change of basis matrix from (u1, . . . ,un) to (v1, . . . ,vn) (i.e., the columns

of P are the coordinates of the v j w.r.t. (u1, . . . ,un)), since the columns of P are

the coordinates of the vectors v j with respect to the basis (u1, . . . ,un), and since

(v1, . . . ,vn) is orthonormal, the columns of P are orthonormal, and by Lemma 6.10

(2), the matrix P is orthogonal.

The proof of Lemma 6.9 (3) also shows that if f is an isometry, then the image

of an orthonormal basis (u1, . . . ,un) is an orthonormal basis. Students often ask why

orthogonal matrices are not called orthonormal matrices, since their columns (and

rows) are orthonormal bases! I have no good answer, but isometries do preserve

orthogonality, and orthogonal matrices correspond to isometries.

Recall that the determinant det( f ) of a linear map f : E→E is independent of the

choice of a basis in E . Also, for every matrix A∈Mn(R), we have det(A) = det(A⊤),
and for any two n× n matrices A and B, we have det(AB) = det(A)det(B) (for all

these basic results, see Lang [14]). Then, if f is an isometry, and A is its matrix with

respect to any orthonormal basis, AA⊤ = A⊤A = In implies that det(A)2 = 1, that is,

either det(A) = 1, or det(A) =−1. It is also clear that the isometries of a Euclidean

space of dimension n form a group, and that the isometries of determinant +1 form

a subgroup. This leads to the following definition.
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Definition 6.6. Given a Euclidean space E of dimension n, the set of isometries

f : E → E forms a subgroup of GL(E) denoted by O(E), or O(n) when E = Rn,

called the orthogonal group (of E). For every isometry f , we have det( f ) = ±1,

where det( f ) denotes the determinant of f . The isometries such that det( f ) = 1 are

called rotations, or proper isometries, or proper orthogonal transformations, and

they form a subgroup of the special linear group SL(E) (and of O(E)), denoted

by SO(E), or SO(n) when E = Rn, called the special orthogonal group (of E).

The isometries such that det( f ) = −1 are called improper isometries, or improper

orthogonal transformations, or flip transformations.

As an immediate corollary of the Gram–Schmidt orthonormalization procedure,

we obtain the QR-decomposition for invertible matrices.

6.5 QR-Decomposition for Invertible Matrices

Now that we have the definition of an orthogonal matrix, we can explain how the

Gram–Schmidt orthonormalization procedure immediately yields the QR-decompo-

sition for matrices.

Lemma 6.11. Given any real n× n matrix A, if A is invertible, then there is an or-

thogonal matrix Q and an upper triangular matrix R with positive diagonal entries

such that A = QR.

Proof. We can view the columns of A as vectors A1, . . . ,An in En. If A is invertible,

then they are linearly independent, and we can apply Lemma 6.7 to produce an

orthonormal basis using the Gram–Schmidt orthonormalization procedure. Recall

that we construct vectors Qk and Q′k as follows:

Q′1 = A1, Q1 =
Q′1
‖Q′1‖

,

and for the inductive step

Q′k+1 = Ak+1−
k

∑
i=1

(Ak+1 ·Qi)Qi, Qk+1 =
Q′k+1

‖Q′k+1‖
,

where 1≤ k ≤ n− 1. If we express the vectors Ak in terms of the Qi and Q′i, we get

the triangular system
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A1 = ‖Q′1‖Q1,

...

A j = (A j ·Q1)Q1 + · · ·+(A j ·Qi)Qi + · · ·+ ‖Q′j‖Q j,

...

An = (An ·Q1)Q1 + · · ·+(An ·Qn−1)Qn−1 + ‖Q′n‖Qn.

Letting rk,k = ‖Q′k‖, and ri, j = A j ·Qi (the reversal of i and j on the right-hand

side is intentional!), where 1 ≤ k ≤ n, 2 ≤ j ≤ n, and 1 ≤ i≤ j− 1, and letting qi, j

be the ith component of Q j, we note that ai, j, the ith component of A j, is given by

ai, j = r1, jqi,1 + · · ·+ ri, jqi,i + · · ·+ r j, jqi, j = qi,1r1, j + · · ·+ qi,iri, j + · · ·+ qi, jr j, j.

If we let Q = (qi, j), the matrix whose columns are the components of the Q j, and

R = (ri, j), the above equations show that A = QR, where R is upper triangular. The

diagonal entries rk,k = ‖Q′k‖= Ak ·Qk are indeed positive. ⊓⊔

The reader should try the above procedure on some concrete examples for 2× 2

and 3× 3 matrices.

Remarks:

(1) Because the diagonal entries of R are positive, it can be shown that Q and R are

unique.

(2) The QR-decomposition holds even when A is not invertible. In this case, R has

some zero on the diagonal. However, a different proof is needed. We will give

a nice proof using Householder matrices (see Lemma 8.6, and also Strang [23,

24], Golub and Van Loan [9], Trefethen and Bau [26], Demmel [7],

Kincaid and Cheney [13], or Ciarlet [5]).

Example 6.6. Consider the matrix

A =




0 0 5

0 4 1

1 1 1


 .

We leave as an exercise to show that A = QR, with

Q =




0 0 1

0 1 0

1 0 0


 and R =




1 1 1

0 4 1

0 0 5


 .

Example 6.7. Another example of QR-decomposition is

A =




1 1 2

0 0 1

1 0 0


 =




1/
√

2 1/
√

2 0

0 0 1

1/
√

2 −1/
√

2 0





√

2 1/
√

2
√

2

0 1/
√

2
√

2

0 0 1


 .
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The QR-decomposition yields a rather efficient and numerically stable method

for solving systems of linear equations. Indeed, given a system Ax = b, where A is

an n× n invertible matrix, writing A = QR, since Q is orthogonal, we get

Rx = Q⊤b,

and since R is upper triangular, we can solve it by Gaussian elimination, by solving

for the last variable xn first, substituting its value into the system, then solving for

xn−1, etc. The QR-decomposition is also very useful in solving least squares prob-

lems (we will come back to this later on), and for finding eigenvalues. It can be

easily adapted to the case where A is a rectangular m× n matrix with independent

columns (thus, n ≤ m). In this case, Q is not quite orthogonal. It is an m× n matrix

whose columns are orthogonal, and R is an invertible n× n upper diagonal matrix

with positive diagonal entries. For more on QR, see Strang [23, 24], Golub and Van

Loan [9], Demmel [7], Trefethen and Bau [26], or Serre [21].

It should also be said that the Gram–Schmidt orthonormalization procedure that

we have presented is not very stable numerically, and instead, one should use

the modified Gram–Schmidt method. To compute Q′k+1, instead of projecting Ak+1

onto Q1, . . . ,Qk in a single step, it is better to perform k projections. We compute

Q1
k+1,Q

2
k+1, . . . ,Q

k
k+1 as follows:

Q1
k+1 = Ak+1− (Ak+1 ·Q1)Q1,

Qi+1
k+1 = Qi

k+1− (Qi
k+1 ·Qi+1)Qi+1,

where 1 ≤ i ≤ k− 1. It is easily shown that Q′k+1 = Qk
k+1. The reader is urged to

code this method.

6.6 Some Applications of Euclidean Geometry

Euclidean geometry has applications in computational geometry, in particular Voro-

noi diagrams and Delaunay triangulations, discussed in Chapter 10. In turn, Voronoi

diagrams have applications in motion planning (see O’Rourke [17]).

Euclidean geometry also has applications to matrix analysis. Recall that a real n×
n matrix A is symmetric if it is equal to its transpose A⊤. One of the most important

properties of symmetric matrices is that they have real eigenvalues and that they can

be diagonalized by an orthogonal matrix (see Chapter 12). This means that for every

symmetric matrix A, there is a diagonal matrix D and an orthogonal matrix P such

that

A = PDP⊤.

Even though it is not always possible to diagonalize an arbitrary matrix, there are

various decompositions involving orthogonal matrices that are of great practical

interest. For example, for every real matrix A, there is the QR-decomposition, which
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says that a real matrix A can be expressed as

A = QR,

where Q is orthogonal and R is an upper triangular matrix. This can be obtained

from the Gram–Schmidt orthonormalization procedure, as we saw in Section 6.5, or

better, using Householder matrices, as shown in Section 8.3. There is also the polar

decomposition, which says that a real matrix A can be expressed as

A = QS,

where Q is orthogonal and S is symmetric positive semidefinite (which means that

the eigenvalues of S are nonnegative; see Chapter 12). Such a decomposition is

important in continuum mechanics and in robotics, since it separates stretching from

rotation. Finally, there is the wonderful singular value decomposition, abbreviated

as SVD, which says that a real matrix A can be expressed as

A =VDU⊤,

where U and V are orthogonal and D is a diagonal matrix with nonnegative entries

(see Chapter 13). This decomposition leads to the notion of pseudo-inverse, which

has many applications in engineering (least squares solutions, etc). For an excellent

presentation of all these notions, we highly recommend Strang [24, 23], Golub and

Van Loan [9], Demmel [7], Serre [21], and Trefethen and Bau [26].

The method of least squares, invented by Gauss and Legendre around 1800, is

another great application of Euclidean geometry. Roughly speaking, the method is

used to solve inconsistent linear systems Ax = b, where the number of equations is

greater than the number of variables. Since this is generally impossible, the method

of least squares consists in finding a solution x minimizing the Euclidean norm

‖Ax− b‖2, that is, the sum of the squares of the “errors.” It turns out that there is

always a unique solution x+ of smallest norm minimizing ‖Ax−b‖2, and that it is a

solution of the square system

A⊤Ax = A⊤b,

called the system of normal equations. The solution x+ can be found either by using

the QR-decomposition in terms of Householder transformations, or by using the

notion of pseudo-inverse of a matrix. The pseudo-inverse can be computed using

the SVD decomposition. Least squares methods are used extensively in computer

vision; see Trucco and Verri [27], or Jain, Katsuri, and Schunck [12]. More details

on the method of least squares and pseudo-inverses can be found in Chapter 14.

6.7 Problems

6.1. Prove Lemma 6.2.
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6.2. Prove Lemma 6.3.

6.3. Let (e1, . . . ,en) be an orthonormal basis for E . If X and Y are arbitrary n× n

matrices, denoting as usual the jth column of X by X j, and similarly for Y , show

that

X⊤Y = (Xi ·Yj)1≤i, j≤n.

Use this to prove that

A⊤A = AA⊤ = In

iff the column vectors (A1, . . . ,An) form an orthonormal basis. Show that the condi-

tions AA⊤ = In, A⊤A = In, and A−1 = A⊤ are equivalent.

6.4. Given any two linear maps f : E → F and g : F → E , where dim(E) = n and

dim(F) = m, prove that

(−λ )m det(g ◦ f −λ In) = (−λ )n det( f ◦ g−λ Im),

and thus that g ◦ f and f ◦ g have the same nonnull eigenvalues.

Hint. If A is an m× n matrix and B is an n×m matrix, observe that

∣∣∣∣
AB−X Im 0m,n

B −X In

∣∣∣∣=
∣∣∣∣
A XIm

In 0n,m

∣∣∣∣
∣∣∣∣

B −XIn

−Im A

∣∣∣∣

and ∣∣∣∣
B −XIn

−Im A

∣∣∣∣
∣∣∣∣
A XIm

In 0n,m

∣∣∣∣=
∣∣∣∣
BA−X In XB

0m,n −X Im

∣∣∣∣ ,

where X is a variable.

6.5. (a) Let C1 = (C1,R1) and C2 = (C2,R2) be two distinct circles in the plane E2

(where Ci is the center and Ri is the radius). What is the locus of the centers of all

circles tangent to both C1 and C2?

Hint. When is it one conic, when is it two conics?

(b) Repeat question (a) in the case where C2 is a line.

(c) Given three pairwise distinct circles C1 = (C1,R1), C2 = (C2,R2), and C3 =
(C3,R3) in the plane E2, prove that there are at most eight circles simultaneously

tangent to C1, C2, and C3 (this is known as the problem of Apollonius). What hap-

pens if the centers C1,C2,C3 of the circles are collinear? In the latter case, show that

there are at most two circles exterior and tangent to C1, C2, and C3.

Hint. You may want to use a carefully chosen inversion (see the problems in Section

5.14, especially Problem 5.37).

(d) Prove that the problem of question (c) reduces to the problem of finding the

circles passing through a fixed point and tangent to two given circles. In turn, by

inversion, this problem reduces to finding all lines tangent to two circles.

(e) Given four pairwise distinct spheres C1 = (C1,R1), C2 = (C2,R2), C3 =
(C3,R3), and C4 = (C4,R4), prove that there are at most sixteen spheres simulta-

neously tangent to C1, C2, C3, and C4. Prove that this problem reduces to the prob-

lem of finding the spheres passing through a fixed point and tangent to three given
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spheres. In turn, by inversion, this problem reduces to finding all planes tangent to

three spheres.

6.6. (a) Given any two circles C1 and C2 in E2 of equations

x2 + y2− 2ax− 2by+ c= 0 and x2 + y2− 2a′x− 2′by+ c′ = 0,

we say that C1 and C2 are orthogonal if they intersect and if the tangents at the

intersection points are orthogonal. Prove that C1 and C2 are orthogonal iff

2(aa′+ bb′) = c+ c′.

(b) For any given c ∈R (c 6= 0), there is a pencil F of circles of equations

x2 + y2− 2ux− c= 0,

where u ∈ R is arbitrary. Show that the set of circles orthogonal to all circles in the

pencil F is the pencil F⊥ of circles of equations

x2 + y2− 2vy+ c= 0,

where v ∈ R is arbitrary.

6.7. Let P = {p1, . . . , pn} be a finite set of points in E3. Show that there is a unique

point c such that the sum of the squares of the distances from c to each pi is minimal.

Find this point in terms of the pi.

6.8. (1) Compute the real Fourier coefficients of the function id(x) = x over [−π ,π ]
and prove that

x = 2

(
sin x

1
− sin2x

2
+

sin 3x

3
−·· ·

)
.

What is the value of the Fourier series at ±π? What is the value of the Fourier

near ±π? Do you find this surprising?

(2) Plot the functions obtained by keeping 1,2,4,5, and 10 terms. What do you

observe around±π?

6.9. The Dirac delta function (which is not a function!) is the spike function s.t.

δ (k2π)=+∞ for all k∈Z, and δ (x) = 0 everywhere else. It has the property that for

“well-behaved” functions f (including constant functions and trigonometric func-

tions), ∫ +π

−π
f (t)δ (t)dt = f (0).

(1) Compute the real Fourier coefficients of δ over [−π ,π ], and prove that

δ (x) =
1

2π
(1+ 2cosx+ 2cos2x+ 2cos3x+ · · ·+ 2cosnx+ · · ·) .

Also compute the complex Fourier coefficients of δ over [−π ,π ], and prove that
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δ (x) =
1

2π

(
1+ eix+ e−ix + ei2x+ e−i2x + · · ·+ einx + e−inx+ · · ·

)
.

(2) Prove that the partial sum of the first 2n+ 1 complex terms is

δn(x) =
sin((2n+ 1)(x/2))

2π sin(x/2)
.

What is δn(0)?
(3) Plot δn(x) for n = 10,20 (over [−π ,π ]). Prove that the area under the curve

δn is independent of n. What is it?

6.10. (1) If an upper triangular n× n matrix R is invertible, prove that its inverse is

also upper triangular.

(2) If an upper triangular matrix is orthogonal, prove that it must be a diagonal

matrix.

If A is an invertible n× n matrix and if A = Q1R1 = Q2R2, where R1 and R2 are

upper triangular with positive diagonal entries and Q1,Q2 are orthogonal, prove that

Q1 = Q2 and R1 = R2.

6.11. (1) Review the modified Gram–Schmidt method. Recall that to compute Q′k+1,

instead of projecting Ak+1 onto Q1, . . . ,Qk in a single step, it is better to perform k

projections. We compute Q1
k+1,Q

2
k+1, . . ., Qk

k+1 as follows:

Q1
k+1 = Ak+1− (Ak+1 ·Q1)Q1,

Qi+1
k+1 = Qi

k+1− (Qi
k+1 ·Qi+1)Qi+1,

where 1≤ i≤ k− 1.

Prove that Q′k+1 = Qk
k+1.

(2) Write two computer programs to compute the QR-decomposition of an invert-

ible matrix. The first one should use the standard Gram–Schmidt method, and the

second one the modified Gram–Schmidt method. Run both on a number of matrices,

up to dimension at least 10. Do you observe any difference in their performance in

terms of numerical stability?

Run your programs on the Hilbert matrix Hn = (1/(i+ j−1))1≤i, j≤n. What hap-

pens?

Extra Credit. Write a program to solve linear systems of equations Ax= b, using

your version of the QR-decomposition program, where A is an n× n matrix.

6.12. Let E be a Euclidean space of finite dimension n, and let (e1, . . . ,en) be an

orthonormal basis for E . For any two vectors u,v∈ E , the linear map u⊗v is defined

such that

u⊗ v(x) = (v · x)u,

for all x ∈ E . If U and V are the column vectors of coordinates of u and v w.r.t. the

basis (e1, . . . ,en), prove that u⊗ v is represented by the matrix

U⊤V.
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What sort of linear map is u⊗ u when u is a unit vector?

6.13. Let ϕ : E×E→R be a bilinear form on a real vector space E of finite dimen-

sion n. Given any basis (e1, . . . ,en) of E , let A = (αi j) be the matrix defined such

that

αi j = ϕ(ei,e j),

1≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . ,en).
(a) For any two vectors x and y, if X and Y denote the column vectors of coordi-

nates of x and y w.r.t. the basis (e1, . . . ,en), prove that

ϕ(x,y) = X⊤AY.

(b) Recall that A is a symmetric matrix if A = A⊤. Prove that ϕ is symmetric if A

is a symmetric matrix.

(c) If ( f1, . . . , fn) is another basis of E and P is the change of basis matrix from

(e1, . . . ,en) to ( f1, . . . , fn), prove that the matrix of ϕ w.r.t. the basis ( f1, . . . , fn) is

P⊤AP.

The common rank of all matrices representing ϕ is called the rank of ϕ .

6.14. Let ϕ : E×E → R be a symmetric bilinear form on a real vector space E of

finite dimension n. Two vectors x and y are said to be conjugate w.r.t. ϕ if ϕ(x,y)= 0.

The main purpose of this problem is to prove that there is a basis of vectors that are

pairwise conjugate w.r.t. ϕ .

(a) Prove that if ϕ(x,x) = 0 for all x ∈ E , then ϕ is identically null on E .

Otherwise, we can assume that there is some vector x ∈ E such that ϕ(x,x) 6= 0.

Use induction to prove that there is a basis of vectors that are pairwise conjugate

w.r.t. ϕ .

For the induction step, proceed as follows. Let (e1,e2, . . . ,en) be a basis of E , with

ϕ(e1,e1) 6= 0. Prove that there are scalars λ2, . . . ,λn such that each of the vectors

vi = ei +λie1

is conjugate to e1 w.r.t. ϕ , where 2≤ i≤ n, and that (e1,v2, . . . ,vn) is a basis.

(b) Let (e1, . . . ,en) be a basis of vectors that are pairwise conjugate w.r.t. ϕ , and

assume that they are ordered such that

ϕ(ei,ei) =

{
θi 6= 0 if 1≤ i≤ r,

0 if r+ 1≤ i≤ n,

where r is the rank of ϕ . Show that the matrix of ϕ w.r.t. (e1, . . . ,en) is a diagonal

matrix, and that

ϕ(x,y) =
r

∑
i=1

θixiyi,

where x = ∑n
i=1 xiei and y = ∑n

i=1 yiei.
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Prove that for every symmetric matrix A, there is an invertible matrix P such that

P⊤AP = D,

where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 ≤ p ≤ r (where r is the rank of ϕ), such

that ϕ(ui,ui)> 0 for exactly p vectors of every basis (u1, . . . ,un) of vectors that are

pairwise conjugate w.r.t. ϕ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u1, . . . ,un), for any x ∈ E , we have

ϕ(x,x) = α1x2
1 + · · ·+αpx2

p−αp+1x2
p+1−·· ·−αrx

2
r ,

where x = ∑n
i=1 xiui, and that in the basis (v1, . . . ,vn), for any x ∈ E , we have

ϕ(x,x) = β1y2
1 + · · ·+βqy2

q−βq+1y2
q+1−·· ·−βry

2
r ,

where x = ∑n
i=1 yivi, with αi > 0, βi > 0, 1≤ i≤ r.

Assume that p > q and derive a contradiction. First, consider x in the subspace F

spanned by

(u1, . . . ,up,ur+1, . . . ,un),

and observe that ϕ(x,x)≥ 0 if x 6= 0. Next, consider x in the subspace G spanned by

(vq+1, . . . ,vr),

and observe that ϕ(x,x) < 0 if x 6= 0. Prove that F ∩G is nontrivial (i.e., contains

some nonnull vector), and derive a contradiction. This implies that p≤ q. Finish the

proof.

The pair (p,r− p) is called the signature of ϕ .

(d) A symmetric bilinear form ϕ is definite if for every x ∈ E , if ϕ(x,x) = 0, then

x = 0.

Prove that a symmetric bilinear form is definite iff its signature is either (n,0)
or (0,n). In other words, a symmetric definite bilinear form has rank n and is either

positive or negative.

(e) The kernel of a symmetric bilinear form ϕ is the subspace consisting of the

vectors that are conjugate to all vectors in E . We say that a symmetric bilinear form

ϕ is nondegenerate if its kernel is trivial (i.e., equal to {0}).
Prove that a symmetric bilinear form ϕ is nondegenerate iff its rank is n, the

dimension of E . Is a definite symmetric bilinear form ϕ nondegenerate? What about

the converse?

Prove that if ϕ is nondegenerate, then there is a basis of vectors that are pairwise

conjugate w.r.t. ϕ and such that ϕ is represented by the matrix

(
Ip 0

0 −Iq

)

where (p,q) is the signature of ϕ .
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(f) Given a nondegenerate symmetric bilinear form ϕ on E , prove that for every

linear map f : E→ E , there is a unique linear map f ∗ : E → E such that

ϕ( f (u), v) = ϕ(u, f ∗(v)),

for all u,v ∈ E . The map f ∗ is called the adjoint of f (w.r.t. to ϕ). Given any basis

(u1, . . . ,un), if Ω is the matrix representing ϕ and A is the matrix representing f ,

prove that f ∗ is represented by Ω−1A⊤Ω .

Prove that Lemma 6.4 also holds, i.e., the map ♭ : E→ E∗ is a canonical isomor-

phism.

A linear map f : E→ E is an isometry w.r.t. ϕ if

ϕ( f (x), f (y)) = ϕ(x, y)

for all x,y ∈ E . Prove that a linear map f is an isometry w.r.t. ϕ iff

f ∗ ◦ f = f ◦ f ∗ = id.

Prove that the set of isometries w.r.t. ϕ is a group. This group is denoted by O(ϕ),
and its subgroup consisting of isometries having determinant +1 by SO(ϕ). Given

any basis of E , if Ω is the matrix representing ϕ and A is the matrix representing f ,

prove that f ∈O(ϕ) iff

A⊤ΩA = Ω .

Given another nondegenerate symmetric bilinear form ψ on E , we say that ϕ and

ψ are equivalent if there is a bijective linear map h : E→ E such that

ψ(x, y) = ϕ(h(x), h(y)),

for all x,y ∈ E . Prove that the groups of isometries O(ϕ) and O(ψ) are isomomor-

phic (use the map f 7→ h ◦ f ◦ h−1 from O(ψ) to O(ϕ)).
If ϕ is a nondegenerate symmetric bilinear form of signature (p,q), prove that

the group O(ϕ) is isomorphic to the group of n× n matrices A such that

A⊤
(

Ip 0

0 −Iq

)
A =

(
Ip 0

0 −Iq

)
.

Remark: In view of question (f), the groups O(ϕ) and SO(ϕ) are also denoted by

O(p,q) and SO(p,q)when ϕ has signature (p,q). They are Lie groups. In particular,

the group SO(3,1), known as the Lorentz group, plays an important role in the

theory of special relativity.

6.15. (a) Let C be a circle of radius R and center O, and let P be any point in the Eu-

clidean plane E2. Consider the lines ∆ through P that intersect the circle C, generally

in two points A and B. Prove that for all such lines,

−→
PA ·−→PB = ‖−→PO‖2−R2.
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Hint. If P is not on C, let B′ be the antipodal of B (i.e.,
−−→
OB′=−−→OB). Then

−→
AB ·
−→
AB′=

0 and −→
PA ·−→PB =

−→
PB′ ·−→PB = (

−→
PO−−→OB) · (−→PO+

−→
OB) = ‖−→PO‖2−R2.

The quantity ‖−→PO‖2−R2 is called the power of P w.r.t. C, and it is denoted by

P(P,C).
Show that if ∆ is tangent to C, then A = B and

‖−→PA‖2 = ‖−→PO‖2−R2.

Show that P is inside C iff P(P,C) < 0, on C iff P(P,C) = 0, outside C if

P(P,C)> 0.

If the equation of C is

x2 + y2− 2ax− 2by+ c= 0,

prove that the power of P = (x,y) w.r.t. C is given by

P(P,C) = x2 + y2− 2ax− 2by+ c.

(b) Given two nonconcentric circles C and C′, show that the set of points having

equal power w.r.t. C and C′ is a line orthogonal to the line through the centers of C

and C′. If the equations of C and C′ are

x2 + y2− 2ax− 2by+ c= 0 and x2 + y2− 2a′x− 2b′y+ c′ = 0,

show that the equation of this line is

2(a− a′)x+ 2(b− b′)y+ c′− c = 0.

This line is called the radical axis of C and C′.
(c) Given three distinct nonconcentric circles C, C′, and C′′, prove that either the

three pairwise radical axes of these circles are parallel or that they intersect in a

single point ω that has equal power w.r.t. C, C′, and C′′. In the first case, the centers

of C, C′, and C′′ are collinear. In the second case, if the power of ω is positive, prove

that ω is the center of a circle Γ orthogonal to C, C′, and C′′, and if the power of ω
is negative, ω is inside C, C′, and C′′.

(d) Given any k ∈R with k 6= 0 and any point a, recall that an inversion of pole a

and power k is a map h : (En−{a})→ En defined such that for every x ∈ En−{a},

h(x) = a+ k
−→ax

‖−→ax‖2
.

For example, when n= 2, chosing any orthonormal frame with origin a, h is defined

by the map

(x, y) 7→
(

kx

x2 + y2
,

ky

x2 + y2

)
.
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When the centers of C, C′ and C′′ are not collinear and the power of ω is positive,

prove that by a suitable inversion, C, C′ and C′′ are mapped to three circles whose

centers are collinear.

Prove that if three distinct nonconcentric circles C, C′, and C′′ have collinear

centers, then there are at most eight circles simultaneously tangent to C, C′, and C′′,
and at most two for those exterior to C, C′, and C′′.

(e) Prove that an inversion in E3 maps a sphere to a sphere or to a plane. Prove

that inversions preserve tangency and orthogonality of planes and spheres.
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Chapter 7

Separating and Supporting Hyperplanes

7.1 Separation Theorems and Farkas’s Lemma

Now that we have a solid background in Euclidean geometry, we can go deeper into

our study of convex sets begun in Chapter 3. This chapter is devoted to a thorough

study of separating and supporting hyperplanes. We prove two geometric versions

of the Hahn–Banach theorem, from which we derive separation results for various

kinds of pairs of convex sets (open, closed, compact). We prove various versions of

Farkas’s lemma, a basic result in the theory of linear programming. We also discuss

supporting hyperplanes and prove an important proposition due to Minkowski.

It seems intuitively rather obvious that if A and B are two nonempty disjoint

convex sets in A2, then there is a line H separating them, in the sense that A and B

belong to the two (disjoint) open half-planes determined by H. However, this is not

always true! For example, this fails if both A and B are closed and unbounded (find

an example). Nevertheless, the result is true if both A and B are open, or if the notion

of separation is weakened a little bit. The key result, from which most separation

results follow, is a geometric version of the Hahn–Banach theorem. In the sequel,

we restrict our attention to real affine spaces of finite dimension. Then, if X is an

affine space of dimension d, there is an affine bijection f between X and Ad .

Now, Ad is a topological space, under the usual topology on Rd (in fact, Ad is a

metric space). Recall that if a = (a1, . . . ,ad) and b = (b1, . . . ,bd) are any two points

in Ad , their Euclidean distance, d(a,b), is given by

d(a,b) =
√
(b1− a1)2 + · · ·+(bd− ad)2,

which is also the norm ‖−→ab‖ of the vector
−→
ab, and that for any ε > 0, the open ball

B(a,ε) of center a and radius ε is given by

B(a,ε) = {b ∈ Ad | d(a,b)< ε}.

213
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A subset U ⊆ Ad is open (in the norm topology) if either U is empty or for every

point a∈U , there is some (small) open ball B(a,ε) contained in U . A subset C⊆Ad

is closed iff Ad−C is open. For example, the closed balls B(a,ε), where

B(a,ε) = {b ∈ Ad | d(a,b)≤ ε},

are closed. A subset W ⊆ Ad is bounded iff there is some ball (open or closed) B

such that W ⊆ B. A subset W ⊆ Ad is compact iff every family {Ui}i∈I that is an

open cover of W (which means that W =
⋃

i∈I(W ∩Ui), with each Ui an open set)

possesses a finite subcover (which means that there is a finite subset F ⊆ I such that

W =
⋃

i∈F(W ∩Ui)). In Ad , it can be shown that a subset W is compact iff W is

closed and bounded. Given a function f : Am→ An, we say that f is continuous if

f−1(V ) is open in Am whenever V is open in An. If f : Am → An is a continuous

function, although it is generally false that f (U) is open if U ⊆ Am is open, it is

easily checked that f (K) is compact if K ⊆ Am is compact.

An affine space X of dimension d becomes a topological space if we give it the

topology for which the open subsets are of the form f−1(U), where U is any open

subset of Ad and f : X → Ad is an affine bijection.

Given any subset A of a topological space X , the smallest closed set containing

A is denoted by A, and is called the closure or adherence of A. A subset A of X is

dense in X if A = X . The largest open set contained in A is denoted by
◦
A, and is

called the interior of A. The set FrA = A ∩X −A is called the boundary (or frontier)

of A. We also denote the boundary of A by ∂A.

In order to prove the Hahn–Banach theorem, we will need two lemmas. Given

any two distinct points x,y ∈ X , we let

]x,y[= {(1−λ )x+λ y∈ X | 0 < λ < 1}.

Our first lemma (Lemma 7.1) is intuitively quite obvious, so the reader might be

puzzled by the length of its proof. However, after proposing several wrong proofs,

we realized that its proof is more subtle than it might appear. The proof below is due

to Valentine [7]. See whether you can find a shorter (and correct) proof!

Lemma 7.1. Let S be a nonempty convex set and let x ∈
◦
S and y ∈ S. Then we have

]x,y[⊆
◦
S.

Proof. Let z ∈ ]x,y[ , that is, z = (1− λ )x+λ y, with 0 < λ < 1. Since x ∈
◦
S, we

can find some open subset U contained in S such that x ∈U . It is easy to check that

the central magnification of center z, H
z, λ−1

λ
, maps x to y. Then V = H

z, λ−1
λ
(U) is

an open subset containing y, and since y ∈ S, we have V ∩ S 6= /0. Let v ∈ V ∩ S be

a point of S in this intersection. Now, there is a unique point u ∈U ⊆ S such that

H
z, λ−1

λ
(u) = v, and since S is convex, we deduce that z = (1−λ )u+λ v ∈ S. Since

U is open, the set

W = (1−λ )U +λ v = {(1−λ )w+λ v | w ∈U} ⊆ S
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is also open and z ∈W , which shows that z ∈
◦
S. ⊓⊔

x y

u

v

z

U

V
W

Fig. 7.1 Illustration for the proof of Lemma 7.1.

Corollary 7.1. If S is convex, then
◦
S is also convex, and we have

◦
S=

◦
S. Furthermore,

if
◦
S 6= /0, then S =

◦
S.

� Beware that if S is a closed set, then the convex hull, conv(S), of S is not

necessarily closed! (Find a counterexample.) However, if S is compact, then

conv(S) is also compact and thus closed (see Proposition 3.1).

There is a simple criterion to test whether a convex set has an empty interior,

based on the notion of dimension of a convex set (recall that the dimension of a

nonempty convex subset is the dimension of its affine hull).

Proposition 7.1. A nonempty convex set S has a nonempty interior iff dimS= dimX.

Proof. Let d = dim X . First, assume that
◦
S 6= /0. Then, S contains some open ball of

center a0, and in it, we can find a frame (a0,a1, . . . ,ad) for X . Thus, dim S = dim X .

Conversely, let (a0,a1, . . . ,ad) be a frame of X , with ai ∈ S, for i = 0, . . . ,d. Then

we have
a0 + · · ·+ ad

d + 1
∈
◦
S,

and
◦
S is nonempty. ⊓⊔

� Proposition 7.1 is false in infinite dimension.

We leave the following property as an exercise:

Proposition 7.2. If S is convex, then S is also convex.

One can also easily prove that convexity is preserved under direct image and

inverse image by an affine map.

The next lemma, which seems intuitively obvious, is the core of the proof of the

Hahn–Banach theorem. This is the case in which the affine space has dimension

two. First, we need to define a convex cone with vertex x.
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Definition 7.1. A convex set C is a convex cone with vertex x if C is invariant under

all central magnifications Hx,λ of center x and ratio λ , with λ > 0 (i.e., Hx,λ (C)=C).

Given a convex set S and a point x /∈ S, we can define

conex(S) =
⋃

λ>0

Hx,λ (S).

It is easy to check that this is a convex cone with vertex x.

Lemma 7.2. Let B be a nonempty open and convex subset of A2, and let O be a

point of A2 such that that O /∈ B. Then there is some line L through O such that

L∩B = /0.

B

O

C

x

L

Fig. 7.2 Hahn–Banach theorem in the plane (Lemma 7.2).

Proof. Define the convex cone C = coneO(B). Since B is open, it is easy to check

that each HO,λ (B) is open, and since C is the union of the HO,λ (B) (for λ > 0),

which are open, C itself is open. Also, O /∈C. We claim that at least one point x of

the boundary ∂C of C is distinct from O. Otherwise, ∂C = {O}, and we claim that

C = A2−{O}, which is not convex, a contradiction. Indeed, since C is convex, it

is connected, A2−{O} itself is connected, and C ⊆ A2−{O}. If C 6= A2−{O},
pick some point a 6= O in A2−C and some point c ∈ C. Now, a basic property of

connectivity asserts that every continuous path from a (in the exterior of C) to c (in

the interior of C) must intersect the boundary of C, namely {O}. However, there are

plenty of paths from a to c that avoid O, a contradiction. Therefore, C = A2−{O}.
Since C is open and x ∈ ∂C, we have x /∈ C. Furthermore, we claim that y =

2O−x (the symmetric of x with respect to O) does not belong to C either. Otherwise,

we would have y ∈
◦
C = C and x ∈ C, and by Lemma 7.1, we would get O ∈ C, a
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contradiction. Therefore, the line through O and x misses C entirely (since C is a

cone), and thus B⊆C. ⊓⊔

Finally, we come to the Hahn–Banach theorem.

Theorem 7.1. (Hahn–Banach theorem, geometric form) Let X be a (finite-dimen-

sional) affine space, A a nonempty open and convex subset of X, and L an affine

subspace of X such that A∩L = /0. Then there is some hyperplane H containing L

that is disjoint from A.

A

L

H

Fig. 7.3 Hahn-Banach theorem, geometric form (Theorem 7.1).

Proof. The case dim X = 1 is trivial. Thus, we may assume that dim X ≥ 2. We

reduce the proof to the case dim X = 2. Let V be an affine subspace of X of max-

imal dimension containing L and such that V ∩ A = /0. Pick an origin O ∈ L in

X , and consider the vector space XO. We would like to prove that V is a hyper-

plane, i.e., dim V = dim X − 1. We proceed by contradiction. Thus, assume that

dimV ≤ dim X − 2. In this case, the quotient space X/V has dimension at least 2.

We also know that X/V is isomorphic to the orthogonal complement V⊥ of V , so we

may identify X/V and V⊥. The (orthogonal) projection map π : X → V⊥ is linear

and continuous, and we can show that π maps the open subset A to an open subset

π(A), which is also convex (one way to prove that π(A) is open is to observe that for

any point a ∈ A, a small open ball of center a contained in A is projected by π to an

open ball contained in π(A), and since π is surjective, π(A) is open). Furthermore,

0 /∈ π(A). Since V⊥ has dimension at least 2, there is some plane P (a subspace of

dimension 2) intersecting π(A), and thus we obtain a nonempty open and convex

subset B = π(A)∩P in the plane P ∼= A2. So we can apply Lemma 7.2 to B and

the point O = 0 in P ∼= A2 to find a line l (in P) through O with l ∩B = /0. But
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then l∩π(A) = /0 and W = π−1(l) is an affine subspace such that W ∩A = /0 and W

properly contains V , contradicting the maximality of V . ⊓⊔

Remark: The geometric form of the Hahn–Banach theorem also holds when the

dimension of X is infinite, but a slightly more sophisticated proof is required. Actu-

ally, all that is needed is to prove that a maximal affine subspace containing L and

disjoint from A exists. This can be done using Zorn’s lemma. For other proofs, see

Bourbaki [3], Chapter 2, Valentine [7], Chapter 2, Barvinok [1], Chapter 2, or Lax

[4], Chapter 3.

� Theorem 7.1 is false if we omit the assumption that A is open. For a counter-

example, let A ⊆ A2 be the union of the half-space y < 0 with the closed seg-

ment [0,1] on the x-axis and let L be the point (2,0) on the boundary of A. It is also

false if A is closed! (Find a counterexample).

Theorem 7.1 has many important corollaries. For example, we will eventually

prove that for any two nonempty disjoint convex sets A and B, there is a hyperplane

separating A and B, but this will take some work (recall the definition of a separating

hyperplane given in Definition 3.3). We begin with the following version of the

Hahn–Banach theorem:

Theorem 7.2. (Hahn–Banach, second version) Let X be a (finite-dimensional) affine

space, A a nonempty convex subset of X with nonempty interior, and L an affine sub-

space of X such that A∩L = /0. Then there is some hyperplane H containing L and

separating L and A.

Proof. Since A is convex, by Corollary 7.1,
◦
A is also convex. By hypothesis,

◦
A is

nonempty. So we can apply Theorem 7.1 to the nonempty open and convex
◦
A and

to the affine subspace L. We get a hyperplane H containing L such that
◦
A ∩H =

/0. However, A ⊆ A =
◦
A and

◦
A is contained in the closed half-space (H+ or H−)

containing
◦
A, so H separates A and L. ⊓⊔

Corollary 7.2. Given an affine space X, let A and B be two nonempty disjoint convex

subsets and assume that A has nonempty interior (
◦
A 6= /0). Then there is a hyperplane

separating A and B.

Proof. Pick some origin O and consider the vector space XO. Define C = A−B (a

special case of the Minkowski sum) as follows:

A−B = {a− b | a ∈ A, b ∈ B}=
⋃

b∈B

(A− b).

It is easily verified that C = A−B is convex and has nonempty interior (as a union

of subsets having a nonempty interior). Furthermore O /∈C, since A∩B = /0.1 (Note

1 Readers who prefer a purely affine argument may define C = A−B as the affine subset
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A

L

H

Fig. 7.4 Hahn–Banach theorem, second version (Theorem 7.2).

A

B

H

Fig. 7.5 Separation theorem, version 1 (Corollary 7.2).

that the definition depends on the choice of O, but this has no effect on the proof.)

Since
◦
C is nonempty, we can apply Theorem 7.2 to C and to the affine subspace

{O}, and we get a hyperplane H separating C and {O}. Let f be any linear form

defining the hyperplane H. We may assume that f (a− b) ≤ 0, for all a ∈ A and

all b ∈ B, i.e., f (a) ≤ f (b). Consequently, if we let α = sup{ f (a) | a ∈ A} (which

A−B = {O+a−b | a ∈ A, b ∈ B}.

Again, O /∈C and C is convex. We can pick the affine form f defining a separating hyperplane H

of C and {O} such that f (O+a−b)≤ f (O), for all a ∈ A and all b ∈ B, i.e., f (a)≤ f (b).
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makes sense, since the set { f (a) | a ∈ A} is bounded), we have f (a) ≤ α for all

a ∈ A and f (b)≥ α for all b∈ B, which shows that the affine hyperplane defined by

f −α separates A and B. ⊓⊔

Remark: Theorem 7.2 and Corollary 7.2 also hold in the infinite-dimensional case;

see Lax [4], Chapter 3, or Barvinok, Chapter 3.

Since a hyperplane H separating A and B as in Corollary 7.2 is the boundary of

each of the two half-spaces that it determines, we also obtain the following corollary:

Corollary 7.3. Given an affine space X, let A and B be two nonempty disjoint open

and convex subsets. Then there is a hyperplane strictly separating A and B.

� Beware that Corollary 7.3 fails for closed convex sets. However, Corollary 7.3

holds if we also assume that A (or B) is compact.

We need to review the notion of distance from a point to a subset. Let X be a

metric space with distance function d. Given any point a ∈ X and any nonempty

subset B of X , we let

d(a,B) = inf
b∈B

d(a,b)

(where inf is the notation for least upper bound).

Now, if X is an affine space of dimension d, it can be given a metric structure

by giving the corresponding vector space a metric structure, for instance, the metric

induced by a Euclidean structure. We have the following important property: For

any nonempty closed subset S ⊆ X (not necessarily convex) and any point a ∈ X ,

there is some point s ∈ S “achieving the distance from a to S,” i.e., such that

d(a,S) = d(a,s).

The proof uses the fact that the distance function is continuous and that a continuous

function attains its minimum on a compact set, and is left as an exercise.

Corollary 7.4. Given an affine space X let A and B be two nonempty disjoint closed

and convex subsets, with A compact. Then there is a hyperplane strictly separating

A and B.

Proof. Here is a sketch of the proof. First, we pick an origin O and we give XO
∼=An

a Euclidean structure. Let d denote the associated distance. Given any subsets A of

X , let

A+B(O,ε) = {x ∈ X | d(x,A)< ε},
where B(a,ε) denotes the open ball B(a,ε) = {x ∈ X | d(a,x)< ε} of center a and

radius ε > 0. Note that

A+B(O,ε) =
⋃

a∈A

B(a,ε),

which shows that A+ B(O,ε) is open; furthermore, it is easy to see that if A is

convex, then A + B(O,ε) is also convex. Now, the function a 7→ d(a,B) (where
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a ∈ A) is continuous, and since A is compact, it achieves its minimum, d(A,B) =
mina∈A d(a,B), at some point a of A. Say d(A,B) = δ . Since B is closed, there is

some b∈ B such that d(A,B) = d(a,B) = d(a,b), and since A∩B= /0, we must have

δ > 0. Thus, if we pick ε < δ/2, we see that

(A+B(O,ε))∩ (B+B(O,ε)) = /0.

Now, A+B(O,ε) and B+B(O,ε) are open, convex, and disjoint, and we conclude

by applying Corollary 7.3. ⊓⊔

A “cute” application of Corollary 7.4 is one of the many versions of “Farkas’s

lemma” (1893–1894, 1902), a basic result in the theory of linear programming. For

any vector x = (x1, . . . ,xn) ∈ Rn and any real α ∈ R, write x ≥ α iff xi ≥ α , for

i = 1, . . . ,n.

Lemma 7.3. (Farkas’s lemma, version I) Given any d × n real matrix A and any

vector z ∈ Rd , exactly one of the following alternatives occurs:

(a) The linear system Ax = z has a solution x = (x1, . . . ,xn) such that x ≥ 0 and

x1 + · · ·+ xn = 1.

(b) There is some c ∈ Rd and some α ∈ R such that c⊤z < α and c⊤A≥ α .

Proof. Let A1, . . . ,An ∈Rd be the n points corresponding to the columns of A. Then,

either z ∈ conv({A1, . . . ,An}) or z /∈ conv({A1, . . . ,An}). In the first case, we have a

convex combination

z = x1A1 + · · ·+ xnAn,

where xi ≥ 0 and x1 + · · ·+ xn = 1, so x = (x1, . . . ,xn) is a solution satisfying (a).

In the second case, by Corollary 7.4, there is a hyperplane H strictly separating

{z} and conv({A1, . . . ,An}), which is obviously closed. In fact, observe that z /∈
conv({A1, . . . ,An}) iff there is a hyperplane H such that z ∈

◦
H− and Ai ∈ H+, or

z ∈
◦
H+ and Ai ∈H−, for i = 1, . . . ,n. Since the affine hyperplane H is the zero locus

of an equation of the form

c1y1 + · · ·+ cdyd = α,

either c⊤z < α and c⊤Ai ≥ α for i = 1, . . . ,n, that is, c⊤A ≥ α , or c⊤z > α and

c⊤A ≤ α . In the second case, (−c)⊤z < −α and (−c)⊤A ≥ −α , so (b) is satisfied

by either c and α or by −c and −α . ⊓⊔

Remark: If we relax the requirements on solutions of Ax= z and require only x≥ 0

(x1 + · · ·+ xn = 1 is no longer required), then in condition (b), we can take α = 0.

This is another version of Farkas’s Lemma. In this case, instead of considering the

convex hull of {A1, . . . ,An} we are considering the convex cone

cone(A1, . . . ,An) = {λ A1 + · · ·+λnAn | λi ≥ 0, 1≤ i≤ n},
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that is, we are dropping the condition λ1 + · · ·+λn = 1. For this version of Farkas’s

lemma we need the following separation lemma:

Proposition 7.3. Let C ⊆ Ed be any closed convex cone with vertex O. Then for

every point a not in C, there is a hyperplane H passing through O separating a and

C with a /∈H.

Proof. Since C is closed and convex and {a} is compact and convex, by Corollary

7.4 there is a hyperplane H ′ strictly separating a and C. Let H be the hyperplane

through O parallel to H ′. Since C and a lie in the two disjoint open half-spaces

determined by H ′, the point a cannot belong to H. Suppose that some point b ∈ C

lies in the open half-space determined by H and a. Then the line L through O and

b intersects H ′ in some point c, and since C is a cone, the half-line determined by

O and b is contained in C. So c ∈C would belong to H ′, a contradiction. Therefore,

C is contained in the closed half-space determined by H that does not contain a, as

claimed. ⊓⊔

H ′ H

a
O C

Fig. 7.6 Illustration for the proof of Proposition 7.3.

Lemma 7.4. (Farkas’s lemma, version II) Given any d× n real matrix A and any

vector z ∈ Rd , exactly one of the following alternatives occurs:

(a) The linear system Ax = z has a solution x such that x≥ 0.

(b) There is some c ∈ Rd such that c⊤z < 0 and c⊤A≥ 0.

Proof. The proof is analogous to the proof of Lemma 7.3 except that it uses

Proposition 7.3 instead of Corollary 7.4 and either z ∈ cone(A1, . . . ,An) or z /∈
cone(A1, . . . ,An). ⊓⊔

One can show that Farkas II implies Farkas I. Here is another version of Farkas’s

lemma having to do with a system of inequalities Ax ≤ z. Although, this version

may seem weaker that Farkas II, it is actually equivalent to it!
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Lemma 7.5. (Farkas’s lemma, version III) Given any d× n real matrix A and any

vector z ∈ Rd , exactly one of the following alternatives occurs:

(a) The system of inequalities Ax≤ z has a solution x.

(b) There is some c ∈ Rd such that c≥ 0, c⊤z < 0, and c⊤A = 0.

Proof. We use two tricks from linear programming:

1. We convert the system of inequalities Ax ≤ z into a system of equations by

introducing a vector of “slack variables” γ = (γ1, . . . ,γd), where the system of

equations is

(A, I)

(
x

γ

)
= z,

with γ ≥ 0.

2. We replace each “unconstrained variable” xi by xi = Xi−Yi, with Xi,Yi ≥ 0.

Then the original system Ax ≤ z has a solution x (unconstrained) iff the system of

equations

(A,−A, I)




X

Y

γ


= z

has a solution with X ,Y,γ ≥ 0. By Farkas II, this system has no solution iff there

exists some c ∈ Rd with c⊤z < 0 and

c⊤(A,−A, I)≥ 0,

that is, c⊤A ≥ 0, −c⊤A ≥ 0, and c ≥ 0. However, these four conditions reduce to

c⊤z < 0, c⊤A = 0, and c≥ 0. ⊓⊔

These versions of Farkas’s lemma are statements of the form (P∨Q)∧¬(P∧Q),
which is easily seen to be equivalent to ¬P ≡ Q, namely, the logical equivalence

of ¬P and Q. Therefore, Farkas-type lemmas can be interpreted as criteria for the

unsolvablity of various kinds of systems of linear equations or systems of linear

inequalities, in the form of a separation property.

For example, Farkas II (Lemma 7.4) says that a system of linear equations Ax = z

does not have any solution x ≥ 0 iff there is some c ∈ Rd such that c⊤z < 0 and

c⊤A≥ 0. This means that there is a hyperplane H of equation c⊤y = 0 such that the

column vectors A j forming the matrix A all lie in the positive closed half-space H+

but z lies in the interior of the other half-space, H−, determined by H. Therefore, z

can’t be in the cone spanned by the A j’s.

Farkas III says that a system of linear inequalities Ax ≤ z does not have any

solution (at all) iff there is some c ∈ Rd such that c ≥ 0, c⊤z < 0, and c⊤A = 0.

This time, there is also a hyperplane of equation c⊤y = 0, with c≥ 0, such that the

column vectors A j forming the matrix A all lie in H but z lies in the interior of the

half-space H− determined by H. In the “easy” direction, if there are such a vector

c and some x satisfying Ax ≤ z, since c≥ 0, we get c⊤Ax≤ c⊤z, but c⊤Ax = 0 and

c⊤z < 0, a contradiction.
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What is the crirerion for the unsolvability of a system of inequalities Ax≤ z with

x≥ 0? This problem is equivalent to the unsolvability of the set of inequalities

(
A

−I

)
x≤

(
z

0

)
,

and by Farkas III, this system has no solution iff there is some vector (c1,c2) with

(c1,c2)≥ 0,

(c⊤1 ,c
⊤
2 )

(
A

−I

)
= 0, and (c⊤1 ,c

⊤
2 )

(
z

0

)
< 0.

The above conditions are equivalent to c1 ≥ 0, c2 ≥ 0, c⊤1 A− c⊤2 = 0, and c⊤1 z < 0,

which reduce to c1 ≥ 0, c⊤1 A≥ 0, and c⊤1 z < 0.

We can put all these versions together to prove the following version of Farkas’s

lemma:

Lemma 7.6. (Farkas’s lemma, version IIIb) For any d× n real matrix A and any

vector z ∈ Rd , the following statements are equivalent:

(1) The system Ax = z has no solution x ≥ 0 iff there is some c ∈ Rd such that

c⊤A≥ 0 and c⊤z < 0.

(2) The system Ax ≤ z has no solution iff there is some c ∈ Rd such that c ≥ 0,

c⊤A = 0, and c⊤z < 0.

(3) The system Ax≤ z has no solution x≥ 0 iff there is some c ∈Rd such that c≥ 0,

c⊤A≥ 0, and c⊤z < 0.

Proof. We already proved that (1) implies (2) and that (2) implies (3). The proof

that (3) implies (1) is left as an easy exercise. ⊓⊔

The reader might wonder whether there is a criterion for the unsolvability of a

system Ax = z without any condition on x. However, since the unsolvability of the

system Ax = b is equivalent to the unsolvability of the system

(
A

−A

)
x≤

(
z

−z

)
,

using (2), the above system is unsolvable iff there is some (c1,c2)≥ (0,0) such that

(c⊤1 ,c
⊤
2 )

(
A

−A

)
= 0 and (c⊤1 ,c

⊤
2 )

(
z

−z

)
< 0,

and these are equivalent to c⊤1 A−c⊤2 A = 0 and c⊤1 z−c⊤2 z < 0, namely, c⊤A = 0 and

c⊤z < 0, where c = c1− c2 ∈ Rd . However, this simply says that c is orthogonal to

the columns A1, . . . ,An of A and that z is not orthogonal to c, so z cannot belong to

the column space of A, a criterion that we already knew from linear algebra.

As in Matousek and Gartner [6], we can summarize these various criteria in the

following table:
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The system The system

Ax≤ z Ax = z

has no solution ∃c ∈Rd , such that c≥ 0, ∃c ∈ Rd , such that

x≥ 0 iff c⊤A≥ 0 and c⊤z < 0 c⊤A≥ 0 and c⊤z < 0

has no solution ∃c ∈Rd , such that, c≥ 0, ∃c ∈ Rd , such that

x ∈ Rn iff c⊤A = 0 and c⊤z < 0 c⊤A = 0 and c⊤z < 0

Remark: The strong duality theorem in linear programming can be proved using

Lemma 7.6(c).

Finally, we have the separation theorem announced earlier for arbitrary nonempty

convex subsets.

Theorem 7.3. (Separation of disjoint convex sets) Given an affine space X, let A and

B be two nonempty disjoint convex subsets. Then there is a hyperplane separating A

and B.

x

−x

A

B

A+ x

C

A− x

D

H

O

Fig. 7.7 Separation theorem, final version (Theorem 7.3).

Proof. The proof is by descending induction on n = dim A. If dim A = dim X , we

know from Proposition 7.1 that A has nonempty interior, and we conclude using

Corollary 7.2. Next, asssume that the induction hypothesis holds if dim A ≥ n and

assume dim A = n− 1. Pick an origin O ∈ A and let H be a hyperplane containing
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A. Pick x ∈ X outside H and define C = conv(A∪{A+ x}), where A+ x = {a+ x |
a ∈ A} and D = conv(A∪{A− x}), where A− x = {a− x | a ∈ A}. Note that C∪D

is convex. If B∩C 6= /0 and B∩D 6= /0, then the convexity of B and C∪D implies

that A∩B 6= /0, a contradiction. Without loss of generality, assume that B∩C = /0.

Since x is outside H, we have dimC = n, and by the induction hypothesis, there is

a hyperplane H1 separating C and B. Since A ⊆C, we see that H1 also separates A

and B. ⊓⊔

The reader should compare this proof (from Valentine [7], Chapter II) with

Berger’s proof using compactness of the projective space Pd [2] (Corollary 11.4.7).

Remarks:

(1) Rather than using the Hahn–Banach theorem to deduce separation results, one

may proceed differently and use the following intuitively obvious lemma, as in

Valentine [7] (Theorem 2.4):

Lemma 7.7. If A and B are two nonempty convex sets such that A∪B = X and

A∩B = /0, then V = A∩B is a hyperplane.

One can then deduce Corollary 7.2 and Theorem 7.3. Yet another approach is

followed in Barvinok [1].

(2) How can some of the above results be generalized to infinite-dimensional affine

spaces, especially Theorem 7.1 and Corollary 7.2? One approach is to simulta-

neously relax the notion of interior and tighten a little the notion of closure, in

a more “linear and less topological” fashion, as in Valentine [7].

Given any subset A ⊆ X (where X may be infinite-dimensional, but is a Haus-

dorff topological vector space), say that a point x∈ X is linearly accessible from

A if there is some a ∈ A with a 6= x and ]a,x[⊆ A. We let lina A be the set of all

points linearly accessible from A and lin A = A∪ lina A.

A point a ∈ A is a core point of A if for every y ∈ X , with y 6= a, there is some

z ∈]a,y[ such that [a,z]⊆ A. The set of all core points is denoted by coreA.

It is not difficult to prove that lin A ⊆ A and
◦
A⊆ core A. If A has nonempty

interior, then lin A = A and
◦
A= core A. Also, if A is convex, then core A and

lin A are convex. Then Lemma 7.7 still holds (where X is not necessarily finite-

dimensional) if we redefine V as V = lin A∩ lin B and allow the possibility that

V could be X itself. Corollary 7.2 also holds in the general case if we assume

that coreA is nonempty. For details, see Valentine [7], Chapters I and II.

(3) Yet another approach is to define the notion of an algebraically open convex

set, as in Barvinok [1]. A convex set A is algebraically open if the intersection

of A with every line L is an open interval, possibly empty or infinite at either

end (or all of L). An open convex set is algebraically open. Then the Hahn–

Banach theorem holds, provided that A is an algebraically open convex set,

and similarly, Corollary 7.2 also holds, provided A is algebraically open. For

details, see Barvinok [1], Chapters 2 and 3. We do not know how the notion

“algebraically open” relates to the concept of core.
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(4) Theorems 7.1, 7.2 and Corollary 7.2 are proved in Lax [4] using the notion of

gauge function in the more general case that A has some core point (but beware

that Lax uses the terminology interior point instead of core point!).

An important special case of separation is the case that A is convex and B = {a},
for some point a in A.

7.2 Supporting Hyperplanes and Minkowski’s Proposition

Recall the definition of a supporting hyperplane given in Definition 3.4. We have

the following important proposition, first proved by Minkowski (1896):

Proposition 7.4. (Minkowski) Let A be a nonempty, closed, and convex subset. Then

for every point a ∈ ∂A, there is a supporting hyperplane to A through a.

Proof. Let d = dim A. If d < dim X (i.e., A has empty interior), then A is contained

in some affine subspace V of dimension d < dim X , and any hyperplane containing

V is a supporting hyperplane for every a∈A. Now, assume d = dimX , so that
◦
A 6= /0.

If a ∈ ∂A, then {a}∩
◦
A= /0. By Theorem 7.1, there is a hyperplane H separating

◦
A

and L = {a}. However, by Corollary 7.1, since
◦
A 6= /0 and A is closed, we have

A = A =
◦
A.

Now, the half-space containing
◦
A is closed, and thus it contains

◦
A = A. Therefore,

H separates A and {a}. ⊓⊔

Remark: The assumption that A is closed is convenient but unnecessary. Indeed,

the proof of Proposition 7.4 shows that the proposition holds for every boundary

point a ∈ ∂A (assuming ∂A 6= /0).

� Beware that Proposition 7.4 is false when the dimension of X is infinite and

when
◦
A= /0.

The proposition below gives a sufficient condition for a closed subset to be con-

vex.

Proposition 7.5. Let A be a closed subset with nonempty interior. If there is a sup-

porting hyperplane for every point a ∈ ∂A, then A is convex.

Proof. We leave it as an exercise (see Berger [2], Proposition 11.5.4). ⊓⊔

� The condition that A have nonempty interior is crucial!
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The proposition below characterizes closed convex sets in terms of (closed) half-

spaces. It is another intuitive fact whose rigorous proof is nontrivial.

Proposition 7.6. Let A be a nonempty closed and convex subset. Then A is the in-

tersection of all the closed half-spaces containing it.

Proof. Let A′ be the intersection of all the closed half-spaces containing A. It is

immediately checked that A′ is closed and convex and that A ⊆ A′. Assume that

A′ 6= A, and pick a ∈ A′−A. Then we can apply Corollary 7.4 to {a} and A and

we find a hyperplane H strictly separating A and {a}; this shows that A belongs

to one of the two half-spaces determined by H, yet a does not belong to the same

half-space, contradicting the definition of A′. ⊓⊔

7.3 Problems

7.1. Prove Proposition 7.2.

7.2. Find two closed convex sets such that Corollary 7.3 fails.

7.3. In E3, consider the closed convex set (cone) A defined by the inequalities

x≥ 0, y≥ 0, z≥ 0, z2 ≤ xy,

and let D be the line given by x = 0, z = 1. Prove that D∩A = /0, both A and D

are convex and closed, yet every plane containing D meets A. Therefore, A and D

give another counterexample to the Hahn–Banach theorem in which A is closed (one

cannot relax the hypothesis that A is open).

7.4. Prove Proposition 7.5.

7.5. Let (v1, . . . ,vn) be a sequence of n vectors in Rd and let V be the d× n matrix

whose jth column is v j. Prove the equivalence of the following two statements:

(a) There is no nontrivial positive linear dependence among the v j, which means

that there is no nonzero vector y = (y1, . . . ,yn) ∈Rn with y j ≥ 0 for j = 1, . . . ,n,

so that

y1v1 + · · ·+ ynvn = 0,

or equivalently, Vy = 0.

(b) There is some vector c ∈Rd such that c⊤V > 0, which means that c⊤v j > 0, for

j = 1, . . . ,n.
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Chapter 8

The Cartan–Dieudonné Theorem

8.1 Orthogonal Reflections

In this chapter the structure of the orthogonal group is studied in more depth. In

particular, we prove that every isometry in O(n) is the composition of at most n

reflections about hyperplanes (for n ≥ 2, see Theorem 8.1). This important result

is a special case of the “Cartan–Dieudonné theorem” (Cartan [4], Dieudonné [6]).

We also prove that every rotation in SO(n) is the composition of at most n flips (for

n≥ 3).

Hyperplane reflections are represented by matrices called Householder matrices.

These matrices play an important role in numerical methods, for instance for solving

systems of linear equations, solving least squares problems, for computing eigenval-

ues, and for transforming a symmetric matrix into a tridiagonal matrix. We prove a

simple geometric lemma that immediately yields the QR-decomposition of arbitrary

matrices in terms of Householder matrices.

Affine isometries are defined, and their fixed points are investigated. First, we

characterize the set of fixed points of an affine map. Using this characterization, we

prove that every affine isometry f can be written uniquely as

f = t ◦ g, with t ◦ g = g ◦ t,

where g is an isometry having a fixed point, and t is a translation by a vector τ

such that
−→
f (τ) = τ , and with some additional nice properties (see Lemma 8.3).

This is a generalization of a classical result of Chasles about (proper) rigid motions

in R3 (screw motions). We also show that the Cartan–Dieudonné theorem can be

generalized to affine isometries: Every rigid motion in Is(n) is the composition of

at most n affine reflections if it has a fixed point, or else of at most n+ 2 affine

reflections. We prove that every rigid motion in SE(n) is the composition of at most

n flips (for n ≥ 3). Finally, the orientation of a Euclidean space is defined, and we

discuss volume forms and cross products.

231
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Orthogonal symmetries are a very important example of isometries. First let us

review the definition of projections. Given a vector space E , let F and G be sub-

spaces of E that form a direct sum E = F ⊕G. Since every u ∈ E can be written

uniquely as u = v + w, where v ∈ F and w ∈ G, we can define the two projec-

tions pF : E → F and pG : E → G such that pF(u) = v and pG(u) = w. It is im-

mediately verified that pG and pF are linear maps, and that p2
F = pF , p2

G = pG,

pF ◦ pG = pG ◦ pF = 0, and pF + pG = id.

Definition 8.1. Given a vector space E , for any two subspaces F and G that form a

direct sum E = F⊕G, the symmetry (or reflection) with respect to F and parallel

to G is the linear map s : E→ E defined such that

s(u) = 2pF(u)− u,

for every u ∈ E .

Because pF + pG = id, note that we also have

s(u) = pF(u)− pG(u)

and

s(u) = u− 2pG(u),

s2 = id, s is the identity on F , and s = −id on G. We now assume that E is a

Euclidean space of finite dimension.

Definition 8.2. Let E be a Euclidean space of finite dimension n. For any two sub-

spaces F and G, if F and G form a direct sum E =F⊕G and F and G are orthogonal,

i.e., F = G⊥, the orthogonal symmetry (or reflection) with respect to F and parallel

to G is the linear map s : E→ E defined such that

s(u) = 2pF(u)− u,

for every u ∈ E . When F is a hyperplane, we call s a hyperplane symmetry with

respect to F (or reflection about F), and when G is a plane (and thus dim(F) =
n− 2), we call s a flip about F .

A reflection about a hyperplane F is shown in Figure 8.1.

For any two vectors u,v ∈ E , it is easily verified using the bilinearity of the inner

product that

‖u+ v‖2−‖u− v‖2 = 4(u · v).
Then, since

u = pF(u)+ pG(u)

and

s(u) = pF(u)− pG(u),

since F and G are orthogonal, it follows that
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u

s(u)

pG(u)

−pG(u)

pF (u)

F

G

Fig. 8.1 A reflection about a hyperplane F .

pF(u) · pG(v) = 0,

and thus,

‖s(u)‖= ‖u‖,
so that s is an isometry.

Using Lemma 6.7, it is possible to find an orthonormal basis (e1, . . . ,en) of E

consisting of an orthonormal basis of F and an orthonormal basis of G. Assume that

F has dimension p, so that G has dimension n− p. With respect to the orthonormal

basis (e1, . . . ,en), the symmetry s has a matrix of the form

(
Ip 0

0 −In−p

)
.

Thus, det(s) = (−1)n−p, and s is a rotation iff n− p is even. In particular, when F is

a hyperplane H, we have p= n−1 and n− p= 1, so that s is an improper orthogonal

transformation. When F = {0}, we have s =−id, which is called the symmetry with

respect to the origin. The symmetry with respect to the origin is a rotation iff n

is even, and an improper orthogonal transformation iff n is odd. When n is odd,

we observe that every improper orthogonal transformation is the composition of a

rotation with the symmetry with respect to the origin. When G is a plane, p = n−2,

and det(s) = (−1)2 = 1, so that a flip about F is a rotation. In particular, when n= 3,

F is a line, and a flip about the line F is indeed a rotation of measure π .

Remark: Given any two orthogonal subspaces F,G forming a direct sum E = F⊕
G, let f be the symmetry with respect to F and parallel to G, and let g be the

symmetry with respect to G and parallel to F . We leave as an exercise to show that
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f ◦ g = g ◦ f =−id.

When F = H is a hyperplane, we can give an explicit formula for s(u) in terms

of any nonnull vector w orthogonal to H. Indeed, from

u = pH(u)+ pG(u),

since pG(u) ∈ G and G is spanned by w, which is orthogonal to H, we have

pG(u) = λ w

for some λ ∈ R, and we get

u ·w = λ‖w‖2,

and thus

pG(u) =
(u ·w)
‖w‖2

w.

Since

s(u) = u− 2pG(u),

we get

s(u) = u− 2
(u ·w)
‖w‖2

w.

Such reflections are represented by matrices called Householder matrices, and they

play an important role in numerical matrix analysis (see Kincaid and Cheney [8]

or Ciarlet [5]). Householder matrices are symmetric and orthogonal. It is easily

checked that over an orthonormal basis (e1, . . . ,en), a hyperplane reflection about

a hyperplane H orthogonal to a nonnull vector w is represented by the matrix

H = In− 2
WW⊤

‖W‖2
= In− 2

WW⊤

W⊤W
,

where W is the column vector of the coordinates of w over the basis (e1, . . . ,en), and

In is the identity n× n matrix. Since

pG(u) =
(u ·w)
‖w‖2

w,

the matrix representing pG is

WW⊤

W⊤W
,

and since pH + pG = id, the matrix representing pH is

In−
WW⊤

W⊤W
.



8.2 The Cartan–Dieudonné Theorem for Linear Isometries 235

These formulae will be used in Section 9.1 to derive a formula for a rotation of R3,

given the direction w of its axis of rotation and given the angle θ of rotation.

The following fact is the key to the proof that every isometry can be decomposed

as a product of reflections.

Lemma 8.1. Let E be any nontrivial Euclidean space. For any two vectors u,v ∈ E,

if ‖u‖ = ‖v‖, then there is a hyperplane H such that the reflection s about H maps

u to v, and if u 6= v, then this reflection is unique.

Proof. If u = v, then any hyperplane containing u does the job. Otherwise, we must

have H = {v− u}⊥, and by the above formula,

s(u) = u− 2
(u · (v− u))

‖(v− u)‖2
(v− u) = u+

2‖u‖2− 2u · v
‖(v− u)‖2

(v− u),

and since

‖(v− u)‖2 = ‖u‖2 + ‖v‖2− 2u · v
and ‖u‖= ‖v‖, we have

‖(v− u)‖2 = 2‖u‖2− 2u · v,

and thus, s(u) = v. ⊓⊔

� If E is a complex vector space and the inner product is Hermitian, Lemma

8.1 is false. The problem is that the vector v−u does not work unless the

inner product u · v is real! We will see in the next chapter that the lemma can be

salvaged enough to yield the QR-decomposition in terms of Householder transfor-

mations.

Using the above property, we can prove a fundamental property of isometries:

They are generated by reflections about hyperplanes.

8.2 The Cartan–Dieudonné Theorem for Linear Isometries

The fact that the group O(n) of linear isometries is generated by the reflections is

a special case of a theorem known as the Cartan–Dieudonné theorem. Elie Cartan

proved a version of this theorem early in the twentieth century. A proof can be found

in his book on spinors [4], which appeared in 1937 (Chapter I, Section 10, pages 10–

12). Cartan’s version applies to nondegenerate quadratic forms over R or C. The

theorem was generalized to quadratic forms over arbitrary fields by Dieudonné [6].

One should also consult Emil Artin’s book [1], which contains an in-depth study of

the orthogonal group and another proof of the Cartan–Dieudonné theorem.

First, let us review the notions of eigenvalues and eigenvectors. Recall that given

any linear map f : E→ E , a vector u ∈ E is called an eigenvector, or proper vector,

or characteristic vector, of f if there is some λ ∈ K such that
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f (u) = λ u.

In this case, we say that u∈ E is an eigenvector associated with λ . A scalar λ ∈K is

called an eigenvalue, or proper value, or characteristic value, of f if there is some

nonnull vector u 6= 0 in E such that

f (u) = λ u,

or equivalently if Ker( f −λ id) 6= {0}. Given any scalar λ ∈ K, the set of all eigen-

vectors associated with λ is the subspace Ker( f −λ id), also denoted by Eλ ( f ) or

E(λ , f ), called the eigenspace associated with λ , or proper subspace associated

with λ .

Theorem 8.1. Let E be a Euclidean space of dimension n ≥ 1. Every isometry f ∈
O(E) that is not the identity is the composition of at most n reflections. When n≥ 2,

the identity is the composition of any reflection with itself.

Proof. We proceed by induction on n. When n = 1, every isometry f ∈ O(E) is

either the identity or −id, but −id is a reflection about H = {0}. When n ≥ 2, we

have id = s◦ s for every reflection s. Let us now consider the case where n ≥ 2 and

f is not the identity. There are two subcases.

Case 1. f admits 1 as an eigenvalue, i.e., there is some nonnull vector w such that

f (w) =w. In this case, let H be the hyperplane orthogonal to w, so that E =H⊕Rw.

We claim that f (H)⊆ H. Indeed, if

v ·w = 0

for any v ∈ H, since f is an isometry, we get

f (v) · f (w) = v ·w = 0,

and since f (w) = w, we get

f (v) ·w = f (v) · f (w) = 0,

and thus f (v) ∈ H. Furthermore, since f is not the identity, f is not the identity of

H. Since H has dimension n− 1, by the induction hypothesis applied to H, there

are at most k ≤ n− 1 reflections s1, . . . ,sk about some hyperplanes H1, . . . ,Hk in

H, such that the restriction of f to H is the composition sk ◦ · · · ◦ s1. Each si can

be extended to a reflection in E as follows: If H = Hi⊕ Li (where Li = H⊥i , the

orthogonal complement of Hi in H), L = Rw, and Fi = Hi⊕ L, since H and L are

orthogonal, Fi is indeed a hyperplane, E = Fi ⊕ Li = Hi ⊕ L⊕ Li, and for every

u = h+λ w ∈H⊕L = E , since

si(h) = pHi
(h)− pLi

(h),

we can define si on E such that
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si(h+λ w) = pHi
(h)+λ w− pLi

(h),

and since h ∈ H, w ∈ L, Fi = Hi⊕L, and H = Hi⊕Li, we have

si(h+λ w) = pFi
(h+λ w)− pLi

(h+λ w),

which defines a reflection about Fi = Hi⊕L. Now, since f is the identity on L =Rw,

it is immediately verified that f = sk ◦ · · · ◦ s1, with k ≤ n− 1.

Case 2. f does not admit 1 as an eigenvalue, i.e., f (u) 6= u for all u 6= 0. Pick any

w 6= 0 in E , and let H be the hyperplane orthogonal to f (w)−w. Since f is an

isometry, we have ‖ f (w)‖ = ‖w‖, and by Lemma 8.1, we know that s(w) = f (w),
where s is the reflection about H, and we claim that s◦ f leaves w invariant. Indeed,

since s2 = id, we have

s( f (w)) = s(s(w)) = w.

Since s2 = id, we cannot have s ◦ f = id, since this would imply that f = s, where

s is the identity on H, contradicting the fact that f is not the identity on any vector.

Thus, we are back to Case 1. Thus, there are k ≤ n− 1 hyperplane reflections such

that s◦ f = sk ◦ · · · ◦ s1, from which we get

f = s◦ sk ◦ · · · ◦ s1,

with at most k+ 1≤ n reflections. ⊓⊔

Remarks:

(1) A slightly different proof can be given. Either f is the identity, or there is some

nonnull vector u such that f (u) 6= u. In the second case, proceed as in the second

part of the proof, to get back to the case where f admits 1 as an eigenvalue.

(2) Theorem 8.1 still holds if the inner product on E is replaced by a nondegenerate

symmetric bilinear form ϕ , but the proof is a lot harder.

(3) The proof of Theorem 8.1 shows more than stated. If 1 is an eigenvalue of

f , for any eigenvector w associated with 1 (i.e., f (w) = w, w 6= 0), then f is

the composition of k ≤ n− 1 reflections about hyperplanes Fi such that Fi =
Hi⊕L, where L is the line Rw and the Hi are subspaces of dimension n− 2 all

orthogonal to L (the Hi are hyperplanes in H). This situation is illustrated in

Figure 8.2.

If 1 is not an eigenvalue of f , then f is the composition of k≤ n reflections about

hyperplanes H,F1, . . . ,Fk−1, such that Fi = Hi⊕L, where L is a line intersecting

H, and the Hi are subspaces of dimension n− 2 all orthogonal to L (the Hi are

hyperplanes in L⊥). This situation is illustrated in Figure 8.3.

(4) It is natural to ask what is the minimal number of hyperplane reflections needed

to obtain an isometry f . This has to do with the dimension of the eigenspace

Ker( f − id) associated with the eigenvalue 1. We will prove later that every

isometry is the composition of k hyperplane reflections, where
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u

h

w

λ w

H

H1

Hi

Hk

L

Fi

Fig. 8.2 An isometry f as a composition of reflections, when 1 is an eigenvalue of f .

w

f (w)

f (w)−w
L⊥

H1

Hi

Hk−1

L

Fi

H

Fig. 8.3 An isometry f as a composition of reflections when 1 is not an eigenvalue of f .
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k = n− dim(Ker( f − id)),

and that this number is minimal (where n = dim(E)).

When n = 2, a reflection is a reflection about a line, and Theorem 8.1 shows

that every isometry in O(2) is either a reflection about a line or a rotation, and that

every rotation is the product of two reflections about some lines. In general, since

det(s) = −1 for a reflection s, when n ≥ 3 is odd, every rotation is the product of

an even number less than or equal to n− 1 of reflections, and when n is even, every

improper orthogonal transformation is the product of an odd number less than or

equal to n− 1 of reflections.

In particular, for n = 3, every rotation is the product of two reflections about

planes. When n is odd, we can say more about improper isometries. Indeed, when

n is odd, every improper isometry admits the eigenvalue −1. This is because if E

is a Euclidean space of finite dimension and f : E → E is an isometry, because

‖ f (u)‖ = ‖u‖ for every u ∈ E , if λ is any eigenvalue of f and u is an eigenvector

associated with λ , then

‖ f (u)‖= ‖λ u‖= |λ |‖u‖= ‖u‖,

which implies |λ | = 1, since u 6= 0. Thus, the real eigenvalues of an isometry are

either +1 or −1. However, it is well known that polynomials of odd degree always

have some real root. As a consequence, the characteristic polynomial det( f −λ id)
of f has some real root, which is either +1 or −1. Since f is an improper isometry,

det( f ) =−1, and since det( f ) is the product of the eigenvalues, the real roots cannot

all be +1, and thus −1 is an eigenvalue of f . Going back to the proof of Theorem

8.1, since −1 is an eigenvalue of f , there is some nonnull eigenvector w such that

f (w) = −w. Using the second part of the proof, we see that the hyperplane H or-

thogonal to f (w)−w = −2w is in fact orthogonal to w, and thus f is the product

of k ≤ n reflections about hyperplanes H,F1, . . . ,Fk−1 such that Fi = Hi⊕L, where

L is a line orthogonal to H, and the Hi are hyperplanes in H = L⊥ orthogonal to L.

However, k must be odd, and so k− 1 is even, and thus the composition of the re-

flections about F1, . . . ,Fk−1 is a rotation. Thus, when n is odd, an improper isometry

is the composition of a reflection about a hyperplane H with a rotation consisting of

reflections about hyperplanes F1, . . . ,Fk−1 containing a line, L, orthogonal to H. In

particular, when n = 3, every improper orthogonal transformation is the product of

a rotation with a reflection about a plane orthogonal to the axis of rotation.

Using Theorem 8.1, we can also give a rather simple proof of the classical fact

that in a Euclidean space of odd dimension, every rotation leaves some nonnull

vector invariant, and thus a line invariant.

If λ is an eigenvalue of f , then the following lemma shows that the orthogonal

complement Eλ ( f )⊥ of the eigenspace associated with λ is closed under f .

Lemma 8.2. Let E be a Euclidean space of finite dimension n, and let f : E → E

be an isometry. For any subspace F of E, if f (F) = F, then f (F⊥) ⊆ F⊥ and E =
F⊕F⊥.
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Proof. We just have to prove that if w ∈ E is orthogonal to every u ∈ F , then f (w)
is also orthogonal to every u ∈ F . However, since f (F) = F , for every v ∈ F , there

is some u ∈ F such that f (u) = v, and we have

f (w) · v = f (w) · f (u) = w ·u,

since f is an isometry. Since we assumed that w ∈ E is orthogonal to every u ∈ F ,

we have

w ·u = 0,

and thus

f (w) · v = 0,

and this for every v∈ F . Thus, f (F⊥)⊆ F⊥. The fact that E = F⊕F⊥ follows from

Lemma 6.8. ⊓⊔

Lemma 8.2 is the starting point of the proof that every orthogonal matrix can

be diagonalized over the field of complex numbers. Indeed, if λ is any eigenvalue

of f , then f (Eλ ( f )) = Eλ ( f ), where Eλ ( f ) is the eigenspace associated with λ ,

and thus the orthogonal Eλ ( f )⊥ is closed under f , and E = Eλ ( f )⊕Eλ ( f )⊥. The

problem over R is that there may not be any real eigenvalues. However, when n is

odd, the following lemma shows that every rotation admits 1 as an eigenvalue (and

similarly, when n is even, every improper orthogonal transformation admits 1 as an

eigenvalue).

Lemma 8.3. Let E be a Euclidean space.

(1) If E has odd dimension n = 2m+ 1, then every rotation f admits 1 as an eigen-

value and the eigenspace F of all eigenvectors left invariant under f has an odd

dimension 2p+ 1. Furthermore, there is an orthonormal basis of E, in which f

is represented by a matrix of the form

(
R2(m−p) 0

0 I2p+1

)
,

where R2(m−p) is a rotation matrix that does not have 1 as an eigenvalue.

(2) If E has even dimension n= 2m, then every improper orthogonal transformation

f admits 1 as an eigenvalue and the eigenspace F of all eigenvectors left invari-

ant under f has an odd dimension 2p+1. Furthermore, there is an orthonormal

basis of E, in which f is represented by a matrix of the form

(
S2(m−p)−1 0

0 I2p+1

)
,

where S2(m−p)−1 is an improper orthogonal matrix that does not have 1 as an

eigenvalue.

Proof. We prove only (1), the proof of (2) being similar. Since f is a rotation and

n = 2m+ 1 is odd, by Theorem 8.1, f is the composition of an even number less
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than or equal to 2m of reflections. From Lemma 2.14, recall the Grassmann relation

dim(M)+ dim(N) = dim(M +N)+ dim(M∩N),

where M and N are subspaces of E . Now, if M and N are hyperplanes, their dimen-

sion is n−1, and thus dim(M∩N)≥ n−2. Thus, if we intersect k≤ n hyperplanes,

we see that the dimension of their intersection is at least n− k. Since each of the

reflections is the identity on the hyperplane defining it, and since there are at most

2m = n−1 reflections, their composition is the identity on a subspace of dimension

at least 1. This proves that 1 is an eigenvalue of f . Let F be the eigenspace associ-

ated with 1, and assume that its dimension is q. Let G = F⊥ be the orthogonal of F .

By Lemma 8.2, G is stable under f , and E = F⊕G. Using Lemma 6.7, we can find

an orthonormal basis of E consisting of an orthonormal basis for G and orthonormal

basis for F . In this basis, the matrix of f is of the form

(
R2m+1−q 0

0 Iq

)
.

Thus, det( f ) = det(R), and R must be a rotation, since f is a rotation and det( f ) = 1.

Now, if f left some vector u 6= 0 in G invariant, this vector would be an eigenvector

for 1, and we would have u∈ F , the eigenspace associated with 1, which contradicts

E = F ⊕G. Thus, by the first part of the proof, the dimension of G must be even,

since otherwise, the restriction of f to G would admit 1 as an eigenvalue. Conse-

quently, q must be odd, and R does not admit 1 as an eigenvalue. Letting q = 2p+1,

the lemma is established. ⊓⊔

An example showing that Lemma 8.3 fails for n even is the following rotation

matrix (when n = 2):

R =

(
cosθ −sinθ
sinθ cosθ

)
.

The above matrix does not have real eigenvalues for θ 6= kπ .

It is easily shown that for n = 2, with respect to any chosen orthonormal basis

(e1, e2), every rotation is represented by a matrix of form

R =

(
cosθ −sinθ
sinθ cosθ

)

where θ ∈ [0,2π [, and that every improper orthogonal transformation is represented

by a matrix of the form

S =

(
cosθ sinθ
sin θ −cosθ

)
.

In the first case, we call θ ∈ [0,2π [ the measure of the angle of rotation of R w.r.t. the

orthonormal basis (e1, e2). In the second case, we have a reflection about a line, and

it is easy to determine what this line is. It is also easy to see that S is the composition

of a reflection about the x-axis with a rotation (of matrix R).
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� We refrained from calling θ “the angle of rotation,” because there are

some subtleties involved in defining rigorously the notion of angle of two

vectors (or two lines). For example, note that with respect to the “opposite basis”

(e2, e1), the measure θ must be changed to 2π−θ (or−θ if we consider the quotient

set R/2π of the real numbers modulo 2π). We will come back to this point after

having defined the notion of orientation (see Section 8.8).

It is easily shown that the group SO(2) of rotations in the plane is abelian. First,

recall that every plane rotation is the product of two reflections (about lines), and that

every isometry in O(2) is either a reflection or a rotation. To alleviate the notation,

we will omit the composition operator ◦, and write rs instead of r ◦ s. Now, if r is a

rotation and s is a reflection, rs being in O(2) must be a reflection (since det(rs) =
det(r)det(s) = −1), and thus (rs)2 = id, since a reflection is an involution, which

implies that

srs = r−1.

Then, given two rotations r1 and r2, writing r1 as r1 = s2s1 for two reflections s1,s2,

we have

r1r2r−1
1 = s2s1r2(s2s1)

−1 = s2s1r2s−1
1 s−1

2 = s2s1r2s1s2 = s2r−1
2 s2 = r2,

since srs = r−1 for all reflections s and rotations r, and thus r1r2 = r2r1.
We can also perform the following calculation, using some elementary trigonom-

etry:

(
cosϕ sinϕ
sinϕ −cosϕ

)(
cosψ sinψ
sinψ −cosψ

)
=

(
cos(ϕ +ψ) sin(ϕ +ψ)
sin(ϕ +ψ) −cos(ϕ +ψ)

)
.

The above also shows that the inverse of a rotation matrix

R =

(
cosθ −sinθ
sinθ cosθ

)

is obtained by changing θ to −θ (or 2π − θ ). Incidentally, note that in writing a

rotation r as the product of two reflections r = s2s1, the first reflection s1 can be

chosen arbitrarily, since s2
1 = id, r = (rs1)s1, and rs1 is a reflection.

For n= 3, the only two choices for p are p= 1, which corresponds to the identity,

or p = 0, in which case f is a rotation leaving a line invariant. This line D is called

the axis of rotation. The rotation R behaves like a two-dimensional rotation around

the axis of rotation. Thus, the rotation R is the composition of two reflections about

planes containing the axis of rotation D and forming an angle θ/2. This is illustrated

in Figure 8.4.

The measure of the angle of rotation θ can be determined through its cosine via

the formula

cosθ = u ·R(u),
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u

R(u)

θ/2

D

Fig. 8.4 3D rotation as the composition of two reflections.

where u is any unit vector orthogonal to the direction of the axis of rotation. How-

ever, this does not determine θ ∈ [0,2π [ uniquely, since both θ and 2π − θ are

possible candidates. What is missing is an orientation of the plane (through the ori-

gin) orthogonal to the axis of rotation. We will come back to this point in Section

8.8.

In the orthonormal basis of the lemma, a rotation is represented by a matrix of

the form

R =




cosθ −sinθ 0

sin θ cosθ 0

0 0 1


 .

Remark: For an arbitrary rotation matrix A, since a11 + a22 + a33 (the trace of A)

is the sum of the eigenvalues of A, and since these eigenvalues are cosθ + isinθ ,

cosθ − isinθ , and 1, for some θ ∈ [0,2π [, we can compute cosθ from

1+ 2cosθ = a11 + a22 + a33.
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It is also possible to determine the axis of rotation (see the problems).

An improper transformation is either a reflection about a plane or the product

of three reflections, or equivalently the product of a reflection about a plane with a

rotation, and we noted in the discussion following Theorem 8.1 that the axis of ro-

tation is orthogonal to the plane of the reflection. Thus, an improper transformation

is represented by a matrix of the form

S =




cosθ −sinθ 0

sinθ cosθ 0

0 0 −1


 .

When n ≥ 3, the group of rotations SO(n) is not only generated by hyperplane

reflections, but also by flips (about subspaces of dimension n− 2). We will also

see, in Section 8.4, that every proper affine rigid motion can be expressed as the

composition of at most n flips, which is perhaps even more surprising! The proof of

these results uses the following key lemma.

Lemma 8.4. Given any Euclidean space E of dimension n ≥ 3, for any two reflec-

tions h1 and h2 about some hyperplanes H1 and H2, there exist two flips f1 and f2

such that h2 ◦ h1 = f2 ◦ f1.

Proof. If h1 = h2, it is obvious that

h1 ◦ h2 = h1 ◦ h1 = id = f1 ◦ f1

for any flip f1. If h1 6= h2, then H1 ∩H2 = F , where dim(F) = n− 2 (by the

Grassmann relation). We can pick an orthonormal basis (e1, . . . ,en) of E such that

(e1, . . . ,en−2) is an orthonormal basis of F . We can also extend (e1, . . . ,en−2) to an

orthonormal basis (e1, . . . ,en−2,u1,v1) of E , where (e1, . . . ,en−2,u1) is an orthonor-

mal basis of H1, in which case

en−1 = cosθ1 u1 + sinθ1 v1,

en = sinθ1 u1− cosθ1 v1,

for some θ1 ∈ [0,2π ]. Since h1 is the identity on H1 and v1 is orthogonal to H1, it

follows that h1(u1) = u1, h1(v1) =−v1, and we get

h1(en−1) = cosθ1 u1− sinθ1 v1,

h1(en) = sinθ1 u1 + cosθ1 v1.

After some simple calculations, we get

h1(en−1) = cos2θ1 en−1 + sin2θ1 en,

h1(en) = sin2θ1 en−1− cos2θ1 en.

As a consequence, the matrix A1 of h1 over the basis (e1, . . . ,en) is of the form
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A1 =




In−2 0 0

0 cos2θ1 sin2θ1

0 sin2θ1 −cos2θ1


 .

Similarly, the matrix A2 of h2 over the basis (e1, . . . ,en) is of the form

A2 =




In−2 0 0

0 cos2θ2 sin2θ2

0 sin2θ2 −cos2θ2


 .

Observe that both A1 and A2 have the eigenvalues−1 and+1 with multiplicity n−1.

The trick is to observe that if we change the last entry in In−2 from +1 to−1 (which

is possible since n≥ 3), we have the following product A2A1:




In−3 0 0 0

0 −1 0 0

0 0 cos2θ2 sin2θ2

0 0 sin2θ2 −cos2θ2







In−3 0 0 0

0 −1 0 0

0 0 cos2θ1 sin2θ1

0 0 sin2θ1 −cos2θ1


 .

Now, the two matrices above are clearly orthogonal, and they have the eigenval-

ues −1,−1, and +1 with multiplicity n− 2, which implies that the corresponding

isometries leave invariant a subspace of dimension n−2 and act as−id on its orthog-

onal complement (which has dimension 2). This means that the above two matrices

represent two flips f1 and f2 such that h2 ◦ h1 = f2 ◦ f1. ⊓⊔

Using Lemma 8.4 and the Cartan–Dieudonné theorem, we obtain the following

characterization of rotations when n≥ 3.

Theorem 8.2. Let E be a Euclidean space of dimension n ≥ 3. Every rotation f ∈
SO(E) is the composition of an even number of flips f = f2k ◦ · · ·◦ f1, where 2k≤ n.

Furthermore, if u 6= 0 is invariant under f (i.e., u∈Ker( f − id)), we can pick the last

flip f2k such that u ∈ F⊥2k , where F2k is the subspace of dimension n−2 determining

f2k.

Proof. By Theorem 8.1, the rotation f can be expressed as an even number of hy-

perplane reflections f = s2k ◦ s2k−1 ◦ · · · ◦ s2 ◦ s1, with 2k ≤ n. By Lemma 8.4, every

composition of two reflections s2i ◦ s2i−1 can be replaced by the composition of two

flips f2i ◦ f2i−1 (1≤ i≤ k), which yields f = f2k ◦ · · · ◦ f1, where 2k≤ n.

Assume that f (u) = u, with u 6= 0. We have already made the remark that in

the case where 1 is an eigenvalue of f , the proof of Theorem 8.1 shows that the

reflections si can be chosen so that si(u) = u. In particular, if each reflection si is a

reflection about the hyperplane Hi, we have u ∈ H2k−1∩H2k. Letting F = H2k−1 ∩
H2k, pick an orthonormal basis (e1, . . . ,en−3,en−2) of F , where

en−2 =
u

‖u‖ .

The proof of Lemma 8.4 yields two flips f2k−1 and f2k such that
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f2k(en−2) =−en−2 and s2k ◦ s2k−1 = f2k ◦ f2k−1,

since the (n − 2)th diagonal entry in both matrices is −1, which means that

en−2 ∈ F⊥2k , where F2k is the subspace of dimension n− 2 determining f2k. Since

u = ‖u‖en−2, we also have u ∈ F⊥2k . ⊓⊔

Remarks:

(1) It is easy to prove that if f is a rotation in SO(3) and if D is its axis and θ is its

angle of rotation, then f is the composition of two flips about lines D1 and D2

orthogonal to D and making an angle θ/2.

(2) It is natural to ask what is the minimal number of flips needed to obtain a rota-

tion f (when n ≥ 3). As for arbitrary isometries, we will prove later that every

rotation is the composition of k flips, where

k = n− dim(Ker( f − id)),

and that this number is minimal (where n = dim(E)).

We now show that hyperplane reflections can be used to obtain another proof of

the QR-decomposition.

8.3 QR-Decomposition Using Householder Matrices

First, we state the result geometrically. When translated in terms of Householder

matrices, we obtain the fact advertised earlier that every matrix (not necessarily

invertible) has a QR-decomposition.

Lemma 8.5. Let E be a nontrivial Euclidean space of dimension n. For any or-

thonormal basis (e1, . . ., en) and for any n-tuple of vectors (v1, . . ., vn), there is a

sequence of n isometries h1, . . . ,hn such that hi is a hyperplane reflection or the

identity, and if (r1, . . . ,rn) are the vectors given by

r j = hn ◦ · · · ◦ h2 ◦ h1(v j),

then every r j is a linear combination of the vectors (e1, . . . ,e j), 1 ≤ j ≤ n. Equiv-

alently, the matrix R whose columns are the components of the r j over the basis

(e1, . . . ,en) is an upper triangular matrix. Furthermore, the hi can be chosen so that

the diagonal entries of R are nonnegative.

Proof. We proceed by induction on n. For n = 1, we have v1 = λ e1 for some λ ∈R.

If λ ≥ 0, we let h1 = id, else if λ < 0, we let h1 = −id, the reflection about the

origin.

For n≥ 2, we first have to find h1. Let

r1,1 = ‖v1‖.
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If v1 = r1,1e1, we let h1 = id. Otherwise, there is a unique hyperplane reflection h1

such that

h1(v1) = r1,1 e1,

defined such that

h1(u) = u− 2
(u ·w1)

‖w1‖2
w1

for all u ∈ E , where

w1 = r1,1 e1− v1.

The map h1 is the reflection about the hyperplane H1 orthogonal to the vector w1 =
r1,1 e1− v1. Letting

r1 = h1(v1) = r1,1 e1,

it is obvious that r1 belongs to the subspace spanned by e1, and r1,1 = ‖v1‖ is non-

negative.

Next, assume that we have found k linear maps h1, . . . ,hk, hyperplane reflections

or the identity, where 1≤ k≤ n−1, such that if (r1, . . . ,rk) are the vectors given by

r j = hk ◦ · · · ◦ h2 ◦ h1(v j),

then every r j is a linear combination of the vectors (e1, . . . ,e j), 1 ≤ j ≤ k. The

vectors (e1, . . . ,ek) form a basis for the subspace denoted by U ′k, the vectors

(ek+1, . . . ,en) form a basis for the subspace denoted by U ′′k , the subspaces U ′k and

U ′′k are orthogonal, and E =U ′k⊕U ′′k . Let

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1).

We can write

uk+1 = u′k+1 + u′′k+1,

where u′k+1 ∈U ′k and u′′k+1 ∈U ′′k . Let

rk+1,k+1 = ‖u′′k+1‖.

If u′′k+1 = rk+1,k+1 ek+1, we let hk+1 = id. Otherwise, there is a unique hyperplane

reflection hk+1 such that

hk+1(u
′′
k+1) = rk+1,k+1 ek+1,

defined such that

hk+1(u) = u− 2
(u ·wk+1)

‖wk+1‖2
wk+1

for all u ∈ E , where

wk+1 = rk+1,k+1 ek+1− u′′k+1.

The map hk+1 is the reflection about the hyperplane Hk+1 orthogonal to the vector

wk+1 = rk+1,k+1 ek+1− u′′k+1. However, since u′′k+1,ek+1 ∈U ′′k and U ′k is orthogonal
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to U ′′k , the subspace U ′k is contained in Hk+1, and thus, the vectors (r1, . . . ,rk) and

u′k+1, which belong to U ′k, are invariant under hk+1. This proves that

hk+1(uk+1) = hk+1(u
′
k+1)+ hk+1(u

′′
k+1) = u′k+1 + rk+1,k+1 ek+1

is a linear combination of (e1, . . . ,ek+1). Letting

rk+1 = hk+1(uk+1) = u′k+1 + rk+1,k+1 ek+1,

since uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1), the vector

rk+1 = hk+1 ◦ · · · ◦ h2 ◦ h1(vk+1)

is a linear combination of (e1, . . . ,ek+1). The coefficient of rk+1 over ek+1 is

rk+1,k+1 = ‖u′′k+1‖, which is nonnegative. This concludes the induction step, and

thus the proof. ⊓⊔

Remarks:

(1) Since every hi is a hyperplane reflection or the identity,

ρ = hn ◦ · · · ◦ h2 ◦ h1

is an isometry.

(2) If we allow negative diagonal entries in R, the last isometry hn may be omitted.

(3) Instead of picking rk,k = ‖u′′k‖, which means that

wk = rk,k ek− u′′k ,

where 1≤ k≤ n, it might be preferable to pick rk,k =−‖u′′k‖ if this makes ‖wk‖2

larger, in which case

wk = rk,k ek + u′′k .

Indeed, since the definition of hk involves division by ‖wk‖2, it is desirable to

avoid division by very small numbers.

(4) The method also applies to any m-tuple of vectors (v1, . . . ,vm), where m is not

necessarily equal to n (the dimension of E). In this case, R is an upper triangular

n×m matrix we leave the minor adjustments to the method as an exercise to the

reader (if m > n, the last m− n vectors are unchanged).

Lemma 8.5 directly yields the QR-decomposition in terms of Householder trans-

formations (see Strang [11, 12], Golub and Van Loan [7], Trefethen and Bau [14],

Kincaid and Cheney [8], or Ciarlet [5]).

Lemma 8.6. For every real n× n matrix A, there is a sequence H1, . . ., Hn of ma-

trices, where each Hi is either a Householder matrix or the identity, and an upper

triangular matrix R such that

R = Hn · · ·H2H1A.
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As a corollary, there is a pair of matrices Q,R, where Q is orthogonal and R is

upper triangular, such that A = QR (a QR-decomposition of A). Furthermore, R can

be chosen so that its diagonal entries are nonnegative.

Proof. The jth column of A can be viewed as a vector v j over the canonical basis

(e1, . . . ,en) of En (where (e j)i = 1 if i = j, and 0 otherwise, 1≤ i, j ≤ n). Applying

Lemma 8.5 to (v1, . . . ,vn), there is a sequence of n isometries h1, . . . ,hn such that hi

is a hyperplane reflection or the identity, and if (r1, . . . ,rn) are the vectors given by

r j = hn ◦ · · · ◦ h2 ◦ h1(v j),

then every r j is a linear combination of the vectors (e1, . . . ,e j), 1≤ j ≤ n. Letting R

be the matrix whose columns are the vectors r j , and Hi the matrix associated with

hi, it is clear that

R = Hn · · ·H2H1A,

where R is upper triangular and every Hi is either a Householder matrix or the iden-

tity. However, hi ◦ hi = id for all i, 1≤ i≤ n, and so

v j = h1 ◦ h2 ◦ · · · ◦ hn(r j)

for all j, 1≤ j ≤ n. But ρ = h1 ◦ h2 ◦ · · · ◦ hn is an isometry, and by Lemma 6.10, ρ
is represented by an orthogonal matrix Q. It is clear that A = QR, where R is upper

triangular. As we noted in Lemma 8.5, the diagonal entries of R can be chosen to be

nonnegative. ⊓⊔

Remarks:

(1) Letting

Ak+1 = Hk · · ·H2H1A,

with A1 = A, 1 ≤ k ≤ n, the proof of Lemma 8.5 can be interpreted in terms of

the computation of the sequence of matrices A1, . . . ,An+1 = R. The matrix Ak+1

has the shape

Ak+1 =




× × × uk+1
1 × × × ×

0 ×
...

...
...

...
...

...

0 0 × uk+1
k × × × ×

0 0 0 uk+1
k+1
× × × ×

0 0 0 uk+1
k+2 × × × ×

...
...

...
...

...
...

...
...

0 0 0 uk+1
n−1 × × × ×

0 0 0 uk+1
n × × × ×




,

where the (k+ 1)th column of the matrix is the vector

uk+1 = hk ◦ · · · ◦ h2 ◦ h1(vk+1),
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and thus

u′k+1 =
(

uk+1
1 , . . . ,uk+1

k

)

and

u′′k+1 =
(

uk+1
k+1,u

k+1
k+2, . . . ,u

k+1
n

)
.

If the last n− k− 1 entries in column k+ 1 are all zero, there is nothing to do,

and we let Hk+1 = I. Otherwise, we kill these n− k− 1 entries by multiplying

Ak+1 on the left by the Householder matrix Hk+1 sending

(
0, . . . ,0,uk+1

k+1, . . . ,u
k+1
n

)
to (0, . . . ,0,rk+1,k+1,0, . . . ,0),

where rk+1,k+1 = ‖(uk+1
k+1, . . . ,u

k+1
n )‖.

(2) If A is invertible and the diagonal entries of R are positive, it can be shown that

Q and R are unique.

(3) If we allow negative diagonal entries in R, the matrix Hn may be omitted (Hn =
I).

(4) The method allows the computation of the determinant of A. We have

det(A) = (−1)mr1,1 · · · rn,n,

where m is the number of Householder matrices (not the identity) among the Hi.

(5) The “condition number” of the matrix A is preserved (see Strang [12], Golub

and Van Loan [7], Trefethen and Bau [14], Kincaid and Cheney [8], or Ciarlet

[5]). This is very good for numerical stability.

(6) The method also applies to a rectangular m×n matrix. In this case, R is also an

m× n matrix (and it is upper triangular).

We now turn to affine isometries.

8.4 Affine Isometries (Rigid Motions)

In the remaining sections we study affine isometries. First, we characterize the set of

fixed points of an affine map. Using this characterization, we prove that every affine

isometry f can be written uniquely as

f = t ◦ g, with t ◦ g = g ◦ t,

where g is an isometry having a fixed point, and t is a translation by a vector τ such

that
−→
f (τ) = τ , and with some additional nice properties (see Theorem 8.3). This

is a generalization of a classical result of Chasles about (proper) rigid motions in

R3 (screw motions). We prove a generalization of the Cartan–Dieudonné theorem

for the affine isometries: Every isometry in Is(n) can be written as the composition

of at most n reflections if it has a fixed point, or else as the composition of at most
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n+2 reflections. We also prove that every rigid motion in SE(n) is the composition

of at most n flips (for n ≥ 3). This is somewhat surprising, in view of the previous

theorem.

Definition 8.3. Given any two nontrivial Euclidean affine spaces E and F of the

same finite dimension n, a function f : E → F is an affine isometry (or rigid map)

if it is an affine map and

‖−−−−−→f (a) f (b)‖= ‖−→ab‖,
for all a,b ∈ E . When E = F , an affine isometry f : E → E is also called a rigid

motion.

Thus, an affine isometry is an affine map that preserves the distance. This is a

rather strong requirement. In fact, we will show that for any function f : E→ F , the

assumption that

‖
−−−−−→
f (a) f (b)‖= ‖−→ab‖,

for all a,b ∈ E , forces f to be an affine map.

Remark: Sometimes, an affine isometry is defined as a bijective affine isometry.

When E and F are of finite dimension, the definitions are equivalent.

The following simple lemma is left as an exercise.

Lemma 8.7. Given any two nontrivial Euclidean affine spaces E and F of the same

finite dimension n, an affine map f : E → F is an affine isometry iff its associated

linear map
−→
f :
−→
E →−→F is an isometry. An affine isometry is a bijection.

Let us now consider affine isometries f : E → E . If
−→
f is a rotation, we call

f a proper (or direct) affine isometry, and if
−→
f is an improper linear isometry,

we call f an improper (or skew) affine isometry. It is easily shown that the set of

affine isometries f : E → E forms a group, and those for which
−→
f is a rotation

is a subgroup. The group of affine isometries, or rigid motions, is a subgroup of

the affine group GA(E), denoted by Is(E) (or Is(n) when E = En). In Snapper

and Troyer [10] the group of rigid motions is denoted by Mo(E). Since we denote

the group of affine bijections as GA(E), perhaps we should denote the group of

affine isometries by IA(E) (or EA(E)!). The subgroup of Is(E) consisting of the

direct rigid motions is also a subgroup of SA(E), and it is denoted by SE(E) (or

SE(n), when E =En). The translations are the affine isometries f for which
−→
f = id,

the identity map on
−→
E . The following lemma is the counterpart of Lemma 6.9 for

isometries between Euclidean vector spaces.

Lemma 8.8. Given any two nontrivial Euclidean affine spaces E and F of the same

finite dimension n, for every function f : E→ F, the following properties are equiv-

alent:
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(1) f is an affine map and ‖−−−−−→f (a) f (b)‖= ‖−→ab‖, for all a,b ∈ E.

(2) ‖
−−−−−→
f (a) f (b)‖= ‖−→ab‖, for all a,b ∈ E.

Proof. Obviously, (1) implies (2). In order to prove that (2) implies (1), we proceed

as follows. First, we pick some arbitrary point Ω ∈ E . We define the map g :
−→
E →

−→
F such that

g(u) =
−−−−−−−−−−→
f (Ω) f (Ω + u)

for all u ∈ E . Since

f (Ω)+ g(u) = f (Ω)+
−−−−−−−−−−→
f (Ω) f (Ω + u) = f (Ω + u)

for all u ∈−→E , f will be affine if we can show that g is linear, and f will be an affine

isometry if we can show that g is a linear isometry.

Observe that

g(v)− g(u) =
−−−−−−−−−→
f (Ω) f (Ω + v)−−−−−−−−−−−→f (Ω) f (Ω + u)

=
−−−−−−−−−−−−→
f (Ω + u) f (Ω + v).

Then, the hypothesis

‖−−−−−→f (a) f (b)‖= ‖−→ab‖
for all a,b ∈ E , implies that

‖g(v)− g(u)‖= ‖
−−−−−−−−−−−−→
f (Ω + u) f (Ω + v)‖= ‖

−−−−−−−−−−→
(Ω + u)(Ω + v)‖= ‖v− u‖.

Thus, g preserves the distance. Also, by definition, we have

g(0) = 0.

Thus, we can apply Lemma 6.9, which shows that g is indeed a linear isometry, and

thus f is an affine isometry. ⊓⊔

In order to understand the structure of affine isometries, it is important to inves-

tigate the fixed points of an affine map.

8.5 Fixed Points of Affine Maps

Recall that E
(
1,
−→
f
)

denotes the eigenspace of the linear map
−→
f associated with the

scalar 1, that is, the subspace consisting of all vectors u ∈ −→E such that
−→
f (u) = u.

Clearly, Ker
(−→

f − id
)
= E

(
1,
−→
f
)
. Given some origin Ω ∈ E , since

f (a) = f (Ω +
−→
Ωa) = f (Ω)+

−→
f (
−→
Ωa),
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we have
−−−−−−→
f (Ω) f (a) =

−→
f (
−→
Ωa), and thus

−−−−→
Ω f (a) =

−−−−→
Ω f (Ω)+

−→
f (
−→
Ωa).

From the above, we get

−−−−→
Ω f (a)−−→Ωa =

−−−−→
Ω f (Ω)+

−→
f (
−→
Ωa)−−→Ωa.

Using this, we show the following lemma, which holds for arbitrary affine spaces of

finite dimension and for arbitrary affine maps.

Lemma 8.9. Let E be any affine space of finite dimension. For every affine map

f : E → E, let Fix( f ) = {a ∈ E | f (a) = a} be the set of fixed points of f . The

following properties hold:

(1) If f has some fixed point a, so that Fix( f ) 6= /0, then Fix( f ) is an affine subspace

of E such that

Fix( f ) = a+E
(
1,
−→
f
)
= a+Ker

(−→
f − id

)
,

where E
(
1,
−→
f
)

is the eigenspace of the linear map
−→
f for the eigenvalue 1.

(2) The affine map f has a unique fixed point iff E
(
1,
−→
f
)
= Ker

(−→
f − id

)
= {0}.

Proof. (1) Since the identity

−−−−→
Ω f (b)−−→Ωb =

−−−−→
Ω f (Ω)+

−→
f (
−→
Ωb)−−→Ωb

holds for all Ω ,b ∈ E , if f (a) = a, then
−−−→
a f (a) = 0, and thus, letting Ω = a, for any

b ∈ E ,

f (b) = b

iff −−−→
a f (b)−−→ab = 0

iff −→
f (
−→
ab)−−→ab = 0

iff −→
ab ∈ E

(
1,
−→
f
)
= Ker

(−→
f − id

)
,

which proves that

Fix( f ) = a+E
(
1,
−→
f
)
= a+Ker

(−→
f − id

)
.

(2) Again, fix some origin Ω . Some a satisfies f (a) = a iff

−−−−→
Ω f (a)−−→Ωa = 0
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iff −−−−→
Ω f (Ω)+

−→
f (
−→
Ωa)−−→Ωa = 0,

which can be rewritten as

(−→
f − id

)
(
−→
Ωa) =−−−−−→Ω f (Ω).

We have E
(
1,
−→
f
)
= Ker

(−→
f − id

)
= {0} iff

−→
f − id is injective, and since

−→
E has

finite dimension,
−→
f − id is also surjective, and thus, there is indeed some a∈E such

that (−→
f − id

)
(
−→
Ωa) =−−−−−→Ω f (Ω),

and it is unique, since
−→
f − id is injective. Conversely, if f has a unique fixed point,

say a, from (−→
f − id

)
(
−→
Ωa) =−

−−−−→
Ω f (Ω),

we have
(−→

f − id
)
(
−→
Ωa) = 0 iff f (Ω) = Ω , and since a is the unique fixed point of

f , we must have a = Ω , which shows that
−→
f − id is injective. ⊓⊔

Remark: The fact that E has finite dimension is used only to prove (2), and (1)

holds in general.

If an isometry f leaves some point fixed, we can take such a point Ω as the ori-

gin, and then f (Ω) = Ω and we can view f as a rotation or an improper orthogonal

transformation, depending on the nature of
−→
f . Note that it is quite possible that

Fix( f ) = /0. For example, nontrivial translations have no fixed points. A more in-

teresting example is provided by the composition of a plane reflection about a line

composed with a a nontrivial translation parallel to this line.

Otherwise, we will see in Theorem 8.3 that every affine isometry is the (commu-

tative) composition of a translation with an isometry that always has a fixed point.

8.6 Affine Isometries and Fixed Points

Let E be an affine space. Given any two affine subspaces F,G, if F and G are or-

thogonal complements in E , which means that
−→
F and

−→
G are orthogonal subspaces

of
−→
E such that

−→
E =

−→
F ⊕−→G , for any point Ω ∈ F , we define q : E→−→G such that

q(a) = p−→
G
(
−→
Ωa).

Note that q(a) is independent of the choice of Ω ∈ F , since we have

−→
Ωa = p−→

F
(
−→
Ωa)+ p−→

G
(
−→
Ωa),



8.6 Affine Isometries and Fixed Points 255

and for any Ω1 ∈ F , we have

−−→
Ω1a =

−−→
Ω1Ω + p−→

F
(
−→
Ωa)+ p−→

G
(
−→
Ωa),

and since
−−→
Ω1Ω ∈ −→F , this shows that

p−→
G
(
−−→
Ω1a) = p−→

G
(
−→
Ωa).

Then the map g : E→ E such that g(a) = a− 2q(a), or equivalently

−−−→
ag(a) =−2q(a) =−2p−→

G
(
−→
Ωa),

does not depend on the choice of Ω ∈ F . If we identify E to
−→
E by choosing any

origin Ω in F , we note that g is identified with the symmetry with respect to
−→
F and

parallel to
−→
G . Thus, the map g is an affine isometry, and it is called the orthogonal

symmetry about F . Since

g(a) = Ω +
−→
Ωa− 2p−→

G
(
−→
Ωa)

for all Ω ∈ F and for all a ∈ E , we note that the linear map −→g associated with g is

the (linear) symmetry about the subspace
−→
F (the direction of F), and parallel to

−→
G

(the direction of G).

Remark: The map p : E→ F such that p(a) = a− q(a), or equivalently

−−→
ap(a) =−q(a) =−p−→

G
(
−→
Ωa),

is also independent of Ω ∈ F , and it is called the orthogonal projection onto F .

The following amusing lemma shows the extra power afforded by affine orthog-

onal symmetries: Translations are subsumed! Given two parallel affine subspaces F1

and F2 in E , letting
−→
F be the common direction of F1 and F2 and

−→
G =

−→
F
⊥

be its

orthogonal complement, for any a ∈ F1, the affine subspace a+
−→
G intersects F2 in a

single point b (see Lemma 2.15). We define the distance between F1 and F2 as ‖−→ab‖.
It is easily seen that the distance between F1 and F2 is independent of the choice of

a in F1, and that it is the minimum of ‖−→xy‖ for all x ∈ F1 and all y ∈ F2.

Lemma 8.10. Given any affine space E, if f : E→ E and g : E→ E are orthogonal

symmetries about parallel affine subspaces F1 and F2, then g ◦ f is a translation

defined by the vector 2
−→
ab, where

−→
ab is any vector perpendicular to the common

direction
−→
F of F1 and F2 such that ‖−→ab‖ is the distance between F1 and F2, with

a ∈ F1 and b ∈ F2. Conversely, every translation by a vector τ is obtained as the

composition of two orthogonal symmetries about parallel affine subspaces F1 and
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F2 whose common direction is orthogonal to τ =
−→
ab, for some a ∈ F1 and some

b ∈ F2 such that the distance between F1 and F2 is ‖−→ab‖/2.

Proof. We observed earlier that the linear maps
−→
f and −→g associated with f and

g are the linear reflections about the directions of F1 and F2. However, F1 and F2

have the same direction, and so
−→
f =−→g . Since

−−→
g ◦ f =−→g ◦−→f and since

−→
f ◦−→g =

−→
f ◦−→f = id, because every reflection is an involution, we have

−−→
g ◦ f = id, proving

that g ◦ f is a translation. If we pick a ∈ F1, then g ◦ f (a) = g(a), the reflection of

a ∈ F1 about F2, and it is easily checked that g ◦ f is the translation by the vector

τ =
−−−→
ag(a) whose norm is twice the distance between F1 and F2. The second part of

the lemma is left as an easy exercise. ⊓⊔

We conclude our quick study of affine isometries by proving a result that plays

a major role in characterizing the affine isometries. This result may be viewed as a

generalization of Chasles’s theorem about the direct rigid motions in E3.

Theorem 8.3. Let E be a Euclidean affine space of finite dimension n. For every

affine isometry f : E→ E, there is a unique isometry g : E→ E and a unique trans-

lation t = tτ , with
−→
f (τ) = τ (i.e., τ ∈Ker

(−→
f − id

)
), such that the set Fix(g) = {a∈

E | g(a) = a} of fixed points of g is a nonempty affine subspace of E of direction

−→
G = Ker

(−→
f − id

)
= E

(
1,
−→
f
)
,

and such that

f = t ◦ g and t ◦ g = g ◦ t.

Furthermore, we have the following additional properties:

(a) f = g and τ = 0 iff f has some fixed point, i.e., iff Fix( f ) 6= /0.

(b) If f has no fixed points, i.e., Fix( f ) = /0, then dim
(
Ker

(−→
f − id

))
≥ 1.

Proof. The proof rests on the following two key facts:

(1) If we can find some x ∈ E such that
−−−→
x f (x) = τ belongs to Ker

(−→
f − id

)
, we get

the existence of g and τ .

(2)
−→
E = Ker

(−→
f − id

)
⊕ Im

(−→
f − id

)
, and the spaces Ker

(−→
f − id

)
and

Im
(−→

f − id
)

are orthogonal. This implies the uniqueness of g and τ .

First, we prove that for every isometry h :
−→
E →−→E , Ker(h− id) and Im(h− id) are

orthogonal and that
−→
E = Ker(h− id)⊕ Im(h− id).

Recall that

dim
(−→

E
)
= dim(Kerϕ)+ dim(Imϕ),
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for any linear map ϕ :
−→
E → −→E (for instance, see Lang [9], or Strang [12]). To

show that we have a direct sum, we prove orthogonality. Let u ∈ Ker(h− id), so

that h(u) = u, let v ∈ −→E , and compute

u · (h(v)− v) = u ·h(v)− u · v= h(u) ·h(v)− u · v= 0,

since h(u) = u and h is an isometry.

Next, assume that there is some x ∈ E such that
−−−→
x f (x) = τ belongs to the space

Ker
(−→

f − id
)
. If we define g : E → E such that

g = t(−τ) ◦ f ,

we have

g(x) = f (x)− τ = x,

since
−−−→
x f (x) = τ is equivalent to x = f (x)− τ . As a composition of isometries, g is

an isometry, x is a fixed point of g, and since τ ∈ Ker
(−→

f − id
)
, we have

−→
f (τ) = τ,

and since

g(b) = f (b)− τ

for all b ∈ E , we have −→g =
−→
f . Since g has some fixed point x, by Lemma 8.9,

Fix(g) is an affine subspace of E with direction Ker
(−→g − id

)
= Ker

(−→
f − id

)
. We

also have f (b) = g(b)+ τ for all b ∈ E , and thus

(g ◦ tτ)(b) = g(b+ τ) = g(b)+−→g (τ) = g(b)+
−→
f (τ) = g(b)+ τ = f (b),

and

(tτ ◦ g)(b) = g(b)+ τ = f (b),

which proves that t ◦ g = g ◦ t.

To prove the existence of x as above, pick any arbitrary point a ∈ E . Since

−→
E = Ker

(−→
f − id

)
⊕ Im

(−→
f − id

)
,

there is a unique vector τ ∈ Ker
(−→

f − id
)

and some v ∈ −→E such that

−−−→
a f (a) = τ +

−→
f (v)− v.

For any x ∈ E , since we also have

−−−→
x f (x) =−→xa+

−−−→
a f (a)+

−−−−−→
f (a) f (x) =−→xa+

−−−→
a f (a)+

−→
f (−→ax),
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we get
−−−→
x f (x) =−→xa+ τ +

−→
f (v)− v+

−→
f (−→ax),

which can be rewritten as

−−−→
x f (x) = τ +

(−→
f − id

)
(v+−→ax).

If we let −→ax =−v, that is, x = a− v, we get

−−−→
x f (x) = τ,

with τ ∈ Ker
(−→

f − id
)
.

Finally, we show that τ is unique. Assume two decompositions (g1,τ1) and

(g2,τ2). Since
−→
f =−→g1 , we have Ker(−→g1 − id) = Ker

(−→
f − id

)
. Since g1 has some

fixed point b, we get

f (b) = g1(b)+ τ1 = b+ τ1,

that is,
−−−→
b f (b) = τ1, and

−−−→
b f (b) ∈ Ker

(−→
f − id

)
, since τ1 ∈ Ker

(−→
f − id

)
. Similarly,

for some fixed point c of g2, we get
−−−→
c f (c) = τ2 and

−−−→
c f (c) ∈ Ker

(−→
f − id

)
. Then we

have

τ2− τ1 =
−−−→
c f (c)−−−−→b f (b) =

−→
cb−−−−−−→f (c) f (b) =

−→
cb−−→f (

−→
cb),

which shows that

τ2− τ1 ∈ Ker
(−→

f − id
)
∩ Im

(−→
f − id

)
,

and thus that τ2 = τ1, since we have shown that

−→
E = Ker

(−→
f − id

)
⊕ Im

(−→
f − id

)
.

The fact that (a) holds is a consequence of the uniqueness of g and τ , since f and

0 clearly satisfy the required conditions. That (b) holds follows from Lemma 8.9 (2),

since the affine map f has a unique fixed point iff E
(
1,
−→
f
)
= Ker

(−→
f − id

)
= {0}.

⊓⊔

The determination of x is illustrated in Figure 8.5.

Remarks:

(1) Note that Ker
(−→

f − id
)
= {0} iff τ = 0, iff Fix(g) consists of a single element,

which is the unique fixed point of f . However, even if f is not a translation, f

may not have any fixed points. For example, this happens when E is the affine

Euclidean plane and f is the composition of a reflection about a line composed

with a nontrivial translation parallel to this line.

(2) The fact that E has finite dimension is used only to prove (b).
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bc

bc

bc

bc bca

f (a)

τ

v
−→
f (v)

a+
−→
f (v)− v

x

f (x)

a+ Im
(−→

f − id
)

f (a)+Ker
(−→

f − id
)

Fig. 8.5 Rigid motion as f = t ◦g, where g has some fixed point x.

(3) It is easily checked that Fix(g) consists of the set of points x such that ‖−−−→x f (x)‖
is minimal.

In the affine Euclidean plane it is easy to see that the affine isometries (besides the

identity) are classified as follows. An isometry f that has a fixed point is a rotation

if it is a direct isometry; otherwise, it is a reflection about a line. If f has no fixed

point, then it is either a nontrivial translation or the composition of a reflection about

a line with a nontrivial translation parallel to this line.

In an affine space of dimension 3 it is easy to see that the affine isometries (be-

sides the identity) are classified as follows. There are three kinds of isometries that

have a fixed point. A proper isometry with a fixed point is a rotation around a line

D (its set of fixed points), as illustrated in Figure 8.6.

An improper isometry with a fixed point is either a reflection about a plane H (the

set of fixed points) or the composition of a rotation followed by a reflection about a

plane H orthogonal to the axis of rotation D, as illustrated in Figures 8.7 and 8.8. In

the second case, there is a single fixed point O = D∩H.

There are three types of isometries with no fixed point. The first kind is a non-

trivial translation. The second kind is the composition of a rotation followed by a

nontrivial translation parallel to the axis of rotation D. Such a rigid motion is proper,

and is called a screw motion. A screw motion is illustrated in Figure 8.9.

The third kind is the composition of a reflection about a plane followed by a non-

trivial translation by a vector parallel to the direction of the plane of the reflection,

as illustrated in Figure 8.10.

This last transformation is an improper isometry.
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bc

bc

bc

a

f (a)

D

Fig. 8.6 3D proper rigid motion with line D of fixed points (rotation).

bc

bc

a

f (a)
H

Fig. 8.7 3D improper rigid motion with a plane H of fixed points (reflection).

8.7 The Cartan–Dieudonné Theorem for Affine Isometries

The Cartan–Dieudonné theorem also holds for affine isometries, with a small twist

due to translations. The reader is referred to Berger [2], Snapper and Troyer [10],

or Tisseron [13] for a detailed treatment of the Cartan–Dieudonné theorem and its

variants.

Theorem 8.4. Let E be an affine Euclidean space of dimension n ≥ 1. Every isom-

etry f ∈ Is(E) that has a fixed point and is not the identity is the composition of at

most n reflections. Every isometry f ∈ Is(E) that has no fixed point is the composi-
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bc
bc

bc

bc

O a

f (a)
H

D

Fig. 8.8 3D improper rigid motion with a unique fixed point.

bc

bc

bc

bc

bc

a

a+ τ
g(a)

f (a)

τ

D

Fig. 8.9 3D proper rigid motion with no fixed point (screw motion).
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bc bc

bc bc

a a+ τ

τg(a) f (a)
H

Fig. 8.10 3D improper rigid motion with no fixed points.

tion of at most n+ 2 reflections. When n ≥ 2, the identity is the composition of any

reflection with itself.

Proof. First, we use Theorem 8.3. If f has a fixed point Ω , we choose Ω as an

origin and work in the vector space EΩ . Since f behaves as a linear isometry, the

result follows from Theorem 8.1. More specifically, we can write
−→
f =−→sk ◦ · · ·◦−→s1

for k≤ n hyperplane reflections−→si . We define the affine reflections si such that

si(a) = Ω +−→si (
−→
Ωa)

for all a ∈ E , and we note that f = sk ◦ · · · ◦ s1, since

f (a) = Ω +−→sk ◦ · · · ◦−→s1 (
−→
Ωa)

for all a ∈ E . If f has no fixed point, then f = t ◦ g for some isometry g that has

a fixed point Ω and some translation t = tτ , with
−→
f (τ) = τ . By the argument just

given, we can write g = sk ◦ · · ·◦ s1 for some affine reflections (at most n). However,

by Lemma 8.10, the translation t = tτ can be achieved by two reflections about

parallel hyperplanes, and thus f = sk+2 ◦ · · · ◦ s1, for some affine reflections (at most

n+ 2). ⊓⊔

When n ≥ 3, we can also characterize the affine isometries in SE(n) in terms of

flips. Remarkably, not only we can do without translations, but we can even bound

the number of flips by n.

Theorem 8.5. Let E be a Euclidean affine space of dimension n ≥ 3. Every rigid

motion f ∈ SE(E) is the composition of an even number of flips f = f2k ◦ · · · ◦ f1,

where 2k≤ n.



8.7 The Cartan–Dieudonné Theorem for Affine Isometries 263

Proof. As in the proof of Theorem 8.4, we distinguish between the two cases where

f has some fixed point or not. If f has a fixed point Ω , we apply Theorem 8.2. More

specifically, we can write
−→
f =
−→
f2k ◦ · · · ◦

−→
f1 for some flips

−→
fi . We define the affine

flips fi such that

fi(a) = Ω +
−→
fi (
−→
Ωa)

for all a ∈ E , and we note that f = f2k ◦ · · · ◦ f1, since

f (a) = Ω +
−→
f2k ◦ · · · ◦

−→
f1 (
−→
Ωa)

for all a ∈ E .

If f does not have a fixed point, as in the proof of Theorem 8.4, we get

f = tτ ◦ f2k ◦ · · · ◦ f1,

for some affine flips fi. We need to get rid of the translation. However,
−→
f (τ) = τ ,

and by the second part of Theorem 8.2, we can assume that τ ∈ −→F2k

⊥
, where

−→
F2k is

the direction of the affine subspace defining the affine flip f2k. Finally, appealing to

Lemma 8.10, since τ ∈−→F2k

⊥
, the translation tτ can be expressed as the composition

f ′2k ◦ f ′2k−1 of two flips f ′2k−1 and f ′2k about the two parallel subspaces Ω +
−→
F2k and

Ω + τ/2+
−→
F2k, whose distance is ‖τ‖/2. However, since f ′2k−1 and f2k are both the

identity on Ω +
−→
F2k, we must have f ′2k−1 = f2k, and thus

f = tτ ◦ f2k ◦ f2k−1 ◦ · · · ◦ f1

= f ′2k ◦ f ′2k−1 ◦ f2k ◦ f2k−1 ◦ · · · ◦ f1

= f ′2k ◦ f2k−1 ◦ · · · ◦ f1,

since f ′2k−1 = f2k and f ′2k−1 ◦ f2k = f2k ◦ f2k = id, since f2k is a symmetry. ⊓⊔

Remark: It is easy to prove that if f is a screw motion in SE(3), D its axis, θ is

its angle of rotation, and τ the translation along the direction of D, then f is the

composition of two flips about lines D1 and D2 orthogonal to D, at a distance ‖τ‖/2

and making an angle θ/2.

There is one more topic that we would like to cover, since it is often useful in

practice: The concept of cross product of vectors, also called vector product. But

first, we need to discuss the question of orientation of bases.



264 8 The Cartan–Dieudonné Theorem

8.8 Orientations of a Euclidean Space, Angles

In this section we return to vector spaces. In order to deal with the notion of orien-

tation correctly, it is important to assume that every family (u1, . . . ,un) of vectors is

ordered (by the natural ordering on {1,2, . . . ,n}). Thus, we will assume that all fam-

ilies (u1, . . . ,un) of vectors, in particular bases and orthonormal bases, are ordered.

Let E be a vector space of finite dimension n over R, and let (u1, . . . ,un) and

(v1, . . . ,vn) be any two bases for E . Recall that the change of basis matrix from

(u1, . . . ,un) to (v1, . . . ,vn) is the matrix P whose columns are the coordinates of

the vectors v j over the basis (u1, . . . ,un). It is immediately verified that the set of

alternating n-linear forms on E is a vector space, which we denote by Λ(E) (see

Lang [9]).

We now show that Λ(E) has dimension 1. For any alternating n-linear form

ϕ : E×·· ·×E → K and any two sequences of vectors (u1, . . . ,un) and (v1, . . . ,vn),
if

(v1, . . . ,vn) = (u1, . . . ,un)P,

then

ϕ(v1, . . . ,vn) = det(P)ϕ(u1, . . . ,un).

In particular, if we consider nonnull alternating n-linear forms ϕ : E × ·· · ×E →
K, we must have ϕ(u1, . . . ,un) 6= 0 for every basis (u1, . . . ,un). Since for any two

alternating n-linear forms ϕ and ψ we have

ϕ(v1, . . . ,vn) = det(P)ϕ(u1, . . . ,un)

and

ψ(v1, . . . ,vn) = det(P)ψ(u1, . . . ,un),

we get

ϕ(u1, . . . ,un)ψ(v1, . . . ,vn)−ψ(u1, . . . ,un)ϕ(v1, . . . ,vn) = 0.

Fixing (u1, . . . ,un) and letting (v1, . . . ,vn) vary, this shows that ϕ and ψ are linearly

dependent, and since Λ(E) is nontrivial, it has dimension 1.

We now define an equivalence relation on Λ(E)−{0} (where we let 0 denote the

null alternating n-linear form):

ϕ and ψ are equivalent if ψ = λ ϕ for some λ > 0.

It is immediately verified that the above relation is an equivalence relation. Fur-

thermore, it has exactly two equivalence classes O1 and O2.

The first way of defining an orientation of E is to pick one of these two equiva-

lence classes, say O (O∈ {O1,O2}). Given such a choice of a class O, we say that a

basis (w1, . . . ,wn) has positive orientation iff ϕ(w1, . . . ,wn) > 0 for any alternating

n-linear form ϕ ∈O. Note that this makes sense, since for any other ψ ∈O, ϕ = λ ψ
for some λ > 0.
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According to the previous definition, two bases (u1, . . . ,un) and (v1, . . ., vn) have

the same orientation iff ϕ(u1, . . . ,un) and ϕ(v1, . . . ,vn) have the same sign for all

ϕ ∈Λ(E)−{0}. From

ϕ(v1, . . . ,vn) = det(P)ϕ(u1, . . . ,un)

we must have det(P)> 0. Conversely, if det(P)> 0, the same argument shows that

(u1, . . . ,un) and (v1, . . . ,vn) have the same orientation. This leads us to an equiva-

lent and slightly less contorted definition of the notion of orientation. We define a

relation between bases of E as follows: Two bases (u1, . . . ,un) and (v1, . . . ,vn) are

related if det(P) > 0, where P is the change of basis matrix from (u1, . . . ,un) to

(v1, . . . ,vn).

Since det(PQ) = det(P)det(Q), and since change of basis matrices are invertible,

the relation just defined is indeed an equivalence relation, and it has two equivalence

classes. Furthermore, from the discussion above, any nonnull alternating n-linear

form ϕ will have the same sign on any two equivalent bases.

The above discussion motivates the following definition.

Definition 8.4. Given any vector space E of finite dimension over R, we define an

orientation of E as the choice of one of the two equivalence classes of the equiv-

alence relation on the set of bases defined such that (u1, . . . ,un) and (v1, . . . ,vn)
have the same orientation iff det(P) > 0, where P is the change of basis matrix

from (u1, . . . ,un) to (v1, . . . ,vn). A basis in the chosen class is said to have positive

orientation, or to be positive. An orientation of a Euclidean affine space E is an

orientation of its underlying vector space
−→
E .

In practice, to give an orientation, one simply picks a fixed basis considered as

having positive orientation. The orientation of every other basis is determined by

the sign of the determinant of the change of basis matrix.

Having the notation of orientation at hand, we wish to go back briefly to the

concept of (oriented) angle. Let E be a Euclidean space of dimension n = 2, and

assume a given orientation. In any given positive orthonormal basis for E , every

rotation r is represented by a matrix

R =

(
cosθ −sinθ
sinθ cosθ

)
.

Actually, we claim that the matrix R representing the rotation r is the same in all

orthonormal positive bases. This is because the change of basis matrix from one

positive orthonormal basis to another positive orthonormal basis is a rotation repre-

sented by some matrix of the form

P =

(
cosψ −sinψ
sinψ cosψ

)

and that we have
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P−1 =

(
cos(−ψ) −sin(−ψ)
sin(−ψ) cos(−ψ)

)
,

and after calculations, we find that PRP−1 is the rotation matrix associated with

ψ +θ −ψ = θ . We can choose θ ∈ [0,2π [, and we call θ the measure of the angle

of rotation of r (and R). If the orientation is changed, the measure changes to 2π−θ .

We now let E be a Euclidean space of dimension n= 2, but we do not assume any

orientation. It is easy to see that given any two unit vectors u1,u2 ∈ E (unit means

that ‖u1‖= ‖u2‖= 1), there is a unique rotation r such that

r(u1) = u2.

It is also possible to define an equivalence relation of pairs of unit vectors such that

〈u1,u2〉 ≡ 〈u3,u4〉

iff there is some rotation r such that r(u1) = u3 and r(u2) = u4.

Then the equivalence class of 〈u1,u2〉 can be taken as the definition of the (ori-

ented) angle of 〈u1,u2〉, which is denoted by û1u2.

Furthermore, it can be shown that there is a rotation mapping the pair 〈u1,u2〉 to

the pair 〈u3,u4〉 iff there is a rotation mapping the pair 〈u1,u3〉 to the pair 〈u2,u4〉
(all vectors being unit vectors), as illustrated in Figure 8.11.

bc

u1

u2

u4

u3

Fig. 8.11 Defining angles.

As a consequence of all this, since for any pair 〈u1,u2〉 of unit vectors there is a

unique rotation r mapping u1 to u2, the angle û1u2 of 〈u1,u2〉 corresponds bijectively

to the rotation r, and there is a bijection between the set of angles of pairs of unit

vectors and the set of rotations in the plane. As a matter of fact, the set of angles

forms an abelian group isomorphic to the (abelian) group of rotations in the plane.

Thus, even though we can consider angles as oriented, note that the notion of

orientation is not necessary to define angles. However, to define the measure of an

angle, the notion of orientation is needed.
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If we now assume that an orientation of E (still a Euclidean plane) is given, the

unique rotation r associated with an angle û1u2 corresponds to a unique matrix

R =

(
cosθ −sinθ
sinθ cosθ

)
.

The number θ is defined up to 2kπ (with k ∈ Z) and is called a measure of the angle

û1u2. There is a unique θ ∈ [0,2π [ that is a measure of the angle û1u2. It is also

immediately seen that

cosθ = u1 ·u2.

In fact, since cosθ = cos(2π − θ ) = cos(−θ ), the quantity cosθ does not depend

on the orientation.

Now, still considering a Euclidean plane, given any pair 〈u1,u2〉 of nonnull vec-

tors, we define their angle as the angle of the unit vectors u1/‖u1‖ and u2/‖u2‖, and

if E is oriented, we define the measure θ of this angle as the measure of the angle

of these unit vectors. Note that

cosθ =
u1 ·u2

‖u1‖‖u2‖
,

and this independently of the orientation.

Finally, if E is a Euclidean space of dimension n≥ 2, we define the angle of a pair

〈u1,u2〉 of nonnull vectors as the angle of this pair in the Euclidean plane spanned

by 〈u1,u2〉 if they are linearly independent, or any Euclidean plane containing u1 if

they are collinear.

If E is a Euclidean affine space of dimension n ≥ 2, for any two pairs 〈a1,b1〉
and 〈a2,b2〉 of points in E , where a1 6= b1 and a2 6= b2, we define the angle of the

pair 〈〈a1,b1〉,〈a2,b2〉〉 as the angle of the pair 〈−−→a1b1,
−−→
a2b2〉.

As for the issue of measure of an angle when n≥ 3, all we can do is to define the

measure of the angle û1u2 as either θ or 2π − θ , where θ ∈ [0,2π [. For a detailed

treatment, see Berger [2] or Cagnac, Ramis, and Commeau [3]. In particular, when

n = 3, one should note that it is not enough to give a line D through the origin (the

axis of rotation) and an angle θ to specify a rotation! The problem is that depending

on the orientation of the plane H (through the origin) orthogonal to D, we get two

different rotations: one of angle θ , the other of angle 2π − θ . Thus, to specify a

rotation, we also need to give an orientation of the plane orthogonal to the axis of

rotation. This can be done by specifying an orientation of the axis of rotation by

some unit vector ω , and chosing the basis (e1,e2,ω) (where (e1,e2) is a basis of H)

such that it has positive orientation w.r.t. the chosen orientation of E .

We now return to alternating multilinear forms on a Euclidean space.

When E is a Euclidean space, we have an interesting situation regarding the value

of determinants over orthornormal bases described by the following lemma. Given

any basis B = (u1, . . . ,un) for E , for any sequence (w1, . . . ,wn) of n vectors, we

denote by detB(w1, . . . ,wn) the determinant of the matrix whose columns are the

coordinates of the w j over the basis B = (u1, . . . ,un).
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Lemma 8.11. Let E be a Euclidean space of dimension n, and assume that an orien-

tation of E has been chosen. For any sequence (w1, . . . ,wn) of n vectors and any two

orthonormal bases B1 = (u1, . . . ,un) and B2 = (v1, . . . ,vn) of positive orientation,

we have

detB1
(w1, . . . ,wn) = detB2

(w1, . . . ,wn).

Proof. Let P be the change of basis matrix from B1 = (u1, . . . ,un) to B2 = (v1, . . .,
vn). Since B1 = (u1, . . . ,un) and B2 = (v1, . . . ,vn) are orthonormal, P is orthogonal,

and we must have det(P) = +1, since the bases have positive orientation. Let U1

be the matrix whose columns are the coordinates of the w j over the basis B1 =
(u1, . . . ,un), and let U2 be the matrix whose columns are the coordinates of the w j

over the basis B2 = (v1, . . . ,vn). Then, we have




v1

...

vn


= P⊤




u1

...

un


 ,




w1

...

wn


=U⊤1




u1

...

un


 ,




w1

...

wn


=U⊤2




v1

...

vn




and because (u1, . . . ,un) is a basis, we must have

U1 = PU2.

Then, we have

detB1
(w1, . . . ,wn) = det(U1) = det(PU2) = det(P)det(U2)

= detB2
(w1, . . . ,wn)

since det(P) = +1. ⊓⊔

By Lemma 8.11, the determinant detB(w1, . . . ,wn) is independent of the basis

B, provided that B is orthonormal and of positive orientation. Thus, Lemma 8.11

suggests the following definition.

8.9 Volume Forms, Cross Products

In this section we generalize the familiar notion of cross product of vectors in R3

to Euclidean spaces of any finite dimension. First, we define the mixed product, or

volume form.

Definition 8.5. Given any Euclidean space E of finite dimension n over R and any

orientation of E , for any sequence (w1, . . . ,wn) of n vectors in E , the common value

λE(w1, . . . ,wn) of the determinant detB(w1, . . . ,wn) over all positive orthonormal

bases B of E is called the mixed product (or volume form) of (w1, . . . ,wn).

The mixed product λE(w1, . . . ,wn) will also be denoted by (w1, . . . ,wn), even

though the notation is overloaded. The following properties hold.
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• The mixed product λE(w1, . . . ,wn) changes sign when the orientation changes.

• The mixed product λE(w1, . . . ,wn) is a scalar, and Definition 8.5 really defines

an alternating multilinear form from en to R.

• λE(w1, . . . ,wn) = 0 iff (w1, . . . ,wn) is linearly dependent.

• A basis (u1, . . . ,un) is positive or negative iff λE(u1, . . . ,un) is positive or nega-

tive.

• λE(w1, . . . ,wn) is invariant under every isometry f such that det( f ) = 1.

The terminology “volume form” is justified because λE(w1, . . . ,wn) is indeed

the volume of some geometric object. Indeed, viewing E as an affine space, the

parallelotope defined by (w1, . . . ,wn) is the set of points

{λ1w1 + · · ·+λnwn | 0≤ λi ≤ 1, 1≤ i≤ n}.

Then, it can be shown (see Berger [2], Section 9.12) that the volume of the paral-

lelotope defined by (w1, . . . ,wn) is indeed λE(w1, . . . ,wn). If
(
E,
−→
E
)

is a Euclidean

affine space of dimension n, given any n+1 affinely independent points (a0, . . . ,an),
the set

{a0 +λ1
−−→a0a1 + · · ·+λn

−−→a0an | where 0≤ λi ≤ 1, 1≤ i≤ n}
is called the parallelotope spanned by (a0, . . . ,an). Then the volume of the paral-

lelotope spanned by (a0, . . . ,an) is λ−→
E
(−−→a0a1, . . . ,

−−→a0an). It can also be shown that

the volume vol(a0, . . . ,an) of the n-simplex (a0, . . . ,an) is

vol(a0, . . . ,an) =
1

n!
λ−→

E
(−−→a0a1, . . . ,

−−→a0an).

Now, given a sequence (w1, . . . ,wn−1) of n− 1 vectors in E , the map

x 7→ λE(w1, . . . ,wn−1,x)

is a linear form. Thus, by Lemma 6.4, there is a unique vector u ∈ E such that

λE(w1, . . . ,wn−1,x) = u · x

for all x ∈ E . The vector u has some interesting properties that motivate the next

definition.

Definition 8.6. Given any Euclidean space E of finite dimension n over R, for any

orientation of E and any sequence (w1, . . . ,wn−1) of n− 1 vectors in E , the unique

vector w1×·· ·×wn−1 such that

λE(w1, . . . ,wn−1,x) = w1×·· ·×wn−1 · x

for all x ∈ E is the cross product, or vector product, of (w1, . . . ,wn−1).

The following properties hold.

• The cross product w1×·· ·×wn−1 changes sign when the orientation changes.
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• The cross product w1×·· ·×wn−1 is a vector, and Definition 8.6 really defines

an alternating multilinear map from en−1 to E .

• w1×·· ·×wn−1 = 0 iff (w1, . . . ,wn−1) is linearly dependent. This is because

w1×·· ·×wn−1 = 0

iff

λE(w1, . . . ,wn−1,x) = 0

for all x ∈ E , and thus if (w1, . . . ,wn−1) were linearly independent, we could

find a vector x ∈ E to complete (w1, . . . ,wn−1) into a basis of E , and we would

have

λE(w1, . . . ,wn−1,x) 6= 0.

• The cross product w1×·· ·×wn−1 is orthogonal to each of the w j .

• If (w1, . . . ,wn−1) is linearly independent, then the sequence

(w1, . . . ,wn−1,w1×·· ·×wn−1)

is a positive basis of E .

We now show how to compute the coordinates of u1× ·· · × un−1 over an or-

thonormal basis.

Given an orthonormal basis (e1, . . . ,en), for any sequence (u1, . . . ,un−1) of n−1

vectors in E , if

u j =
n

∑
i=1

ui, jei,

where 1≤ j ≤ n− 1, for any x = x1e1 + · · ·+ xnen, consider the determinant

λE(u1, . . . ,un−1,x) =

∣∣∣∣∣∣∣∣∣

u11 . . . u1n−1 x1

u21 . . . u2n−1 x2

...
...

. . .
...

un1 . . . unn−1 xn

∣∣∣∣∣∣∣∣∣
.

Calling the underlying matrix above A, we can expand det(A) according to the last

column, using the Laplace formula (see Strang [12]), where Ai j is the (n−1)×(n−
1) matrix obtained from A by deleting row i and column j, and we get

∣∣∣∣∣∣∣∣∣

u11 . . . u1n−1 x1

u21 . . . u2n−1 x2

...
...

. . .
...

un1 . . . unn−1 xn

∣∣∣∣∣∣∣∣∣
= (−1)n+1x1 det(A1n)+ · · ·+ xn det(Ann).

Each (−1)i+n det(Ain) is called the cofactor of xi. We note that det(A) is in fact

the inner product
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det(A) = ((−1)n+1 det(A1n)e1 + · · ·+(−1)n+n det(Ann)en) · x.

Since the cross product u1×·· ·× un−1 is the unique vector u such that

u · x = λE(u1, . . . ,un−1,x),

for all x ∈ E , the coordinates of the cross product u1×·· ·× un−1 must be

((−1)n+1 det(A1n), . . . ,(−1)n+n det(Ann)),

the sequence of cofactors of the xi in the determinant det(A).
For example, when n = 3, the coordinates of the cross product u× v are given by

the cofactors of x1,x2,x3, in the determinant

∣∣∣∣∣∣

u1 v1 x1

u2 v2 x2

u3 v3 x3

∣∣∣∣∣∣
,

or, more explicitly, by

(−1)3+1

∣∣∣∣
u2 v2

u3 v3

∣∣∣∣ , (−1)3+2

∣∣∣∣
u1 v1

u3 v3

∣∣∣∣ , (−1)3+3

∣∣∣∣
u1 v1

u2 v2

∣∣∣∣ ,

that is,

(u2v3− u3v2, u3v1− u1v3, u1v2− u2v1).

It is also useful to observe that if we let U be the matrix

U =




0 −u3 u2

u3 0 −u1

−u2 u1 0


 ,

then the coordinates of the cross product u× v are given by




0 −u3 u2

u3 0 −u1

−u2 u1 0






v1

v2

v3


=




u2v3− u3v2

u3v1− u1v3

u1v2− u2v1


 .

We finish our discussion of cross products by mentioning without proof a few

more of their properties, in the case n = 3. Firstly, the following so-called Lagrange

identity holds:

(u · v)2 + ‖u× v‖2 = ‖u‖2‖v‖2.

If u and v are linearly independent, and if θ (or 2π−θ ) is a measure of the angle

ûv, then

|sin θ |= ‖u× v‖
‖u‖‖v‖ .
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It can also be shown that u× v is the only vector w such that the following prop-

erties hold:

(1) w ·u = 0, and w · v = 0.

(2) λE(u,v,w)≥ 0.

(3) (u · v)2 + ‖w‖2 = ‖u‖2‖v‖2.

Recall that the mixed product λE(w1,w1,w3) is also denoted by (w1,w2, w3), and

that

w1 · (w2×w3) = (w1,w2,w3).

8.10 Problems

8.1. Prove Lemma 8.7.

8.2. This problem is a warm-up for the next problem. Consider the set of matrices

of the form

(
0 −a

a 0

)
,

where a ∈R.

(a) Show that these matrices are invertible when a 6= 0 (give the inverse explic-

itly). Given any two such matrices A,B, show that AB = BA. Describe geometrically

the action of such a matrix on points in the affine plane A2, with its usual Euclidean

inner product. Verify that this set of matrices is a vector space isomorphic to (R,+).
This vector space is denoted by so(2).

(b) Given an n× n matrix A, we define the exponential eA as

eA = In + ∑
k≥1

Ak

k!
,

where In denotes the n×n identity matrix. It can be shown rigorously that this power

series is indeed convergent for every A (over R or C), so that eA makes sense (and

you do not have to prove it!).

Given any matrix

A =

(
0 −θ
θ 0

)
,

prove that

eA = cosθ

(
1 0

0 1

)
+ sinθ

(
0 −1

1 0

)
=

(
cosθ −sinθ
sin θ cosθ

)
.

Hint. Check that
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(
0 −θ
θ 0

)
= θ

(
0 −1

1 0

)
and

(
0 −θ
θ 0

)2

=−θ 2

(
1 0

0 1

)
,

and use the power series for cosθ and sinθ . Conclude that the exponential map

provides a surjective map exp: so(2)→ SO(2) from so(2) onto the group SO(2)
of plane rotations. Is this map injective? How do you need to restrict θ to get an

injective map?

Remark: By the way, so(2) is the Lie algebra of the (Lie) group SO(2).

(c) Consider the set U(1) of complex numbers of the form cosθ + isinθ . Check

that this is a group under multiplication. Assuming that we use the standard affine

frame for the affine plane A2, every point (x,y) corresponds to the complex number

z = x+ iy, and this correspondence is a bijection. Then, every α = cosθ + i sinθ ∈
U(1) induces the map Rα : A2→A2 defined such that

Rα(z) = αz.

Prove that Rα is the rotation of matrix

(
cosθ −sinθ
sinθ cosθ

)
.

Prove that the map R : U(1)→ SO(2) defined such that R(α) = Rα is an isomor-

phism. Deduce that topologically, SO(2) is a circle. Using the exponential map from

R to U(1) defined such that θ 7→ eiθ = cosθ + i sinθ , prove that there is a surjective

homomorphism from (R,+) to SO(2). What is the connection with the exponential

map from so(2) to SO(2)?

8.3. (a) Recall that the coordinates of the cross product u× v of two vectors u =
(u1,u2,u3) and v = (v1,v2,v3) in R3 are

(u2v3− u3v2, u3v1− u1v3, u1v2− u2v1).

Letting U be the matrix

U =




0 −u3 u2

u3 0 −u1

−u2 u1 0


 ,

check that the coordinates of the cross product u× v are given by




0 −u3 u2

u3 0 −u1

−u2 u1 0






v1

v2

v3


=




u2v3− u3v2

u3v1− u1v3

u1v2− u2v1


 .

(b) Show that the set of matrices of the form
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U =




0 −u3 u2

u3 0 −u1

−u2 u1 0




is a vector space isomorphic to (R3+). This vector space is denoted by so(3). Show

that such matrices are never invertible. Find the kernel of the linear map associated

with a matrix U . Describe geometrically the action of the linear map defined by

a matrix U . Show that when restricted to the plane orthogonal to u = (u1,u2,u3)
through the origin, if u is a unit vector, then U behaves like a rotation by π/2.

(c) Consider the map ψ : (R3,×)→ so(3) defined by the formula

ψ(u1,u2,u3) =




0 −u3 u2

u3 0 −u1

−u2 u1 0


 .

For any two matrices A,B ∈ so(3), defining [A, B] as

[A, B] = AB−BA,

verify that

ψ(u× v) = [ψ(u), ψ(v)].

Show that [−,−] is not associative. Show that [A, A] = 0, and that the so-called

Jacobi identity holds:

[A, [B,C]]+ [C, [A, B]]+ [B, [C, A]] = 0.

Show that [AB] is bilinear (linear in both A and B).

Remark: [A, B] is called a Lie bracket, and under this operation, the vector space

so(3) is called a Lie algebra. In fact, it is the Lie algebra of the (Lie) group SO(3).

(d) For any matrix

A =




0 −c b

c 0 −a

−b a 0


 ,

letting θ =
√

a2 + b2 + c2 and

B =




a2 ab ac

ab b2 bc

ac bc c2


 ,

prove that

A2 = −θ 2I+B,

AB = BA = 0.
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From the above, deduce that

A3 =−θ 2A,

and for any k≥ 0,

A4k+1 = θ 4kA,

A4k+2 = θ 4kA2,

A4k+3 = −θ 4k+2A,

A4k+4 = −θ 4k+2A2.

Then prove that the exponential map exp: so(3)→ SO(3) is given by

expA = eA = cosθ I3 +
sinθ

θ
A+

(1− cosθ )

θ 2
B,

or, equivalently, by

eA = I3 +
sinθ

θ
A+

(1− cosθ )

θ 2
A2,

if θ 6= 0, with exp(03) = I3.

Remark: This formula is known as Rodrigues’s formula (1840).

(e) Prove that expA is a rotation of axis (a,b,c) and of angle θ =
√

a2 + b2 + c2.

Hint. Check that eA is an orthogonal matrix of determinant +1, etc., or look up any

textbook on kinematics or classical dynamics!

(f) Prove that the exponential map exp: so(3)→ SO(3) is surjective. Prove that if

R is a rotation matrix different from I3, letting ω = (a,b,c) be a unit vector defining

the axis of rotation, if tr(R) =−1, then

exp−1(R) =



(2k+ 1)π




0 −c b

c 0 −a

−b a 0


 , k ∈ Z



 ,

and if tr(R) 6=−1, then

exp−1(R) =

{
θ

2sinθ
(R−RT )

∣∣∣∣ 1+ 2cosθ = tr(R)

}
.

(Recall that tr(R) = r11 + r22 + r33, the trace of the matrix R). Show that there is

a unique skew-symmetric B with corresponding θ satisfying 0 < θ < π such that

eB = R.

8.4. Prove that for any plane isometry f such that
−→
f is a reflection, f is the com-

position of a reflection about a line with a translation (possibly null) parallel to this

line.

8.5. (1) Given a unit vector (−sinθ ,cosθ ), prove that the Householder matrix de-

termined by the vector (−sinθ ,cosθ ) is
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(
cos2θ sin2θ
sin2θ −cos2θ

)
.

Give a geometric interpretation (i.e., why the choice (−sinθ ,cosθ )?).

(2) Given any matrix

A =

(
a b

c d

)
,

prove that there is a Householder matrix H such that AH is lower triangular, i.e.,

AH =

(
a′ 0

c′ d′

)

for some a′,c′,d′ ∈ R.

8.6. Given a Euclidean space E of dimension n, if h is a reflection about some hyper-

plane orthogonal to a nonnull vector u and f is any isometry, prove that f ◦ h ◦ f−1

is the reflection about the hyperplane orthogonal to f (u).

8.7. Let E be a Euclidean space of dimension n = 2. Prove that given any two unit

vectors u1,u2 ∈ E (unit means that ‖u1‖ = ‖u2‖ = 1), there is a unique rotation r

such that

r(u1) = u2.

Prove that there is a rotation mapping the pair 〈u1,u2〉 to the pair 〈u3,u4〉 iff there

is a rotation mapping the pair 〈u1,u3〉 to the pair 〈u2,u4〉 (all vectors being unit

vectors).

8.8. (1) Recall that

det(v1, . . . ,vn) =

∣∣∣∣∣∣∣∣∣

v11 v12 . . . v1n

v21 v22 . . . v2n

...
...

. . .
...

vn1 vn2 . . . vnn

∣∣∣∣∣∣∣∣∣
,

where vi has coordinates (vi1, . . . ,vin) with respect to a basis (e1, . . . ,en). Prove that

the volume of the parallelotope spanned by (a0, . . . ,an) is given by

λE(a0, . . . ,an) = (−1)n

∣∣∣∣∣∣∣∣∣

a01 a02 . . . a0n 1

a11 a12 . . . a1n 1
...

...
. . .

...
...

an1 an2 . . . ann 1

∣∣∣∣∣∣∣∣∣
,

and letting λE(a0, . . . ,an) = λ−→
E
(−−→a0a1, . . . ,

−−→a0an), that

λE(a0, . . . ,an) =

∣∣∣∣∣∣∣∣∣

a11− a01 a12− a02 . . . a1n− a0n

a21− a01 a22− a02 . . . a2n− a0n

...
...

. . .
...

an1− a01 an2− a02 . . . ann− a0n

∣∣∣∣∣∣∣∣∣
,
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where ai has coordinates (ai1, . . . ,ain) with respect to the affine frame (O,(e1, . . .,
en)).

(2) Prove that the volume vol(a0, . . . ,an) of the n-simplex (a0, . . . ,an) is

vol(a0, . . . ,an) =
1

n!
λ−→

E
(−−→a0a1, . . . ,

−−→a0an).

8.9. Prove that the so-called Lagrange identity holds:

(u · v)2 + ‖u× v‖2 = ‖u‖2‖v‖2.

8.10. Given p vectors (u1, . . . ,up) in a Euclidean space E of dimension n ≥ p, the

Gram determinant (or Gramian) of the vectors (u1, . . . ,up) is the determinant

Gram(u1, . . . ,up) =

∣∣∣∣∣∣∣∣∣∣

‖u1‖2 〈u1,u2〉 . . . 〈u1,up〉
〈u2,u1〉 ‖u2‖2 . . . 〈u2,up〉

...
...

. . .
...

〈up,u1〉 〈up,u2〉 . . .
∥∥up

∥∥2

∣∣∣∣∣∣∣∣∣∣

.

(1) Prove that

Gram(u1, . . . ,un) = λE(u1, . . . ,un)
2.

Hint. By a previous problem, if (e1, . . . ,en) is an orthonormal basis of E and A is

the matrix of the vectors (u1, . . . ,un) over this basis,

det(A)2 = det(A⊤A) = det(Ai ·A j),

where Ai denotes the ith column of the matrix A, and (Ai ·A j) denotes the n× n

matrix with entries Ai ·A j.

(2) Prove that

‖u1×·· ·× un−1‖2 = Gram(u1, . . . ,un−1).

Hint. Letting w = u1×·· ·× un−1, observe that

λE(u1, . . . ,un−1,w) = 〈w,w〉 = ‖w‖2,

and show that

‖w‖4 = λE(u1, . . . ,un−1,w)
2 = Gram(u1, . . . ,un−1,w)

= Gram(u1, . . . ,un−1)‖w‖2.

8.11. Given a Euclidean space E , let U be a nonempty affine subspace of E , and let

a be any point in E . We define the distance d(a,U) of a to U as

d(a,U) = inf{‖−→ab‖ | b ∈U}.
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(a) Prove that the affine subspace U⊥a defined such that

U⊥a = a+
−→
U
⊥

intersects U in a single point b such that d(a,U) = ‖−→ab‖.
Hint. Recall the discussion after Lemma 2.15.

(b) Let (a0, . . . ,ap) be a frame for U (not necessarily orthonormal). Prove that

d(a,U)2 =
Gram(−→a0a,−−→a0a1, . . . ,

−−→a0ap)

Gram(−−→a0a1, . . . ,
−−→a0ap)

.

Hint. Gram is unchanged when a linear combination of other vectors is added to

one of the vectors, and thus

Gram(−→a0a,−−→a0a1, . . . ,
−−→a0ap) = Gram(

−→
ba,−−→a0a1, . . . ,

−−→a0ap),

where b is the unique point defined in question (a).

(c) If D and D′ are two lines in E that are not coplanar, a,b∈D are distinct points

on D, and a′,b′ ∈ D′ are distinct points on D′, prove that if d(D,D′) is the shortest

distance between D and D′ (why does it exist?), then

d(D,D′)2 =
Gram(

−→
aa′,
−→
ab,
−→
a′b′)

Gram(
−→
ab,
−→
a′b′)

.

8.12. Given a hyperplane H in En of equation

u1x1 + · · ·+ unxn− v = 0,

for any point a= (a1, . . . ,an), prove that the distance d(a,H) of a to H (see problem

8.11) is given by

d(a,H) =
|u1a1 + · · ·+ unan− v|√

u2
1 + · · ·+ u2

n

.

8.13. Given a Euclidean space E , let U and V be two nonempty affine subspaces

such that U ∩V = /0. We define the distance d(U,V ) of U and V as

d(U,V ) = inf{‖−→ab‖ | a ∈U, b ∈V}.

(a) Prove that dim
(−→

U +
−→
V
)
≤ dim

(−→
E
)
− 1, and that

−→
U
⊥
∩ −→V

⊥
=
(−→

U +
−→
V
)⊥ 6= {0}.

Hint. Recall the discussion after Lemma 2.15 in Chapter 2.

(b) Let
−→
W =

−→
U
⊥
∩−→V

⊥
=
(−→

U +
−→
V
)⊥

. Prove that U ′ = U +
−→
W is an affine

subspace with direction
−→
U ⊕−→W , V ′ = V +

−→
W is an affine subspace with direction
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−→
V ⊕−→W , and that W ′ =U ′∩V ′ is a nonempty affine subspace with direction (

−→
U ∩

−→
V )⊕−→W such that U ∩W ′ 6= /0 and V ∩W ′ 6= /0. Prove that U ∩W ′ and V ∩W ′ are

parallel affine subspaces such that

−−−−→
U ∩W ′ =

−−−−→
V ∩W ′ =

−→
U ∩−→V .

Prove that if a,c∈U , b,d ∈V , and
−→
ab,
−→
cd ∈

(−→
U +

−→
V
)⊥

, then
−→
ab=

−→
cd and−→ac =

−→
bd.

Prove that if c ∈W ′, then c+
(−→

U +
−→
V
)⊥

intersects U ∩W ′ and V ∩W ′ in unique

points a ∈U ∩W ′ and b ∈V ∩W ′ such that
−→
ab ∈

(−→
U +

−→
V
)⊥

.

Prove that for all a ∈U ∩W ′ and all b ∈V ∩W ′,

d(U,V ) = ‖−→ab‖ iff
−→
ab ∈

(−→
U +

−→
V
)⊥

.

Prove that a ∈U and b ∈V as above are unique iff
−→
U ∩−→V = {0}.

(c) If m = dim
(−→

U +
−→
V
)
, (e1, . . . ,em) is any basis of

−→
U +

−→
V , and a0 ∈U and

b0 ∈V are any two points, prove that

d(U,V )2 =
Gram(

−−→
a0b0,e1, . . . ,em)

Gram(e1, . . . ,em)
.

8.14. Let E be a real vector space of dimension n, and let ϕ : E × E → R be a

symmetric bilinear form. Recall that ϕ is nondegenerate if for every u ∈ E ,

if ϕ(u, v) = 0 for all v ∈ E , then u = 0.

A linear map f : E→ E is an isometry w.r.t. ϕ if

ϕ( f (x), f (y)) = ϕ(x, y)

for all x,y ∈ E . The purpose of this problem is to prove that the Cartan–Dieudonné

theorem still holds when ϕ is nondegenerate. The difficulty is that there may be

isotropic vectors, i.e., nonnull vectors u such that ϕ(u, u) = 0. A vector u is called

nonisotropic if ϕ(u, u) 6= 0. Of course, a nonisotropic vector is nonnull.

(a) Assume that ϕ is nonnull and that f is an isometry w.r.t. ϕ . Prove that f (u)−u

and f (u)+ u are conjugate w.r.t. ϕ , i.e.,

ϕ( f (u)− u, f (u)+ u) = 0.

Prove that there is some nonisotropic vector u ∈ E such that either f (u)− u or

f (u)+ u is nonisotropic.

(b) Let ϕ be nondegenerate. Prove the following version of the Cartan–Dieudonné

theorem:
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Every isometry f ∈ O(ϕ) that is not the identity is the composition of at most

2n−1 reflections w.r.t. hyperplanes. When n≥ 2, the identity is the composition of

any reflection with itself.

Proceed by induction. In the induction step, consider the following three cases:

(1) f admits 1 as an eigenvalue.

(2) f admits −1 as an eigenvalue.

(3) f (u) 6= u and f (u) 6=−u for every nonnull vector u ∈ E .

Argue that there is some nonisotropic vector u such that either f (u)−u or f (u)+
u is nonisotropic, and use a suitable reflection s about the hyperplane orthogonal to

f (u)− u or f (u)+ u, such that s◦ f admits 1 or −1 as an eigenvalue.

(c) What goes wrong with the argument in (b) if ϕ is nonnull but possibly degen-

erate? Is O(ϕ) still a group?

Remark: A stronger version of the Cartan–Dieudonné theorem holds: in fact, at

most n reflections are needed, but the proof is much harder (for instance, see

Dieudonné [6]).
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Chapter 9

The Quaternions and the Spaces S3, SU(2),
SO(3), and RP3

9.1 The Algebra H of Quaternions

In this chapter, we discuss the representation of rotations of R3 in terms of quater-

nions. Such a representation is not only concise and elegant, it also yields a very

efficient way of handling composition of rotations. It also tends to be numerically

more stable than the representation in terms of orthogonal matrices.

The group of rotations SO(2) is isomorphic to the group U(1) of complex num-

bers eiθ = cosθ + i sinθ of unit length. This follows immediately from the fact that

the map

eiθ 7→
(

cosθ −sinθ
sinθ cosθ

)

is a group isomorphism. Geometrically, observe that U(1) is the unit circle S1. We

can identify the plane R2 with the complex plane C, letting z = x+ iy ∈C represent

(x,y) ∈ R2. Then every plane rotation ρθ by an angle θ is represented by multipli-

cation by the complex number eiθ ∈ U(1), in the sense that for all z,z′ ∈ C,

z′ = ρθ (z) iff z′ = eiθ z.

In some sense, the quaternions generalize the complex numbers in such a way that

rotations of R3 are represented by multiplication by quaternions of unit length. This

is basically true with some twists. For instance, quaternion multiplication is not

commutative, and a rotation in SO(3) requires conjugation with a quaternion for its

representation. Instead of the unit circle S1, we need to consider the sphere S3 in R4,

and U(1) is replaced by SU(2).
Recall that the 3-sphere S3 is the set of points (x,y,z, t) ∈ R4 such that

x2 + y2 + z2 + t2 = 1,

and that the real projective space RP3 is the quotient of S3 modulo the equivalence

relation that identifies antipodal points (where (x,y,z, t) and (−x,−y,−z,−t) are

281
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antipodal points). The group SO(3) of rotations of R3 is intimately related to the 3-

sphere S3 and to the real projective space RP3. The key to this relationship is the fact

that rotations can be represented by quaternions, discovered by Hamilton in 1843.

Historically, the quaternions were the first instance of a skew field. As we shall see,

quaternions represent rotations in R3 very concisely.

It will be convenient to define the quaternions as certain 2×2 complex matrices.

We write a complex number z as z = a+ ib, where a,b ∈ R, and the conjugate z of

z is z = a− ib. Let 1, i, j, and k be the following matrices:

1 =

(
1 0

0 1

)
, i =

(
i 0

0 −i

)
,

j =

(
0 1

−1 0

)
, k =

(
0 i

i 0

)
.

Definition 9.1. Let H be the set of all matrices of the form

a1+ bi+ cj+ dk,

where (a,b,c,d) ∈ R4. Thus, every matrix in H is of the form

A =

(
x y

−y x

)
,

where x = a+ ib and y = c+ id. The matrices in H are called quaternions. The null

quaternion is denoted by 0 (or 0, if confusion may arise). Quaternions of the form

bi+ cj+ dk are called pure quaternions. The set of pure quaternions is denoted by

Hp.

Note that the rows (and columns) of matrices in H are vectors in C2 that are

orthogonal with respect to the Hermitian inner product of C2 given by

(x1,y1) · (x2,y2) = x1x2 + y1y2.

Furthermore, their norm is

√
xx+ yy =

√
a2 + b2 + c2 + d2,

and the determinant of A is a2 + b2 + c2 + d2.

It is easily seen that the following famous identities (discovered by Hamilton)

hold:

i2 = j2 = k2 = ijk =−1,

ij =−ji = k,

jk =−kj = i,

ki =−ik = j.
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Using these identities, it can be verified that H is a ring (with multiplicative identity

1) and a real vector space of dimension 4 with basis (1, i, j,k). In fact, the quater-

nions form an associative algebra. For details, see Berger [3], Veblen and Young

[22], Dieudonné [5], Bertin [4].

� The quaternions H are often defined as the real algebra generated by the

four elements 1, i, j, k, and satisfying the identities just stated above. The

problem with such a definition is that it is not obvious that the algebraic structure

H actually exists. A rigorous justification requires the notions of freely generated

algebra and of quotient of an algebra by an ideal. Our definition in terms of matrices

makes the existence of H trivial (but requires showing that the identities hold, which

is an easy matter).

Given any two quaternions X = a1+ bi+ cj+ dk and Y = a′1+ b′i+ c′j+ d′k,

it can be verified that

XY = (aa′− bb′− cc′− dd′)1+(ab′+ ba′+ cd′− dc′)i

+(ac′+ ca′+ db′− bd′)j+(ad′+ da′+ bc′− cb′)k.

It is worth noting that these formulae were discovered independently by Olinde

Rodrigues in 1840, a few years before Hamilton (Veblen and Young [22]). However,

Rodrigues was working with a different formalism, homogeneous transformations,

and he did not discover the quaternions. The map from R to H defined such that

a 7→ a1 is an injection that allows us to view R as a subring R1 (in fact, a field) of

H. Similarly, the map from R3 to H defined such that (b,c,d) 7→ bi+ cj+ dk is an

injection that allows us to view R3 as a subspace of H, in fact, the hyperplane Hp.

Given a quaternion X = a1+ bi+ cj+ dk, we define its conjugate X as

X = a1− bi− cj− dk.

It is easily verified that

XX = (a2 + b2 + c2 + d2)1.

The quantity a2 +b2+c2 +d2, also denoted by N(X), is called the reduced norm of

X .

Clearly, X is nonnull iff N(X) 6= 0, in which case X/N(X) is the multiplicative

inverse of X . Thus, H is a skew field. Since X+X = 2a1, we also call 2a the reduced

trace of X , and we denote it by Tr(X). A quaternion X is a pure quaternion iff

X =−X iff Tr(X) = 0.

The following identities can be shown (see Berger [3], Dieudonné [5], Bertin

[4]):
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XY = Y X ,

Tr(XY ) = Tr(Y X),

N(XY ) = N(X)N(Y ),

Tr(ZXZ−1) = Tr(X),

whenever Z 6= 0.

If X = bi+ cj+ dk and Y = b′i+ c′j+ d′k are pure quaternions, identifying X

and Y with the corresponding vectors in R3, the inner product X ·Y and the cross

product X ×Y make sense, and letting [0,X ×Y ] denote the quaternion whose first

component is 0 and whose last three components are those of X ×Y , we have the

remarkable identity

XY =−(X ·Y )1+[0,X×Y ].

More generally, given a quaternion X = a1+ bi+ cj+ dk, we can write it as

X = [a,(b,c,d)],

where a is called the scalar part of X and (b,c,d) the pure part of X . Then, if

X = [a,U ] and Y = [a′,U ′], it is easily seen that the quaternion product XY can be

expressed as

XY = [aa′−U ·U ′, aU ′+ a′U +U×U ′].

The above formula for quaternion multiplication allows us to show the following

fact. Let Z ∈H, and assume that ZX = XZ for all X ∈H. We claim that the pure part

of Z is null, i.e., Z = a1 for some a ∈ R. Indeed, writing Z = [a,U ], if U 6= 0, there

is at least one nonnull pure quaternion X = [0,V ] such that U×V 6= 0 (for example,

take any nonnull vector V in the orthogonal complement of U). Then

ZX = [−U ·V, aV +U×V ], XZ = [−V ·U, aV +V ×U ],

and since V ×U = −(U ×V ) and U ×V 6= 0, we have XZ 6= ZX , a contradiction.

Conversely, it is trivial that if Z = [a,0], then XZ = ZX for all X ∈H. Thus, the set

of quaternions that commute with all quaternions is R1.

Remark: It is easy to check that for arbitrary quaternions X = [a,U ] and Y =
[a′,U ′],

XY −YX = [0,2(U×U ′)],

and that for pure quaternions X ,Y ∈Hp,

2(X ·Y )1 =−(XY +YX).

Since quaternion multiplication is bilinear, for a given X , the map Y 7→ XY is

linear, and similarly for a given Y , the map X 7→ XY is linear. It is immediate that if

the matrix of the first map is LX and the matrix of the second map is RY , then
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XY = LXY =




a −b −c −d

b a −d c

c d a −b

d −c b a







a′

b′

c′

d′




and

XY = RY X =




a′ −b′ −c′ −d′

b′ a′ d′ −c′

c′ −d′ a′ b′

d′ c′ −b′ a′







a

b

c

d


 .

Observe that the columns (and the rows) of the above matrices are orthogonal. Thus,

when X and Y are unit quaternions, both LX and RY are orthogonal matrices. Fur-

thermore, it is obvious that LX = L⊤X , the transpose of LX , and similarly, RY = R⊤Y .

Since XX = N(X), the matrix LX L⊤X is the diagonal matrix N(X)I (where I is the

identity 4× 4 matrix), and similarly the matrix RY R⊤Y is the diagonal matrix N(Y )I.

Since LX and L⊤X have the same determinant, we deduce that det(LX )
2 = N(X)4, and

thus det(LX ) = ±N(X)2. However, it is obvious that one of the terms in det(LX ) is

a4, and thus

det(LX ) = (a2 + b2 + c2 + d2)2.

This shows that when X is a unit quaternion, LX is a rotation matrix, and similarly

when Y is a unit quaternion, RY is a rotation matrix (see Veblen and Young [22]).

Define the map ϕ : H×H→R as follows:

ϕ(X ,Y ) =
1

2
Tr(X Y ) = aa′+ bb′+ cc′+ dd′.

It is easily verified that ϕ is bilinear, symmetric, and definite positive. Thus, the

quaternions form a Euclidean space under the inner product defined by ϕ (see

Berger [3], Dieudonné [5], Bertin [4]).

It is immediate that under this inner product, the norm of a quaternion X is just√
N(X). As a Euclidean space, H is isomorphic to E4. It is also immediate that the

subspace Hp of pure quaternions is orthogonal to the space of “real quaternions”

R1. The subspace Hp of pure quaternions inherits a Euclidean structure, and this

subspace is isomorphic to the Euclidean space E3. Since H and E4 are isomorphic

Euclidean spaces, their groups of rotations SO(H) and SO(4) are isomorphic, and

we will identify them. Similarly, we will identify SO(Hp) and SO(3).

9.2 Quaternions and Rotations in SO(3)

We have just observed that for any nonnull quaternion X , both maps Y 7→ XY and

Y 7→Y X (where Y ∈H) are linear maps, and that when N(X) = 1, these linear maps

are in SO(4). This suggests looking at maps ρY,Z : H→ H of the form X 7→ YXZ,
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where Y,Z ∈ H are any two fixed nonnull quaternions such that N(Y )N(Z) = 1.

Since N(Y )N(Z) = 1, in view of the identity N(UV ) = N(U)N(V ) for all U,V ∈H,

we have

ρY,Z(X) = Y XZ = (
√

N(Y )(Y/
√

N(Y )))X(
√

N(Z)(Z/
√

N(Z)))

=
√

N(Y )N(Z)(Y/
√

N(Y ))X(Z/
√

N(Z)) = (Y/
√

N(Y ))X(Z/
√

N(Z)),

so

ρY,Z = (ρ
Y/
√

N(Y ),1
)◦ (ρ

1,Z/
√

N(Z))
).

Since ρ
Y/
√

N(Y ),1
is the map X 7→ (Y/

√
N(Y ))X and ρ

1,Z/
√

N(Z)
is the map X 7→

X(Z/
√

N(Z), which are both rotations since Y/
√

N(Y ) and Z/
√

N(Z) are unit

quaternions, ρY,Z itself is a rotation, i.e., ρY,Z ∈ SO(4). We will prove that every

rotation in SO(4) arises in this fashion.

When Z = Y−1, the map ρY,Y−1 is denoted more simply by ρY . In this case, it is

easy to check that ρY is the identity on 1R, and maps Hp into itself. Indeed (renam-

ing Y as Z), observe that

ρZ(X +Y ) = ρZ(X)+ρZ(Y ).

It is also easy to check that

ρZ(X) = ρZ(X).

Then we have

ρZ(X +X) = ρZ(X)+ρZ(X) = ρZ(X)+ρZ(X),

and since if X = [a,U ], then X +X = 2a1, where a is the real part of X , if X is pure,

i.e., X +X = 0, then ρZ(X)+ρZ(X) = 0, i.e., ρZ(X) is also pure. Thus, ρZ ∈ SO(3),
i.e., ρZ is a rotation of E3. We will prove that every rotation in SO(3) arises in this

fashion.

Remark: If a bijective map ρ : H→H satisfies the three conditions

ρ(X +Y ) = ρ(X)+ρ(Y),

ρ(λ X) = λ ρ(X),

ρ(XY ) = ρ(X)ρ(Y),

for all quaternions X ,Y ∈ H and all λ ∈ R, i.e., ρ is a linear automorphism of H,

it can be shown that ρ(X) = ρ(X) and N(ρ(X)) = N(X). In fact, ρ must be of the

form ρZ for some nonnull Z ∈H.

The quaternions of norm 1, also called unit quaternions, are in bijection with

points of the real 3-sphere S3. It is easy to verify that the unit quaternions form a

subgroup of the multiplicative groupH∗ of nonnull quaternions. In terms of complex

matrices, the unit quaternions correspond to the group of unitary complex 2× 2
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matrices of determinant 1 (i.e., xx+ yy = 1),

A =

(
x y

−y x

)
,

with respect to the Hermitian inner product in C2. This group is denoted by SU(2).
The obvious bijection between SU(2) and S3 is in fact a homeomorphism, and it can

be used to transfer the group structure on SU(2) to S3, which becomes a topological

group isomorphic to the topological group SU(2) of unit quaternions. Incidentally,

it is easy to see that the group U(2) of all unitary complex 2× 2 matrices consists

of all matrices of the form

A =

(
λ x y

−λ y x

)
,

with xx + yy = 1, and where λ is a complex number of modulus 1 (λ λ = 1). It

should also be noted that the fact that the sphere S3 has a group structure is quite

exceptional. As a matter of fact, the only spheres for which a continuous group

structure is definable are S1 and S3. The algebraic structure of the groups SU(2) and

SO(3), and their relationship to S3, is explained very clearly in Chapter 8 of Artin

[1], which we highly recommend as a general reference on algebra.

One of the most important properties of the quaternions is that they can be used

to represent rotations of R3, as stated in the following lemma. Our proof is inspired

by Berger [3], Dieudonné [5], and Bertin [4].

Lemma 9.1. For every quaternion Z 6= 0, the map

ρZ : X 7→ ZXZ−1

(where X ∈ H) is a rotation in SO(H) = SO(4) whose restriction to the space Hp

of pure quaternions is a rotation in SO(Hp) = SO(3). Conversely, every rotation in

SO(3) is of the form

ρZ : X 7→ ZXZ−1,

for some quaternion Z 6= 0 and for all X ∈Hp. Furthermore, if two nonnull quater-

nions Z and Z′ represent the same rotation, then Z′ = λ Z for some λ 6= 0 in R.

Proof. We have already observed that ρZ ∈ SO(3). We have to prove that every

rotation is of the form ρZ . First, it is easily seen that

ρYX = ρY ◦ρX .

By Theorem 8.1, every rotation that is not the identity is the composition of an even

number of reflections (in the three-dimensional case, two reflections), and thus it is

enough to show that for every reflection σ of Hp about a plane H, there is some

pure quaternion Z 6= 0 such that σ(X) = −ZXZ−1 for all X ∈ Hp. If Z is a pure

quaternion orthogonal to the plane H, we know that

σ(X) = X− 2
(X ·Z)
(Z ·Z) Z
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for all X ∈Hp. However, for pure quaternions Y,Z ∈Hp, we have

2(Y ·Z)1 =−(YZ +ZY ).

Then (Z ·Z)1 =−Z2, and we have

σ(X) = X− 2
(X ·Z)
(Z ·Z) Z = X + 2(X ·Z)Z−1

= X− (XZ+ZX)Z−1 =−ZXZ−1,

which shows that σ(X) =−ZXZ−1 for all X ∈Hp, as desired.

If ρZ1
= ρZ2

, then

Z1XZ−1
1 = Z2XZ−1

2

for all X ∈H, which is equivalent to

Z−1
2 Z1X = XZ−1

2 Z1

for all X ∈ H. However, we showed earlier that Z−1
2 Z1 = a1 for some a ∈ R, and

since Z1 and Z2 are nonnull, we get Z2 = (1/a)Z1, where a 6= 0. ⊓⊔

As a corollary of

ρYX = ρY ◦ρX ,

it is easy to show that the map ρ : SU(2)→ SO(3) defined such that ρ(Z) = ρZ is a

surjective and continuous homomorphism whose kernel is {1,−1}. Since SU(2) and

S3 are homeomorphic as topological spaces, this shows that SO(3) is homeomorphic

to the quotient of the sphere S3 modulo the antipodal map. But the real projective

space RP3 is defined precisely this way in terms of the antipodal map π : S3→RP3,

and thus SO(3) and RP3 are homeomorphic. This homeomorphism can then be

used to transfer the group structure on SO(3) to RP3, which becomes a topological

group. Moreover, it can be shown that SO(3) and RP3 are diffeomorphic manifolds

(see Marsden and Ratiu [15]). Thus, SO(3) and RP3 are at the same time groups,

topological spaces, and manifolds, and in fact they are Lie groups (see Marsden and

Ratiu [15] or Bryant [6]).

The axis and the angle of a rotation can also be extracted from a quaternion

representing that rotation. The proof of the following lemma is adapted from Berger

[3] and Dieudonné [5].

Lemma 9.2. For every quaternion Z = a1+ t where t is a pure quaternion, ρZ = I

iff t = 0, otherwise the axis of the rotation ρZ associated with Z is determined by

the vector in R3 corresponding to t, and the angle of rotation θ is equal to π when

a = 0, or when a 6= 0, given the orientation of the plane orthogonal to the axis of

rotation described below, the angle is given by

tan
θ

2
=

√
N(t)

a
,
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with θ 6= π and 0 < θ < 2π . If t 6= 0, the plane orthogonal to t is oriented by

choosing a basis (w1,w2) in it such that (w1,w2, t) is positively oriented; that is,

det(w1,w2, t)> 0.

Proof. A simple calculation shows that the line of direction t is invariant under the

rotation ρZ , and thus it is the axis of rotation. Note that for any two nonnull vectors

X ,Y ∈ R3 such that N(X) = N(Y ), there is some rotation ρ such that ρ(X) = Y . If

X = Y , we use the identity, and if X 6= Y , we use the rotation of axis determined by

X ×Y rotating X to Y in the plane containing X and Y . Thus, given any two non-

null pure quaternions X ,Y such that N(X) =N(Y ), there is some nonnull quaternion

W such that Y = WXW−1. Furthermore, given any two nonnull quaternions Z,W ,

we claim that the angle of the rotation ρZ is the same as the angle of the rotation

ρWZW−1 . This can be shown as follows. First, letting Z = a1+t where t is a pure non-

null quaternion, we show that the axis of the rotation ρW ZW−1 is WtW−1 = ρW (t).
Indeed, it is easily checked that WtW−1 is pure, and

W ZW−1 =W (a1+ t)W−1 =Wa1W−1 +WtW−1 = a1+WtW−1.

Second, given any pure nonnull quaternion X orthogonal to t, the angle of the rota-

tion Z is the angle between X and ρZ(X). Since rotations preserve orientation (since

they preserve the cross product), the angle θ between two vectors X and Y is pre-

served under rotation. Since rotations preserve the inner product, if X · t = 0, we

have ρW (X) ·ρW (t) = 0, and the angle of the rotation ρWZW−1 = ρW ◦ρZ ◦ (ρW )−1

is the angle between the two vectors ρW (X) and ρWZW−1(ρW (X)). Since

ρWZW−1(ρW (X)) = (ρW ◦ρZ ◦ (ρW )−1 ◦ρW )(X)

= (ρW ◦ρZ)(X) = ρW (ρZ(X)),

the angle of the rotation ρWZW−1 is the angle between the two vectors ρW (X) and

ρW (ρZ(X)). Since rotations preserve angles, this is also the angle between the two

vectors X and ρZ(X), which is the angle of the rotation ρZ , as claimed. Thus, given

any quaternion Z = a1+ t, where t is a nonnull pure quaternion, since there is some

nonnull quaternion W such that WtW−1 =
√

N(t) i and W ZW−1 = a1+
√

N(t) i, it

is enough to figure out the angle of rotation for a quaternion Z of the form a1+ bi

with b> 0 (a rotation of axis e1). It suffices to find the angle between j and ρZ(j), as-

suming that the plane orthogonal to be1 (with b> 0) is oriented such that (e2,e3,be1)
has positive orientation, equivalently, (e1,e2,e3) has positive orientation. Since

ρZ(j) = (a1+ bi)j(a1+ bi)−1,

we get

ρZ(j) =
1

a2 + b2
(a1+ bi)j(a1− bi)=

a2− b2

a2 + b2
j+

2ab

a2 + b2
k.

Then we must have

cosθ =
a2− b2

a2 + b2
, sinθ =

2ab

a2 + b2
.
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If a 6= 0, we have cosθ 6= −1, that is, θ 6= π , so cos(θ/2) 6= 0 (recall that 0 < θ <
2π). Then, using the fact that sinθ = 2sin(θ/2)cos(θ/2) and cosθ = 2cos2(θ/2)−
1, we have

sinθ

cosθ + 1
=

2sin(θ/2)cos(θ/2)

2cos2(θ/2)− 1+ 1
=

sin(θ/2)

cos(θ/2)
= tan(θ/2).

Therefore, since

cosθ + 1 =
a2− b2

a2 + b2
+ 1 =

2a2

a2 + b2

and a 6= 0, we get

tan
θ

2
=

sinθ

cosθ + 1
=

2ab

a2 + b2

a2 + b2

2a2
=

b

a
=

√
N(t)

a
.

If a = 0, we get

ρZ(j) =−j,

and θ = π . In terms of the original quaternion Z = a1+ t where t 6= 0 is arbitrary,

the plane orthogonal to t is oriented by choosing a basis (w1,w2) in it such that

(w1,w2, t) is positively oriented; that is, det(w1,w2, t)> 0. ⊓⊔

Note that if Z is a unit quaternion, then since

cosθ =
1− tan2 (θ/2)

1+ tan2 (θ/2)

and a2 +N(t) = N(Z) = 1, we get cosθ = a2−N(t) = 2a2− 1, and since cosθ =
2cos2 (θ/2)− 1, under the orientation defined above, we have

cos
θ

2
= a.

Now, since a2 +N(t) = N(Z) = 1, we can write the unit quaternion Z as

Z =

[
cos

θ

2
, sin

θ

2
V

]
,

where V is the unit vector t√
N(t)

(with 0 ≤ θ ≤ 2π). Also note that VV = −1, and

thus, formally, every unit quaternion looks like a complex number cosϕ + isinϕ ,

except that i is replaced by a unit vector, and multiplication is quaternion multipli-

cation.

In order to explain the homomorphism ρ : SU(2)→ SO(3) more concretely, we

now derive the formula for the rotation matrix of a rotation ρ whose axis D is de-

termined by the nonnull vector w and whose angle of rotation is θ . For simplicity,

we may assume that w is a unit vector. Letting W = (b,c,d) be the column vector

representing w and H be the plane orthogonal to w, recall from the discussion just
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before Lemma 8.1 that the matrices representing the projections pD and pH are

WW⊤ and I−WW⊤.

Given any vector u ∈ R3, the vector ρ(u) can be expressed in terms of the vectors

pD(u), pH(u), and w× pH(u) as

ρ(u) = pD(u)+ cosθ pH(u)+ sinθ w× pH(u).

However, it is obvious that

w× pH(u) = w× u,

so that

ρ(u) = pD(u)+ cosθ pH(u)+ sinθ w× u,

ρ(u) = (u ·w)w+ cosθ (u− (u ·w)w)+ sinθ w× u,

and we know from Section 8.9 that the cross product w×u can be expressed in terms

of the multiplication on the left by the matrix

A =




0 −d c

d 0 −b

−c b 0


 .

Then, letting

B =WW⊤ =




b2 bc bd

bc c2 cd

bd cd d2


 ,

the matrix R representing the rotation ρ is

R =WW⊤+ cosθ (I−WW⊤)+ sinθA,

= cosθ I+ sinθA+(1− cosθ )WW⊤,

= cosθ I+ sinθA+(1− cosθ )B.

It is immediately verified that

A2 = B− I,

and thus R is also given by

R = I + sinθA+(1− cosθ )A2.

Then the nonnull unit quaternion

Z =

[
cos

θ

2
, sin

θ

2
V

]
,
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where V = (b,c,d) is a unit vector, corresponds to the rotation ρZ of matrix

R = I + sinθA+(1− cosθ )A2.

Remark: A related formula known as Rodrigues’s formula (1840) gives an expres-

sion for a rotation matrix in terms of the exponential of a matrix (the exponential

map). Indeed, given (b,c,d) ∈ R3, letting θ =
√

b2 + c2 + d2, we have

eA = cosθ I+
sinθ

θ
A+

(1− cosθ )

θ 2
B,

with A and B as above, but (b,c,d) not necessarily a unit vector. We will study

exponential maps later on.

Using the matrices LX and RY introduced earlier, since XY = LXY = RY X , from

Y = ZXZ−1 = ZXZ/N(Z), we get

Y =
1

N(Z)
LZRZX .

Thus, if we want to see the effect of the rotation specified by the quaternion Z in

terms of matrices, we simply have to compute the matrix

R(Z) =
1

N(Z)
LZRZ = ν




a −b −c −d

b a −d c

c d a −b

d −c b a







a b c d

−b a −d c

−c d a −b

−d −c b a


 ,

where

N(Z) = a2 + b2 + c2 + d2 and ν =
1

N(Z)
,

which yields

ν




N(Z) 0 0 0

0 a2 + b2− c2− d2 2bc− 2ad 2ac+ 2bd

0 2bc+ 2ad a2− b2+ c2− d2 −2ab+ 2cd

0 −2ac+ 2bd 2ab+ 2cd a2− b2− c2 + d2


 .

But since every pure quaternion X is a vector whose first component is 0, we see

that the rotation matrix R(Z) associated with the quaternion Z is

1

N(Z)




a2 + b2− c2− d2 2bc− 2ad 2ac+ 2bd

2bc+ 2ad a2− b2+ c2− d2 −2ab+ 2cd

−2ac+ 2bd 2ab+ 2cd a2− b2− c2 + d2


 .
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This expression for a rotation matrix is due to Euler (see Veblen and Young [22]). It

is quite remarkable that this matrix contains only quadratic polynomials in a,b,c,d.

This makes it possible to compute easily a quaternion from a rotation matrix.

From a computational point of view, it is worth noting that computing the compo-

sition of two rotations ρY and ρZ specified by two quaternions Y,Z using quaternion

multiplication (i.e., ρY ◦ρZ =ρYZ) is cheaper than using rotation matrices and matrix

multiplication. On the other hand, computing the image of a point X under a rotation

ρZ is more expensive in terms of quaternions (it requires computing ZXZ−1) than it

is in terms of rotation matrices (where only AX needs to be computed, where A is a

rotation matrix). Thus, if many points need to be rotated and the rotation is specified

by a quaternion, it is advantageous to precompute the Euler matrix.

9.3 Quaternions and Rotations in SO(4)

For every nonnull quaternion Z, the map X 7→ ZXZ−1 (where X is a pure quaternion)

defines a rotation of Hp, and conversely, every rotation of Hp is of the above form.

What happens if we consider a map of the form

X 7→ Y XZ,

where X ∈H and N(Y )N(Z) = 1? Remarkably, it turns out that we get all the rota-

tions of H. The proof of the following lemma is inspired by Berger [3], Dieudonné

[5], and Tisseron [21].

Lemma 9.3. For every pair (Y,Z) of quaternions such that N(Y )N(Z) = 1, the map

ρY,Z : X 7→ Y XZ

(where X ∈H) is a rotation in SO(H) = SO(4). Conversely, every rotation in SO(4)
is of the form

ρY,Z : X 7→ YXZ,

for some quaternions Y , Z such that N(Y )N(Z) = 1. Furthermore, if two nonnull

pairs of quaternions (Y,Z) and (Y ′,Z′) represent the same rotation, then Y ′ = λY

and Z′ = λ−1Z, for some λ 6= 0 in R.

Proof. We have already shown that ρY,Z ∈ SO(4). It remains to prove that every

rotation in SO(4) is of this form.

It is easily seen that

ρ(Y ′Y,ZZ′) = ρY ′,Z′ ◦ρY,Z.

Let ρ ∈ SO(4) be a rotation, and let Z0 = ρ(1) and g = ρ
Z−1

0 ,1. Since ρ is an isom-

etry, Z0 = ρ(1) is a unit quaternion, and thus g ∈ SO(4). Observe that

g(ρ(1)) = 1,
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which implies that F = R1 is invariant under g ◦ ρ . Since F⊥ = Hp, by Lemma

8.2, g ◦ρ(Hp) ⊆ Hp, which shows that the restriction of g ◦ρ to Hp is a rotation.

By Lemma 9.1, there is some nonnull quaternion Z such that g ◦ ρ = ρZ on Hp,

but since both g ◦ρ and ρZ are the identity on R1, we must have g ◦ρ = ρZ on H.

Finally, a trivial calculation shows that

ρ = g−1 ◦ρZ = ρZ0,1ρZ = ρZ0,1ρZ,Z−1 = ρZ0Z,Z−1 .

If ρY,Z = ρY ′,Z′ , then

YXZ = Y ′XZ′

for all X ∈H, that is,

Y−1Y ′XZ′Z−1 = X

for all X ∈H. Letting X = (Y−1Y ′)−1, we get Z′Z−1 = (Y−1Y ′)−1. From

Y−1Y ′X(Y−1Y ′)−1 = X

for all Z ∈ H, by a previous remark, we must have Y−1Y ′ = λ 1 for some λ 6= 0

in R, so that Y ′ = λY , and since Z′Z−1 = (Y−1Y ′)−1, we get Z′Z−1 = λ−11, i.e.

Z′ = λ−1Z. ⊓⊔

Since

ρ(Y ′Y,ZZ′) = ρY ′,Z′ ◦ρY,Z,

it is easy to show that the map η : S3× S3→ SO(4) defined by η(Y,Z) = ρY,Z is a

surjective homomorphism whose kernel is {(1,1),(−1,−1)}.

Remark: Note that it is necessary to define η : S3× S3→ SO(4) such that

η(Y,Z)(X) = Y XZ,

where the conjugate Z of Z is used rather than Z, to compensate for the switch

between Z and Z′ in

ρ(Y ′Y,ZZ′) = ρY ′,Z′ ◦ρY,Z.

Otherwise, η would not be a homomorphism from the product group S3× S3 to

SO(4).

We conclude this section on the quaternions with a mention of the exponential

map, since it has applications to quaternion interpolation, which, in turn, has appli-

cations to motion interpolation.

Observe that the quaternions i, j,k can also be written as
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i =

(
i 0

0 −i

)
= i

(
1 0

0 −1

)
,

j =

(
0 1

−1 0

)
= i

(
0 −i

i 0

)
,

k =

(
0 i

i 0

)
= i

(
0 1

1 0

)
,

so that if we define the matrices σ1,σ2,σ3 such that

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
,

we can write

Z = a1+ bi+ cj+ dk= a1+ i(dσ1+ cσ2 + bσ3).

The matrices σ1,σ2,σ3 are called the Pauli spin matrices. Note that their traces are

null and that they are Hermitian (recall that a complex matrix is Hermitian if it is

equal to the transpose of its conjugate, i.e., A∗ = A). The somewhat unfortunate

order reversal of b,c,d has to do with the traditional convention for listing the Pauli

matrices. If we let e0 = a, e1 = d, e2 = c, and e3 = b, then Z can be written as

Z = e01+ i(e1σ1 + e2σ2 + e3σ3),

and e0,e1,e2,e3 are called the Euler parameters of the rotation specified by Z. If

N(Z) = 1, then we can also write

Z = cos
θ

2
1+ i sin

θ

2
(β σ3 + γσ2 + δσ1),

where

(β ,γ,δ ) =
1

sin θ
2

(b,c,d).

Letting A = β σ3 + γσ2 + δσ1, it can be shown that

eiθA = cosθ 1+ i sinθ A,

where the exponential is the usual exponential of matrices, i.e., for a square n× n

matrix M,

exp(M) = In + ∑
k≥1

Mk

k!
.

Note that since A is Hermitian of null trace, iA is skew Hermitian of null trace.

The above formula turns out to define the exponential map from the Lie algebra

of SU(2) to SU(2). The Lie algebra of SU(2) is a real vector space having iσ1, iσ2,

and iσ3 as a basis. Now, the vector space R3 is a Lie algebra if we define the Lie

bracket on R3 as the usual cross product u× v of vectors. Then the Lie algebra of
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SU(2) is isomorphic to (R3,×), and the exponential map can be viewed as a map

exp: (R3,×)→ SU(2) given by the formula

exp(θv) =

[
cos

θ

2
, sin

θ

2
v

]
,

for every vector θv, where v is a unit vector in R3 and θ ∈ R.

The exponential map can be used for quaternion interpolation. Given two unit

quaternions X ,Y , suppose we want to find a quaternion Z “interpolating” between

X and Y . Of course, we have to clarify what this means. Since SU(2) is topologically

the same as the sphere S3, we define an interpolant of X and Y as a quaternion Z

on the great circle (on the sphere S3) determined by the intersection of S3 with the

(2-)plane defined by the two points X and Y (viewed as points on S3) and the origin

(0,0,0,0).
Then the points (quaternions) on this great circle can be defined by first rotating

X and Y so that X goes to 1 and Y goes to X−1Y , by multiplying (on the left) by

X−1. Letting

X−1Y = [cosΩ , sinΩ w] ,

where −π < Ω ≤ π , the points on the great circle from 1 to X−1Y are given by the

quaternions

(X−1Y )λ = [cosλ Ω , sinλ Ω w] ,

where λ ∈R. This is because X−1Y = exp(2Ωw), and since an interpolant between

(0,0,0) and 2Ωw is 2λ Ωw in the Lie algebra of SU(2), the corresponding quater-

nion is indeed

exp(2λ Ω) = [cosλ Ω , sinλ Ω w] .

We cannot justify all this here, but it is indeed correct.

If Ω 6= π , then the shortest arc between X and Y is unique, and it corresponds to

those λ such that 0≤ λ ≤ 1 (it is a geodesic arc). However, if Ω = π , then X and Y

are antipodal, and there are infinitely many half circles from X to Y . In this case, w

can be chosen arbitrarily.

Finally, having the arc of great circle between 1 and X−1Y (assuming Ω 6= π), we

get the arc of interpolants Z(λ ) between X and Y by performing the inverse rotation

from 1 to X and from X−1Y to Y , i.e., by multiplying (on the left) by X , and we get

Z(λ ) = X(X−1Y )λ .

Note how the geometric reasoning immediately shows that

Z(λ ) = X(X−1Y )λ = (Y X−1)λ X .

It is remarkable that a closed-form formula for Z(λ ) can be given, as shown by

Shoemake [19, 20]. If X = [cosθ , sin θ u] and Y = [cosϕ , sinϕ v] (where u and v are

unit vectors in R3), letting

cosΩ = cosθ cosϕ + sinθ sinϕ (u · v)
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be the inner product of X and Y viewed as vectors in R4, it is a bit laborious to show

that

Z(λ ) =
sin(1−λ )Ω

sin Ω
X +

sinλ Ω

sinΩ
Y.

The above formula is quite remarkable, since if X = cosθ + isinθ and Y = cosϕ +
isinϕ are two points on the unit circle S1 (given as complex numbers of unit length),

letting Ω = ϕ − θ , the interpolating point cos((1−λ )θ +λ ϕ)+ isin((1−λ )θ +
λ ϕ) on S1 is given by the same formula

cos((1−λ )θ +λ ϕ)+ isin((1−λ )θ +λ ϕ) =
sin(1−λ )Ω

sinΩ
X +

sinλ Ω

sinΩ
Y.

9.4 Applications of Euclidean Geometry to Motion Interpolation

Euclidean geometry has a number applications including computer vision, computer

graphics, kinematics, and robotics. The motion of a rigid body in space can be de-

scribed using rigid motions. Given a fixed Euclidean frame (O,(e1,e2,e3)), we can

assume that some moving frame (C,(u1,u2,u3)) is attached (say glued) to a rigid

body B (for example, at the center of gravity of B) so that the position and orienta-

tion of B in space are completely (and uniquely) determined by some rigid motion

(R,U), where U specifies the position of C w.r.t. O, and R is a rotation matrix spec-

ifying the orientation of B w.r.t. the fixed frame (O,(e1,e2,e3)). For simplicity, we

can separate the motion of the center of gravity C of B from the rotation of B around

its center of gravity. Then a motion of B in space corresponds to two curves: The

trajectory of the center of gravity and a curve in SO(3) representing the various ori-

entations of B. Given a sequence of “snapshots” of B, say B0,B1, . . . ,Bm, we may

want to find an interpolating motion passing through the given snapshots. Further-

more, in most cases, it desirable that the curve be invariant with respect to a change

of coordinates and to rescaling. Often, one looks for an energy minimizing motion.

The problem is not as simple as it looks, because the space of rotations SO(3) is

topologically rather complex, and in particular, it is curved.

The problem of motion interpolation has been studied quite extensively both in

the robotics and computer graphics communities. Since rotations in SO(3) can be

represented by quaternions (see Chapter 9), the problem of quaternion interpola-

tion has been investigated, an approach apparently initiated by Shoemake [19, 20],

who extended the de Casteljau algorithm to the 3-sphere. Related work was done

by Barr, Currin, Gabriel, and Hughes [2]. Kim, M.-J., Kim, M.-S. and Shin [12, 13]

corrected bugs in Shoemake and introduced various kinds of splines on S3, using

the exponential map. Motion interpolation and rational motions have been inves-

tigated by Jüttler [8, 9], Jüttler and Wagner [10, 11], Horsch and Jüttler [7], and

Röschel [18]. Park and Ravani [16, 17] also investigated Bézier curves on Rieman-

nian manifolds and Lie groups, SO(3) in particular. More generally, the problem

of interpolating curves on surfaces or higher-dimensional manifolds in an efficient
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way remains an open problem. A very interesting book on the quaternions and their

applications to a number of engineering problems, including aerospace systems, is

the book by Kuipers [14], which we highly recommend.

9.5 Problems

9.1. Prove the following identities about quaternion multiplication (discovered by

Hamilton):

i2 = j2 = k2 = ijk =−1,

ij =−ji = k,

jk =−kj = i,

ki =−ik = j.

9.2. Given any two quaternions X = a1+bi+ cj+dk and Y = a′1+b′i+ c′j+d′k,

prove that

XY = (aa′− bb′− cc′− dd′)1+(ab′+ ba′+ cd′− dc′)i

+(ac′+ ca′+ db′− bd′)j+(ad′+ da′+ bc′− cb′)k.

Also prove that if X = [a,U ] and Y = [a′,U ′], the quaternion product XY can be

expressed as

XY = [aa′−U ·U ′, aU ′+ a′U +U×U ′].

9.3. Show that there is a very simple method for producing an orthonormal frame in

R4 whose first vector is any given nonnull vector (a,b,c,d).

9.4. Prove that

ρZ(XY ) = ρZ(X)ρZ(Y ),

ρZ(X +Y ) = ρZ(X)+ρZ(Y ),

for any nonnull quaternion Z and any two quaternions X ,Y (i.e., ρZ is an automor-

phism of H), and that

XY −YX = [0,2(U×U ′)]

for arbitrary quaternions X = [a,U ] and Y = [a′,U ′].

9.5. Give an algorithm to find a quaternion Z corresponding to a rotation matrix R

using the Euler form of a rotation matrix R(Z):

1

N(Z)




a2 + b2− c2− d2 2bc− 2ad 2ac+ 2bd

2bc+ 2ad a2− b2+ c2− d2 −2ab+ 2cd

−2ac+ 2bd 2ab+ 2cd a2− b2− c2 + d2


 .
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What about the choice of the sign of Z?

9.6. Let i, j, and k, be the unit vectors of coordinates (1,0,0), (0,1,0), and (0,0,1)
in R3.

(i) Describe geometrically the rotations defined by the following quaternions:

p = (0, i), q = (0, j).

Prove that the interpolant Z(λ ) = p(p−1q)λ is given by

Z(λ ) = (0, cos(λ π/2)i+ sin(λ π/2) j) .

Describe geometrically what this rotation is.

(ii) Repeat question (i) with the rotations defined by the quaternions

p =

(
1

2
,

√
3

2
i

)
, q = (0, j).

Prove that the interpolant Z(λ ) is given by

Z(λ ) =

(
1

2
cos(λ π/2),

√
3

2
cos(λ π/2)i+ sin(λ π/2) j

)
.

Describe geometrically what this rotation is.

(iii) Repeat question (i) with the rotations defined by the quaternions

p =

(
1√
2
,

1√
2

i

)
, q =

(
0,

1√
2
(i+ j)

)
.

Prove that the interpolant Z(λ ) is given by

Z(λ ) =

(
1√
2

cos(λ π/3)− 1√
6

sin(λ π/3),

(1/
√

2cos(λ π/3)+ 1/
√

6sin(λ π/3))i+
2√
6

sin(λ π/3) j

)
.

(iv) Prove that

w× (u× v) = (w · v)u− (u ·w)v.
Conclude that

u× (u× v) = (u · v)u− (u ·u)v.
(v) Let

p = (cosθ , sin θu), q = (cosϕ , sinϕv),

where u and v are unit vectors in R3. If

cosΩ = cosθ cosϕ + sinθ sinϕ (u · v)
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is the inner product of X and Y viewed as vectors in R4, assuming that Ω 6= kπ ,

prove that

Z(λ ) =
sin(1−λ )Ω

sinΩ
p+

sin λ Ω

sinΩ
q.
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21. Claude Tisseron. Géométries Affines, Projectives, et Euclidiennes. Hermann, first edition,

1994.

22. O. Veblen and J. W. Young. Projective Geometry, Vol. 2. Ginn, first edition, 1946.



Chapter 10

Dirichlet–Voronoi Diagrams and Delaunay
Triangulations

10.1 Dirichlet–Voronoi Diagrams

In this chapter we present the concepts of a Voronoi diagram and of a Delaunay

triangulation. These are important tools in computational geometry, and Delaunay

triangulations are important in problems where it is necessary to fit 3D data using

surface splines. It is usually useful to compute a good mesh for the projection of this

set of data points onto the xy-plane, and a Delaunay triangulation is a good candi-

date. Our presentation will be rather sketchy. We are primarily interested in defining

these concepts and stating their most important properties without proofs. For a

comprehensive exposition of Voronoi diagrams, Delaunay triangulations, and more

topics in computational geometry, our readers may consult O’Rourke [10], Preparata

and Shamos [11], Boissonnat and Yvinec [2], de Berg, Van Kreveld, Overmars, and

Schwarzkopf [1], or Risler [12]. The survey by Graham and Yao [7] contains a

very gentle and lucid introduction to computational geometry. Some practical ap-

plications of Voronoi diagrams and Delaunay triangulations are briefly discussed in

Section 10.5.

Let E be a Euclidean space of finite dimension, that is, an affine space E whose

underlying vector space
−→
E is equipped with an inner product (and has finite dimen-

sion). For concreteness, one may safely assume that E =Em, although what follows

applies to any Euclidean space of finite dimension. Given a set P = {p1, . . . , pn} of

n points in E , it is often useful to find a partition of the space E into regions each

containing a single point of P and having some nice properties. It is also often useful

to find triangulations of the convex hull of P having some nice properties. We shall

see that this can be done and that the two problems are closely related. In order to

solve the first problem, we need to introduce bisector lines and bisector planes.

For simplicity, let us first assume that E is a plane i.e., has dimension 2. Given

any two distinct points a,b ∈ E , the line orthogonal to the line segment (a,b) and

passing through the midpoint of this segment is the locus of all points having equal

distance to a and b. It is called the bisector line of a and b. The bisector line of two

points is illustrated in Figure 10.1.

301



302 10 Dirichlet–Voronoi Diagrams

b

bL

a

b

Fig. 10.1 The bisector line L of a and b.

If h= 1
2

a+ 1
2

b is the midpoint of the line segment (a,b), letting m be an arbitrary

point on the bisector line, the equation of this line can be found by writing that−→
hm is orthogonal to

−→
ab. In any orthogonal frame, letting m = (x,y), a = (a1,a2),

b = (b1,b2), the equation of this line is

(b1− a1)(x− (a1 + b1)/2)+ (b2− a2)(y− (a2 + b2)/2) = 0,

which can also be written as

(b1− a1)x+(b2− a2)y = (b2
1 + b2

2)/2− (a2
1+ a2

2)/2.

The closed half-plane H(a,b) containing a and with boundary the bisector line is

the locus of all points such that

(b1− a1)x+(b2− a2)y≤ (b2
1 + b2

2)/2− (a2
1+ a2

2)/2,

and the closed half-plane H(b,a) containing b and with boundary the bisector line

is the locus of all points such that

(b1− a1)x+(b2− a2)y≥ (b2
1 + b2

2)/2− (a2
1+ a2

2)/2.

The closed half-plane H(a,b) is the set of all points whose distance to a is less that

or equal to the distance to b, and vice versa for H(b,a). Thus, points in the closed

half-plane H(a,b) are closer to a than they are to b.

We now consider a problem called the post office problem by Graham and Yao

[7]. Given any set P = {p1, . . . , pn} of n points in the plane (considered as post

offices or sites), for any arbitrary point x, find out which post office is closest to x.
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Since x can be arbitrary, it seems desirable to precompute the sets V (pi) consisting

of all points that are closer to pi than to any other point p j 6= pi. Indeed, if the

sets V (pi) are known, the answer is any post office pi such that x ∈ V (pi). Thus,

it remains to compute the sets V (pi). For this, if x is closer to pi than to any other

point p j 6= pi, then x is on the same side as pi with respect to the bisector line of pi

and p j for every j 6= i, and thus

V (pi) =
⋂

j 6=i

H(pi, p j).

If E has dimension 3, the locus of all points having equal distance to a and b is

a plane. It is called the bisector plane of a and b. The equation of this plane is also

found by writing that
−→
hm is orthogonal to

−→
ab. The equation of this plane is

(b1− a1)(x− (a1 + b1)/2)+ (b2− a2)(y− (a2 + b2)/2)

+ (b3− a3)(z− (a3 + b3)/2) = 0,

which can also be written as

(b1− a1)x+(b2− a2)y+(b3− a3)z = (b2
1 + b2

2 + b2
3)/2− (a2

1+ a2
2 + a2

3)/2.

The closed half-space H(a,b) containing a and with boundary the bisector plane is

the locus of all points such that

(b1− a1)x+(b2− a2)y+(b3− a3)z≤ (b2
1 + b2

2 + b2
3)/2− (a2

1+ a2
2 + a2

3)/2,

and the closed half-space H(b,a) containing b and with boundary the bisector plane

is the locus of all points such that

(b1− a1)x+(b2− a2)y+(b3− a3)z≥ (b2
1 + b2

2 + b2
3)/2− (a2

1+ a2
2 + a2

3)/2.

The closed half-space H(a,b) is the set of all points whose distance to a is less that

or equal to the distance to b, and vice versa for H(b,a). Again, points in the closed

half-space H(a,b) are closer to a than they are to b.

Given any set P = {p1, . . . , pn} of n points in E (of dimension m = 2,3), it is

often useful to find for every point pi the region consisting of all points that are

closer to pi than to any other point p j 6= pi, that is, the set

V (pi) = {x ∈ E | d(x, pi)≤ d(x, p j), for all j 6= i},

where d(x,y) = (−→xy ·−→xy)1/2, the Euclidean distance associated with the inner product

· on E . From the definition of the bisector line (or plane), it is immediate that

V (pi) =
⋂

j 6=i

H(pi, p j).
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Families of sets of the form V (pi) were investigated by Dirichlet [4] (1850) and

Voronoi [13] (1908). Voronoi diagrams also arise in crystallography (Gilbert [6]).

Other applications, including facility location and path planning, are discussed in

O’Rourke [10]. For simplicity, we also denote the set V (pi) by Vi, and we introduce

the following definition.

Definition 10.1. Let E be a Euclidean space of dimension m = 2,3. Given any set

P = {p1, . . ., pn} of n points in E , the Dirichlet–Voronoi diagram V (P) of P =
{p1, . . . , pn} is the family of subsets of E consisting of the sets Vi =

⋂
j 6=i H(pi, p j)

and of all of their intersections.

Dirichlet–Voronoi diagrams are also called Voronoi diagrams, Voronoi tessella-

tions, or Thiessen polygons. Following common usage, we will use the terminology

Voronoi diagram. As intersections of convex sets (closed half-planes or closed half-

spaces), the Voronoi regions V (pi) are convex sets. In dimension two, the bound-

aries of these regions are convex polygons, and in dimension three, the boundaries

are convex polyhedra.

Whether a region V (pi) is bounded or not depends on the location of pi. If pi

belongs to the boundary of the convex hull of the set P, then V (pi) is unbounded,

and otherwise bounded. In dimension two, the convex hull is a convex polygon, and

in dimension three, the convex hull is a convex polyhedron. As we will see later,

there is an intimate relationship between convex hulls and Voronoi diagrams.

Generally, if E is a Euclidean space of dimension m, given any two distinct points

a,b ∈ E , the locus of all points having equal distance to a and b is a hyperplane. It

is called the bisector hyperplane of a and b. The equation of this hyperplane is still

found by writing that
−→
hm is orthogonal to

−→
ab. The equation of this hyperplane is

(b1− a1)(x1− (a1 + b1)/2)+ · · ·+(bm− am)(xm− (am + bm)/2) = 0,

which can also be written as

(b1− a1)x1 + · · ·+(bm− am)xm = (b2
1 + · · ·+ b2

m)/2− (a2
1+ · · ·+ a2

m)/2.

The closed half-space H(a,b) containing a and with boundary the bisector hyper-

plane is the locus of all points such that

(b1− a1)x1 + · · ·+(bm− am)xm ≤ (b2
1 + · · ·+ b2

m)/2− (a2
1+ · · ·+ a2

m)/2,

and the closed half-space H(b,a) containing b and with boundary the bisector hy-

perplane is the locus of all points such that

(b1− a1)x1 + · · ·+(bm− am)xm ≥ (b2
1 + · · ·+ b2

m)/2− (a2
1+ · · ·+ a2

m)/2.

The closed half-space H(a,b) is the set of all points whose distance to a is less than

or equal to the distance to b, and vice versa for H(b,a).
Figure 10.2 shows the Voronoi diagram of a set of twelve points. In the general

case where E has dimension m, the definition of the Voronoi diagram V (P) of P is
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Fig. 10.2 A Voronoi diagram.

the same as Definition 10.1, except that H(pi, p j) is the closed half-space containing

pi and having the bisector hyperplane of pi and p j as boundary. Also, observe that

the convex hull of P is a convex polytope.

We will now state a lemma listing the main properties of Voronoi diagrams. It

turns out that certain degenerate situations can be avoided if we assume that if P is a

set of points in an affine space of dimension m, then no m+ 2 points from P belong

to the same (m−1)-sphere. We will say that the points of P are in general position.

Thus when m = 2, no 4 points in P are cocyclic, and when m = 3, no 5 points in P

are on the same sphere.

Lemma 10.1. Given a set P= {p1, . . . , pn} of n points in some Euclidean space E of

dimension m (say Em), if the points in P are in general position and not in a common

hyperplane then the Voronoi diagram of P satisfies the following conditions:

(1) Each region Vi is convex and contains pi in its interior.

(2) Each vertex of Vi belongs to m+ 1 regions V j and to m+ 1 edges.

(3) The region Vi is unbounded iff pi belongs to the boundary of the convex hull of

P.

(4) If p is a vertex that belongs to the regions V1, . . . ,Vm+1, then p is the center of

the (m−1)-sphere S(p) determined by p1, . . . , pm+1. Furthermore, no point in P

is inside the sphere S(p) (i.e., in the open ball associated with the sphere S(p)).
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(5) If p j is a nearest neighbor of pi, then one of the faces of Vi is contained in the

bisector hyperplane of (pi, p j).
(6)

n⋃

i=1

Vi = E , and
◦
V i ∩

◦
V j= /0, for all i, j, with i 6= j,

where
◦
V i denotes the interior of Vi.

Proof. We prove only some of the statements, leaving the others as an exercise (or

see Risler [12]).

(1) Since Vi =
⋂

j 6=i H(pi, p j) and each half-space H(pi, p j) is convex, as an in-

tersection of convex sets, Vi is convex. Also, since pi belongs to the interior of each

H(pi, p j), the point pi belongs to the interior of Vi.

(2) Let Fi, j denote Vi∩V j. Any vertex p of the Vononoi diagram of P must belong

to r faces Fi, j. Now, given a vector space E and any two subspaces M and N of E ,

recall that we have the Grassmann relation (see Lemma 2.14)

dim(M)+ dim(N) = dim(M +N)+ dim(M∩N).

Then since p belongs to the intersection of the hyperplanes that form the bound-

aries of the Vi, and since a hyperplane has dimension m− 1, by the Grassmann

relation, we must have r ≥ m. For simplicity of notation, let us denote these faces

by F1,2,F2,3, . . . ,Fr,r+1. Since Fi, j =Vi∩V j, we have

Fi, j = {p | d(p, pi) = d(p, p j)≤ d(p, pk), for all k 6= i, j},

and since p ∈ F1,2∩F2,3∩·· ·∩Fr,r+1, we have

d(p, p1) = · · ·= d(p, pr+1)< d(p, pk) for all k /∈ {1, . . . ,r+ 1}.

This means that p is the center of a sphere passing through p1, . . . , pr+1 and contain-

ing no other point in P. By the assumption that points in P are in general position,

we must have r ≤ m, and thus r = m. Thus, p belongs to V1∩ ·· · ∩Vm+1, but to no

other V j with j /∈ {1, . . . ,m+ 1}. Furthermore, every edge of the Voronoi diagram

containing p is the intersection of m of the regions V1, . . . ,Vm+1, and so there are

m+ 1 of them. ⊓⊔

For simplicity, let us again consider the case where E is a plane. It should be

noted that certain Voronoi regions, although closed, may extend very far. Figure

10.3 shows such an example.

It is also possible for certain unbounded regions to have parallel edges.

There are a number of methods for computing Voronoi diagrams. A fairly simple

(although not very efficient) method is to compute each Voronoi region V (pi) by

intersecting the half-planes H(pi, p j). One way to do this is to construct successive

convex polygons that converge to the boundary of the region. At every step we

intersect the current convex polygon with the bisector line of pi and p j. There are at

most two intersection points. We also need a starting polygon, and for this we can
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Fig. 10.3 Another Voronoi diagram.

pick a square containing all the points. A naive implementation will run in O(n3).
However, the intersection of half-planes can be done in O(n logn), using the fact

that the vertices of a convex polygon can be sorted. Thus, the above method runs

in O(n2 logn). Actually, there are faster methods (see Preparata and Shamos [11] or

O’Rourke [10]), and it is possible to design algorithms running in O(n logn). The

most direct method to obtain fast algorithms is to use the “lifting method” discussed

in Section 10.4, whereby the original set of points is lifted onto a paraboloid, and to

use fast algorithms for finding a convex hull.

A very interesting (undirected) graph can be obtained from the Voronoi diagram

as follows: The vertices of this graph are the points pi (each corresponding to a

unique region of V (P)), and there is an edge between pi and p j iff the regions

Vi and V j share an edge. The resulting graph is called a Delaunay triangulation

of the convex hull of P, after Delaunay, who invented this concept in 1934. Such

triangulations have remarkable properties.

Figure 10.4 shows the Delaunay triangulation associated with the earlier Voronoi

diagram of a set of twelve points.

One has to be careful to make sure that all the Voronoi vertices have been

computed before computing a Delaunay triangulation, since otherwise, some edges

could be missed. In Figure 10.5 illustrating such a situation, if the lowest Voronoi

vertex had not been computed (not shown on the diagram!), the lowest edge of the
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Fig. 10.4 Delaunay triangulation associated with a Voronoi diagram.

Delaunay triangulation would be missing. The concept of a triangulation can be gen-

eralized to dimension 3, or even to any dimension m. But first, we need to define a

triangulation precisely, and for this, we need to review what is a simplicial complex.

10.2 Simplicial Complexes and Triangulations

A simplex is just the convex hull of a finite number of affinely independent points,

but we also need to define faces, the boundary, and the interior of a simplex.

Definition 10.2. Let E be any normed affine space, say E = Em with its usual

Euclidean norm. Given any n+ 1 affinely independent points a0, . . . ,an in E , the

n-simplex (or simplex) σ defined by a0, . . . ,an is the convex hull of the points

a0, . . . ,an, that is, the set of all convex combinations λ0a0 + · · ·+ λnan, where

λ0 + · · ·+ λn = 1 and λi ≥ 0 for all i, 0 ≤ i ≤ n. We call n the dimension of

the n-simplex σ , and the points a0, . . . ,an are the vertices of σ . Given any sub-

set {ai0 , . . . ,aik} of {a0, . . . ,an} (where 0 ≤ k ≤ n), the k-simplex generated by

ai0 , . . . ,aik is called a face of σ . A face s of σ is a proper face if s 6= σ (we agree

that the empty set is a face of any simplex). For any vertex ai, the face generated by
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Fig. 10.5 Another Delaunay triangulation associated with a Voronoi diagram.

a0, . . . ,ai−1,ai+1, . . . ,an (i.e., omitting ai) is called the face opposite ai. Every face

that is an (n−1)-simplex is called a boundary face. The union of the boundary faces

is the boundary of σ , denoted by ∂σ , and the complement of ∂σ in σ is the interior

Int σ = σ − ∂σ of σ . The interior Int σ of σ is sometimes called an open simplex.

It should be noted that for a 0-simplex consisting of a single point {a0}, ∂{a0}=
/0, and Int{a0} = {a0}. Of course, a 0-simplex is a single point, a 1-simplex is the

line segment (a0,a1), a 2-simplex is a triangle (a0,a1,a2) (with its interior), and a

3-simplex is a tetrahedron (a0,a1,a2,a3) (with its interior); see Figure 10.6.

We now state a number of properties of simplices, whose proofs are left as an

exercise. Clearly, a point x belongs to the boundary ∂σ of σ iff at least one of its

barycentric coordinates (λ0, . . . ,λn) is zero, and a point x belongs to the interior

Int σ of σ iff all of its barycentric coordinates (λ0, . . . ,λn) are positive, i.e., λi > 0

for all i, 0≤ i≤ n. Then, for every x ∈ σ , there is a unique face s such that x ∈ Int s,

the face generated by those points ai for which λi > 0, where (λ0, . . . ,λn) are the

barycentric coordinates of x.

A simplex σ is convex, arcwise connected, compact, and closed. The interior

Intσ of a complex is convex, arcwise connected, open, and σ is the closure of Intσ .

We now need to put simplices together to form more complex shapes, following

Munkres [9].

Definition 10.3. A simplicial complex in Em (for short, a complex in Em) is a set

K consisting of a (finite or infinite) set of simplices in Em satisfying the following

conditions:



310 10 Dirichlet–Voronoi Diagrams

bc

bc bc

bc bc

bc

bc

bc

bc

bc

a0

a0 a1

a0 a1

a2

a0

a3

a2

a1

Fig. 10.6 Examples of simplices.

(1) Every face of a simplex in K also belongs to K.

(2) For any two simplices σ1 and σ2 in K, if σ1∩σ2 6= /0, then σ1∩σ2 is a common

face of both σ1 and σ2.

If σ ∈ K is a simplex of n+ 1 elements, then its dimension is n, and it is called

an n-simplex. A 0-simplex {x} is called a vertex. The dimension of the simplicial

complex K is the maximum of the dimensions of simplices in K.

Condition (2) guarantees that the various simplices forming a complex are glued

nicely. It can be shown that the following condition is equivalent to condition (2):

(2′) For any two distinct simplices σ1,σ2, Int σ1∩ Int σ2 = /0.

The union Kg of all the simplices in K is a subset of Em. We can define a topology on

Kg by defining a subset F of Kg to be closed iff F∩σ is closed in σ for every simplex

σ ∈ K. It is immediately verified that the axioms of a topological space are indeed

satisfied. The resulting topological space Kg is called the geometric realization of

K. A polytope is the geometric realization of some simplicial complex. A polytope

of dimension 1 is usually called a polygon, and a polytope of dimension 2 is usually

called a polyhedron. It can be checked that each region Vi of a Voronoi diagram is a

(convex) polytope.

In the sequel, we will consider only finite simplicial complexes, that is, com-

plexes K consisting of a finite number of simplices. In this case, the topology of

Kg defined above is identical to the topology induced from Em. In this case, for any
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simplex σ in K, Intσ coincides with the interior
◦
σ of σ in the topological sense, and

∂σ coincides with the boundary of σ in the topological sense. We can now define

triangulations.

First, assume that E = E2. Given a subset S of E2, a triangulation of S is a

finite complex K of dimension 2 such that S is the union of the 2-simplices in K.

Equivalently, S is the union of the (closed) triangles in K. Thus, a triangulation of S

specifies a way of cutting up S into a collection of (closed) triangles that intersect

nicely. Next, if E =E3, given a subset S ofE3, a triangulation of S is a finite complex

K of dimension 3 such that S is the union of the 3-simplices in K. Equivalently, S

is the union of the (closed) tetrahedra in K. Thus, a triangulation of S specifies a

way of cutting up S into a collection of (closed) tetrahedra that intersect nicely. In

general, we have the following definition.

Definition 10.4. Given a subset S of Em (where m ≥ 2), a d-triangulation of S

(where d ≤m) is a finite complex K such that

S =
⋃

σ∈K
dim(σ)=d

σ ,

i.e., such that S is the union of all d-simplices in K.

Given a finite set P of n points in the plane, and given a triangulation of the

convex hull of P having P as its set of vertices, observe that the boundary of P is

a convex polygon. Similarly, given a finite set P of points in 3-space, and given a

triangulation of the convex hull of P having P as its set of vertices, observe that the

boundary of P is a convex polyhedron. It is interesting to know how many triangu-

lations exist for a set of n points (in the plane or in 3-space), and it is also interesting

to know the number of edges and faces in terms of the number of vertices in P.

These questions can be settled using the Euler–Poincaré characteristic. We say that

a polygon in the plane is a simple polygon iff it is a connected closed polygon such

that no two edges intersect (except at a common vertex).

Lemma 10.2.

(1) For any triangulation of a region of the plane whose boundary is a simple poly-

gon, letting v be the number of vertices, e the number of edges, and f the number

of triangles, we have the “Euler formula”

v− e+ f = 1.

(2) For any polytope S homeomorphic to a closed ball in E3 and any triangulation

of S, letting v be the number of vertices, e the number of edges, f the number of

triangles, and t the number of tetrahedra, we have the “Euler formula”

v− e+ f − t = 1.
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(3) Furthermore, for any triangulation of the polyhedron B(S) that is the boundary

of S, letting v′ be the number of vertices, e′ the number of edges, and f ′ the

number of triangles, we have the “Euler formula”

v′− e′+ f ′ = 2.

Proof. We only sketch the proof. More details can be found in O’Rourke [10], Risler

[12], or books on algebraic topology, such as Massey [8] or Munkres [9]. The proof

of (1) is by induction on the number f of triangles. The proof of (2) is by induction

on the number t of tetrahedra. The proof of (3) consists in first flattening the poly-

hedron into a planar graph in the plane. This can be done by removing some face

and then by deformation. The boundary of this planar graph is a simple polygon,

and the region outside this boundary corresponds to the removed face. Then by (1)

we get the formula, remembering that there is one more face (this is why we get 2

instead of 1). ⊓⊔

It is now easy to see that in case (1), the number of edges and faces is a linear

function of the number of vertices and boundary edges, and that in case (3), the

number of edges and faces is a linear function of the number of vertices. Indeed, in

the case of a planar triangulation, each face has 3 edges, and if there are eb edges in

the boundary and ei edges not in the boundary, each nonboundary edge is shared by

two faces, and thus 3 f = eb + 2ei. Since v− eb− ei + f = 1, we get

v− eb− ei + eb/3+ 2ei/3 = 1,

2eb/3+ ei/3 = v− 1,

and thus ei = 3v− 3− 2eb. Since f = eb/3+ 2ei/3, we have f = 2v− 2− eb.

Similarly, since v′− e′ + f ′ = 2 and 3 f ′ = 2e′, we easily get e = 3v− 6 and

f = 2v− 4. Thus, given a set P of n points, the number of triangles (and edges) for

any triangulation of the convex hull of P using the n points in P for its vertices is

fixed.

Case (2) is trickier, but it can be shown that

v− 3≤ t ≤ (v− 1)(v− 2)/2.

Thus, there can be different numbers of tetrahedra for different triangulations of the

convex hull of P.

Remark: The numbers of the form v− e+ f and v− e+ f − t are called Euler–

Poincaré characteristics. They are topological invariants, in the sense that they are

the same for all triangulations of a given polytope. This is a fundamental fact of

algebraic topology.

We shall now investigate triangulations induced by Voronoi diagrams.
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10.3 Delaunay Triangulations

Given a set P = {p1, . . . , pn} of n points in the plane and the Voronoi diagram V (P)
for P, we explained in Section 10.1 how to define an (undirected) graph: The vertices

of this graph are the points pi (each corresponding to a unique region of V (P)), and

there is an edge between pi and p j iff the regions Vi and V j share an edge. The

resulting graph turns out to be a triangulation of the convex hull of P having P

as its set of vertices. Such a complex can be defined in general. For any set P =
{p1, . . . , pn} of n points in Em, we say that a triangulation of the convex hull of P is

associated with P if its set of vertices is the set P.

Definition 10.5. Let P = {p1, . . . , pn} be a set of n points in Em, and let V (P) be the

Voronoi diagram of P. We define a complex D(P) as follows. The complex D(P)
contains the k-simplex {p1, . . . , pk+1} iff V1∩·· ·∩Vk+1 6= /0, where 0≤ k ≤m. The

complex D(P) is called the Delaunay triangulation of the convex hull of P.

Thus, {pi, p j} is an edge iff Vi∩V j 6= /0, {pi, p j, ph} is a triangle iff Vi∩V j∩Vh 6=
/0, {pi, p j, ph, pk} is a tetrahedron iff Vi∩V j ∩Vh∩Vk 6= /0, etc.

For simplicity, we often write D instead of D(P). A Delaunay triangulation for

a set of twelve points is shown in Figure 10.7.

Fig. 10.7 A Delaunay triangulation.
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Actually, it is not obvious that D(P) is a triangulation of the convex hull of P,

but this can be shown, as well as the properties listed in the following lemma.

Lemma 10.3. Let P = {p1, . . . , pn} be a set of n points in Em, and assume that they

are in general position. Then the Delaunay triangulation of the convex hull of P is

indeed a triangulation associated with P, and it satisfies the following properties:

(1) The boundary of D(P) is the convex hull of P.

(2) A triangulation T associated with P is the Delaunay triangulation D(P) iff every

(m−1)-sphere S(σ) circumscribed about an m-simplex σ of T contains no other

point from P (i.e., the open ball associated with S(σ) contains no point from P).

The proof can be found in Risler [12] and O’Rourke [10]. In the case of a planar

set P, it can also be shown that the Delaunay triangulation has the property that it

maximizes the minimum angle of the triangles involved in any triangulation of P.

However, this does not characterize the Delaunay triangulation. Given a connected

graph in the plane, it can also be shown that any minimal spanning tree is contained

in the Delaunay triangulation of the convex hull of the set of vertices of the graph

(O’Rourke [10]).

We will now explore briefly the connection between Delaunay triangulations and

convex hulls.

10.4 Delaunay Triangulations and Convex Hulls

In this section we show that there is an intimate relationship between convex hulls

and Delaunay triangulations. We will see that given a set P of points in the Euclidean

space Em of dimension m, we can “lift” these points onto a paraboloid living in

the space Em+1 of dimension m+ 1, and that the Delaunay triangulation of P is

the projection of the downward-facing faces of the convex hull of the set of lifted

points. This remarkable connection was first discovered by Brown [3], and refined

by Edelsbrunner and Seidel [5]. For simplicity, we consider the case of a set P of

points in the plane E2, and we assume that they are in general position.

Consider the paraboloid of revolution of equation z = x2 + y2. A point p = (x,y)
in the plane is lifted to the point l(p) = (X ,Y,Z) in E3, where X = x, Y = y, and

Z = x2 + y2.

The first crucial observation is that a circle in the plane is lifted into a plane curve

(an ellipse). Indeed, if such a circle C is defined by the equation

x2 + y2 + ax+ by+ c= 0,

since X = x, Y = y, and Z = x2 + y2, by eliminating x2 + y2 we get

Z =−ax− by− c,

and thus X ,Y,Z satisfy the linear equation
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aX + bY +Z+ c = 0,

which is the equation of a plane. Thus, the intersection of the cylinder of revolution

consisting of the lines parallel to the z-axis and passing through a point of the circle

C with the paraboloid z = x2 + y2 is a planar curve (an ellipse).

We can compute the convex hull of the set of lifted points. Let us focus on

the downward-facing faces of this convex hull. Let (l(p1), l(p2), l(p3)) be such a

face. The points p1, p2, p3 belong to the set P. We claim that no other point from

P is inside the circle C. Indeed, a point p inside the circle C would lift to a point

l(p) on the paraboloid. Since no four points are cocyclic, one of the four points

p1, p2, p3, p is further from O than the others; say this point is p3. Then, the face

(l(p1), l(p2), l(p)) would be below the face (l(p1), l(p2), l(p3)), contradicting the

fact that (l(p1), l(p2), l(p3)) is one of the downward-facing faces of the convex hull

of P. But then, by property (2) of Lemma 10.3, the triangle (p1, p2, p3) would be-

long to the Delaunay triangulation of P.

Therefore, we have shown that the projection of the part of the convex hull of the

lifted set l(P) consisting of the downward-facing faces is the Delaunay triangulation

of P. Figure 10.8 shows the lifting of the Delaunay triangulation shown earlier.
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Fig. 10.8 A Delaunay triangulation and its lifting to a paraboloid.

Another example of the lifting of a Delaunay triangulation is shown in Figure

10.9. The fact that a Delaunay triangulation can be obtained by projecting a lower

convex hull can be used to find efficient algorithms for computing a Delaunay trian-

gulation. It also holds for higher dimensions.
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Fig. 10.9 Another Delaunay triangulation and its lifting to a paraboloid.

The Voronoi diagram itself can also be obtained from the lifted set l(P). However,

this time, we need to consider tangent planes to the paraboloid at the lifted points.

It is fairly obvious that the tangent plane at the lifted point (a,b,a2 + b2) is

z = 2ax+ 2by− (a2+ b2).

Given two distinct lifted points (a1,b1,a
2
1+b2

1) and (a2,b2,a
2
2+b2

2), the intersection

of the tangent planes at these points is a line belonging to the plane of equation

(b1− a1)x+(b2− a2)y = (b2
1 + b2

2)/2− (a2
1+ a2

2)/2.

This is precisely the equation of the bisector line of the two points (a1,b1) and

(a2,b2). Therefore, if we look at the paraboloid from z = +∞ (with the paraboloid

transparent), the projection of the tangent planes at the lifted points is the Voronoi

diagram!

It should be noted that the “duality” between the Delaunay triangulation, which is

the projection of the convex hull of the lifted set l(P) viewed from z =−∞, and the

Voronoi diagram, which is the projection of the tangent planes at the lifted set l(P)
viewed from z =+∞, is reminiscent of the polar duality with respect to a quadric.

The reader interested in algorithms for finding Voronoi diagrams and Delaunay

triangulations is referred to O’Rourke [10], Preparata and Shamos [11], Boissonnat

and Yvinec [2], de Berg, Van Kreveld, Overmars, and Schwarzkopf [1], and Risler
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[12]. We conclude our brief presentation of Voronoi diagrams and Delaunay trian-

gulations with a short section on applications.

10.5 Applications of Voronoi Diagrams and Delaunay

Triangulations

The examples below are taken from O’Rourke [10]. Other examples can be found in

Preparata and Shamos [11], Boissonnat and Yvinec [2], and de Berg, Van Kreveld,

Overmars, and Schwarzkopf [1].

The first example is the nearest neighbors problem. There are actually two sub-

problems: Nearest neighbor queries and all nearest neighbors.

The nearest neighbor queries problem is as follows. Given a set P of points

and a query point q, find the nearest neighbor(s) of q in P. This problem can be

solved by computing the Voronoi diagram of P and determining in which Voronoi

region q falls. This last problem, called point location, has been heavily studied (see

O’Rourke [10]). The all neighbors problem is as follows: Given a set P of points,

find the nearest neighbor(s) to all points in P. This problem can be solved by build-

ing a graph, the nearest neighbor graph, for short nng. The nodes of this undirected

graph are the points in P, and there is an arc from p to q iff p is a nearest neighbor

of q or vice versa. Then it can be shown that this graph is contained in the Delaunay

triangulation of P.

The second example is the largest empty circle. Some practical applications of

this problem are to locate a new store (to avoid competition), or to locate a nuclear

plant as far as possible from a set of towns. More precisely, the problem is as follows.

Given a set P of points, find a largest empty circle whose center is in the (closed)

convex hull of P, empty in that it contains no points from P inside it, and largest

in the sense that there is no other circle with strictly larger radius. The Voronoi

diagram of P can be used to solve this problem. It can be shown that if the center p

of a largest empty circle is strictly inside the convex hull of P, then p coincides with

a Voronoi vertex. However, not every Voronoi vertex is a good candidate. It can also

be shown that if the center p of a largest empty circle lies on the boundary of the

convex hull of P, then p lies on a Voronoi edge.

The third example is the minimum spanning tree. Given a graph G, a minimum

spanning tree of G is a subgraph of G that is a tree, contains every vertex of the

graph G, and minimizes the sum of the lengths of the tree edges. It can be shown

that a minimum spanning tree is a subgraph of the Delaunay triangulation of the

vertices of the graph. This can be used to improve algorithms for finding minimum

spanning trees, for example Kruskal’s algorithm (see O’Rourke [10]).

We conclude by mentioning that Voronoi diagrams have applications to motion

planning. For example, consider the problem of moving a disk on a plane while

avoiding a set of polygonal obstacles. If we “extend” the obstacles by the diameter

of the disk, the problem reduces to finding a collision–free path between two points

in the extended obstacle space. One needs to generalize the notion of a Voronoi
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diagram. Indeed, we need to define the distance to an object, and medial curves

(consisting of points equidistant to two objects) may no longer be straight lines.

A collision–free path with maximal clearance from the obstacles can be found by

moving along the edges of the generalized Voronoi diagram. This is an active area

of research in robotics. For more on this topic, see O’Rourke [10].

10.6 Problems

10.1. Investigate the different shapes of the Voronoi diagram for a set of 3 points,

and then for a set of 4 points.

10.2. Prove (3)–(6) of Lemma 10.1.

10.3. Show that the intersection of n half-planes can be done in O(n logn), using the

fact that the vertices of a convex polygon can be sorted.

10.4. Write a computer program computing the Voronoi diagram of a set of points

in the plane. Can you do it in time O(n2 logn)?

10.5. Let σ be a simplex. (i) Prove that a point x belongs to the boundary ∂σ of

σ iff at least one of its barycentric coordinates (λ0, . . . ,λn) is zero, and a point x

belongs to the interior Int σ of σ iff all of its barycentric coordinates (λ0, . . . ,λn)
are positive, i.e., λi > 0 for all i,0 ≤ i ≤ n. Prove that for every x ∈ σ , there is a

unique face s such that x ∈ Int s, the face generated by those points ai for which

λi > 0, where (λ0, . . . ,λn) are the barycentric coordinates of x.

(ii) Prove that a simplex σ is convex, arcwise connected, compact, and closed.

The interior Int σ of a complex is convex, arcwise connected, open, and σ is the

closure of Int σ .

10.6. Prove that condition (2) of Definition 10.3 is equivalent to condition:

(2′) For any two distinct simplices σ1,σ2, Int σ1∩ Int σ2 = /0.

10.7. Complete the proof of (1) in Lemma 10.2 (use induction).

10.8. Prove that a sphere does not have any triangulation in which every vertex

belongs to six triangles. Conclude that a sphere cannot be triangulated by regular

hexagons. Look at a golf ball!

10.9. Given a connected graph in the plane, show that any minimal spanning tree is

contained in the Delaunay triangulation of the convex hull of the set of vertices of

the graph.

10.10. Write a computer program computing the Delaunay triangulation of a finite

set of points in the plane using the method of lifting to a paraboloid.

10.11. Prove Lemma 10.3.
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10.12. Let {p1, . . . , pn} be a finite set of points contained in a given square S. Con-

sider the following path-planning problem. Given an initial position s and a final

position t both on the boundary on the given square S, find a C2-continuous path

from s to t staying inside S with the property that at any given time, a point moving

on the path is as far as possible from the nearest point pi. You may think of the

points pi as radar stations and the moving particle as a flying airplane. The airplane

is trying to maximize the minimum distance from the radars.

Solve the above problem as best as you can using Voronoi diagrams and B-

splines.
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4. G.L. Dirichlet. Über die Reduktion der positiven quadratischen Formen mit drei unbes-

timmten ganzen Zahlen. Journal für die reine und angewandte Mathematik, 40:209–227,

1850.

5. H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete Computational

Geometry, 1:25–44, 1986.

6. E.N. Gilbert. Random subdivisions of space into crystals. Annals of Math. Stat., 33:958–972,

1962.

7. R. Graham and F. Yao. A whirlwind tour of computational geometry. American Mathematical

Monthly, 97(8):687–701, 1990.

8. William S. Massey. A Basic Course in Algebraic Topology. GTM No. 127. Springer-Verlag,

first edition, 1991.

9. James R. Munkres. Elements of Algebraic Topology. Addison-Wesley, first edition, 1984.

10. Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, second edi-

tion, 1998.

11. F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,

first edition, 1988.

12. J.-J. Risler. Mathematical Methods for CAD. Masson, first edition, 1992.

13. M.G. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadra-
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Chapter 11

Basics of Hermitian Geometry

11.1 Sesquilinear and Hermitian Forms, Pre-Hilbert Spaces and

Hermitian Spaces

In this chapter we generalize the basic results of Euclidean geometry presented in

Chapter 6 to vector spaces over the complex numbers. Such a generalization is in-

evitable, and not simply a luxury. For example, linear maps may not have real eigen-

values, but they always have complex eigenvalues. Furthermore, some very impor-

tant classes of linear maps can be diagonalized if they are extended to the com-

plexification of a real vector space. This is the case for orthogonal matrices, and,

more generally, normal matrices. Also, complex vector spaces are often the natural

framework in physics or engineering, and they are more convenient for dealing with

Fourier series. However, some complications arise due to complex conjugation. Re-

call that for any complex number z ∈ C, if z = x+ iy where x,y ∈ R, we let ℜz = x,

the real part of z, and ℑz = y, the imaginary part of z. We also denote the conjugate

of z = x+ iy by z = x− iy, and the absolute value (or length, or modulus) of z by

|z|. Recall that |z|2 = zz = x2 + y2. There are many natural situations where a map

ϕ : E×E→ C is linear in its first argument and only semilinear in its second argu-

ment, which means that ϕ(u,µv) = µϕ(u,v), as opposed to ϕ(u,µv) = µϕ(u,v).
For example, the natural inner product to deal with functions f : R→ C, especially

Fourier series, is

〈 f ,g〉=
∫ π

−π
f (x)g(x)dx,

which is semilinear (but not linear) in g. Thus, when generalizing a result from the

real case of a Euclidean space to the complex case, we always have to check very

carefully that our proofs do not rely on linearity in the second argument. Otherwise,

we need to revise our proofs, and sometimes the result is simply wrong!

Before defining the natural generalization of an inner product, it is convenient to

define semilinear maps.

Definition 11.1. Given two vector spaces E and F over the complex field C, a func-

tion f : E→ F is semilinear if

321
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f (u+ v) = f (u)+ f (v),

f (λ u) = λ f (u),

for all u,v ∈ E and all λ ∈ C. The set of all semilinear maps f : E → C is denoted

by E
∗
.

It is trivially verified that E
∗

is a vector space overC. It is not quite the dual space

E∗ of E .

Remark: Instead of defining semilinear maps, we could have defined the vector

space E as the vector space with the same carrier set E whose addition is the same

as that of E , but whose multiplication by a complex number is given by

(λ ,u) 7→ λ u.

Then it is easy to check that a function f : E → C is semilinear iff f : E → C is

linear. If E has finite dimension n, it is easy to see that E
∗

has the same dimension

n (if (e1, . . . ,en) is a basis for E , check that the semilinear maps (e1, . . . ,en) defined

such that

ei

(
n

∑
j=1

λ je j

)
= λi,

form a basis of E
∗
.)

We can now define sesquilinear forms and Hermitian forms.

Definition 11.2. Given a complex vector space E , a function ϕ : E ×E → C is a

sesquilinear form if it is linear in its first argument and semilinear in its second

argument, which means that

ϕ(u1 + u2,v) = ϕ(u1,v)+ϕ(u2,v),

ϕ(u,v1 + v2) = ϕ(u,v1)+ϕ(u,v2),

ϕ(λ u,v) = λ ϕ(u,v),

ϕ(u,µv) = µϕ(u,v),

for all u,v, u1,u2, v1,v2 ∈ E , and all λ ,µ ∈ C. A function ϕ : E × E → C is a

Hermitian form if it is sesquilinear and if

ϕ(v,u) = ϕ(u,v)

for all all u,v ∈ E .

Obviously, ϕ(0,v) = ϕ(u,0) = 0. Also note that if ϕ : E×E→C is sesquilinear,

we have

ϕ(λ u+ µv,λ u+ µv)= |λ |2ϕ(u,u)+λ µϕ(u,v)+λ µϕ(v,u)+ |µ |2ϕ(v,v),
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and if ϕ : E×E→C is Hermitian, we have

ϕ(λ u+ µv,λ u+ µv)= |λ |2ϕ(u,u)+ 2ℜ(λ µϕ(u,v))+ |µ |2ϕ(v,v).

Note that restricted to real coefficients, a sesquilinear form is bilinear (we some-

times say R-bilinear). The function Φ : E→C defined such that Φ(u) = ϕ(u,u) for

all u ∈ E is called the quadratic form associated with ϕ .

The standard example of a Hermitian form on Cn is the map ϕ defined such that

ϕ((x1, . . . ,xn),(y1, . . . ,yn)) = x1y1 + x2y2 + · · ·+ xnyn.

This map is also positive definite, but before dealing with these issues, we show the

following useful lemma.

Lemma 11.1. Given a complex vector space E, the following properties hold:

(1) A sesquilinear form ϕ : E×E → C is a Hermitian form iff ϕ(u,u) ∈ R for all

u ∈ E.

(2) If ϕ : E×E→C is a sesquilinear form, then

4ϕ(u,v) = ϕ(u+ v,u+ v)−ϕ(u− v,u− v)

+ iϕ(u+ iv,u+ iv)− iϕ(u− iv,u− iv),

and

2ϕ(u,v) = (1+ i)(ϕ(u,u)+ϕ(v,v))−ϕ(u− v,u− v)− iϕ(u− iv,u− iv).

These are called polarization identities.

Proof. (1) If ϕ is a Hermitian form, then

ϕ(v,u) = ϕ(u,v)

implies that

ϕ(u,u) = ϕ(u,u),

and thus ϕ(u,u) ∈ R. If ϕ is sesquilinear and ϕ(u,u) ∈ R for all u ∈ E , then

ϕ(u+ v,u+ v) = ϕ(u,u)+ϕ(u,v)+ϕ(v,u)+ϕ(v,v),

which proves that

ϕ(u,v)+ϕ(v,u) = α,

where α is real, and changing u to iu, we have

i(ϕ(u,v)−ϕ(v,u)) = β ,

where β is real, and thus

ϕ(u,v) =
α− iβ

2
and ϕ(v,u) =

α + iβ

2
,
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proving that ϕ is Hermitian.

(2) These identities are verified by expanding the right-hand side, and we leave

them as an exercise. ⊓⊔

Lemma 11.1 shows that a sesquilinear form is completely determined by the

quadratic form Φ(u) = ϕ(u,u), even if ϕ is not Hermitian. This is false for a real

bilinear form, unless it is symmetric. For example, the bilinear form ϕ : R2×R2→
R defined such that

ϕ((x1,y1),(x2,y2)) = x1y2− x2y1

is not identically zero, and yet it is null on the diagonal. However, a real symmet-

ric bilinear form is indeed determined by its values on the diagonal, as we saw in

Chapter 6.

As in the Euclidean case, Hermitian forms for which ϕ(u,u)≥ 0 play an impor-

tant role.

Definition 11.3. Given a complex vector space E , a Hermitian form ϕ : E×E→C
is positive if ϕ(u,u) ≥ 0 for all u ∈ E , and positive definite if ϕ(u,u) > 0 for all

u 6= 0. A pair 〈E,ϕ〉 where E is a complex vector space and ϕ is a Hermitian form

on E is called a pre-Hilbert space if ϕ is positive, and a Hermitian (or unitary) space

if ϕ is positive definite.

We warn our readers that some authors, such as Lang [3], define a pre-Hilbert

space as what we define as a Hermitian space. We prefer following the terminology

used in Schwartz [5] and Bourbaki [1]. The quantity ϕ(u,v) is usually called the

Hermitian product of u and v. We will occasionally call it the inner product of u and

v.

Given a pre-Hilbert space 〈E,ϕ〉, as in the case of a Euclidean space, we also

denote ϕ(u,v) by

u · v or 〈u,v〉 or (u|v),
and

√
Φ(u) by ‖u‖.

Example 11.1. The complex vector space Cn under the Hermitian form

ϕ((x1, . . . ,xn),(y1, . . . ,yn)) = x1y1 + x2y2 + · · ·+ xnyn

is a Hermitian space.

Example 11.2. Let l2 denote the set of all countably infinite sequences x = (xi)i∈N
of complex numbers such that ∑∞

i=0 |xi|2 is defined (i.e., the sequence ∑n
i=0 |xi|2 con-

verges as n→ ∞). It can be shown that the map ϕ : l2× l2→ C defined such that

ϕ ((xi)i∈N,(yi)i∈N) =
∞

∑
i=0

xiyi

is well defined, and l2 is a Hermitian space under ϕ . Actually, l2 is even a

Hilbert space (Chapter 26 on the web site, see http://www.cis.upenn.edu/

˜jean/gbooks/geom2.html).
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Example 11.3. Let Cpiece[a,b] be the set of piecewise bounded continuous functions

f : [a,b]→ C under the Hermitian form

〈 f ,g〉=
∫ b

a
f (x)g(x)dx.

It is easy to check that this Hermitian form is positive, but it is not definite. Thus,

under this Hermitian form, Cpiece[a,b] is only a pre-Hilbert space.

Example 11.4. Let C [a,b] be the set of complex-valued continuous functions

f : [a,b]→ C under the Hermitian form

〈 f ,g〉=
∫ b

a
f (x)g(x)dx.

It is easy to check that this Hermitian form is positive definite. Thus, C [a,b] is a

Hermitian space.

The Cauchy–Schwarz inequality and the Minkowski inequalities extend to pre-

Hilbert spaces and to Hermitian spaces.

Lemma 11.2. Let 〈E,ϕ〉 be a pre-Hilbert space with associated quadratic form Φ .

For all u,v ∈ E, we have the Cauchy–Schwarz inequality

|ϕ(u,v)| ≤
√

Φ(u)
√

Φ(v).

Furthermore, if 〈E,ϕ〉 is a Hermitian space, the equality holds iff u and v are lin-

early dependent.

We also have the Minkowski inequality

√
Φ(u+ v)≤

√
Φ(u)+

√
Φ(v).

Furthermore, if 〈E,ϕ〉 is a Hermitian space, the equality holds iff u and v are lin-

early dependent, where in addition, if u 6= 0 and v 6= 0, then u = λ v for some real λ
such that λ > 0.

Proof. For all u,v ∈ E and all µ ∈ C, we have observed that

ϕ(u+ µv,u+ µv)= ϕ(u,u)+ 2ℜ(µϕ(u,v))+ |µ |2ϕ(v,v).

Let ϕ(u,v) = ρeiθ , where |ϕ(u,v)| = ρ (ρ ≥ 0). Let F : R→ R be the function

defined such that

F(t) = Φ(u+ teiθ v),

for all t ∈ R. The above shows that

F(t) = ϕ(u,u)+ 2t|ϕ(u,v)|+ t2ϕ(v,v) = Φ(u)+ 2t|ϕ(u,v)|+ t2Φ(v).

Since ϕ is assumed to be positive, we have F(t) ≥ 0 for all t ∈ R. If Φ(v) = 0, we

must have ϕ(u,v) = 0, since otherwise, F(t) could be made negative by choosing
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t negative and small enough. If Φ(v) > 0, in order for F(t) to be nonnegative, the

equation

Φ(u)+ 2t|ϕ(u,v)|+ t2Φ(v) = 0

must not have distinct real roots, which is equivalent to

|ϕ(u,v)|2 ≤Φ(u)Φ(v).

Taking the square root on both sides yields the Cauchy–Schwarz inequality.

For the second part of the claim, if ϕ is positive definite, we argue as follows.

If u and v are linearly dependent, it is immediately verified that we get an equality.

Conversely, if

|ϕ(u,v)|2 = Φ(u)Φ(v),

then the equation

Φ(u)+ 2t|ϕ(u,v)|+ t2Φ(v) = 0

has a double root t0, and thus

Φ(u+ t0eiθ v) = 0.

Since ϕ is positive definite, we must have

u+ t0eiθ v = 0,

which shows that u and v are linearly dependent.

If we square the Minkowski inequality, we get

Φ(u+ v)≤Φ(u)+Φ(v)+ 2
√

Φ(u)
√

Φ(v).

However, we observed earlier that

Φ(u+ v) = Φ(u)+Φ(v)+ 2ℜ(ϕ(u,v)).

Thus, it is enough to prove that

ℜ(ϕ(u,v))≤
√

Φ(u)
√

Φ(v),

but this follows from the Cauchy–Schwarz inequality

|ϕ(u,v)| ≤
√

Φ(u)
√

Φ(v)

and the fact that ℜz≤ |z|.
If ϕ is positive definite and u and v are linearly dependent, it is immediately

verified that we get an equality. Conversely, if equality holds in the Minkowski

inequality, we must have

ℜ(ϕ(u,v)) =
√

Φ(u)
√

Φ(v),
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which implies that

|ϕ(u,v)|=
√

Φ(u)
√

Φ(v),

since otherwise, by the Cauchy–Schwarz inequality, we would have

ℜ(ϕ(u,v))≤ |ϕ(u,v)|<
√

Φ(u)
√

Φ(v).

Thus, equality holds in the Cauchy–Schwarz inequality, and

ℜ(ϕ(u,v)) = |ϕ(u,v)|.

But then, we proved in the Cauchy–Schwarz case that u and v are linearly dependent.

Since we also just proved that ϕ(u,v) is real and nonnegative, the coefficient of

proportionality between u and v is indeed nonnegative. ⊓⊔

As in the Euclidean case, if 〈E,ϕ〉 is a Hermitian space, the Minkowski inequality

√
Φ(u+ v)≤

√
Φ(u)+

√
Φ(v)

shows that the map u 7→
√

Φ(u) is a norm on E . The norm induced by ϕ is called the

Hermitian norm induced by ϕ . We usually denote
√

Φ(u) by ‖u‖, and the Cauchy–

Schwarz inequality is written as

|u · v| ≤ ‖u‖‖v‖.

Since a Hermitian space is a normed vector space, it is a topological space under

the topology induced by the norm (a basis for this topology is given by the open

balls B0(u,ρ) of center u and radius ρ > 0, where

B0(u,ρ) = {v ∈ E | ‖v− u‖< ρ}.

If E has finite dimension, every linear map is continuous; see Lang [3, 4], Dixmier

[2], or Schwartz [5, 6]. The Cauchy–Schwarz inequality

|u · v| ≤ ‖u‖‖v‖

shows that ϕ : E×E→ C is continuous, and thus, that ‖ ‖ is continuous.

If 〈E,ϕ〉 is only pre-Hilbertian, ‖u‖ is called a seminorm. In this case, the condi-

tion

‖u‖= 0 implies u = 0

is not necessarily true. However, the Cauchy–Schwarz inequality shows that if

‖u‖= 0, then u · v = 0 for all v ∈ E .

We will now basically mirror the presentation of Euclidean geometry given in

Chapter 6 rather quickly, leaving out most proofs, except when they need to be

seriously amended. This will be the case for the Cartan–Dieudonné theorem.
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11.2 Orthogonality, Duality, Adjoint of a Linear Map

In this section we assume that we are dealing with Hermitian spaces. We denote the

Hermitian inner product by u ·v or 〈u,v〉. The concepts of orthogonality, orthogonal

family of vectors, orthonormal family of vectors, and orthogonal complement of a

set of vectors are unchanged from the Euclidean case (Definition 6.2).

For example, the set C [−π ,π ] of continuous functions f : [−π ,π ]→C is a Her-

mitian space under the product

〈 f ,g〉=
∫ π

−π
f (x)g(x)dx,

and the family (eikx)k∈Z is orthogonal.

Lemma 6.2 and 6.3 hold without any changes. It is easy to show that

∥∥∥∥∥
n

∑
i=1

ui

∥∥∥∥∥

2

=
n

∑
i=1

‖ui‖2 + ∑
1≤i< j≤n

2ℜ(ui ·u j).

Analogously to the case of Euclidean spaces of finite dimension, the Hermitian

product induces a canonical bijection (i.e., independent of the choice of bases) be-

tween the vector space E and the space E∗. This is one of the places where conju-

gation shows up, but in this case, troubles are minor.

Given a Hermitian space E , for any vector u ∈ E , let ϕ l
u : E → C be the map

defined such that

ϕ l
u(v) = u · v,

for all v∈ E . Similarly, for any vector v∈ E , let ϕr
v : E→C be the map defined such

that

ϕr
v (u) = u · v,

for all u ∈ E .

Since the Hermitian product is linear in its first argument u, the map ϕr
v is a

linear form in E∗, and since it is semilinear in its second argument v, the map ϕ l
u

is a semilinear form in E
∗
. Thus, we have two maps ♭l : E → E

∗
and ♭r : E → E∗,

defined such that

♭l(u) = ϕ l
u, and ♭r(v) = ϕr

v .

Lemma 11.3. let E be a Hermitian space E.

(1) The map ♭l : E → E
∗

defined such that

♭l(u) = ϕ l
u

is linear and injective.

(2) The map ♭r : E → E∗ defined such that

♭r(v) = ϕr
v
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is semilinear and injective.

When E is also of finite dimension, the maps ♭l : E→ E
∗

and ♭r : E→ E∗ are canon-

ical isomorphisms.

Proof. (1) That ♭l : E → E
∗

is a linear map follows immediately from the fact that

the Hermitian product is linear in its first argument. If ϕ l
u = ϕ l

v, then ϕ l
u(w) = ϕ l

v(w)
for all w ∈ E , which by definition of ϕ l

u means that

u ·w = v ·w

for all w ∈ E , which by linearity on the left is equivalent to

(v− u) ·w = 0

for all w ∈ E , which implies that u = v, since the Hermitian product is positive

definite. Thus, ♭l : E→ E
∗

is injective. Finally, when E is of finite dimension n, E
∗

is also of dimension n, and then ♭l : E→ E
∗

is bijective.

The proof of (2) is essentially the same as the proof of (1), except that the Her-

mitian product is semilinear in its second argument. ⊓⊔

The inverse of the isomorphism ♭l : E → E
∗

is denoted by ♯l : E
∗→ E , and the

inverse of the isomorphism ♭r : E→ E∗ is denoted by ♯r : E∗→ E .

As a corollary of the isomorphism ♭r : E→ E∗, if E is a Hermitian space of finite

dimension, then every linear form f ∈ E∗ corresponds to a unique v ∈ E , such that

f (u) = u · v,

for every u ∈ E . In particular, if f is not the null form, the kernel of f , which is a

hyperplane H, is precisely the set of vectors that are orthogonal to v.

Remark: The “musical map” ♭r : E → E∗ is not surjective when E has infinite

dimension. This result can be salvaged by restricting our attention to continuous

linear maps, and by assuming that the vector space E is a Hilbert space.

The existence of the isomorphism ♭l : E→E
∗

is crucial to the existence of adjoint

maps. Indeed, Lemma 11.3 allows us to define the adjoint of a linear map on a

Hermitian space. Let E be a Hermitian space of finite dimension n, and let f : E→E

be a linear map. For every u ∈ E , the map

v 7→ u · f (v)

is clearly a semilinear form in E
∗
, and by Lemma 11.3, there is a unique vector in

E denoted by f ∗(u) such that

f ∗(u) · v = u · f (v),

for every v ∈ E . The following lemma shows that the map f ∗ is linear.
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Lemma 11.4. Given a Hermitian space E of finite dimension, for every linear map

f : E→ E there is a unique linear map f ∗ : E→ E such that

f ∗(u) · v = u · f (v),

for all u,v∈E. The map f ∗ is called the adjoint of f (w.r.t. to the Hermitian product).

Proof. Careful inspection of the proof of lemma 6.5 reveals that it applies un-

changed. The only potential problem is in proving that f ∗(λ u) = λ f ∗(u), but every-

thing takes place in the first argument of the Hermitian product, and there, we have

linearity. ⊓⊔

The fact that

v ·u = u · v
implies that the adjoint f ∗ of f is also characterized by

f (u) · v = u · f ∗(v),

for all u,v ∈ E . It is also obvious that f ∗∗ = f .

Given two Hermitian spaces E and F , where the Hermitian product on E is de-

noted by 〈−,−〉1 and the Hermitian product on F is denoted by 〈−,−〉2, given any

linear map f : E → F , it is immediately verified that the proof of Lemma 11.4 can

be adapted to show that there is a unique linear map f ∗ : F → E such that

〈 f (u),v〉2 = 〈u, f ∗(v)〉1

for all u ∈ E and all v ∈ F . The linear map f ∗ is also called the adjoint of f .

As in the Euclidean case, Lemma 11.3 can be used to show that any Hermitian

space of finite dimension has an orthonormal basis. The proof is unchanged.

Lemma 11.5. Given any nontrivial Hermitian space E of finite dimension n ≥ 1,

there is an orthonormal basis (u1, . . . ,un) for E.

The Gram–Schmidt orthonormalization procedure also applies to Hermitian

spaces of finite dimension, without any changes from the Euclidean case!

Lemma 11.6. Given a nontrivial Hermitian space E of finite dimension n≥ 1, from

any basis (e1, . . . ,en) for E we can construct an orthonormal basis (u1, . . . ,un) for E

with the property that for every k, 1≤ k≤ n, the families (e1, . . . ,ek) and (u1, . . . ,uk)
generate the same subspace.

Remark: The remarks made after Lemma 6.7 also apply here, except that in the

QR-decomposition, Q is a unitary matrix.

As a consequence of Lemma 6.6 (or Lemma 11.6), given any Hermitian space

of finite dimension n, if (e1, . . . ,en) is an orthonormal basis for E , then for any two
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vectors u = u1e1 + · · ·+ unen and v = v1e1 + · · ·+ vnen, the Hermitian product u · v
is expressed as

u · v = (u1e1 + · · ·+ unen) · (v1e1 + · · ·+ vnen) =
n

∑
i=1

uivi,

and the norm ‖u‖ as

‖u‖= ‖u1e1 + · · ·+ unen‖=
√

n

∑
i=1

|ui|2.

Lemma 6.8 also holds unchanged.

Lemma 11.7. Given any nontrivial Hermitian space E of finite dimension n≥ 1, for

any subspace F of dimension k, the orthogonal complement F⊥ of F has dimension

n− k, and E = F⊕F⊥. Furthermore, we have F⊥⊥ = F.

Affine Hermitian spaces are defined just as affine Euclidean spaces, except that

we modify Definition 6.3 to require that the complex vector space
−→
E be a Hermitian

space. We denote by Em
C the Hermitian affine space obtained from the affine space

Am
C by defining on the vector space Cm the standard Hermitian product

(x1, . . . ,xm) · (y1, . . . ,ym) = x1y1 + · · ·+ xmym.

The corresponding Hermitian norm is

‖(x1, . . . ,xm)‖=
√
|x1|2 + · · ·+ |xm|2.

Lemma 8.2 also holds for Hermitian spaces, and the proof is the same.

Lemma 11.8. Let E be a Hermitian space of finite dimension n, and let f : E → E

be an isometry. For any subspace F of E, if f (F) = F, then f (F⊥) ⊆ F⊥ and E =
F⊕F⊥.

11.3 Linear Isometries (Also Called Unitary Transformations)

In this section we consider linear maps between Hermitian spaces that preserve the

Hermitian norm. All definitions given for Euclidean spaces in Section 6.3 extend to

Hermitian spaces, except that orthogonal transformations are called unitary trans-

formation, but Lemma 6.9 extends only with a modified condition (2). Indeed, the

old proof that (2) implies (3) does not work, and the implication is in fact false! It

can be repaired by strengthening condition (2). For the sake of completeness, we

state the Hermitian version of Definition 6.4.
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Definition 11.4. Given any two nontrivial Hermitian spaces E and F of the same

finite dimension n, a function f : E → F is a unitary transformation, or a linear

isometry, if it is linear and

‖ f (u)‖= ‖u‖,
for all u ∈ E .

Lemma 6.9 can be salvaged by strengthening condition (2).

Lemma 11.9. Given any two nontrivial Hermitian spaces E and F of the same finite

dimension n, for every function f : E→ F, the following properties are equivalent:

(1) f is a linear map and ‖ f (u)‖= ‖u‖, for all u ∈ E;

(2) ‖ f (v)− f (u)‖= ‖v− u‖ and f (iu) = i f (u), for all u,v ∈ E.

(3) f (u) · f (v) = u · v, for all u,v ∈ E.

Furthermore, such a map is bijective.

Proof. The proof that (2) implies (3) given in Lemma 6.9 needs to be revised as

follows. We use the polarization identity

2ϕ(u,v) = (1+ i)(‖u‖2+ ‖v‖2)−‖u− v‖2− i‖u− iv‖2.

Since f (iv) = i f (v), we get f (0) = 0 by setting v = 0, so the function f preserves

distance and norm, and we get

2ϕ( f (u), f (v)) = (1+ i)(‖ f (u)‖2 + ‖ f (v)‖2)−‖ f (u)− f (v)‖2

− i‖ f (u)− i f (v)‖2

= (1+ i)(‖ f (u)‖2 + ‖ f (v)‖2)−‖ f (u)− f (v)‖2

− i‖ f (u)− f (iv)‖2

= (1+ i)(‖u‖2+ ‖v‖2)−‖u− v‖2− i‖u− iv‖2

= 2ϕ(u,v),

which shows that f preserves the Hermitian inner product, as desired. The rest of

the proof is unchanged. ⊓⊔

Remarks:

(i) In the Euclidean case, we proved that the assumption

‖ f (v)− f (u)‖= ‖v− u‖ for all u,v ∈ E and f (0) = 0 (2′)

implies (3). For this we used the polarization identity

2u · v = ‖u‖2 + ‖v‖2−‖u− v‖2.
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In the Hermitian case the polarization identity involves the complex number i. In

fact, the implication (2′) implies (3) is false in the Hermitian case! Conjugation

z 7→ z satisfies (2′) since

|z2− z1|= |z2− z1|= |z2− z1|,

and yet, it is not linear!

(ii) If we modify (2) by changing the second condition by now requiring that there

be some τ ∈ E such that

f (τ + iu) = f (τ)+ i( f (τ + u)− f (τ))

for all u ∈ E , then the function g : E→ E defined such that

g(u) = f (τ + u)− f (τ)

satisfies the old conditions of (2), and the implications (2)→ (3) and (3)→ (1)
prove that g is linear, and thus that f is affine. In view of the first remark, some

condition involving i is needed on f , in addition to the fact that f is distance-

preserving.

11.4 The Unitary Group, Unitary Matrices

In this section, as a mirror image of our treatment of the isometries of a Euclidean

space, we explore some of the fundamental properties of the unitary group and of

unitary matrices. As an immediate corollary of the Gram–Schmidt orthonormal-

ization procedure, we obtain the QR-decomposition for invertible matrices. In the

Hermitian framework, the matrix of the adjoint of a linear map is not given by the

transpose of the original matrix, but by its conjugate.

Definition 11.5. Given a complex m×n matrix A, the transpose A⊤ of A is the n×m

matrix A⊤ =
(

a⊤i, j

)
defined such that

a⊤i, j = a j, i,

and the conjugate A of A is the m× n matrix A = (bi, j) defined such that

bi, j = ai, j

for all i, j, 1≤ i≤m, 1≤ j ≤ n. The adjoint A∗ of A is the matrix defined such that

A∗ = (A⊤) =
(
A
)⊤

.
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Lemma 11.10. Let E be any Hermitian space of finite dimension n, and let f : E→
E be any linear map. The following properties hold:

(1) The linear map f : E → E is an isometry iff

f ◦ f ∗ = f ∗ ◦ f = id.

(2) For every orthonormal basis (e1, . . . ,en) of E, if the matrix of f is A, then the

matrix of f ∗ is the adjoint A∗ of A, and f is an isometry iff A satisfies the identi-

ties

AA∗ = A∗A = In,

where In denotes the identity matrix of order n, iff the columns of A form an

orthonormal basis of E, iff the rows of A form an orthonormal basis of E.

Proof. (1) The proof is identical to that of Lemma 6.10 (1).

(2) If (e1, . . . ,en) is an orthonormal basis for E , let A = (ai, j) be the matrix of f ,

and let B = (bi, j) be the matrix of f ∗. Since f ∗ is characterized by

f ∗(u) · v = u · f (v)

for all u,v ∈ E , using the fact that if w = w1e1 + · · ·+wnen, we have wk = w ·ek, for

all k, 1≤ k≤ n; letting u = ei and v = e j, we get

b j,i = f ∗(ei) · e j = ei · f (e j) = f (e j) · ei = ai, j,

for all i, j, 1 ≤ i, j ≤ n. Thus, B = A∗. Now, if X and Y are arbitrary matrices over

the basis (e1, . . . ,en), denoting as usual the jth column of X by X j, and similarly for

Y , a simple calculation shows that

Y ∗X = (X j ·Yi)1≤i, j≤n.

Then it is immediately verified that if X = Y = A, then A∗A = AA∗ = In iff the

column vectors (A1, . . . ,An) form an orthonormal basis. Thus, from (1), we see that

(2) is clear. ⊓⊔

Lemma 6.10 shows that the inverse of an isometry f is its adjoint f ∗. Lemma

6.10 also motivates the following definition.

Definition 11.6. A complex n× n matrix is a unitary matrix if

AA∗ = A∗A = In.

Remarks:

(1) The conditions AA∗ = In, A∗A = In, and A−1 = A∗ are equivalent. Given any

two orthonormal bases (u1, . . . ,un) and (v1, . . . ,vn), if P is the change of basis
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matrix from (u1, . . . ,un) to (v1, . . . ,vn), it is easy to show that the matrix P is

unitary. The proof of Lemma 11.9 (3) also shows that if f is an isometry, then

the image of an orthonormal basis (u1, . . . ,un) is an orthonormal basis.

(2) If f is unitary and A is its matrix with respect to any orthonormal basis, the char-

acteristic polynomial D(A−λ I) of A is a polynomial with complex coefficients,

and thus it has n (complex) roots (counting multiplicities). If u is an eigenvector

of f for λ , then from f (u) = λ u and the fact that f is an isometry we get

‖u‖= ‖ f (u)‖= ‖λ u‖= |λ |‖u‖,

which shows that |λ |= 1. Since the determinant D(A) of f is the product of the

eigenvalues of f , we have |D(A)|= 1. It is clear that the isometries of a Hermi-

tian space of dimension n form a group, and that the isometries of determinant

+1 form a subgroup.

This leads to the following definition.

Definition 11.7. Given a Hermitian space E of dimension n, the set of isometries

f : E→ E forms a subgroup of GL(E,C) denoted by U(E), or U(n) when E =Cn,

called the unitary group (of E). For every isometry f we have |D( f )| = 1, where

D( f ) denotes the determinant of f . The isometries such that D( f ) = 1 are called

rotations, or proper isometries, or proper unitary transformations, and they form a

subgroup of the special linear group SL(E,C) (and of U(E)), denoted by SU(E), or

SU(n) when E = Cn, called the special unitary group (of E). The isometries such

that D( f ) 6= 1 are called improper isometries, or improper unitary transformations,

or flip transformations.

A very important example of unitary matrices is provided by Fourier matrices (up

to a factor of
√

n), matrices that arise in the various versions of the discrete Fourier

transform. For more on this topic, see the problems, and Strang [7, 8].

Now that we have the definition of a unitary matrix, we can explain how the

Gram–Schmidt orthonormalization procedure immediately yields the QR-decompo-

sition for matrices.

Lemma 11.11. Given any n× n complex matrix A, if A is invertible, then there is a

unitary matrix Q and an upper triangular matrix R with positive diagonal entries

such that A = QR.

The proof is absolutely the same as in the real case!

Due to space limitations, we will not study the isometries of a Hermitian space

in this chapter. However, the reader will find such a study in the supplements on the

web site (Chapter 25, see http://www.cis.upenn.edu/˜jean/gbooks/

geom2.html).
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11.5 Problems

11.1. Given a complex vector space E of finite dimension n, prove that E
∗

also has

dimension n.

Hint. If (e1, . . . ,en) is a basis for E , check that the semilinear maps ei defined such

that

ei

(
n

∑
j=1

λ je j

)
= λi

form a basis of E
∗
.

11.2. Prove the polarization identities in Lemma 11.1 (2).

11.3. Given a Hermitian space E , for any orthonormal basis (e1, . . . ,en), if X and Y

are arbitrary matrices over the basis (e1, . . . ,en), denoting as usual the jth column

of X by X j, and similarly for Y , prove that

Y ∗X = (X j ·Yi)1≤i, j≤n.

Then prove that

A∗A = AA∗ = In

iff the column vectors (A1, . . . ,An) form an orthonormal basis.

11.4. Given a Hermitian space E , prove that if f is an isometry, then f maps any

orthonormal basis of E to an orthonormal basis.

11.5. Given p vectors (u1, . . . ,up) in a Hermitian space E of dimension n ≥ p, the

Gram determinant (or Gramian) of the vectors (u1, . . . ,up) is the determinant

Gram(u1, . . . ,up) =

∣∣∣∣∣∣∣∣∣∣

‖u1‖2 〈u1,u2〉 . . . 〈u1,up〉
〈u2,u1〉 ‖u2‖2 . . . 〈u2,up〉

...
...

. . .
...

〈up,u1〉 〈up,u2〉 . . .
∥∥up

∥∥2

∣∣∣∣∣∣∣∣∣∣

.

(1) Prove that

Gram(u1, . . . ,un) = λE(u1, . . . ,un)
2.

Hint. By Problem 11.3, if (e1, . . . ,en) is an orthonormal basis of E and A is the

matrix of the vectors (u1, . . . ,un) over this basis, then

det(A)2 = det(A∗A) = det(Ai ·A j),

where Ai denotes the ith column of the matrix A, and (Ai ·A j) denotes the n× n

matrix with entries Ai ·A j.

11.6. Let Fn be the symmetric n× n matrix (with complex coefficients)
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Fn =
(

ei2πkl/n
)

0≤k≤n−1
0≤l≤n−1

assuming that we index the entries in Fn over [0,1, . . . ,n− 1]× [0,1, . . .,n− 1], the

standard kth row now being indexed by k−1 and the standard lth column now being

indexed by l− 1. The matrix Fn is called a Fourier matrix.

(1) Letting Fn =
(
e−i2πkl/n

)
0≤k≤n−1
0≤l≤n−1

be the conjugate of Fn, prove that

FnFn = FnFn = nIn.

The above shows that Fn/
√

n is unitary.

(2) Define the discrete Fourier transform f̂ of a sequence f = ( f0, . . ., fn−1)∈Cn

as

f̂ = Fn f .

Define the inverse discrete Fourier transform (taking c back to f ) as

ĉ = Fn c,

where c = (c0, . . . ,cn−1) ∈Cn. Define the circular shift matrix Sn (of order n) as the

matrix

Sn =




0 0 0 0 · · · 0 1

1 0 0 0 · · · 0 0

0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 0




consisting of cyclic permutations of its first column. For any sequence f = ( f0, . . .,
fn−1) ∈Cn, we define the circulant matrix H( f ) as

H( f ) =
n−1

∑
j=0

f jS
j
n,

where S0
n = In, as usual.

Prove that

H( f )Fn = Fn f̂ .

The above shows that the columns of the Fourier matrix Fn are the eigenvectors of

the circulant matrix H( f ), and that the eigenvalue associated with the lth eigenvector

is ( f̂ )l , the lth component of the Fourier transform f̂ of f (counting from 0).

Hint. Prove that

SnFn = Fn diag(v1)

where diag(v1) is the diagonal matrix with the following entries on the diagonal:
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v1 =
(

1,e−i2π/n, . . . ,e−ik2π/n, . . . ,e−i(n−1)2π/n
)
.

(3) If the sequence f = ( f0, . . . , fn−1) is even, which means that f− j = f j for

all j ∈ Z (viewed as a periodic sequence), or equivalently that fn− j = f j for all j,

0≤ j ≤ n− 1, prove that the Fourier transform f̂ is expressed as

f̂ (k) =
n−1

∑
j=0

f j cos(2π jk/n) ,

and that the inverse Fourier transform (taking c back to f ) is expressed as

ĉ(k) =
n−1

∑
j=0

c j cos(2π jk/n) ,

for every k, 0≤ k ≤ n− 1.

(4) Define the convolution f ⋆ g of two sequences f = ( f0, . . . , fn−1) and g =
(g0, . . . ,gn−1) as

f ⋆ g = H( f )g,

viewing f and g as column vectors.

Prove the (circular) convolution rule

f̂ ⋆ g = f̂ ĝ,

where the multiplication on the right-hand side is just the inner product of the vec-

tors f̂ and ĝ.

11.7. Let ϕ : E × E → C be a sesquilinear form on a complex vector space E of

finite dimension n. Given any basis (e1, . . . ,en) of E , let A = (αi j) be the matrix

defined such that

αi j = ϕ(ei,e j),

1≤ i, j ≤ n. We call A the matrix of ϕ w.r.t. the basis (e1, . . . ,en).
(a) For any two vectors x and y, if X and Y denote the column vectors of coordi-

nates of x and y w.r.t. the basis (e1, . . . ,en), prove that

ϕ(x,y) = X⊤AY .

(b) Recall that A is a Hermitian matrix if A = A∗ = A⊤. Prove that ϕ is Hermitian

iff A is a Hermitian matrix. When is it true that

ϕ(x,y) = Y ∗AX?

(c) If ( f1, . . . , fn) is another basis of E and P is the change of basis matrix from

(e1, . . . ,en) to ( f1, . . . , fn), prove that the matrix of ϕ w.r.t. the basis ( f1, . . . , fn) is

P⊤AP.
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The common rank of all matrices representing ϕ is called the rank of ϕ .

11.8. Let ϕ : E×E→C be a Hermitian form on a complex vector space E of finite

dimension n. Two vectors x and y are said to be conjugate w.r.t. ϕ if ϕ(x,y) = 0.

The main purpose of this problem is to prove that there is a basis of vectors that are

pairwise conjugate w.r.t. ϕ .

(a) Prove that if ϕ(x,x) = 0 for all x ∈ E , then ϕ is identically null on E . For this,

compute ϕ(ix+ y, ix+ y) and iϕ(x+ y,x+ y), and conclude that ϕ(x,y) = 0.

Otherwise, we can assume that there is some vector x ∈ E such that ϕ(x,x) 6= 0.

Use induction to prove that there is a basis of vectors that are pairwise conjugate

w.r.t. ϕ .

For the induction step, proceed as follows. Let (e1,e2, . . . ,en) be a basis of E , with

ϕ(e1,e1) 6= 0. Prove that there are scalars λ2, . . . ,λn such that each of the vectors

vi = ei +λie1,

is conjugate to e1 w.r.t. ϕ , where 2≤ i≤ n, and that (e1,v2, . . . ,vn) is a basis.

(b) Let (e1, . . . ,en) be a basis of vectors that are pairwise conjugate w.r.t. ϕ , and

assume that they are ordered such that

ϕ(ei,ei) =

{
θi 6= 0 if 1≤ i≤ r,

0 if r+ 1≤ i≤ n,

where r is the rank of ϕ . Show that the matrix of ϕ w.r.t. (e1, . . . ,en) is a diagonal

matrix, and that

ϕ(x,y) =
r

∑
i=1

θixiyi,

where x = ∑n
i=1 xiei and y = ∑n

i=1 yiei.

Prove that for every Hermitian matrix A there is an invertible matrix P such that

P⊤AP = D,

where D is a diagonal matrix.

(c) Prove that there is an integer p, 0 ≤ p ≤ r (where r is the rank of ϕ), such

that ϕ(ui,ui)> 0 for exactly p vectors of every basis (u1, . . . ,un) of vectors that are

pairwise conjugate w.r.t. ϕ (Sylvester’s inertia theorem).

Proceed as follows. Assume that in the basis (u1, . . . ,un), for any x ∈ E , we have

ϕ(x,x) = α1|x1|2 + · · ·+αp|xp|2−αp+1|xp+1|2−·· ·−αr|xr|2,

where x = ∑n
i=1 xiui, and that in the basis (v1, . . . ,vn), for any x ∈ E , we have

ϕ(x,x) = β1|y1|2 + · · ·+βq|yq|2−βq+1|yq+1|2−·· ·−βr|yr|2,

where x = ∑n
i=1 yivi, with αi > 0, βi > 0, 1≤ i≤ r.

Assume that p > q and derive a contradiction. First, consider x in the subspace F

spanned by
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(u1, . . . ,up,ur+1, . . . ,un),

and observe that ϕ(x,x)≥ 0 if x 6= 0. Next, consider x in the subspace G spanned by

(vq+1, . . . ,vr),

and observe that ϕ(x,x) < 0 if x 6= 0. Prove that F ∩G is nontrivial (i.e., contains

some nonnull vector), and derive a contradiction. This implies that p≤ q. Finish the

proof.

The pair (p,r− p) is called the signature of ϕ .

(d) A Hermitian form ϕ is definite if for every x ∈ E , if ϕ(x,x) = 0, then x = 0.

Prove that a Hermitian form is definite iff its signature is either (n,0) or (0,n). In

other words, a Hermitian definite form has rank n and is either positive or negative.

(e) The kernel of a Hermitian form ϕ is the subspace consisting of the vectors that

are conjugate to all vectors in E . We say that a Hermitian form ϕ is nondegenerate

if its kernel is trivial (i.e., reduced to {0}).
Prove that a Hermitian form ϕ is nondegenerate iff its rank is n, the dimension

of E . Is a definite Hermitian form ϕ nondegenerate? What about the converse?

Prove that if ϕ is nondegenerate, then there is a basis of vectors that are pairwise

conjugate w.r.t. ϕ and such that ϕ is represented by the matrix

(
Ip 0

0 −Iq

)
,

where (p,q) is the signature of ϕ .

(f) Given a nondegenerate Hermitian form ϕ on E , prove that for every linear

map f : E → E , there is a unique linear map f ∗ : E→ E such that

ϕ( f (u), v) = ϕ(u, f ∗(v)),

for all u,v ∈ E . The map f ∗ is called the adjoint of f (w.r.t. to ϕ). Given any basis

(u1, . . . ,un), if Ω is the matrix representing ϕ and A is the matrix representing f ,

prove that f ∗ is represented by (Ω⊤)−1A∗Ω⊤.

Prove that Lemma 11.3 also holds, i.e., the maps ♭l : E→ E
∗

and ♭r : E→ E∗ are

canonical isomorphisms.

A linear map f : E→ E is an isometry w.r.t. ϕ if

ϕ( f (x), f (y)) = ϕ(x, y)

for all x,y ∈ E . Prove that a linear map f is an isometry w.r.t. ϕ iff

f ∗ ◦ f = f ◦ f ∗ = id.

Prove that the set of isometries w.r.t. ϕ is a group. This group is denoted by U(ϕ),
and its subgroup consisting of isometries having determinant +1 by SU(ϕ). Given

any basis of E , if Ω is the matrix representing ϕ and A is the matrix representing f ,

prove that f ∈U(ϕ) iff
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A∗Ω⊤A = Ω⊤.

Given another nondegenerate Hermitian form ψ on E , we say that ϕ and ψ are

equivalent if there is a bijective linear map h : E → E such that

ψ(x, y) = ϕ(h(x), h(y)),

for all x,y ∈ E . Prove that the groups of isometries U(ϕ) and U(ψ) are isomomor-

phic (use the map f 7→ h ◦ f ◦ h−1 from U(ψ) to U(ϕ)).
If ϕ is a nondegenerate Hermitian form of signature (p,q), prove that the group

U(ϕ) is isomorphic to the group of n× n matrices A such that

A⊤
(

Ip 0

0 −Iq

)
A =

(
Ip 0

0 −Iq

)
.

Remark: In view of question (f), the groups U(ϕ) and SU(ϕ) are also denoted by

U(p,q) and SU(p,q) when ϕ has signature (p,q). They are Lie groups.

11.9. (a) If A is a real symmetric n× n matrix and B is a real skew symmetric n× n

matrix, then A+ iB is Hermitian. Conversely, every Hermitian matrix can be written

as A+ iB, where A is real symmetric and B is real skew symmetric.

(b) Every complex n× n matrix can be written as A+ iB, for some Hermitian

matrices A,B.

11.10. (a) Given a complex n× n matrix A, prove that

n

∑
i, j=1

|ai, j|2 = tr(A∗A) = tr(AA∗).

(b) Prove that ‖A‖=
√

tr(A∗A) defines a norm on matrices. Prove that

‖AB‖ ≤ ‖A‖‖B‖.

(c) When A is Hermitian, prove that

‖A‖2 =
n

∑
i=1

λ 2
i ,

where the λi are the (real) eigenvalues of A.

11.11. Given a Hermitian matrix A, prove that In + iA and In− iA are invertible.

Prove that (In + iA)(In− iA)−1 is a unitary matrix.

11.12. Let E be a Hermitian space of dimension n. For any basis (e1, . . . ,en) of E ,

orthonormal or not, let G be the Gram matrix associated with (e1, . . . ,en), i.e., the

matrix

G = (ei · e j).
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Given any linear map f : E→ E , if A is the matrix of f w.r.t. (e1, . . . ,en), prove that

f is self-adjoint ( f ∗ = f ) iff

G⊤A = A∗G⊤.
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Chapter 12

Spectral Theorems in Euclidean and Hermitian
Spaces

12.1 Introduction: What’s with Lie Groups and Lie Algebras?

The goal of this chapter is to show that there are nice normal forms for symmetric

matrices, skew-symmetric matrices, orthogonal matrices, and normal matrices. The

spectral theorem for symmetric matrices states that symmetric matrices have real

eigenvalues and that they can be diagonalized over an orthonormal basis. The spec-

tral theorem for Hermitian matrices states that Hermitian matrices also have real

eigenvalues and that they can be diagonalized over a complex orthonormal basis.

Normal matrices can be block diagonalized over an orthonormal basis with blocks

having size at most two, and there are refinements of this normal form for skew-

symmetric and orthogonal matrices.

One of the main purposes of this book is to give a concrete introduction to Lie

groups and Lie algebras. Our ulterior motive is to present some beautiful mathemat-

ical concepts that can also be used as tools for solving practical problems arising in

computer science, more specifically in robotics, motion planning, computer vision,

and computer graphics.

Most texts on Lie groups and Lie algebras begin with prerequisites in differen-

tial geometry that are often formidable to average computer scientists (or average

scientists, whatever that means!). We also struggled for a long time, trying to figure

out what Lie groups and Lie algebras are all about, but this can be done! A good

way to sneak into the wonderful world of Lie groups and Lie algebras is to play

with explicit matrix groups such as the group of rotations in R2 (or R3) and with

the exponential map. After actually computing the exponential A = eB of a 2× 2

skew-symmetric matrix B and observing that it is a rotation matrix, and similarly

for a 3× 3 skew-symmetric matrix B, one begins to suspect that there is something

deep going on. Similarly, after the discovery that every real invertible n× n matrix

A can be written as A = RP, where R is an orthogonal matrix and P is a positive

definite symmetric matrix, and that P can be written as P = eS for some symmetric

matrix S, one begins to appreciate the exponential map.

343
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Our goal is to give an elementary and concrete introduction to Lie groups and

Lie algebras by studying a number of the so-called classical groups, such as the

general linear group GL(n,R), the special linear group SL(n,R), the orthogonal

group O(n), the special orthogonal group SO(n), and the group of affine rigid mo-

tions SE(n), and their Lie algebras gl(n,R) (all matrices), sl(n,R) (matrices with

null trace), o(n), and so(n) (skew-symmetric matrices). We also consider the cor-

responding groups of complex matrices and their Lie algebras. Whenever possible,

we show that the exponential map is surjective. For this, all we need is some results

of linear algebra about various normal forms for symmetric matrices and skew-

symmetric matrices. Thus, we begin by proving that there are nice normal forms

(block diagonal matrices whith blocks having size at most two) for normal matrices

and other special cases (symmetric matrices, skew-symmetric matrices, orthogonal

matrices). We also prove the spectral theorem for complex normal matrices.

12.2 Normal Linear Maps

We begin by studying normal maps, to understand the structure of their eigenvalues

and eigenvectors. This section and the next two were inspired by Lang [4], Artin

[1], Mac Lane and Birkhoff [5], Berger [2], and Bertin [3].

Definition 12.1. Given a Euclidean space E , a linear map f : E→ E is normal if

f ◦ f ∗ = f ∗ ◦ f .

A linear map f : E → E is self-adjoint if f = f ∗, skew-self-adjoint if f = − f ∗, and

orthogonal if f ◦ f ∗ = f ∗ ◦ f = id.

Obviously, a self-adjoint, skew-self-adjoint, or orthogonal linear map is a normal

linear map. Our first goal is to show that for every normal linear map f : E → E ,

there is an orthonormal basis (w.r.t. 〈−,−〉) such that the matrix of f over this basis

has an especially nice form: It is a block diagonal matrix in which the blocks are

either one-dimensional matrices (i.e., single entries) or two-dimensional matrices of

the form (
λ µ
−µ λ

)
.

This normal form can be further refined if f is self-adjoint, skew-self-adjoint, or

orthogonal. As a first step, we show that f and f ∗ have the same kernel when f is

normal.

Lemma 12.1. Given a Euclidean space E, if f : E→ E is a normal linear map, then

Ker f = Ker f ∗.

Proof. First, let us prove that

〈 f (u), f (v)〉 = 〈 f ∗(u), f ∗(v)〉
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for all u,v ∈ E . Since f ∗ is the adjoint of f and f ◦ f ∗ = f ∗ ◦ f , we have

〈 f (u), f (u)〉 = 〈u,( f ∗ ◦ f )(u)〉,
= 〈u,( f ◦ f ∗)(u)〉,
= 〈 f ∗(u), f ∗(u)〉.

Since 〈−,−〉 is positive definite,

〈 f (u), f (u)〉 = 0 iff f (u) = 0,

〈 f ∗(u), f ∗(u)〉= 0 iff f ∗(u) = 0,

and since

〈 f (u), f (u)〉 = 〈 f ∗(u), f ∗(u)〉,
we have

f (u) = 0 iff f ∗(u) = 0.

Consequently, Ker f = Ker f ∗. ⊓⊔

The next step is to show that for every linear map f : E → E there is some sub-

space W of dimension 1 or 2 such that f (W )⊆W . When dim(W ) = 1, the subspace

W is actually an eigenspace for some real eigenvalue of f . Furthermore, when f

is normal, there is a subspace W of dimension 1 or 2 such that f (W ) ⊆W and

f ∗(W )⊆W . The difficulty is that the eigenvalues of f are not necessarily real. One

way to get around this problem is to complexify both the vector space E and the

inner product 〈−,−〉.
In Section 5.11 it was explained how a real vector space E is embedded into a

complex vector space EC, and how a linear map f : E → E is extended to a linear

map fC : EC→ EC. For the sake of convenience, we repeat the definition of EC.

Definition 12.2. Given a real vector space E , let EC be the structure E ×E under

the addition operation

(u1, u2)+ (v1, v2) = (u1 + v1, u2 + v2),

and let multiplication by a complex scalar z = x+ iy be defined such that

(x+ iy) · (u, v) = (xu− yv, yu+ xv).

It is convenient to write u+ iv for (u,v).

A linear map f : E→ E is extended to the linear map fC : EC→ EC defined such

that

fC(u+ iv) = f (u)+ i f (v).

Next, we need to extend the inner product on E to an inner product on EC.

The inner product 〈−,−〉 on a Euclidean space E is extended to the Hermitian

positive definite form 〈−,−〉C on EC as follows:
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〈u1 + iv1,u2 + iv2〉C = 〈u1,u2〉+ 〈v1,v2〉+ i(〈u2,v1〉− 〈u1,v2〉).

It is easily verified that 〈−,−〉C is indeed a Hermitian form that is positive defi-

nite, and it is clear that 〈−,−〉C agrees with 〈−,−〉 on real vectors. Then, given any

linear map f : E→ E , it is easily verified that the map f ∗C defined such that

f ∗C(u+ iv) = f ∗(u)+ i f ∗(v)

for all u,v ∈ E is the adjoint of fC w.r.t. 〈−,−〉C.

Assuming again that E is a Hermitian space, observe that Lemma 12.1 also holds.

We have the following crucial lemma relating the eigenvalues of f and f ∗.

Lemma 12.2. Given a Hermitian space E, for any normal linear map f : E→ E, a

vector u is an eigenvector of f for the eigenvalue λ (in C) iff u is an eigenvector of

f ∗ for the eigenvalue λ .

Proof. First, it is immediately verified that the adjoint of f −λ id is f ∗−λ id. Fur-

thermore, f −λ id is normal. Indeed,

( f −λ id)◦ ( f −λ id)∗ = ( f −λ id)◦ ( f ∗−λ id),

= f ◦ f ∗−λ f −λ f ∗+λ λ id,

= f ∗ ◦ f −λ f ∗−λ f +λλ id,

= ( f ∗−λ id)◦ ( f −λ id),

= ( f −λ id)∗ ◦ ( f −λ id).

Applying Lemma 12.1 to f −λ id, for every nonnull vector u, we see that

( f −λ id)(u) = 0 iff ( f ∗−λ id)(u) = 0,

which is exactly the statement of the lemma. ⊓⊔

The next lemma shows a very important property of normal linear maps: Eigen-

vectors corresponding to distinct eigenvalues are orthogonal.

Lemma 12.3. Given a Hermitian space E, for any normal linear map f : E→ E, if

u and v are eigenvectors of f associated with the eigenvalues λ and µ (in C) where

λ 6= µ , then 〈u,v〉= 0.

Proof. Let us compute 〈 f (u),v〉 in two different ways. Since v is an eigenvector of

f for µ , by Lemma 12.2, v is also an eigenvector of f ∗ for µ , and we have

〈 f (u),v〉 = 〈λ u,v〉= λ 〈u,v〉

and

〈 f (u),v〉 = 〈u, f ∗(v)〉= 〈u,µv〉= µ〈u,v〉,
where the last identity holds because of the semilinearity in the second argument,

and thus
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λ 〈u,v〉= µ〈u,v〉,
that is,

(λ − µ)〈u,v〉= 0,

which implies that 〈u,v〉= 0, since λ 6= µ . ⊓⊔

We can also show easily that the eigenvalues of a self-adjoint linear map are real.

Lemma 12.4. Given a Hermitian space E, the eigenvalues of any self-adjoint linear

map f : E → E are real.

Proof. Let z (in C) be an eigenvalue of f and let u be an eigenvector for z. We

compute 〈 f (u),u〉 in two different ways. We have

〈 f (u),u〉= 〈zu,u〉= z〈u,u〉,

and since f = f ∗, we also have

〈 f (u),u〉= 〈u, f ∗(u)〉= 〈u, f (u)〉= 〈u,zu〉= z〈u,u〉.

Thus,

z〈u,u〉= z〈u,u〉,
which implies that z = z, since u 6= 0, and z is indeed real. ⊓⊔

Given any subspace W of a Hermitian space E , recall that the orthogonal com-

plement W⊥ of W is the subspace defined such that

W⊥ = {u ∈ E | 〈u,w〉= 0, for all w ∈W}.

Recall from Lemma 11.7 that that E =W⊕W⊥ (this can be easily shown, for exam-

ple, by constructing an orthonormal basis of E using the Gram–Schmidt orthonor-

malization procedure). The same result also holds for Euclidean spaces (see Lemma

6.8). The following lemma provides the key to the induction that will allow us to

show that a normal linear map can be diagonalized. It actually holds for any linear

map. We found the inspiration for this lemma in Berger [2].

Lemma 12.5. Given a Hermitian space E, for any linear map f : E → E, if W is

any subspace of E such that f (W ) ⊆W and f ∗(W ) ⊆W, then f
(
W⊥
)
⊆W⊥ and

f ∗
(
W⊥
)
⊆W⊥.

Proof. If u ∈W⊥, then

〈u,w〉= 0

for all w ∈W . However,

〈 f (u),w〉 = 〈u, f ∗(w)〉,
and since f ∗(W )⊆W , we have f ∗(w) ∈W , and since u ∈W⊥, we get

〈u, f ∗(w)〉 = 0,
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which shows that

〈 f (u),w〉 = 0

for all w ∈W , that is, f (u) ∈W⊥. Thus, f (W⊥) ⊆W⊥. The proof that f ∗(W⊥) ⊆
W⊥ is analogous. ⊓⊔

The above lemma also holds for Euclidean spaces. Although we are ready to

prove that for every normal linear map f (over a Hermitian space) there is an or-

thonormal basis of eigenvectors, we now return to real Euclidean spaces.

If f : E → E is a linear map and w = u+ iv is an eigenvector of fC : EC → EC

for the eigenvalue z = λ + iµ , where u,v ∈ E and λ ,µ ∈ R, since

fC(u+ iv) = f (u)+ i f (v)

and

fC(u+ iv) = (λ + iµ)(u+ iv) = λ u− µv+ i(µu+λ v),

we have

f (u) = λ u− µv and f (v) = µu+λ v,

from which we immediately obtain

fC(u− iv) = (λ − iµ)(u− iv),

which shows that w = u− iv is an eigenvector of fC for z = λ − iµ . Using this fact,

we can prove the following lemma.

Lemma 12.6. Given a Euclidean space E, for any normal linear map f : E → E,

if w = u+ iv is an eigenvector of fC associated with the eigenvalue z = λ + iµ
(where u,v ∈ E and λ ,µ ∈ R), if µ 6= 0 (i.e., z is not real) then 〈u,v〉 = 0 and

〈u,u〉 = 〈v,v〉, which implies that u and v are linearly independent, and if W is the

subspace spanned by u and v, then f (W ) =W and f ∗(W ) =W. Furthermore, with

respect to the (orthogonal) basis (u,v), the restriction of f to W has the matrix

(
λ µ
−µ λ

)
.

If µ = 0, then λ is a real eigenvalue of f , and either u or v is an eigenvector of f

for λ . If W is the subspace spanned by u if u 6= 0, or spanned by v 6= 0 if u = 0, then

f (W )⊆W and f ∗(W )⊆W.

Proof. Since w= u+ iv is an eigenvector of fC, by definition it is nonnull, and either

u 6= 0 or v 6= 0. From the fact stated just before Lemma 12.6, u− iv is an eigenvector

of fC for λ − iµ . It is easy to check that fC is normal. However, if µ 6= 0, then

λ + iµ 6= λ − iµ , and from Lemma 12.3, the vectors u+ iv and u− iv are orthogonal

w.r.t. 〈−,−〉C, that is,

〈u+ iv,u− iv〉C = 〈u,u〉− 〈v,v〉+ 2i〈u,v〉= 0.
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Thus, we get 〈u,v〉 = 0 and 〈u,u〉 = 〈v,v〉, and since u 6= 0 or v 6= 0, u and v are

linearly independent. Since

f (u) = λ u− µv and f (v) = µu+λ v

and since by Lemma 12.2 u+ iv is an eigenvector of f ∗C for λ − iµ , we have

f ∗(u) = λ u+ µv and f ∗(v) =−µu+λ v,

and thus f (W ) =W and f ∗(W ) =W , where W is the subspace spanned by u and v.

When µ = 0, we have

f (u) = λ u and f (v) = λ v,

and since u 6= 0 or v 6= 0, either u or v is an eigenvector of f for λ . If W is the

subspace spanned by u if u 6= 0, or spanned by v if u= 0, it is obvious that f (W )⊆W

and f ∗(W )⊆W . Note that λ = 0 is possible, and this is why ⊆ cannot be replaced

by =. ⊓⊔

The beginning of the proof of Lemma 12.6 actually shows that for every linear

map f : E → E there is some subspace W such that f (W ) ⊆W , where W has di-

mension 1 or 2. In general, it doesn’t seem possible to prove that W⊥ is invariant

under f . However, this happens when f is normal.

We can finally prove our first main theorem.

Theorem 12.1. Given a Euclidean space E of dimension n, for every normal linear

map f : E → E there is an orthonormal basis (e1, . . . ,en) such that the matrix of f

w.r.t. this basis is a block diagonal matrix of the form




A1 . . .
A2 . . .

...
...

. . .
...

. . . Ap




such that each block Ai is either a one-dimensional matrix (i.e., a real scalar) or a

two-dimensional matrix of the form

Ai =

(
λi −µi

µi λi

)
,

where λi,µi ∈ R, with µi > 0.

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the

result is trivial. Assume now that n ≥ 2. First, since C is algebraically closed (i.e.,

every polynomial has a root in C), the linear map fC : EC→EC has some eigenvalue

z = λ + iµ (where λ ,µ ∈ R). Let w = u+ iv be some eigenvector of fC for λ + iµ
(where u,v ∈ E). We can now apply Lemma 12.6.
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If µ = 0, then either u or v is an eigenvector of f for λ ∈R. Let W be the subspace

of dimension 1 spanned by e1 = u/‖u‖ if u 6= 0, or by e1 = v/‖v‖ otherwise. It is

obvious that f (W ) ⊆W and f ∗(W ) ⊆W . The orthogonal W⊥ of W has dimension

n− 1, and by Lemma 12.5, we have f
(
W⊥
)
⊆W⊥. But the restriction of f to W⊥

is also normal, and we conclude by applying the induction hypothesis to W⊥.

If µ 6= 0, then 〈u,v〉= 0 and 〈u,u〉= 〈v,v〉, and if W is the subspace spanned by

u/‖u‖ and v/‖v‖, then f (W ) =W and f ∗(W ) =W . We also know that the restriction

of f to W has the matrix (
λ µ
−µ λ

)

with respect to the basis (u/‖u‖,v/‖v‖). If µ < 0, we let λ1 = λ , µ1 = −µ , e1 =
u/‖u‖, and e2 = v/‖v‖. If µ > 0, we let λ1 = λ , µ1 = µ , e1 = v/‖v‖, and e2 = u/‖u‖.
In all cases, it is easily verified that the matrix of the restriction of f to W w.r.t. the

orthonormal basis (e1,e2) is

A1 =

(
λ1 −µ1

µ1 λ1

)
,

where λ1,µ1 ∈ R, with µ1 > 0. However, W⊥ has dimension n− 2, and by Lemma

12.5, f
(
W⊥

)
⊆W⊥. Since the restriction of f to W⊥ is also normal, we conclude

by applying the induction hypothesis to W⊥. ⊓⊔

After this relatively hard work, we can easily obtain some nice normal forms for

the matrices of self-adjoint, skew-self-adjoint, and orthogonal linear maps. How-

ever, for the sake of completeness (and since we have all the tools to so do), we

go back to the case of a Hermitian space and show that normal linear maps can be

diagonalized with respect to an orthonormal basis.

Theorem 12.2. Given a Hermitian space E of dimension n, for every normal linear

map f : E → E there is an orthonormal basis (e1, . . . ,en) of eigenvectors of f such

that the matrix of f w.r.t. this basis is a diagonal matrix




λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn


 ,

where λi ∈ C.

Proof. We proceed by induction on the dimension n of E as follows. If n = 1, the

result is trivial. Assume now that n ≥ 2. Since C is algebraically closed (i.e., every

polynomial has a root in C), the linear map f : E → E has some eigenvalue λ ∈ C,

and let w be some eigenvector for λ . Let W be the subspace of dimension 1 spanned

by w. Clearly, f (W ) ⊆W . By Lemma 12.2, w is an eigenvector of f ∗ for λ , and

thus f ∗(W )⊆W . By Lemma 12.5, we also have f (W⊥)⊆W⊥. The restriction of f
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to W⊥ is still normal, and we conclude by applying the induction hypothesis to W⊥

(whose dimension is n− 1). ⊓⊔

Thus, in particular, self-adjoint, skew-self-adjoint, and orthogonal linear maps

can be diagonalized with respect to an orthonormal basis of eigenvectors. In this

latter case, though, an orthogonal map is called a unitary map. Also, Lemma 12.4

shows that the eigenvalues of a self-adjoint linear map are real. It is easily shown

that skew-self-adjoint maps have eigenvalues that are pure imaginary or null, and

that unitary maps have eigenvalues of absolute value 1.

Remark: There is a converse to Theorem 12.2, namely, if there is an orthonormal

basis (e1, . . . ,en) of eigenvectors of f , then f is normal. We leave the easy proof as

an exercise.

12.3 Self-Adjoint, Skew-Self-Adjoint, and Orthogonal Linear

Maps

We begin with self-adjoint maps.

Theorem 12.3. Given a Euclidean space E of dimension n, for every self-adjoint

linear map f : E → E, there is an orthonormal basis (e1, . . . ,en) of eigenvectors of

f such that the matrix of f w.r.t. this basis is a diagonal matrix




λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn


 ,

where λi ∈ R.

Proof. The case n = 1 is trivial. If n≥ 2, we need to show that f : E→ E has some

real eigenvalue. There are several ways to do so. One method is to observe that the

linear map fC : EC → EC is also self-adjoint, and by Lemma 12.4 the eigenvalues

of fC are all real. This implies that f itself has some real eigenvalue, and in fact,

all eigenvalues of f are real. We now give a more direct method not involving the

complexification of 〈−,−〉 and Lemma 12.4.

Since C is algebraically closed, fC has some eigenvalue λ + iµ , and let u+ iv

be some eigenvector of fC for λ + iµ , where λ ,µ ∈ R and u,v ∈ E . We saw in the

proof of Lemma 12.6 that

f (u) = λ u− µv and f (v) = µu+λ v.

Since f = f ∗,
〈 f (u),v〉 = 〈u, f (v)〉
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for all u,v ∈ E . Applying this to

f (u) = λ u− µv and f (v) = µu+λ v,

we get

〈 f (u),v〉 = 〈λ u− µv,v〉= λ 〈u,v〉− µ〈v,v〉
and

〈u, f (v)〉= 〈u,µu+λ v〉= µ〈u,u〉+λ 〈u,v〉,
and thus we get

λ 〈u,v〉− µ〈v,v〉= µ〈u,u〉+λ 〈u,v〉,
that is,

µ(〈u,u〉+ 〈v,v〉) = 0,

which implies µ = 0, since either u 6= 0 or v 6= 0. Therefore, λ is a real eigenvalue

of f .

Now, going back to the proof of Theorem 12.1, only the case where µ = 0 applies,

and the induction shows that all the blocks are one-dimensional. ⊓⊔

Theorem 12.3 implies that if λ1, . . . ,λp are the distinct real eigenvalues of f , and

Ei is the eigenspace associated with λi, then

E = E1⊕·· ·⊕Ep,

where Ei and E j are orthogonal for all i 6= j.

Remark: Another way to prove that a self-adjoint map has a real eigenvalue is to

use a little bit of calculus. We learned such a proof from Herman Gluck. The idea is

to consider the real-valued function Φ : E→R defined such that

Φ(u) = 〈 f (u),u〉

for every u ∈ E . This function is C∞, and if we represent f by a matrix A over some

orthonormal basis, it is easy to compute the gradient vector

∇Φ(X) =

(
∂Φ

∂x1

(X), . . . ,
∂Φ

∂xn
(X)

)

of Φ at X . Indeed, we find that

∇Φ(X) = (A+A⊤)X ,

where X is a column vector of size n. But since f is self-adjoint, A = A⊤, and thus

∇Φ(X) = 2AX .

The next step is to find the maximum of the function Φ on the sphere
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Sn−1 = {(x1, . . . ,xn) ∈Rn | x2
1 + · · ·+ x2

n = 1}.

Since Sn−1 is compact and Φ is continuous, and in fact C∞, Φ takes a maximum at

some X on Sn−1. But then it is well known that at an extremum X of Φ we must

have

dΦX (Y ) = 〈∇Φ(X),Y 〉= 0

for all tangent vectors Y to Sn−1 at X , and so ∇Φ(X) is orthogonal to the tangent

plane at X , which means that

∇Φ(X) = λ X

for some λ ∈ R. Since ∇Φ(X) = 2AX , we get

2AX = λ X ,

and thus λ/2 is a real eigenvalue of A (i.e., of f ).

Next, we consider skew-self-adjoint maps.

Theorem 12.4. Given a Euclidean space E of dimension n, for every skew-self-

adjoint linear map f : E → E there is an orthonormal basis (e1, . . . ,en) such that

the matrix of f w.r.t. this basis is a block diagonal matrix of the form




A1 . . .
A2 . . .

...
...

. . .
...

. . . Ap




such that each block Ai is either 0 or a two-dimensional matrix of the form

Ai =

(
0 −µi

µi 0

)
,

where µi ∈ R, with µi > 0. In particular, the eigenvalues of fC are pure imaginary

of the form ±iµi or 0.

Proof. The case where n = 1 is trivial. As in the proof of Theorem 12.1, fC has

some eigenvalue z = λ + iµ , where λ ,µ ∈ R. We claim that λ = 0. First, we show

that

〈 f (w),w〉 = 0

for all w ∈ E . Indeed, since f =− f ∗, we get

〈 f (w),w〉 = 〈w, f ∗(w)〉= 〈w,− f (w)〉 =−〈w, f (w)〉 =−〈 f (w),w〉,

since 〈−,−〉 is symmetric. This implies that

〈 f (w),w〉 = 0.
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Applying this to u and v and using the fact that

f (u) = λ u− µv and f (v) = µu+λ v,

we get

0 = 〈 f (u),u〉 = 〈λ u− µv,u〉= λ 〈u,u〉− µ〈u,v〉
and

0 = 〈 f (v),v〉 = 〈µu+λ v,v〉= µ〈u,v〉+λ 〈v,v〉,
from which, by addition, we get

λ (〈v,v〉+ 〈v,v〉) = 0.

Since u 6= 0 or v 6= 0, we have λ = 0.

Then, going back to the proof of Theorem 12.1, unless µ = 0, the case where u

and v are orthogonal and span a subspace of dimension 2 applies, and the induction

shows that all the blocks are two-dimensional or reduced to 0. ⊓⊔

Remark: One will note that if f is skew-self-adjoint, then i fC is self-adjoint w.r.t.

〈−,−〉C. By Lemma 12.4, the map i fC has real eigenvalues, which implies that the

eigenvalues of fC are pure imaginary or 0.

Finally, we consider orthogonal linear maps.

Theorem 12.5. Given a Euclidean space E of dimension n, for every orthogonal

linear map f : E→ E there is an orthonormal basis (e1, . . . ,en) such that the matrix

of f w.r.t. this basis is a block diagonal matrix of the form




A1 . . .
A2 . . .

...
...

. . .
...

. . . Ap




such that each block Ai is either 1, −1, or a two-dimensional matrix of the form

Ai =

(
cosθi −sinθi

sinθi cosθi

)

where 0< θi < π . In particular, the eigenvalues of fC are of the form cosθi± i sinθi,

1, or −1.

Proof. The case where n = 1 is trivial. As in the proof of Theorem 12.1, fC has

some eigenvalue z = λ + iµ , where λ ,µ ∈R. Since fC ◦ f ∗C = f ∗C ◦ fC = id, the map

fC is invertible. In fact, the eigenvalues of fC have absolute value 1. Indeed, if z (in

C) is an eigenvalue of fC, and u is an eigenvector for z, we have

〈 fC(u), fC(u)〉= 〈zu,zu〉= zz〈u,u〉
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and

〈 fC(u), fC(u)〉= 〈u,( f ∗C ◦ fC)(u)〉= 〈u,u〉,
from which we get

zz〈u,u〉= 〈u,u〉.
Since u 6= 0, we have zz = 1, i.e., |z| = 1. As a consequence, the eigenvalues of

fC are of the form cosθ ± i sinθ , 1, or −1. The theorem then follows immediately

from Theorem 12.1, where the condition µ > 0 implies that sinθi > 0, and thus,

0 < θi < π . ⊓⊔

It is obvious that we can reorder the orthonormal basis of eigenvectors given by

Theorem 12.5, so that the matrix of f w.r.t. this basis is a block diagonal matrix of

the form 


A1 . . .
...

. . .
...

...

. . . Ar

−Iq

. . . Ip




where each block Ai is a two-dimensional rotation matrix Ai 6=±I2 of the form

Ai =

(
cosθi −sinθi

sinθi cosθi

)

with 0 < θi < π .

The linear map f has an eigenspace E(1, f ) = Ker( f − id) of dimension p for

the eigenvalue 1, and an eigenspace E(−1, f ) = Ker( f + id) of dimension q for the

eigenvalue −1. If det( f ) = +1 ( f is a rotation), the dimension q of E(−1, f ) must

be even, and the entries in −Iq can be paired to form two-dimensional blocks, if we

wish. In this case, every rotation in SO(n) has a matrix of the form




A1 . . .
...

. . .
...

. . . Am

. . . In−2m




where the first m blocks Ai are of the form

Ai =

(
cosθi −sinθi

sinθi cosθi

)

with 0 < θi ≤ π .

Theorem 12.5 can be used to prove a sharper version of the Cartan–Dieudonné

theorem, as claimed in remark (3) after Theorem 8.1.
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Theorem 12.6. Let E be a Euclidean space of dimension n≥ 2. For every isometry

f ∈ O(E), if p = dim(E(1, f )) = dim(Ker( f − id)), then f is the composition of

n− p reflections, and n− p is minimal.

Proof. From Theorem 12.5 there are r subspaces F1, . . . ,Fr, each of dimension 2,

such that

E = E(1, f )⊕E(−1, f )⊕F1⊕·· ·⊕Fr,

and all the summands are pairwise orthogonal. Furthermore, the restriction ri of f to

each Fi is a rotation ri 6=±id. Each 2D rotation ri can be written a the composition

ri = s′i ◦ si of two reflections si and s′i about lines in Fi (forming an angle θi/2). We

can extend si and s′i to hyperplane reflections in E by making them the identity on

F⊥i . Then,

s′r ◦ sr ◦ · · · ◦ s′1 ◦ s1

agrees with f on F1⊕·· ·⊕Fr and is the identity on E(1, f )⊕E(−1, f ). If E(−1, f )
has an orthonormal basis of eigenvectors (v1, . . . ,vq), letting s′′j be the reflection

about the hyperplane (v j)
⊥, it is clear that

s′′q ◦ · · · ◦ s′′1

agrees with f on E(−1, f ) and is the identity on E(1, f )⊕F1⊕·· ·⊕Fr. But then,

f = s′′q ◦ · · · ◦ s′′1 ◦ s′r ◦ sr ◦ · · · ◦ s′1 ◦ s1,

the composition of 2r+ q = n− p reflections.

If

f = st ◦ · · · ◦ s1,

for t reflections si, it is clear that

F =
t⋂

i=1

E(1,si)⊆ E(1, f ),

where E(1,si) is the hyperplane defining the reflection si. By the Grassmann re-

lation, if we intersect t ≤ n hyperplanes, the dimension of their intersection is at

least n− t. Thus, n− t ≤ p, that is, t ≥ n− p, and n− p is the smallest number of

reflections composing f . ⊓⊔

The theorems of this section and of the previous section can be immediately

applied to matrices.

12.4 Normal, Symmetric, Skew-Symmetric, Orthogonal,

Hermitian, Skew-Hermitian, and Unitary Matrices

First, we consider real matrices. Recall the following definitions.
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Definition 12.3. Given a real m× n matrix A, the transpose A⊤ of A is the n×m

matrix A⊤ = (a⊤i, j) defined such that

a⊤i, j = a j, i

for all i, j, 1≤ i≤ m, 1≤ j ≤ n. A real n× n matrix A is

• normal if

AA⊤ = A⊤A,

• symmetric if

A⊤ = A,

• skew-symmetric if

A⊤ =−A,

• orthogonal if

AA⊤ = A⊤A = In.

Recall from Lemma 6.10 that when E is a Euclidean space and (e1, . . ., en) is an

orthonormal basis for E , if A is the matrix of a linear map f : E→ E w.r.t. the basis

(e1, . . . ,en), then A⊤ is the matrix of the adjoint f ∗ of f . Consequently, a normal lin-

ear map has a normal matrix, a self-adjoint linear map has a symmetric matrix,

a skew-self-adjoint linear map has a skew-symmetric matrix, and an orthogonal

linear map has an orthogonal matrix. Similarly, if E and F are Euclidean spaces,

(u1, . . . ,un) is an orthonormal basis for E , and (v1, . . . ,vm) is an orthonormal basis

for F , if a linear map f : E → F has the matrix A w.r.t. the bases (u1, . . . ,un) and

(v1, . . . ,vm), then its adjoint f ∗ has the matrix A⊤ w.r.t. the bases (v1, . . . ,vm) and

(u1, . . . ,un).
Furthermore, if (u1, . . . ,un) is another orthonormal basis for E and P is the

change of basis matrix whose columns are the components of the ui w.r.t. the ba-

sis (e1, . . . ,en), then P is orthogonal, and for any linear map f : E → E , if A is the

matrix of f w.r.t (e1, . . . ,en) and B is the matrix of f w.r.t. (u1, . . . ,un), then

B = P⊤AP.

As a consequence, Theorems 12.1 and 12.3–12.5 can be restated as follows.

Theorem 12.7. For every normal matrix A there is an orthogonal matrix P and a

block diagonal matrix D such that A = PDP⊤, where D is of the form

D =




D1 . . .
D2 . . .

...
...

. . .
...

. . . Dp
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such that each block Di is either a one-dimensional matrix (i.e., a real scalar) or a

two-dimensional matrix of the form

Di =

(
λi −µi

µi λi

)
,

where λi,µi ∈ R, with µi > 0.

Theorem 12.8. For every symmetric matrix A there is an orthogonal matrix P and

a diagonal matrix D such that A = PDP⊤, where D is of the form

D =




λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn


 ,

where λi ∈ R.

Theorem 12.9. For every skew-symmetric matrix A there is an orthogonal matrix P

and a block diagonal matrix D such that A = PDP⊤, where D is of the form

D =




D1 . . .
D2 . . .

...
...

. . .
...

. . . Dp




such that each block Di is either 0 or a two-dimensional matrix of the form

Di =

(
0 −µi

µi 0

)
,

where µi ∈R, with µi > 0. In particular, the eigenvalues of A are pure imaginary of

the form ±iµi, or 0.

Theorem 12.10. For every orthogonal matrix A there is an orthogonal matrix P and

a block diagonal matrix D such that A = PDP⊤, where D is of the form

D =




D1 . . .
D2 . . .

...
...

. . .
...

. . . Dp




such that each block Di is either 1, −1, or a two-dimensional matrix of the form

Di =

(
cosθi −sinθi

sinθi cosθi

)
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where 0 < θi < π . In particular, the eigenvalues of A are of the form cosθi± i sinθi,

1, or −1.

We now consider complex matrices.

Definition 12.4. Given a complex m×n matrix A, the transpose A⊤ of A is the n×m

matrix A⊤ =
(

a⊤i, j

)
defined such that

a⊤i, j = a j, i

for all i, j, 1≤ i≤m, 1≤ j ≤ n. The conjugate A of A is the m×n matrix A = (bi, j)
defined such that

bi, j = ai, j

for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Given an m× n complex matrix A, the adjoint A∗

of A is the matrix defined such that

A∗ = (A⊤) = (A)⊤.

A complex n× n matrix A is

• normal if

AA∗ = A∗A,

• Hermitian if

A∗ = A,

• skew-Hermitian if

A∗ =−A,

• unitary if

AA∗ = A∗A = In.

Recall from Lemma 11.10 that when E is a Hermitian space and (e1, . . ., en) is an

orthonormal basis for E , if A is the matrix of a linear map f : E→ E w.r.t. the basis

(e1, . . . ,en), then A∗ is the matrix of the adjoint f ∗ of f . Consequently, a normal

linear map has a normal matrix, a self-adjoint linear map has a Hermitian matrix, a

skew-self-adjoint linear map has a skew-Hermitian matrix, and a unitary linear map

has a unitary matrix. Similarly, if E and F are Hermitian spaces, (u1, . . . ,un) is an

orthonormal basis for E , and (v1, . . . ,vm) is an orthonormal basis for F , if a linear

map f : E → F has the matrix A w.r.t. the bases (u1, . . . ,un) and (v1, . . . ,vm), then

its adjoint f ∗ has the matrix A∗ w.r.t. the bases (v1, . . . ,vm) and (u1, . . . ,un).
Furthermore, if (u1, . . . ,un) is another orthonormal basis for E and P is the

change of basis matrix whose columns are the components of the ui w.r.t. the basis
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(e1, . . . ,en), then P is unitary, and for any linear map f : E → E , if A is the matrix

of f w.r.t (e1, . . . ,en) and B is the matrix of f w.r.t. (u1, . . . ,un), then

B = P∗AP.

Theorem 12.2 can be restated in terms of matrices as follows. We can also say a

little more about eigenvalues (easy exercise left to the reader).

Theorem 12.11. For every complex normal matrix A there is a unitary matrix U

and a diagonal matrix D such that A =UDU∗. Furthermore, if A is Hermitian, then

D is a real matrix; if A is skew-Hermitian, then the entries in D are pure imaginary

or null; and if A is unitary, then the entries in D have absolute value 1.

We now have all the tools to present the important singular value decomposition

(SVD) and the polar form of a matrix.

12.5 Problems

12.1. Given a Hermitian space of finite dimension n, for any linear map f : E→ E ,

prove that if there is an orthonormal basis (e1, . . . ,en) of eigenvectors of f , then f is

normal.

12.2. The purpose of this problem is to prove that given any self-adjoint linear map

f : E→ E (i.e., such that f ∗ = f ), where E is a Euclidean space of dimension n≥ 3,

given an orthonormal basis (e1, . . . ,en), there are n− 2 isometries hi, hyperplane

reflections or the identity, such that the matrix of

hn−2 ◦ · · · ◦ h1 ◦ f ◦ h1 ◦ · · · ◦ hn−2

is a symmetric tridiagonal matrix.

(1) Prove that for any isometry f : E → E we have f = f ∗ = f−1 iff f ◦ f = id.

Prove that if f and h are self-adjoint linear maps ( f ∗= f and h∗= h), then h◦ f ◦h

is a self-adjoint linear map.

(2) Proceed by induction, taking inspiration from the proof of the triangular de-

composition given in Chapter 8. Let Vk be the subspace spanned by (ek+1, . . . ,en).
For the base case, proceed as follows.

Let

f (e1) = a0
1e1 + · · ·+ a0

nen,

and let

r1,2 = ‖a0
2e2 + · · ·+ a0

nen‖.
Find an isometry h1 (reflection or id) such that

h1( f (e1)− a0
1e1) = r1,2 e2.
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Observe that

w1 = r1,2 e2 + a0
1e1− f (e1) ∈V1,

and prove that h1(e1) = e1, so that

h1 ◦ f ◦ h1(e1) = a0
1e1 + r1,2 e2.

Let f1 = h1 ◦ f ◦ h1.

Assuming by induction that

fk = hk ◦ · · · ◦ h1 ◦ f ◦ h1 ◦ · · · ◦ hk

has a tridiagonal matrix up to the kth row and column, 1≤ k ≤ n− 3, let

fk(ek+1) = ak
kek + ak

k+1ek+1 + · · ·+ ak
nen,

and let

rk+1,k+2 = ‖ak
k+2ek+2 + · · ·+ ak

nen‖.
Find an isometry hk+1 (reflection or id) such that

hk+1( fk(ek+1)− ak
kek− ak

k+1ek+1) = rk+1,k+2 ek+2.

Observe that

wk+1 = rk+1,k+2 ek+2 + ak
kek + ak

k+1ek+1− fk(ek+1) ∈Vk+1,

and prove that hk+1(ek) = ek and hk+1(ek+1) = ek+1, so that

hk+1 ◦ fk ◦ hk+1(ek+1) = ak
kek + ak

k+1ek+1 + rk+1,k+2 ek+2.

Let fk+1 = hk+1 ◦ fk ◦ hk+1, and finish the proof.

Do f and fn−2 have the same eigenvalues? If so, explain why.

(3) Prove that given any symmetric n× n matrix A, there are n− 2 matrices

H1, . . . ,Hn−2, Householder matrices or the identity, such that

B = Hn−2 · · ·H1AH1 · · ·Hn−2

is a symmetric tridiagonal matrix.

12.3. Write a computer program implementing the method of Problem 12.2(3).

12.4. Let A be a symmetric tridiagonal n× n matrix
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A =




b1 c1

c1 b2 c2

c2 b3 c3

. . .
. . .

. . .

cn−2 bn−1 cn−1

cn−1 bn



,

where it is assumed that ci 6= 0 for all i, 1 ≤ i ≤ n− 1, and let Ak be the k× k

submatrix consisting of the first k rows and columns of A, 1 ≤ k ≤ n. We define the

polynomials Pk(x) as follows: (0≤ k≤ n).

P0(x) = 1,

P1(x) = b1− x,

Pk(x) = (bk− x)Pk−1(x)− c2
k−1Pk−2(x),

where 2≤ k≤ n.

(1) Prove the following properties:

(i) Pk(x) is the characteristic polynomial of Ak, where 1≤ k ≤ n.

(ii) limx→−∞ Pk(x) = +∞, where 1≤ k ≤ n.

(iii) If Pk(x) = 0, then Pk−1(x)Pk+1(x)< 0, where 1≤ k≤ n− 1.

(iv) Pk(x) has k distinct real roots that separate the k+ 1 roots of Pk+1, where 1 ≤
k ≤ n− 1.

(2) Given any real number µ > 0, for every k, 1 ≤ k ≤ n, define the function

sgk(µ) as follows:

sgk(µ) =

{
sign of Pk(µ) if Pk(µ) 6= 0,

sign of Pk−1(µ) if Pk(µ) = 0.

We encode the sign of a positive number as +, and the sign of a negative number

as −. Then let E(k,µ) be the ordered list

E(k,µ) = 〈+, sg1(µ), sg2(µ), . . . , sgk(µ)〉 ,

and let N(k,µ) be the number changes of sign between consecutive signs in E(k,µ).
Prove that sgk(µ) is well defined, and that N(k,µ) is the number of roots λ of

Pk(x) such that λ < µ .

Remark: The above can be used to compute the eigenvalues of a (tridiagonal) sym-

metric matrix (the method of Givens–Householder).

12.5. Let A = (ai j) be a real or complex n× n matrix.

(1) If λ is an eigenvalue of A, prove that there is some eigenvector u=(u1, . . . ,un)
of A for λ such that

max
1≤i≤n

|ui|= 1.



12.5 Problems 363

(2) If u = (u1, . . . ,un) is an eigenvector of A for λ as in (1), assuming that i,

1≤ i≤ n, is an index such that |ui|= 1, prove that

(λ − ai i)ui =
n

∑
j=1
j 6=i

ai ju j,

and thus that

|λ − ai i| ≤
n

∑
j=1
j 6=i

|ai j|.

Conclude that the eigenvalues of A are inside the union of the closed disks Di defined

such that

Di =

{
z ∈ C | |z− ai i| ≤

n

∑
j=1
j 6=i

|ai j|
}
.

Remark: This result is known as Gershgorin’s theorem.

12.6. (a) Given a rotation matrix

R =

(
cosθ −sinθ
sinθ cosθ

)
,

where 0 < θ < π , prove that there is a skew-symmetric matrix B such that

R = (I−B)(I+B)−1.

(b) If B is a skew-symmetric n× n matrix, prove that λ In−B and λ In +B are

invertible for all λ 6= 0, and that they commute.

(c) Prove that

R = (λ In−B)(λ In +B)−1

is a rotation matrix that does not admit −1 as an eigenvalue.

(d) Given any rotation matrix R that does not admit −1 as an eigenvalue, prove

that there is a skew-symmetric matrix B such that

R = (In−B)(In +B)−1 = (In +B)−1(In−B).

This is known as the Cayley representation of rotations (Cayley, 1846).

(e) Given any rotation matrix R, prove that there is a skew-symmetric matrix B

such that

R =
(
(In−B)(In +B)−1

)2
.

12.7. Given a Euclidean space E , let ϕ : E×E → R be a symmetric bilinear form

on E . Prove that there is an orthonormal basis of E w.r.t. which ϕ is represented

by a diagonal matrix. Given any basis (e1, . . . ,en) of E , recall that for any two vec-

tors x and y, if X and Y denote the column vectors of coordinates of x and y w.r.t.
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(e1, . . . ,en), then

ϕ(x,y) = X⊤AY,

for some symmetric matrix A; see Chapter 6, Problem 6.13.

Hint. Let A be the symmetric matrix representing ϕ over (e1, . . . ,en). Use the fact

that there is an orthogonal matrix P and a (real) diagonal matrix D such that

A = PDP⊤.

12.8. Given a Hermitian space E , let ϕ : E×E→C be a Hermitian form on E . Prove

that there is an orthonormal basis of E w.r.t. which ϕ is represented by a diagonal

matrix. Given any basis (e1, . . . ,en) of E , recall that for any two vectors x and y, if

X and Y denote the column vectors of coordinates of x and y w.r.t. (e1, . . . ,en), then

ϕ(x,y) = X⊤AY ,

for some Hermitian matrix A; see Chapter 11, Problem 11.7.

Hint. Let A be the Hermitian matrix representing ϕ over (e1, . . . ,en). Use the fact

that there is a unitary matrix P and a (real) diagonal matrix D such that

A⊤ = PDP∗.

12.9. Let E be a Euclidean space of dimension n. For any linear map f : E→ E , we

define the Rayleigh–Ritz ratio of f as the function R f : (E−{0})→R defined such

that

R f (x) =
f (x) · x

x · x ,

for all x 6= 0.

(a) Prove that

R f (x) = R f (λ x)

for all λ ∈ R, λ 6= 0. As a consequence, show that it can be assumed that R f is

defined on the unit sphere

Sn−1 = {x ∈ E | ‖x‖= 1}.

(b) Assume that f is self-adjoint, and let λ1 ≤ λ2 ≤ ·· · ≤ λn be the (real) eigen-

values of f listed in nondecreasing order. Prove that there is an orthonormal basis

(e1, . . . ,en) such that, letting Vk = Sn−1∩Ek be the intersection of Sn−1 with the sub-

space Ek spanned by {e1, . . . ,ek}, the following properties hold for all k, 1≤ k≤ n:

(1) λk = R f (ek);
(2) λk = maxx∈Vk

R f (x).

(c) Letting Vk denote the set of all sets of the form W ∩ Sn−1, where W is any

subspace of dimension k ≥ 1, prove that

(3) λk = minW∈Vk
maxx∈W R f (x).

Hint. You will need to prove that if W is any subspace of dimension k, then
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dim(W ∩E⊥k )≥ 1.

The formula given in (3) is usually called the Courant–Fischer formula.

(d) Prove that

R f (S
n−1) = [λ1,λn].

References

1. Michael Artin. Algebra. Prentice-Hall, first edition, 1991.
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Chapter 13

Singular Value Decomposition (SVD) and Polar
Form

13.1 Polar Form

In this section we assume that we are dealing with a real Euclidean space E . Let

f : E → E be any linear map. In general, it may not be possible to diagonalize f .

We show that every linear map can be diagonalized if we are willing to use two

orthonormal bases. This is the celebrated singular value decomposition (SVD). A

close cousin of the SVD is the polar form of a linear map, which shows how a linear

map can be decomposed into its purely rotational component (perhaps with a flip)

and its purely stretching part.

The key observation is that f ∗ ◦ f is self-adjoint, since

〈( f ∗ ◦ f )(u),v〉= 〈 f (u), f (v)〉 = 〈u,( f ∗ ◦ f )(v)〉.

Similarly, f ◦ f ∗ is self-adjoint.

The fact that f ∗◦ f and f ◦ f ∗ are self-adjoint is very important, because it implies

that f ∗◦ f and f ◦ f ∗ can be diagonalized and that they have real eigenvalues. In fact,

these eigenvalues are all nonnegative. Indeed, if u is an eigenvector of f ∗ ◦ f for the

eigenvalue λ , then

〈( f ∗ ◦ f )(u),u〉= 〈 f (u), f (u)〉
and

〈( f ∗ ◦ f )(u),u〉= λ 〈u,u〉,
and thus

λ 〈u,u〉= 〈 f (u), f (u)〉,
which implies that λ ≥ 0, since 〈−,−〉 is positive definite. A similar proof applies to

f ◦ f ∗. Thus, the eigenvalues of f ∗ ◦ f are of the form µ2
1 , . . . ,µ

2
r or 0, where µi > 0,

and similarly for f ◦ f ∗. The situation is even better, since we will show shortly that

f ∗ ◦ f and f ◦ f ∗ have the same eigenvalues.

Remark: Given any two linear maps f : E→ F and g : F → E , where dim(E) = n

and dim(F) = m, it can be shown that

367
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(−λ )m det(g ◦ f −λ In) = (−λ )n det( f ◦ g−λ Im),

and thus g ◦ f and f ◦ g always have the same nonnull eigenvalues!

Definition 13.1. The square roots µi > 0 of the positive eigenvalues of f ∗ ◦ f (and

f ◦ f ∗) are called the singular values of f .

Definition 13.2. A self-adjoint linear map f : E → E whose eigenvalues are non-

negative is called positive semidefinite (or positive), and if f is also invertible, f

is said to be positive definite. In the latter case, every eigenvalue of f is strictly

positive.

We just showed that f ∗ ◦ f and f ◦ f ∗ are positive semidefinite self-adjoint lin-

ear maps. This fact has the remarkable consequence that every linear map has two

important decompositions:

1. The polar form.

2. The singular value decomposition (SVD).

The wonderful thing about the singular value decomposition is that there exist

two orthonormal bases (u1, . . . ,un) and (v1, . . . ,vn) such that with respect to these

bases, f is a diagonal matrix consisting of the singular values of f , or 0. Thus, in

some sense, f can always be diagonalized with respect to two orthonormal bases.

The SVD is also a useful tool for solving overdetermined linear systems in the least

squares sense and for data analysis, as we show later on.

First, we show some useful relationships between the kernels and the images of

f , f ∗, f ∗ ◦ f , and f ◦ f ∗. Recall that if f : E → F is a linear map, the image Im f

of f is the subspace f (E) of F , and the rank of f is the dimension dim(Im f ) of its

image. Also recall that

dim(Ker f )+ dim(Im f ) = dim(E),

and that for every subspace W of E ,

dim(W )+ dim(W⊥) = dim(E).

Lemma 13.1. Given any two Euclidean spaces E and F, where E has dimension n

and F has dimension m, for any linear map f : E→ F, we have

Ker f = Ker( f ∗ ◦ f ),

Ker f ∗ = Ker( f ◦ f ∗),

Ker f = (Im f ∗)⊥,

Ker f ∗ = (Im f )⊥,

dim(Im f ) = dim(Im f ∗),

n− dim(Ker f ) = m− dim(Ker f ∗),

and f , f ∗, f ∗ ◦ f , and f ◦ f ∗ have the same rank.
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Proof. To simplify the notation, we will denote the inner products on E and F

by the same symbol 〈−,−〉 (to avoid subscripts). If f (u) = 0, then ( f ∗ ◦ f )(u) =
f ∗( f (u)) = f ∗(0) = 0, and so Ker f ⊆ Ker( f ∗ ◦ f ). By definition of f ∗, we have

〈 f (u), f (u)〉 = 〈( f ∗ ◦ f )(u),u〉

for all u ∈ E . If ( f ∗ ◦ f )(u) = 0, since 〈−,−〉 is positive definite, we must have

f (u) = 0, and so Ker( f ∗ ◦ f )⊆ Ker f . Therefore,

Ker f = Ker( f ∗ ◦ f ).

The proof that Ker f ∗ = Ker( f ◦ f ∗) is similar.

By definition of f ∗, we have

〈 f (u),v〉= 〈u, f ∗(v)〉

for all u ∈ E and all v ∈ F . This immediately implies that

Ker f = (Im f ∗)⊥ and Ker f ∗ = (Im f )⊥.

Since

dim(Im f ) = n− dim(Ker f )

and

dim((Im f ∗)⊥) = n− dim(Im f ∗),

from

Ker f = (Im f ∗)⊥

we also have

dim(Ker f ) = dim((Im f ∗)⊥),

from which we obtain

dim(Im f ) = dim(Im f ∗).

The above immediately implies that n− dim(Ker f ) = m− dim(Ker f ∗). From all

this we easily deduce that

dim(Im f ) = dim(Im( f ∗ ◦ f )) = dim(Im( f ◦ f ∗)),

i.e., f , f ∗, f ∗ ◦ f , and f ◦ f ∗ have the same rank. ⊓⊔

The next lemma shows a very useful property of positive semidefinite self-adjoint

linear maps.

Lemma 13.2. Given a Euclidean space E of dimension n, for any positive semidef-

inite self-adjoint linear map f : E → E there is a unique positive semidefinite self-

adjoint linear map h : E→ E such that f = h2 = h◦h. Furthermore, Ker f = Kerh,

and if µ1, . . . ,µp are the distinct eigenvalues of h and Ei is the eigenspace associated
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with µi, then µ2
1 , . . . ,µ

2
p are the distinct eigenvalues of f , and Ei is the eigenspace

associated with µ2
i .

Proof. Since f is self-adjoint, by Theorem 12.3 there is an orthonormal basis

(u1, . . ., un) consisting of eigenvectors of f , and if λ1, . . . ,λn are the eigenvalues

of f , we know that λi ∈ R. Since f is assumed to be positive semidefinite, we have

λi ≥ 0, and we can write λi = µ2
i , where µi ≥ 0. If we define h : E→ E by its action

on the basis (u1, . . . ,un), so that

h(ui) = µiui,

it is obvious that f = h2 and that h is positive semidefinite self-adjoint (since its ma-

trix over the orthonormal basis (u1, . . . ,un) is diagonal, thus symmetric). It remains

to prove that h is uniquely determined by f . Let g : E→ E be any positive semidef-

inite self-adjoint linear map such that f = g2. Then there is an orthonormal basis

(v1, . . . ,vn) of eigenvectors of g, and let µ1, . . . ,µn be the eigenvalues of g, where

µi ≥ 0. Note that

f (vi) = g2(vi) = g(g(vi)) = µ2
i vi,

so that vi is an eigenvector of f for the eigenvalue µ2
i . If µ1, . . . ,µp are the distinct

eigenvalues of g and E1, . . . ,Ep are the corresponding eigenspaces, the above argu-

ment shows that each Ei is a subspace of the eigenspace Ui of f associated with µ2
i .

However, we observed (just after Theorem 12.3) that

E = E1⊕·· ·⊕Ep,

where Ei and E j are orthogonal if i 6= j, and thus we must have Ei = Ui. Since

µi,µ j ≥ 0 and µi 6= µ j implies that µ2
i 6= µ2

j , the values µ2
1 , . . . ,µ

2
p are the distinct

eigenvalues of f , and the corresponding eigenspaces are also E1, . . . ,Ep. This shows

that g = h, and h is unique. Also, as a consequence, Ker f = Kerh, and if µ1, . . . ,µp

are the distinct eigenvalues of h, then µ2
1 , . . . ,µ

2
p are the distinct eigenvalues of f ,

and the corresponding eigenspaces are identical. ⊓⊔

There are now two ways to proceed. We can prove directly the singular value

decomposition, as Strang does [8, 7], or prove the so-called polar decomposition

theorem. The proofs are of roughly the same difficulty. We have chosen the second

approach, since it is less common in textbook presentations, and since it also yields

a little more, namely uniqueness when f is invertible. It is somewhat disconcerting

that the next two theorems are given only as an exercise in Bourbaki [1] (Algèbre,

Chapter 9, Problem 14, page 127). Yet, the SVD decomposition is of great practi-

cal importance. This is probably typical of the attitude of “pure mathematicians.”

However, the proof hinted at in Bourbaki is quite elegant.

The early history of the singular value decomposition is described in a fascinating

paper by Stewart [6]. The SVD is due to Beltrami and Camille Jordan independently

(1873, 1874). Gauss is the grandfather of all this, for his work on least squares (1809,

1823) (but Legendre also published a paper on least squares!). Then come Sylvester,

Schmidt, and Hermann Weyl. Sylvester’s work was apparently “opaque.” He gave
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a computational method to find an SVD. Schmidt’s work really has to do with in-

tegral equations and symmetric and asymmetric kernels (1907). Weyl’s work has

to do with perturbation theory (1912). Autonne came up with the polar decomposi-

tion (1902, 1915). Eckart and Young extended SVD to rectangular matrices (1936,

1939).

The next three theorems deal with a linear map f : E→ E over a Euclidean space

E . We will show later on how to generalize these results to linear maps f : E → F

between two Euclidean spaces E and F .

Theorem 13.1. Given a Euclidean space E of dimension n, for any linear map

f : E → E there are two positive semidefinite self-adjoint linear maps h1 : E → E

and h2 : E→ E and an orthogonal linear map g : E→ E such that

f = g ◦ h1 = h2 ◦ g.

Furthermore, if f has rank r, the maps h1 and h2 have the same positive eigenvalues

µ1, . . . ,µr, which are the singular values of f , i.e., the positive square roots of the

nonnull eigenvalues of both f ∗ ◦ f and f ◦ f ∗. Finally, h1,h2 are unique, g is unique

if f is invertible, and h1 = h2 if f is normal.

Proof. By Lemma 13.2 there are two (unique) positive semidefinite self-adjoint lin-

ear maps h1 : E → E and h2 : E → E such that f ∗ ◦ f = h2
1 and f ◦ f ∗ = h2

2. Note

that

〈 f (u), f (v)〉 = 〈h1(u),h1(v)〉
for all u,v ∈ E , since

〈 f (u), f (v)〉 = 〈u,( f ∗ ◦ f )(v)〉= 〈u,(h1 ◦ h1)(v)〉= 〈h1(u),h1(v)〉,

because f ∗ ◦ f = h2
1 and h1 = h∗1 (h1 is self-adjoint). From Lemma 13.1, Ker f =

Ker( f ∗ ◦ f ), and from Lemma 13.2, Ker( f ∗ ◦ f ) = Kerh1. Thus,

Ker f = Kerh1.

If r is the rank of f , then since h1 is self-adjoint, by Theorem 12.3 there is an

orthonormal basis (u1, . . . ,un) of eigenvectors of h1, and by reordering these vectors

if necessary, we can assume that (u1, . . . ,ur) are associated with the strictly positive

eigenvalues µ1, . . . ,µr of h1 (the singular values of f ), and that µr+1 = · · · = µn =
0. Observe that (ur+1, . . . ,un) is an orthonormal basis of Ker f = Kerh1, and that

(u1, . . . ,ur) is an orthonormal basis of (Ker f )⊥ = Im f ∗. Note that

〈 f (ui), f (u j)〉= 〈h1(ui),h1(u j)〉= µiµ j〈ui,u j〉= µ2
i δi j

when 1≤ i, j ≤ n (recall that δi j = 1 if i = j, and δi j = 0 if i 6= j). Letting

vi =
f (ui)

µi

when 1≤ i≤ r, observe that
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〈vi,v j〉= δi j

when 1 ≤ i, j ≤ r. Using the Gram–Schmidt orthonormalization procedure, we can

extend (v1, . . . ,vr) to an orthonormal basis (v1, . . . ,vn) of E (even when r = 0).

Also note that (v1, . . . ,vr) is an orthonormal basis of Im f , and (vr+1, . . . ,vn) is an

orthonormal basis of Im f⊥ = Ker f ∗.
We define the linear map g : E → E by its action on the basis (u1, . . . ,un) as

follows:

g(ui) = vi

for all i, 1≤ i≤ n. We have

(g ◦ h1)(ui) = g(h1(ui)) = g(µiui) = µig(ui) = µivi = µi
f (ui)

µi
= f (ui)

when 1≤ i≤ r, and

(g ◦ h1)(ui) = g(h1(ui)) = g(0) = 0

when r+1≤ i≤ n (since (ur+1, . . . ,un) is a basis for Ker f = Kerh1), which shows

that f = g◦h1. The fact that g is orthogonal follows easily from the fact that it maps

the orthonormal basis (u1, . . . ,un) to the orthonormal basis (v1, . . . ,vn).
We can show that f = h2 ◦ g as follows. Notice that

h2
2(vi) = ( f ◦ f ∗)

(
f (ui)

µi

)
,

= ( f ◦ ( f ∗ ◦ f ))

(
ui

µi

)
,

=
1

µi
( f ◦ h2

1)(ui),

=
1

µi
f (h2

1(ui)),

=
1

µi
f (µ2

i ui),

= µi f (ui),

= µ2
i vi

when 1≤ i≤ r, and

h2
2(vi) = ( f ◦ f ∗)(vi) = f ( f ∗(vi)) = 0

when r+ 1≤ i≤ n, since (vr+1, . . . ,vn) is a basis for Ker f ∗ = (Im f )⊥. Since h2 is

positive semidefinite self-adjoint, so is h2
2, and by Lemma 13.2, we must have

h2(vi) = µivi
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when 1≤ i≤ r, and

h2(vi) = 0

when r+1≤ i≤ n. This shows that (v1, . . . ,vn) are eigenvectors of h2 for µ1, . . . ,µn

(since µr+1 = · · ·= µn = 0), and thus h1 and h2 have the same eigenvalues µ1, . . . ,µn.

As a consequence,

(h2 ◦ g)(ui) = h2(g(ui)) = h2(vi) = µivi = f (ui)

when 1≤ i≤ n. Since h1, h2, f ∗ ◦ f , and f ◦ f ∗ are positive semidefinite self-adjoint,

f ∗ ◦ f = h2
1, f ◦ f ∗ = h2

2, and µ1, . . . ,µr are the eigenvalues of both h1 and h2, it

follows that µ1, . . . ,µr are the singular values of f , i.e., the positive square roots of

the nonnull eigenvalues of both f ∗ ◦ f and f ◦ f ∗.
Finally, since

f ∗ ◦ f = h2
1 and f ◦ f ∗ = h2

2,

by Lemma 13.2, h1 and h2 are unique and if f is invertible, then h1 and h2 are

invertible and thus g is also unique, since g = f ◦ h−1
1 . If h is normal, then f ∗ ◦ f =

f ◦ f ∗ and h1 = h2. ⊓⊔

In matrix form, Theorem 13.1 can be stated as follows. For every real n×n matrix

A, there is some orthogonal matrix R and some positive semidefinite symmetric

matrix S such that

A = RS.

Furthermore, R,S are unique if A is invertible.

Definition 13.3. A pair (R,S) such that A = RS with R orthogonal and S symmetric

positive semidefinite is called a polar decomposition of A.

For example, the matrix

A =
1

2




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




is both orthogonal and symmetric, and A = RS with R = A and S = I, which implies

that some of the eigenvalues of A are negative.

Remark: If E is a Hermitian space, Theorem 13.1 also holds, but the orthogonal

linear map g becomes a unitary map. In terms of matrices, the polar decomposition

states that for every complex n× n matrix A, there is some unitary matrix U and

some positive semidefinite Hermitian matrix H such that

A =UH.
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13.2 Singular Value Decomposition (SVD)

The proof of Theorem 13.1 shows that there are two orthonormal bases (u1, . . . ,un)
and (v1, . . . ,vn), where (u1, . . . ,un) are eigenvectors of h1 and (v1, . . . ,vn) are

eigenvectors of h2. Furthermore, (u1, . . . ,ur) is an orthonormal basis of Im f ∗,
(ur+1, . . . ,un) is an orthonormal basis of Ker f , (v1, . . . ,vr) is an orthonormal ba-

sis of Im f , and (vr+1, . . . ,vn) is an orthonormal basis of Ker f ∗. Using this, we

immediately obtain the singular value decomposition theorem. Note that the sin-

gular value decomposition for linear maps of determinant +1 is called the Cartan

decomposition (after Elie Cartan)!

Theorem 13.2. Given a Euclidean space E of dimension n, for every linear map

f : E→ E there are two orthonormal bases (u1, . . . ,un) and (v1, . . . ,vn) such that if

r is the rank of f , the matrix of f w.r.t. these two bases is a diagonal matrix of the

form 


µ1 . . .
µ2 . . .

...
...

. . .
...

. . . µn


 ,

where µ1, . . . ,µr are the singular values of f , i.e., the (positive) square roots of the

nonnull eigenvalues of f ∗ ◦ f and f ◦ f ∗, and µr+1 = · · · = µn = 0. Furthermore,

(u1, . . . ,un) are eigenvectors of f ∗ ◦ f , (v1, . . . ,vn) are eigenvectors of f ◦ f ∗, and

f (ui) = µivi when 1≤ i≤ n.

Proof. Going back to the proof of Theorem 13.2, there are two orthonormal bases

(u1, . . . ,un) and (v1, . . . ,vn), where (u1, . . . ,un) are eigenvectors of h1, (v1, . . . ,vn)
are eigenvectors of h2, f (ui) = µivi when 1≤ i≤ r, and f (ui) = 0 when r+1≤ i≤ n.

But now, with respect to the orthonormal bases (u1, . . . ,un) and (v1, . . . ,vn), the

matrix of f is indeed 


µ1 . . .
µ2 . . .

...
...

. . .
...

. . . µn


 ,

where µ1, . . . ,µr are the singular values of f and µr+1 = · · ·= µn = 0. ⊓⊔

Note that µi > 0 for all i (1≤ i≤ n) iff f is invertible. Given an orientation of the

Euclidean space E specified by some orthonormal basis (e1, . . . ,en) taken as direct,

if det( f ) ≥ 0, we can always make sure that the two orthonormal bases (u1, . . . ,un)
and (v1, . . . ,vn) are oriented positively. Indeed, if det( f ) = 0, we just have to flip un

to −un if necessary, and vn to −vn if necessary. If det( f ) > 0, since µi > 0 for all i,

1≤ i≤ n, the orthogonal matrices U and V whose columns are the ui’s and the vi’s

have determinants of the same sign. Since f (un) = µnvn and µn > 0, we just have

to flip un to −un if necessary, since vn will also be flipped. Theorem 13.2 can be

restated in terms of (real) matrices as follows.
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Theorem 13.3. For every real n× n matrix A there are two orthogonal matrices U

and V and a diagonal matrix D such that A =VDU⊤, where D is of the form

D =




µ1 . . .
µ2 . . .

...
...

. . .
...

. . . µn


 ,

where µ1, . . . ,µr are the singular values of f , i.e., the (positive) square roots of the

nonnull eigenvalues of A⊤A and AA⊤, and µr+1 = · · · = µn = 0. The columns of U

are eigenvectors of A⊤A, and the columns of V are eigenvectors of AA⊤. Further-

more, if det(A) ≥ 0, it is possible to choose U and V such that det(U) = det(V ) =
+1, i.e., U and V are rotation matrices.

Definition 13.4. A triple (U,D,V ) such that A = VDU⊤ where U and V are or-

thogonal and D is a diagonal matrix whose entries are nonnegative (it is positive

semidefinite) is called a singular value decomposition (SVD) of A.

Remarks:

(1) In Strang [8] the matrices U,V,D are denoted by U = Q2, V = Q1, and D = Σ ,

and an SVD is written as A = Q1ΣQ⊤2 . This has the advantage that Q1 comes

before Q2 in A = Q1ΣQ⊤2 . This has the disadvantage that A maps the columns

of Q2 (eigenvectors of A⊤A) to multiples of the columns of Q1 (eigenvectors of

AA⊤).

(2) Algorithms for actually computing the SVD of a matrix are presented in Golub

and Van Loan [4], Demmel [3], and Trefethen and Bau [9], where the SVD and

its applications are also discussed quite extensively.

(3) The SVD also applies to complex matrices. In this case, for every complex n×n

matrix A, there are two unitary matrices U and V and a diagonal matrix D such

that

A =VDU∗,

where D is a diagonal matrix consisting of real entries µ1, . . . ,µn, where

µ1, . . . ,µr are the singular values of f , i.e., the positive square roots of the non-

null eigenvalues of A∗A and AA∗, and µr+1 = . . .= µn = 0.

It is easy to go from the polar form to the SVD, and conversely. Indeed, given a

polar decomposition A = R1S, where R1 is orthogonal and S is positive semidefinite

symmetric, there is an orthogonal matrix R2 and a positive semidefinite diagonal

matrix D such that S = R2DR⊤2 , and thus

A = R1R2DR⊤2 =VDU⊤,

where V = R1R2 and U = R2 are orthogonal.

Going the other way, given an SVD decomposition A = VDU⊤, let R = V U⊤

and S = UDU⊤. It is clear that R is orthogonal and that S is positive semidefinite
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symmetric, and

RS =V U⊤UDU⊤ =VDU⊤ = A.

Note that it is possible to require that det(R) = +1 when det(A)≥ 0.

Theorem 13.3 can be easily extended to rectangular m× n matrices (see Strang

[8] or Golub and Van Loan [4], Demmel [3], Trefethen and Bau [9]).

As a matter of fact, both Theorem 13.1 and Theorem 13.2 can be generalized to

linear maps f : E→ F between two Euclidean spaces E and F . In order to do so, we

need to define the analogue of the notion of orthogonal linear map for a linear map

f : E→ F . We thank Raphael Leone for pointing out a mistake in a previous version

of Theorem 13.4 regading the uniqueness of the maps h1 and h2. The problem can

be rectified by changing slightly the definition of a weakly orthogonal map.

By definition, the adjoint f ∗ : F → E of a linear map f : E → F is the unique

linear map such that

〈 f (u),v〉2 = 〈u, f ∗(v)〉1
for all u ∈ E and all v ∈ F . Then we have

〈 f (u), f (v)〉2 = 〈u,( f ∗ ◦ f )(v)〉1

for all u,v ∈ E . Letting n = dim(E), m = dim(F), if f has rank r and if for every r

orthonormal vectors (u1, . . . ,ur) in (Ker f )⊥ the vectors ( f (u1), . . . , f (ur)) are also

orthonormal in F , then

f ∗ ◦ f = id

on (Ker f )⊥. The converse is immediately proved. Thus, we will say that a linear

map f : E → F is weakly orthogonal if

f ∗ ◦ f = id on (Ker f )⊥,

equivalently if

f ◦ f ∗ = id on Im f ∗.

Of course, f ∗ ◦ f = 0 on Ker f . In terms of matrices, we will say that a real m× n

matrix A of rank r is weakly orthogonal if it is of the form

A = P⊤
(
Q 0m,n−r

)
R,

with P a m×m orthogonal matrix, R a n× n orthogonal matrix, and Q a m× r

matrix such that Q⊤Q= Ir, in other words, a matrix whose columns are orthonormal.

Obviously

A⊤A = R⊤
(

Ir 0r,n−r

0m−r,r 0m−r,n−r

)
R.

The main difference with orthogonal matrices is that AA⊤ is usually not a nice

matrix of the above form (unless m = n). Weakly unitary linear maps are defined

analogously.
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Theorem 13.4. Given any two Euclidean spaces E and F, where E has dimension

n and F has dimension m, for every linear map f : E → F there are two positive

semidefinite self-adjoint linear maps h1 : E → E and h2 : F → F and a weakly or-

thogonal linear map g : E → F such that

f = g ◦ h1 = h2 ◦ g.

Furthermore, if f is injective, then h1 and g are unique, and if f is surjective, then

h2 and g are unique. The maps h1, h2, and g can be chosen to have the same rank as

f , in which case they are unique, and then h1 is the unique square root of f ∗ ◦ f and

h2 is the unique square root of f ◦ f ∗. In this case, h1 and h2 have the same positive

eigenvalues µ1, . . . ,µr, which are the singular values of f , i.e., the positive square

roots of the nonnull eigenvalues of both f ∗ ◦ f and f ◦ f ∗. Finally, h1 = h2 if f is

normal.

Proof. First assume that the decompositions f = g ◦ h1 = h2 ◦ g exist. For every

x ∈ (Ker f )⊥ we have h1(x) ∈ (Kerg)⊥, hence g∗ ◦ g(h1(x)) = h1(x) and

f ∗ ◦ f (x) = h1 ◦ g∗ ◦ g ◦ h1(x) = h2
1(x), x ∈ (Ker f )⊥.

In a similar way, we show that

f ◦ f ∗(y) = h2
2(y), y ∈ Im f ∗.

It follows that if f is injective, then h2
1 = f ∗ ◦ f on E so h1 is uniquely determined

and bijective, and then g is also uniquely determined. If f is surjective, then h2
2 =

f ◦ f ∗ on F , so h2 is uniquely determined and bijective, and then g is also uniquely

determined. If h1, h2, and g have the same rank as f , then h1 is injective on (Ker f )⊥,

and since f = g ◦ h1 and g has the same rank as h1, it is uniquely determined.

We now prove the existence of h1,h2 and g with the same rank r as f .

By Lemma 13.2 there are two (unique) positive semidefinite self-adjoint linear

maps h1 : E → E and h2 : F → F such that f ∗ ◦ f = h2
1 and f ◦ f ∗ = h2

2. As in the

proof of Theorem 13.1,

Ker f = Kerh1,

and letting r be the rank of f , there is an orthonormal basis (u1, . . . ,un) of eigenvec-

tors of h1 such that (u1, . . . ,ur) are associated with the strictly positive eigenvalues

µ1, . . . ,µr of h1 (the singular values of f ). The vectors (ur+1, . . . ,un) form an or-

thonormal basis of Ker f = Kerh1, and the vectors (u1, . . . ,ur) form an orthonormal

basis of (Ker f )⊥ = Im f ∗. Furthermore, letting

vi =
f (ui)

µi

when 1 ≤ i ≤ r, using the Gram–Schmidt orthonormalization procedure, we can

extend (v1, . . . ,vr) to an orthonormal basis (v1, . . . ,vm) of F (even when r = 0).

Also note that (v1, . . . ,vr) is an orthonormal basis of Im f , and (vr+1, . . . ,vm) is an

orthonormal basis of Im f⊥ = Ker f ∗.
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We define the linear map g : E → F by its action on the basis (u1, . . . ,un) as

follows:

g(ui) = vi

for all i, 1≤ i≤ r, and

g(ui) = 0

for all i, r+ 1≤ i≤ n. Just as in the proof of Theorem 13.1, we have

(g ◦ h1)(ui) = f (ui)

when 1≤ i≤ r, and

(g ◦ h1)(ui) = g(h1(ui)) = g(0) = 0

when r+1≤ i≤ n (since (ur+1, . . . ,un) is a basis for Ker f = Kerh1), which shows

that f = g◦h1. The fact that g is weakly orthogonal follows easily from the fact that

it maps the orthonormal vectors (u1, . . . ,ur) to the orthonormal vectors (v1, . . . ,vr).
We can show that f = h2 ◦ g as follows. Just as in the proof of Theorem 13.1,

h2
2(vi) = µ2

i vi

when 1≤ i≤ r, and

h2
2(vi) = ( f ◦ f ∗)(vi) = f ( f ∗(vi)) = 0

when r+1≤ i≤m, since (vr+1, . . . ,vm) is a basis for Ker f ∗ = (Im f )⊥. Since h2 is

positive semidefinite self-adjoint, so is h2
2, and by Lemma 13.2, we must have

h2(vi) = µivi

when 1≤ i≤ r, and

h2(vi) = 0

when r+1≤ i≤m. This shows that (v1, . . . ,vm) are eigenvectors of h2 for µ1, . . . ,µm

(letting µr+1 = · · ·= µm = 0), and thus h1 and h2 have the same nonnull eigenvalues

µ1, . . . ,µr. As a consequence,

(h2 ◦ g)(ui) = h2(g(ui)) = h2(vi) = µivi = f (ui)

when 1≤ i≤ m. If h is normal, then f ∗ ◦ f = f ◦ f ∗ and h1 = h2. ⊓⊔

In matrix form, Theorem 13.4 can be stated as follows. For every real m×n ma-

trix A, there is some weakly orthogonal m×n matrix R and some positive semidefi-

nite symmetric n× n matrix S such that

A = RS.

A pair (R,S) such that A = RS is called a polar decomposition of A.
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Remark: If E is a Hermitian space, Theorem 13.4 also holds, but the weakly or-

thogonal linear map g becomes a weakly unitary map. In terms of matrices, the polar

decomposition states that for every complex m× n matrix A, there is some weakly

unitary m× n matrix U and some positive semidefinite Hermitian n× n matrix H

such that

A =UH.

The proof of Theorem 13.4 shows that there are two orthonormal bases (u1, . . .,
un) and (v1, . . . ,vm) for E and F , respectively, where (u1, . . . ,un) are eigenvectors of

h1 and (v1, . . . ,vm) are eigenvectors of h2. Furthermore, (u1, . . . ,ur) is an orthonor-

mal basis of Im f ∗, (ur+1, . . . ,un) is an orthonormal basis of Ker f , (v1, . . . ,vr) is an

orthonormal basis of Im f , and (vr+1, . . . ,vm) is an orthonormal basis of Ker f ∗. Us-

ing this, we immediately obtain the singular value decomposition theorem for linear

maps f : E→ F , where E and F can have different dimensions.

Theorem 13.5. Given any two Euclidean spaces E and F, where E has dimension n

and F has dimension m, for every linear map f : E → F there are two orthonormal

bases (u1, . . . ,un) and (v1, . . . ,vm) such that if r is the rank of f , the matrix of f w.r.t.

these two bases is a m× n matrix D of the form

D =




µ1 . . .
µ2 . . .

...
...

. . .
...

. . . µn

0
... . . . 0

...
...

. . .
...

0
... . . . 0




or D =




µ1 . . . 0 . . . 0

µ2 . . . 0 . . . 0
...

...
. . .

... 0
... 0

. . . µm 0 . . . 0


 ,

where µ1, . . . ,µr are the singular values of f , i.e., the (positive) square roots of

the nonnull eigenvalues of f ∗ ◦ f and f ◦ f ∗, and µr+1 = · · · = µp = 0, where

p = min(m,n). Furthermore, (u1, . . . ,un) are eigenvectors of f ∗ ◦ f , (v1, . . . ,vm) are

eigenvectors of f ◦ f ∗, and f (ui) = µivi when 1≤ i≤ p = min(m,n).

Even though the matrix D is an m× n rectangular matrix, since its only nonzero

entries are on the descending diagonal, we still say that D is a diagonal matrix.

Theorem 13.5 can be restated in terms of (real) matrices as follows.

Theorem 13.6. For every real m×n matrix A, there are two orthogonal matrices U

(n×n) and V (m×m) and a diagonal m×n matrix D such that A =VDU⊤, where

D is of the form



380 13 Singular Value Decomposition (SVD) and Polar Form

D =




µ1 . . .
µ2 . . .

...
...

. . .
...

. . . µn

0
... . . . 0

...
...

. . .
...

0
... . . . 0




or D =




µ1 . . . 0 . . . 0

µ2 . . . 0 . . . 0
...

...
. . .

... 0
... 0

. . . µm 0 . . . 0


 ,

where µ1, . . . ,µr are the singular values of f , i.e. the (positive) square roots of

the nonnull eigenvalues of A⊤A and AA⊤, and µr+1 = . . . = µp = 0, where p =
min(m,n). The columns of U are eigenvectors of A⊤A, and the columns of V are

eigenvectors of AA⊤.

A triple (U,D,V ) such that A =VDU⊤ is called a singular value decomposition

(SVD) of A.

The SVD of matrices can be used to define the pseudo-inverse of a rectangular

matrix; see Strang [8], Demmel [3], Trefethen and Bau [9], or Golub and Van Loan

[4] for a thorough presentation.

Remark: The matrix form of Theorem 13.4 also yields a variant of the singular

value decomposition. First, assume that m ≥ n. Given an m× n matrix A, there is

a weakly orthogonal m× n matrix R1 and a positive semidefinite symmetric n× n

matrix S such that

A = R1S.

Since S is positive semidefinite symmetric, there is an orthogonal n× n matrix R2

and a diagonal n× n matrix D with nonnegative entries such that

S = R2DR⊤2 .

Thus, we can write

A = R1R2DR⊤2 .

We claim that R1R2 is weakly orthogonal. Indeed,

(R1R2)
⊤(R1R2) = R⊤2 (R⊤1 R1)R2,

and if m≥ n, we have

R⊤1 R1 = In,

so that

(R1R2)
⊤(R1R2) = In.

Thus, R1R2 is indeed weakly orthogonal. Let us now consider the case n > m. From

the version of SVD in which

A =VDU⊤
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where U is n× n orthogonal, V is m×m orthogonal, and D is m× n diagonal with

nonnegative diagonal entries, letting V ′ be the m× n matrix obtained from V by

adding n−m zero columns and D′ be the n× n matrix obtained from D by adding

n−m zero rows, it is immediately verified that

V ′D′ =VD,

and thus when n > m, we also have

A =V ′D′U⊤,

where U is n×n orthogonal,V ′ is m×n weakly orthogonal, and D′ is n×n diagonal

with nonnegative diagonal entries. As a consequence, in both cases we have shown

that there exists a weakly orthogonal m×n matrix V , an orthogonal n×n matrix U ,

and a diagonal n× n matrix D with nonnegative entries such that

A =VDU⊤.

There is yet another alternative when n > m. Given an m× n matrix A, there is

a positive semidefinite symmetric m×m matrix S and a weakly orthogonal m× n

matrix R1, such that

A = SR1.

Since S is positive semidefinite symmetric, there is an orthogonal m×m matrix R2

and a diagonal m×m matrix D with nonnegative entries such that

S = R2DR⊤2 .

Thus, we can write

A = R2DR⊤2 R1.

We claim that R⊤2 R1 is weakly orthogonal. Indeed,

(R⊤2 R1)
⊤R⊤2 R1 = R⊤1 (R2R⊤2 )R1 = R⊤1 R1,

since R2 is orthogonal, and if n > m, we have

R⊤1 R1 =

(
Im 0m,n−m

0n−m,m 0n−m,n−m

)
,

so that

(R⊤2 R1)
⊤R⊤2 R1 =

(
Im 0m,n−m

0n−m,m 0n−m,n−m

)
,

and R⊤2 R1 is weakly orthogonal. Since n > m, (R⊤2 R1)
⊤ = R⊤1 R2 is also weakly or-

thogonal. As a consequence, we have shown that when m≥ n, there exists a weakly

orthogonal m× n matrix V , an orthogonal n× n matrix U , and a diagonal n× n

matrix D with nonnegative entries such that
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A =VDU⊤,

and when n > m, there exists an orthogonal m×m matrix V , a weakly orthogonal

m× n matrix U⊤ (with U also weakly orthogonal), and a diagonal m×m matrix D

with nonnegative entries, such that

A =VDU⊤.

In both cases,

V⊤AU = D.

One of the spectral theorems states that a symmetric matrix can be diagonalized

by an orthogonal matrix. There are several numerical methods to compute the eigen-

values of a symmetric matrix A. One method consists in tridiagonalizing A, which

means that there exists some orthogonal matrix P and some symmetric tridiagonal

matrix T such that A = PTP⊤. In fact, this can be done using Householder trans-

formations. It is then possible to compute the eigenvalues of T using a bisection

method based on Sturm sequences. One can also use Jacobi’s method. For details,

see Golub and Van Loan [4], Chapter 8, Demmel [3], Trefethen and Bau [9], Lec-

ture 26, or Ciarlet [2]. Computing the SVD of a matrix A is more involved. Most

methods begin by finding orthogonal matrices U and V and a bidiagonal matrix B

such that A=VBU⊤. This can also be done using Householder transformations. Ob-

serve that B⊤B is symmetric tridiagonal. Thus, in principle, the previous method to

diagonalize a symmetric tridiagonal matrix can be applied. However, it is unwise to

compute B⊤B explicitly, and more subtle methods are used for this last step. Again,

see Golub and Van Loan [4], Chapter 8, Demmel [3], and Trefethen and Bau [9],

Lecture 31.

The polar form has applications in continuum mechanics. Indeed, in any de-

formation it is important to separate stretching from rotation. This is exactly what

QS achieves. The orthogonal part Q corresponds to rotation (perhaps with an addi-

tional reflection), and the symmetric matrix S to stretching (or compression). The

real eigenvalues σ1, . . . ,σr of S are the stretch factors (or compression factors) (see

Marsden and Hughes [5]). The fact that S can be diagonalized by an orthogonal

matrix corresponds to a natural choice of axes, the principal axes.

The SVD has applications to data compression, for instance in image processing.

The idea is to retain only singular values whose magnitudes are significant enough.

The SVD can also be used to determine the rank of a matrix when other methods

such as Gaussian elimination produce very small pivots. One of the main applica-

tions of the SVD is the computation of the pseudo-inverse. Pseudo-inverses are the

key to the solution of various optimization problems, in particular the method of

least squares. This topic is discussed in the next chapter (Chapter 14). Applications

of the material of this chapter can be found in Strang [8, 7]; Ciarlet [2]; Golub and

Van Loan [4], which contains many other references; Demmel [3]; and Trefethen

and Bau [9].
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13.3 Problems

13.1. (1) Given a matrix

A =

(
a b

c d

)

prove that there are Householder matrices G,H such that

GAH =

(
cosθ sinθ
sinθ −cosθ

)(
a b

c d

)(
cosϕ sinϕ
sinϕ −cosϕ

)
= D,

where D is a diagonal matrix, iff the following equations hold:

(b+ c)cos(θ +ϕ) = (a− d)sin(θ +ϕ),

(c− b)cos(θ −ϕ) = (a+ d)sin(θ −ϕ).

(2) Discuss the solvability of the system. Consider the following cases:

1. a− d = a+ d = 0.

2a. a− d = b+ c = 0, a+ d 6= 0.

2b. a− d = 0, b+ c 6= 0, a+ d 6= 0.

3a. a+ d = c− b = 0, a− d 6= 0.

3b. a+ d = 0, c− b 6= 0, a− d 6= 0.

4. a+ d 6= 0, a− d 6= 0. Show that the solution in this case is

θ =
1

2

[
arctan

(
b+ c

a− d

)
+ arctan

(
c− b

a+ d

)]
,

ϕ =
1

2

[
arctan

(
b+ c

a− d

)
− arctan

(
c− b

a+ d

)]
.

If b = 0, show that the discussion is simpler: Basically, consider c = 0 or c 6= 0.

(3) Expressing everything in terms of u = cotθ and v = cotϕ , show that the

equations of question (1) become

(b+ c)(uv− 1)= (u+ v)(a− d),

(c− b)(uv+ 1)= (−u+ v)(a+ d).

Remark: I was unable to find an elegant solution for this system.

13.2. The purpose of this problem is to prove that given any linear map f : E →
E , where E is a Euclidean space of dimension n ≥ 2 and an orthonormal basis

(e1, . . . ,en), there are isometries gi,hi, hyperplane reflections or the identity, such

that the matrix of

gn ◦ · · · ◦ g1 ◦ f ◦ h1 ◦ · · · ◦ hn
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is a lower bidiagonal matrix, which means that the nonzero entries (if any) are on

the main descending diagonal and on the diagonal below it.

(1) Prove that for any isometry f : E → E we have f = f ∗ = f−1 iff f ◦ f = id.

(2) Proceed by induction, taking inspiration from the proof of the triangular de-

composition given in Chapter 6. Let U ′k be the subspace spanned by (e1, . . . ,ek) and

U ′′k be the subspace spanned by (ek+1, . . . ,en), 1 ≤ k ≤ n− 1. For the base case,

proceed as follows.

Let v1 = f ∗(e1) and r1,1 = ‖v1‖. Find an isometry h1 (reflection or id) such that

h1( f ∗(e1)) = r1,1e1.

Observe that h1( f ∗(e1)) ∈U ′1, so that

〈h1( f ∗(e1)),e j〉= 0

for all j, 2≤ j ≤ n, and conclude that

〈e1, f ◦ h1(e j)〉= 0

for all j, 2≤ j ≤ n.

Next, let

u1 = f ◦ h1(e1) = u′1 + u′′1,

where u′1 ∈U ′1 and u′′1 ∈U ′′1 , and let r2,1 = ‖u′′1‖. Find an isometry g1 (reflection or

id) such that

g1(u
′′
1) = r2,1e2.

Show that g1(e1) = e1,

g1 ◦ f ◦ h1(e1) = u′1 + r2,1e2,

and that

〈e1,g1 ◦ f ◦ h1(e j)〉= 0

for all j, 2≤ j ≤ n. At the end of this stage, show that g1 ◦ f ◦ h1 has a matrix such

that all entries on its first row except perhaps the first are null, and that all entries on

the first column, except perhaps the first two, are null.

Assume by induction that some isometries g1, . . . ,gk and h1, . . . ,hk have been

found, either reflections or the identity, and such that

fk = gk ◦ · · · ◦ g1 ◦ f ◦ h1 ◦ · · · ◦ hk

has a matrix that is lower bidiagonal up to and including row and column k, where

1≤ k ≤ n− 2.

Let

vk+1 = f ∗k (ek+1) = v′k+1 + v′′k+1,

where v′k+1 ∈U ′k and v′′k+1 ∈U ′′k , and let rk+1,k+1 = ‖v′′k+1‖. Find an isometry hk+1

(reflection or id) such that
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hk+1(v
′′
k+1) = rk+1,k+1ek+1.

Show that if hk+1 is a reflection, then U ′k ⊆ Hk+1, where Hk+1 is the hyperplane

defining the reflection hk+1. Deduce that hk+1(v
′
k+1) = v′k+1, and that

hk+1( f ∗k (ek+1)) = v′k+1 + rk+1,k+1ek+1.

Observe that hk+1( f ∗k (ek+1)) ∈U ′k+1, so that

〈hk+1( f ∗k (ek+1)),e j〉= 0

for all j, k+ 2≤ j ≤ n, and thus

〈ek+1, fk ◦ hk+1(e j)〉= 0

for all j, k+ 2≤ j ≤ n.

Next, let

uk+1 = fk ◦ hk+1(ek+1) = u′k+1 + u′′k+1,

where u′k+1 ∈U ′k+1 and u′′k+1 ∈U ′′k+1, and let rk+2,k+1 = ‖u′′k+1‖. Find an isometry

gk+1 (reflection or id) such that

gk+1(u
′′
k+1) = rk+2,k+1ek+2.

Show that if gk+1 is a reflection, then U ′k+1 ⊆ Gk+1, where Gk+1 is the hyperplane

defining the reflection gk+1. Deduce that gk+1(ei) = ei for all i, 1 ≤ i ≤ k+ 1, and

that

gk+1 ◦ fk ◦ hk+1(ek+1) = u′k+1 + rk+2,k+1ek+2.

Since by induction hypothesis

〈ei, fk ◦ hk+1(e j)〉= 0

for all i, j, 1≤ i≤ k+1, k+2≤ j≤ n, and since gk+1(ei) = ei for all i, 1≤ i≤ k+1,

conclude that

〈ei,gk+1 ◦ fk ◦ hk+1(e j)〉= 0

for all i, j, 1≤ i≤ k+ 1, k+ 2≤ j ≤ n. Finish the proof.

13.3. Write a computer program implementing the method of Problem 13.2 to con-

vert an n× n matrix to bidiagonal form.
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Chapter 14

Applications of SVD and Pseudo-inverses

De tous les principes qu’on peut proposer pour cet objet, je pense qu’il n’en est pas de plus

général, de plus exact, ni d’une application plus facile, que celui dont nous avons fait usage

dans les recherches précédentes, et qui consiste à rendre minimum la somme des carrés des

erreurs. Par ce moyen il s’établit entre les erreurs une sorte d’équilibre qui, empêchant les

extrêmes de prévaloir, est très propre à faire connaitre l’état du système le plus proche de la

vérité.

—Legendre, 1805, Nouvelles Méthodes pour la détermination des Orbites des Comètes

14.1 Least Squares Problems and the Pseudo-inverse

This chapter presents several applications of SVD. The first one is the pseudo-

inverse, which plays a crucial role in solving linear systems by the method of least

squares. The second application is data compression. The third application is prin-

cipal component analysis (PCA), whose purpose is to identify patterns in data and

understand the variance–covariance structure of the data. The fourth application is

the best affine approximation of a set of data, a problem closely related to PCA.

The method of least squares is a way of “solving” an overdetermined system of

linear equations

Ax = b,

i.e., a system in which A is a rectangular m× n matrix with more equations than

unknowns (when m > n). Historically, the method of least squares was used by

Gauss and Legendre to solve problems in astronomy and geodesy. The method was

first published by Legendre in 1805 in a paper on methods for determining the orbits

of comets. However, Gauss had already used the method of least squares as early as

1801 to determine the orbit of the asteroid Ceres, and he published a paper about

it in 1810 after the discovery of the asteroid Pallas. Incidentally, it is in that same

paper that Gaussian elimination using pivots is introduced.

387
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The reason why more equations than unknowns arise in such problems is that

repeated measurements are taken to minimize errors. This produces an overdeter-

mined and often inconsistent system of linear equations. For example, Gauss solved

a system of eleven equations in six unknowns to determine the orbit of the asteroid

Pallas. As a concrete illustration, suppose that we observe the motion of a small

object, assimilated to a point, in the plane. From our observations, we suspect that

this point moves along a straight line, say of equation y = dx+ c. Suppose that we

observed the moving point at three different locations (x1,y1), (x2,y2), and (x3,y3).
Then we should have

c+ dx1 = y1,

c+ dx2 = y2,

c+ dx3 = y3.

If there were no errors in our measurements, these equations would be compatible,

and c and d would be determined by only two of the equations. However, in the

presence of errors, the system may be inconsistent. Yet we would like to find c and

d!

The idea of the method of least squares is to determine (c,d) such that it mini-

mizes the sum of the squares of the errors, namely,

(c+ dx1− y1)
2 +(c+ dx2− y2)

2 +(c+ dx3− y3)
2.

In general, for an overdetermined m× n system Ax = b, what Gauss and Legendre

discovered is that there are solutions x minimizing

‖Ax− b‖2

(where ‖u‖2 = u2
1 + · · ·+ u2

n, the square of the Euclidean norm of the vector u =
(u1, . . . ,un)), and that these solutions are given by the square n× n system

A⊤Ax = A⊤b,

called the normal equations. Furthermore, when the columns of A are linearly inde-

pendent, it turns out that A⊤A is invertible, and so x is unique and given by

x = (A⊤A)−1A⊤b.

Note that A⊤A is a symmetric matrix, one of the nice features of the normal equa-

tions of a least squares problem. For instance, the normal equations for the above

problem are

(
3 x1 + x2 + x3

x1 + x2 + x3 x2
1 + x2

2 + x2
3

)(
c

d

)
=

(
y1 + y2 + y3

x1y1 + x2y2 + x3y3

)
.
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In fact, given any real m× n matrix A, there is always a unique x+ of minimum

norm that minimizes ‖Ax−b‖2, even when the columns of A are linearly dependent.

How do we prove this, and how do we find x+?

Theorem 14.1. Every linear system Ax = b, where A is an m× n matrix, has a

unique least squares solution x+ of smallest norm.

Proof. Geometry offers a nice proof of the existence and uniqueness of x+. Indeed,

we can interpret b as a point in the Euclidean (affine) space Rm, and the image

subspace of A (also called the column space of A) as a subspace U of Rm (passing

through the origin). Then, we claim that x minimizes ‖Ax−b‖2 iff Ax is the orthog-

onal projection p of b onto the subspace U , which is equivalent to
−→
pb= b−Ax being

orthogonal to U .

First of all, if U⊥ is the vector space orthogonal to U , the affine space b+U⊥

intersects U in a unique point p (this follows from Lemma 2.15 (2)). Next, for any

point y ∈U , the vectors−→py and
−→
bp are orthogonal, which implies that

‖−→by‖2 = ‖−→bp‖2 + ‖−→py‖2.

Thus, p is indeed the unique point in U that minimizes the distance from b to any

point in U .

To show that there is a unique x+ of minimum norm minimizing the (square)

error ‖Ax− b‖2, we use the fact that

Rn = KerA⊕ (KerA)⊥.

Indeed, every x ∈ Rn can be written uniquely as x = u+ v, where u ∈ KerA and

v ∈ (KerA)⊥, and since u and v are orthogonal,

‖x‖2 = ‖u‖2 + ‖v‖2.

Furthermore, since u ∈ KerA, we have Au = 0, and thus Ax = p iff Av = p, which

shows that the solutions of Ax = p for which x has minimum norm must belong

to (KerA)⊥. However, the restriction of A to (KerA)⊥ is injective. This is be-

cause if Av1 = Av2, where v1,v2 ∈ (KerA)⊥, then A(v2− v2) = 0, which implies

v2− v1 ∈ KerA, and since v1,v2 ∈ (KerA)⊥, we also have v2− v1 ∈ (KerA)⊥, and

consequently, v2− v1 = 0. This shows that there is a unique x of minimum norm

minimizing ‖Ax− b‖2, and that it must belong to (KerA)⊥. ⊓⊔

The proof also shows that x minimizes ‖Ax− b‖2 iff
−→
pb = b−Ax is orthogonal

to U , which can be expressed by saying that b−Ax is orthogonal to every column

of A. However, this is equivalent to

A⊤(b−Ax) = 0, i.e., A⊤Ax = A⊤b.

Finally, it turns out that the minimum norm least squares solution x+ can be found

in terms of the pseudo-inverse A+ of A, which is itself obtained from any SVD of A.
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Definition 14.1. Given any m× n matrix A, if A =VDU⊤ is an SVD of A with

D = diag(λ1, . . . ,λr,0, . . . ,0),

where D is an m× n matrix and λi > 0, if we let

D+ = diag(1/λ1, . . . ,1/λr,0, . . . ,0),

an n×m matrix, the pseudo-inverse of A is defined by

A+ =UD+V⊤.

Actually, it seems that A+ depends on the specific choice of U and V in an SVD

(U,D,V ) for A, but the next theorem shows that this is not so.

Theorem 14.2. The least squares solution of smallest norm of the linear system

Ax = b, where A is an m× n matrix, is given by

x+ = A+b =UD+V⊤b.

Proof. First, assume that A is a (rectangular) diagonal matrix D, as above. Then,

since x minimizes ‖Dx− b‖2 iff Dx is the projection of b onto the image subspace

F of D, it is fairly obvious that x+ = D+b. Otherwise, we can write

A =VDU⊤,

where U and V are orthogonal. However, since V is an isometry,

‖Ax− b‖= ‖VDU⊤x− b‖= ‖DU⊤x−V⊤b‖.

Letting y =U⊤x, we have ‖x‖= ‖y‖, since U is an isometry, and since U is surjec-

tive, ‖Ax− b‖ is minimized iff ‖Dy−V⊤b‖ is minimized, and we have shown that

the least solution is

y+ = D+V⊤b.

Since y =U⊤x, with ‖x‖= ‖y‖, we get

x+ =UD+V⊤b = A+b.

Thus, the pseudo-inverse provides the optimal solution to the least squares problem.

⊓⊔
By Lemma 14.2 and Theorem 14.1, A+b is uniquely defined by every b, and thus

A+ depends only on A.

Let A =UΣV⊤ be an SVD for A. It is easy to check that

AA+A = A,

A+AA+ = A+,
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and both AA+ and A+A are symmetric matrices. In fact,

AA+ =UΣV⊤VΣ+U⊤ =UΣΣ+U⊤ =U

(
Ir 0

0 0m−r

)
U⊤

and

A+A =VΣ+U⊤UΣV⊤ =VΣ+ΣV⊤ =V

(
Ir 0

0 0n−r

)
V⊤.

We immediately get

(AA+)2 = AA+,

(A+A)2 = A+A,

so both AA+ and A+A are orthogonal projections (since they are both symmetric).

We claim that AA+ is the orthogonal projection onto the range of A and A+A is the

orthogonal projection onto Ker(A)⊥ = Im(A⊤), the range of A⊤.

Obviously, we have range(AA+) ⊆ range(A), and for any y = Ax ∈ range(A),
since AA+A = A, we have

AA+y = AA+Ax = Ax = y,

so the image of AA+ is indeed the range of A. It is also clear that Ker(A) ⊆
Ker(A+A), and since AA+A = A, we also have Ker(A+A)⊆ Ker(A), and so

Ker(A+A) = Ker(A).

Since A+A is Hermitian, range(A+A) = Ker(A+A)⊥ = Ker(A)⊥, as claimed.

It will also be useful to see that range(A) = range(AA+) consists of all vectors

y ∈ Rm such that

U⊤y =

(
z

0

)
,

with z ∈ Rr.

Indeed, if y = Ax, then

U⊤y =U⊤Ax =U⊤UΣV⊤x = ΣV⊤x =

(
Σr 0

0 0m−r

)
V⊤x =

(
z

0

)
,

where Σr is the r× r diagonal matrix diag(σ1, . . . ,σr). Conversely, if U⊤y =
( z

0

)
,

then y =U
( z

0

)
, and
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AA+y =U

(
Ir 0

0 0m−r

)
U⊤y

=U

(
Ir 0

0 0m−r

)
U⊤U

(
z

0

)

=U

(
Ir 0

0 0m−r

)(
z

0

)

=U

(
z

0

)
= y,

which shows that y belongs to the range of A.

Similarly, we claim that range(A+A) = Ker(A)⊥ consists of all vectors y ∈ Rn

such that

V⊤y =

(
z

0

)
,

with z ∈ Rr.

If y = A+Au, then

y = A+Au =V

(
Ir 0

0 0n−r

)
V⊤u =V

(
z

0

)
,

for some z ∈ Rr. Conversely, if V⊤y =
( z

0

)
, then y =V

( z

0

)
, and so

A+AV

(
z

0

)
=V

(
Ir 0

0 0n−r

)
V⊤V

(
z

0

)

=V

(
Ir 0

0 0n−r

)(
z

0

)

=V

(
z

0

)
= y,

which shows that y ∈ range(A+A).
If A is a symmetric matrix, then in general, there is no SVD UΣV⊤ of A with U =

V . However, if A is positive semidefinite, then the eigenvalues of A are nonnegative,

and so the nonzero eigenvalues of A are equal to the singular values of A and SVDs

of A are of the form

A =UΣU⊤.

Analogous results hold for complex matrices, but in this case, U and V are unitary

matrices and AA+ and A+A are Hermitian orthogonal projections.

If A is a normal matrix, which means that AA⊤ = A⊤A, then there is an intimate

relationship between SVD’s of A and block diagonalizations of A. As a consequence,

the pseudo-inverse of a normal matrix A can be obtained directly from a block diag-

onalization of A.
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If A is a (real) normal matrix, then we know from Theorem 12.7 that A can be

block diagonalized with respect to an orthogonal matrix U as

A =UΛU⊤,

where Λ is the (real) block diagonal matrix

Λ = diag(B1, . . . ,Bn),

consisting either of 2× 2 blocks of the form

B j =

(
λ j −µ j

µ j λ j

)

with µ j 6= 0, or of one-dimensional blocks Bk = (λk). Then we have the following

proposition:

Proposition 14.1. For any (real) normal matrix A and any block diagonalization

A =UΛU⊤ of A as above, the pseudo-inverse of A is given by

A+ =UΛ+U⊤,

where Λ+ is the pseudo-inverse of Λ . Furthermore, if

Λ =

(
Λr 0

0 0

)
,

where Λr has rank r, then

Λ+ =

(
Λ−1

r 0

0 0

)
.

Proof. Assume that B1, . . . ,Bp are 2×2 blocks and that λ2p+1, . . . ,λn are the scalar

entries. We know that the numbers λ j± iµ j, and the λ2p+k are the eigenvalues of A.

Let ρ2 j−1 = ρ2 j =
√

λ 2
j + µ2

j for j = 1, . . . , p, ρ2p+ j = λ j for j = 1, . . . ,n−2p, and

assume that the blocks are ordered so that ρ1 ≥ ρ2 ≥ ·· · ≥ ρn. Then it is easy to see

that

UU⊤ =U⊤U =UΛU⊤UΛ⊤U⊤ =UΛΛ⊤U⊤,

with

ΛΛ⊤ = diag(ρ2
1 , . . . ,ρ

2
n ),

so the singular values σ1 ≥ σ2 ≥ ·· · ≥ σn of A, which are the nonnegative square

roots of the eigenvalues of AA⊤, are such that

σ j = ρ j, 1≤ j ≤ n.

We can define the diagonal matrices

Σ = diag(σ1, . . . ,σr,0, . . . ,0),



394 14 Applications of SVD and Pseudo-inverses

where r = rank(A), σ1 ≥ ·· · ≥ σr > 0 and

Θ = diag(σ−1
1 B1, . . . ,σ

−1
2p Bp,1, . . . ,1),

so that Θ is an orthogonal matrix and

Λ =ΘΣ = (B1, . . . ,Bp,λ2p+1, . . . ,λr,0, . . . ,0).

But then we can write

A =UΛU⊤ =UΘΣU⊤,

and we if let V = UΘ , since U is orthogonal and Θ is also orthogonal, V is also

orthogonal and A =VΣU⊤ is an SVD for A. Now we get

A+ =UΣ+V⊤ =UΣ+Θ⊤U⊤.

However, since Θ is an orthogonal matrix, Θ⊤ = Θ−1, and a simple calculation

shows that

Σ+Θ⊤ = Σ+Θ−1 = Λ+,

which yields the formula

A+ =UΛ+U⊤.

Also observe that if we write

Λr = (B1, . . . ,Bp,λ2p+1, . . . ,λr),

then Λr is invertible and

Λ+ =

(
Λ−1

r 0

0 0

)
.

Therefore, the pseudo-inverse of a normal matrix can be computed directly from

any block diagonalization of A, as claimed. ⊓⊔

The following properties, due to Penrose, characterize the pseudo-inverse of a

matrix. We have already proved that the pseudo-inverse satisfies these equations.

For a proof of the converse, see Kincaid and Cheney [6].

Lemma 14.1. Given any m× n matrix A (real or complex), the pseudo-inverse A+

of A is the unique n×m matrix satisfying the following properties:

AA+A = A,

A+AA+ = A+,

(AA+)⊤ = AA+,

(A+A)⊤ = A+A.

If A is an m×n matrix of rank n (and so m≥ n), it is immediately shown that the

QR-decomposition in terms of Householder transformations applies as follows:
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There are n m×m matrices H1, . . . ,Hn, Householder matrices or the identity, and

an upper triangular m× n matrix R of rank n such that

A = H1 · · ·HnR.

Then, because each Hi is an isometry,

‖Ax− b‖= ‖Rx−Hn · · ·H1b‖,

and the least squares problem Ax = b is equivalent to the system

Rx = Hn · · ·H1b.

Now, the system

Rx = Hn · · ·H1b

is of the form (
R1

0m−n

)
x =

(
c

d

)
,

where R1 is an invertible n× n matrix (since A has rank n), c ∈ Rn, and d ∈ Rm−n,

and the least squares solution of smallest norm is

x+ = R−1
1 c.

Since R1 is a triangular matrix, it is very easy to invert R1.

The method of least squares is one of the most effective tools of the mathematical

sciences. There are entire books devoted to it. Readers are advised to consult Strang

[7], Golub and Van Loan [4], Demmel [1], and Trefethen and Bau [8], where exten-

sions and applications of least squares (such as weighted least squares and recursive

least squares) are described. Golub and Van Loan [4] also contains a very extensive

bibliography, including a list of books on least squares.

14.2 Data Compression and SVD

Among the many applications of SVD, a very useful one is data compression, no-

tably for images. In order to make precise the notion of closeness of matrices, we

review briefly the notion of matrix norm. We assume that the reader is familiar with

the concept of a norm in a vector space. The concept of a norm is defined in Sec-

tion 21.2 of the appendix, and the reader may want to review it before reading any

further.

A familiar example of a norm on Rn (resp. Cn) is the lp norm,

‖u‖p =

(
n

∑
i=1

|ui|p
)1/p

,
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where p≥ 1. When p = 1, we have

‖u‖1 =
n

∑
i=1

|ui|;

when p = 2, we have the Euclidean norm,

‖u‖2 =

√
n

∑
i=1

|ui|2;

and when p = ∞, we have

‖u‖∞ = max
1≤i≤n

|ui|.

Now let E and and F be two normed vector spaces (we will use the same notation,

‖‖, for the norms on E and F). If A : E→F is a linear map, we say that A is bounded

iff there is some constant c≥ 0 such that

‖Au‖ ≤ c‖u‖ ,

for all u ∈ E .

It is well known that a linear map is continuous iff it is bounded. Also, if E is

finite-dimensional, then a linear map is always bounded. The norms on E and F

induce a norm on bounded linear maps as follows:

Definition 14.2. Given two normed vector spaces E and F , for any linear map

A : E→ F , we define ‖A‖ by

‖A‖= sup
u 6=0

‖Au‖
‖u‖ = sup

‖u‖=1

‖Au‖ .

Proposition 14.2. Given two normed vector spaces E and F, the quantity ‖A‖ is

a norm on bounded linear maps A : E → F. Furthermore, ‖Au‖ ≤ ‖A‖‖u‖ for all

u ∈ E.

The norm ‖A‖ on (bounded) linear maps defined as above is called an operator

norm or induced norm or subordinate norm. From Proposition 14.2, we deduce that

if A : E → F and B : F → G are bounded linear maps, where E,F,G are normed

vector spaces, then

‖BA‖ ≤ ‖A‖‖B‖ .
Let us now consider m×n matrices. A matrix norm is simply a norm on Rmn (or

Cmn). Some authors require a matrix norm to satisfy ‖AB‖ ≤ ‖A‖‖B‖ whenever AB

makes sense. We immediately have the subordinate matrix norms induced by the lp

norms, but there are also useful matrix norms that are not subordinate norms.

For example, we have the Frobenius norm (also known as Schur norm or Hilbert

norm) defined so that if A = (ai j) is an m× n matrix, then



14.2 Data Compression and SVD 397

‖A‖F =
√

∑
i j

|ai j|2.

We leave the following useful proposition as an exercise:

Proposition 14.3. Let A be an m×n matrix (over R or C) and let σ1≥σ2≥ ·· · ≥σp

be its singular values (where p = min(m,n)). Then the following properties hold:

1. ‖Au‖ ≤ ‖A‖‖u‖, where ‖A‖ is a subordinate norm and ‖Au‖2 ≤ ‖A‖F ‖u‖2,

where ‖A‖F is the Frobenius norm.

2. ‖AB‖ ≤ ‖A‖‖B‖, for a subordinate norm or the Frobenius norm.

3. ‖UAV‖ = ‖A‖ if U and V are orthogonal (or unitary) and ‖‖ is the Frobenius

norm or the subordinate norm ‖‖2.

4. ‖A‖∞ = maxi ∑ j |ai j|.
5. ‖A‖1 = max j ∑i |ai j|.
6. ‖A‖2 = σ1 =

√
λmax(A∗A), where λmax(A

∗A) is the largest eigenvalue of A∗A.

7. ‖A‖F =
√

∑
p
i=1 σ2

i , where p = min(m,n).

8. ‖A‖2 ≤ ‖A‖F ≤
√

p‖A‖2.

In (4), (5), (6), (8), the matrix norms are the subordinate norms induced by the

corresponding norms (‖‖∞, ‖‖1 and ‖‖2) on Rm and Rn.

Having all this, given an m× n matrix of rank r, we would like to find a best

approximation of A by a matrix B of rank k ≤ r (actually, k < r) so that ‖A−B‖2

(or ‖A−B‖F ) is minimized.

Proposition 14.4. Let A be an m×n matrix of rank r and let VDU⊤ = A be an SVD

for A. Write ui for the columns of U, vi for the columns of V , and σ1 ≥ σ2 ≥ ·· · ≥ σp

for the singular values of A (p = min(m,n)). Then a matrix of rank k < r closest to

A (in the ‖‖2 norm) is given by

Ak =
k

∑
i=1

σiviu
⊤
i =V diag(σ1, . . . ,σk)U

⊤

and ‖A−Ak‖2 = σk+1.

Proof. By construction, Ak has rank k, and we have

‖A−Ak‖2 =
∥∥∥

p

∑
i=k+1

σiviu
⊤
i

∥∥∥
2
=
∥∥∥Vdiag(0, . . . ,0,σk+1, . . . ,σp)U

⊤
∥∥∥

2
= σk+1.

It remains to show that ‖A−B‖2 ≥ σk+1 for all rank-k matrices B. Let B be any

rank-k matrix, so its kernel has dimension n− k. The subspace Uk+1 spanned by

(u1, . . . ,uk+1) has dimension k+ 1, and because the sum of the dimensions of the

kernel of B and of Uk+1 is (n−k)+k+1= n+1, these two subspaces must intersect

in a subspace of dimension at least 1. Pick any unit vector h in Ker(B)∩Uk+1. Then

since Bh = 0, we have
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‖A−B‖2
2 ≥ ‖(A−B)h‖22 = ‖Ah‖2

2 =
∥∥∥VDU⊤h

∥∥∥
2

2
≥ σ2

k+1

∥∥∥U⊤h

∥∥∥
2

2
= σ2

k+1,

which proves our claim. ⊓⊔
Note that Ak can be stored using (m+n)k entries, as opposed to mn entries. When

k≪m, this is a substantial gain.

A nice example of the use of Proposition 14.4 in image compression is given in

Demmel [1], Chapter 3, Section 3.2.3, pages 113–115; see the Matlab demo.

An interesting topic that we have not addressed is the actual computation of an

SVD. This is a very interesting but tricky subject. Most methods reduce the compu-

tation of an SVD to the diagonalization of a well-chosen symmetric matrix (which

is not A⊤A). Interested readers should read Section 5.4 of Demmel’s excellent book

[1], which contains an overview of most known methods and an extensive list of

references.

14.3 Principal Components Analysis (PCA)

Suppose we have a set of data consisting of n points X1, . . . ,Xn, with each Xi ∈ Rd

viewed as a row vector.

Think of the Xi’s as persons, and if Xi = (xi1, . . . ,xid), each xi j is the value of

some feature (or attribute) of that person. For example, the Xi’s could be mathe-

maticians, d = 2, and the first component, xi1, of Xi could be the year that Xi was

born, and the second component, xi2, the length of the beard of Xi in centimeters.

Here is a small data set:

Name year length

Carl Friedrich Gauss 1777 0

Camille Jordan 1838 12

Adrien-Marie Legendre 1752 0

Bernhard Riemann 1826 15

David Hilbert 1862 2

Henri Poincaré 1854 5

Emmy Noether 1882 0

Karl Weierstrass 1815 0

Eugenio Beltrami 1835 2

Hermann Schwarz 1843 20

We usually form the n× d matrix X whose ith row is Xi, with 1 ≤ i ≤ n. Then

the jth column is denoted by C j (1≤ j ≤ d). It is sometimes called a feature vector,

but this terminology is far from being universally accepted. In fact, many people in

computer vision call the data points Xi feature vectors!

The purpose of principal components analysis, for short PCA, is to identify pat-

terns in data and understand the variance–covariance structure of the data. This is

useful for the following tasks:
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1. Data reduction: Often much of the variability of the data can be accounted for

by a smaller number of principal components.

2. Interpretation: PCA can show relationships that were not previously suspected.

Given a vector (a sample of measurements) x = (x1, . . . ,xn) ∈ Rn, recall that the

mean (or average) x of x is given by

x =
∑n

i=1 xi

n
.

We let x− x denote the centered data point

x− x = (x1− x, . . . ,xn− x).

In order to measure the spread of the xi’s around the mean, we define the sample

variance (for short, variance) var(x) (or s2) of the sample x by

var(x) =
∑n

i=1(xi− x)2

n− 1
.

There is a reason for using n−1 instead of n. The above definition makes var(x)
an unbiased estimator of the variance of the random variable being sampled. How-

ever, we don’t need to worry about this. Curious readers will find an explanation of

these peculiar definitions in Epstein [2] (Chapter 14, Section 14.5), or in any decent

statistics book.

Given two vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn), the sample covariance

(for short, covariance) of x and y is given by

cov(x,y) =
∑n

i=1(xi− x)(yi− y)

n− 1
.

The covariance of x and y measures how x and y vary from the mean with respect

to each other. Obviously, cov(x,y) = cov(y,x) and cov(x,x) = var(x).
Note that

cov(x,y) =
(x− x)⊤(y− y)

n− 1
.

We say that x and y are uncorrelated iff cov(x,y) = 0.

Finally, given an n×d matrix X of n points Xi, for PCA to be meaningful, it will

be necessary to translate the origin to the centroid (or center of gravity) µ of the

Xi’s, defined by

µ =
1

n
(X1 + · · ·+Xn).

Observe that if µ =(µ1, . . . ,µd), then µ j is the mean of the vectorC j (the jth column

of X).

We let X − µ denote the matrix whose ith row is the centered data point Xi− µ
(1≤ i≤ n). Then, the sample covariance matrix (for short, covariance matrix) of X
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is the d× d symmetric matrix

Σ =
1

n− 1
(X− µ)⊤(X − µ) = (cov(Ci,C j)).

Remark: The factor 1
n−1

is irrelevant for our purposes and can be ignored.

Here is the matrix X− µ in the case of our bearded mathematicians: Since

µ1 = 1828.4, µ2 = 5.6,

we get

Name year length

Carl Friedrich Gauss −51.4 −5.6

Camille Jordan 9.6 6.4

Adrien-Marie Legendre −76.4 −5.6
Bernhard Riemann −2.4 9.4

David Hilbert 33.6 −3.6

Henri Poincaré 25.6 −0.6

Emmy Noether 53.6 −5.6

Karl Weierstrass 13.4 −5.6
Eugenio Beltrami 6.6 −3.6

Hermann Schwarz 14.6 14.4

We can think of the vector C j as representing the features of X in the direction

e j (the jth canonical basis vector in Rd , namely e j = (0, . . . ,1, . . .0), with a 1 in the

jth position).

If v ∈ Rd is a unit vector, we wish to consider the projection of the data points

X1, . . . ,Xn onto the line spanned by v. Recall from Euclidean geometry that if x∈Rd

is any vector and v ∈ Rd is a unit vector, the projection of x onto the line spanned

by v is

〈x,v〉v.
Thus, with respect to the basis v, the projection of x has coordinate 〈x,v〉. If x is

represented by a row vector and v by a column vector, then

〈x,v〉= xv.

Therefore, the vector Y ∈ Rn consisting of the coordinates of the projections of

X1, . . . ,Xn onto the line spanned by v is given by Y = Xv, and this is the linear

combination

Xv = v1C1 + · · ·+ vdCd

of the columns of X (with v = (v1, . . . ,vd)).
Observe that because µ j is the mean of the vector C j (the jth column of X), we

get

Y = Xv = v1µ1 + · · ·+ vdµd ,
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and so the centered point Y −Y is given by

Y −Y = v1(C1− µ1)+ · · ·+ vd(Cd− µd) = (X− µ)v.

Furthermore, if Y = Xv and Z = Xw, then

cov(Y,Z) =
((X− µ)v)⊤(X− µ)w

n− 1

= v⊤
1

n− 1
(X− µ)⊤(X − µ)w

= v⊤Σw,

where Σ is the covariance matrix of X . Since Y −Y has zero mean, we have

var(Y ) = var(Y −Y ) = v⊤
1

n− 1
(X− µ)⊤(X− µ)v.

The above suggests that we should move the origin to the centroid µ of the Xi’s and

consider the matrix X− µ of the centered data points Xi− µ .

From now on, beware that we denote the columns of X−µ by C1, . . . ,Cd and that

Y denotes the centered point Y = (X− µ)v = ∑d
j=1 v jC j , where v is a unit vector.

Basic idea of PCA: The principal components of X are uncorrelated projections Y

of the data points X1, . . ., Xn onto some directions v (where the v’s are unit vectors)

such that var(Y ) is maximal.

This suggests the following definition:

Definition 14.3. Given an n× d matrix X of data points X1, . . . ,Xn, if µ is the cen-

troid of the Xi’s, then a first principal component of X (first PC) is a centered point

Y1 = (X − µ)v1, the projection of X1, . . . ,Xn onto a direction v1 such that var(Y1) is

maximized, where v1 is a unit vector (recall that Y1 = (X − µ)v1 is a linear combi-

nation of the C j’s, the columns of X− µ).

More generally, if Y1, . . . ,Yk are k principal components of X along some unit

vectors v1, . . . ,vk, where 1≤ k < d, a (k+1)th principal component of X ((k+1)th
PC) is a centered point Yk+1 = (X − µ)vk+1, the projection of X1, . . . ,Xn onto some

direction vk+1 such that var(Yk+1) is maximized, subject to cov(Yh,Yk+1) = 0 for all

h with 1 ≤ h ≤ k, and where vk+1 is a unit vector (recall that Yh = (X − µ)vh is a

linear combination of the C j’s). The vh are called principal directions.

The following lemma is the key to the main result about PCA:

Lemma 14.2. If A is a symmetric d×d matrix with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λd

and if (u1, . . . ,ud) is any orthonormal basis of eigenvectors of A, where ui is a unit

eigenvector associated with λi, then

max
x6=0

x⊤Ax

x⊤x
= λ1
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(with the maximum attained for x = u1) and

max
x6=0,x∈{u1,...,uk}⊥

x⊤Ax

x⊤x
= λk+1

(with the maximum attained for x = uk+1), where 1≤ k ≤ d− 1.

Proof. First, observe that

max
x6=0

x⊤Ax

x⊤x
= max

x
{x⊤Ax | x⊤x = 1},

and similarly,

max
x6=0,x∈{u1,...,uk}⊥

x⊤Ax

x⊤x
= max

x

{
x⊤Ax | (x ∈ {u1, . . . ,uk}⊥)∧ (x⊤x = 1)

}
.

Since A is a symmetric matrix, its eigenvalues are real and it can be diagonalized

with respect to an orthonormal basis of eigenvectors, so let (u1, . . . ,ud) be such a

basis. If we write

x =
d

∑
i=1

xiui,

a simple computation shows that

x⊤Ax =
d

∑
i=1

λix
2
i .

If x⊤x = 1, then ∑d
i=1 x2

i = 1, and since we assumed that λ1 ≥ λ2 ≥ ·· · ≥ λd , we get

x⊤Ax =
d

∑
i=1

λix
2
i ≤ λ1

(
d

∑
i=1

x2
i

)
= λ1.

Thus,

max
x

{
x⊤Ax | x⊤x = 1

}
≤ λ1,

and since this maximum is achieved for e1 = (1,0, . . . ,0), we conclude that

max
x

{
x⊤Ax | x⊤x = 1

}
= λ1.

Next, observe that x ∈ {u1, . . . ,uk}⊥ and x⊤x = 1 iff x1 = · · ·= xk = 0 and ∑d
i=1 xi =

1. Consequently, for such an x, we have

x⊤Ax =
d

∑
i=k+1

λix
2
i ≤ λk+1

(
d

∑
i=k+1

x2
i

)
= λk+1.
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Thus,

max
x

{
x⊤Ax | (x ∈ {u1, . . . ,uk}⊥)∧ (x⊤x = 1)

}
≤ λk+1,

and since this maximum is achieved for ek+1 = (0, . . . ,0,1,0, . . . ,0) with a 1 in

position k+ 1, we conclude that

max
x

{
x⊤Ax | (x ∈ {u1, . . . ,uk}⊥)∧ (x⊤x = 1)

}
= λk+1,

as claimed. ⊓⊔

The quantity

x⊤Ax

x⊤x

is known as the Rayleigh–Ritz ratio and Lemma 14.2 is often known as part of the

Rayleigh–Ritz theorem.

Lemma 14.2 also holds if A is a Hermitian matrix and if we replace x⊤Ax by

x∗Ax and x⊤x by x∗x. The proof is unchanged, since a Hermitian matrix has real

eigenvalues and is diagonalized with respect to an orthonormal basis of eigenvectors

(with respect to the Hermitian inner product).

We then have the following fundamental result showing how the SVD of X yields

the PCs:

Theorem 14.3. (SVD yields PCA) Let X be an n×d matrix of data points X1, . . . ,Xn,

and let µ be the centroid of the Xi’s. If X−µ =V DU⊤ is an SVD decomposition of

X−µ and if the main diagonal of D consists of the singular values σ1 ≥ σ2 ≥ ·· · ≥
σd , then the centered points Y1, . . . ,Yd , where

Yk = (X− µ)uk = kth column of VD

and uk is the kth column of U, are d principal components of X. Furthermore,

var(Yk) =
σ2

k

n− 1

and cov(Yh,Yk) = 0, whenever h 6= k and 1≤ k,h≤ d.

Proof. Recall that for any unit vector v, the centered projection of the points

X1, . . . ,Xn onto the line of direction v is Y = (X − µ)v and that the variance of Y

is given by

var(Y ) = v⊤
1

n− 1
(X− µ)⊤(X− µ)v.

Since X− µ =VDU⊤, we get
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var(Y ) = v⊤
1

(n− 1)
(X− µ)⊤(X− µ)v

= v⊤
1

(n− 1)
UDV⊤VDU⊤v

= v⊤U
1

(n− 1)
D2U⊤v.

Similarly, if Y = (X − µ)v and Z = (X − µ)w, then the covariance of Y and Z is

given by

cov(Y,Z) = v⊤U
1

(n− 1)
D2U⊤w.

Obviously, U 1
(n−1)

D2U⊤ is a symmetric matrix whose eigenvalues are
σ 2

1
n−1
≥ ·· · ≥

σ 2
d

n−1
, and the columns of U form an orthonormal basis of unit eigenvectors.

We proceed by induction on k. For the base case, k = 1, maximizing var(Y ) is

equivalent to maximizing

v⊤U
1

(n− 1)
D2U⊤v,

where v is a unit vector. By Lemma 14.2, the maximum of the above quantity is the

largest eigenvalue of U 1
(n−1)

D2U⊤, namely
σ 2

1
n−1

, and it is achieved for u1, the first

columnn of U . Now we get

Y1 = (X− µ)u1 =VDU⊤u1,

and since the columns of U form an orthonormal basis, U⊤u1 = e1 = (1,0, . . . ,0),
and so Y1 is indeed the first column of VD.

By the induction hypothesis, the centered points Y1, . . . ,Yk, where Yh = (X−µ)uh

and u1, . . . ,uk are the first k columns of U , are k principal components of X . Because

cov(Y,Z) = v⊤U
1

(n− 1)
D2U⊤w,

where Y = (X−µ)v and Z = (X−µ)w, the condition cov(Yh,Z) = 0 for h = 1, . . . ,k
is equivalent to the fact that w belongs to the orthogonal complement of the subspace

spanned by {u1, . . . ,uk}, and maximizing var(Z) subject to cov(Yh,Z) = 0 for h =
1, . . . ,k is equivalent to maximizing

w⊤U
1

(n− 1)
D2U⊤w,

where w is a unit vector orthogonal to the subspace spanned by {u1, . . . ,uk}. By

Lemma 14.2, the maximum of the above quantity is the (k + 1)th eigenvalue of

U 1
(n−1)D

2U⊤, namely
σ 2

k+1

n−1
, and it is achieved for uk+1, the (k+1)th columnn of U .

Now we get

Yk+1 = (X− µ)uk+1 =VDU⊤uk+1,
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and since the columns of U form an orthonormal basis, U⊤uk+1 = ek+1, and Yk+1

is indeed the (k+ 1)th column of VD, which completes the proof of the induction

step. ⊓⊔
The d columns u1, . . . ,ud of U are usually called the principal directions of X−µ

(and X). We note that not only do we have cov(Yh,Yk) = 0 whenever h 6= k, but the

directions u1, . . . ,ud along which the data are projected are mutually orthogonal.

We know from our study of SVD that σ2
1 , . . . ,σ

2
d are the eigenvalues of the sym-

metric positive semidefinite matrix (X − µ)⊤(X − µ) and that u1, . . . ,ud are corre-

sponding eigenvectors. Numerically, it is preferable to use SVD on X−µ rather than

to compute explicitly (X−µ)⊤(X−µ) and then diagonalize it. Indeed, the explicit

computation of A⊤A from a matrix A can be numerically quite unstable, and good

SVD algorithms avoid computing A⊤A explicitly.

In general, since an SVD of X is not unique, the principal directions u1, . . . ,ud

are not unique. This can happen when a data set has some rotational symmetries,

and in such a case, PCA is not a very good method for analyzing the data set.

14.4 Best Affine Approximation

A problem very close to PCA (and based on least squares) is to best approximate a

data set of n points X1, . . . ,Xn, with Xi ∈ Rd , by a p-dimensional affine subspace A

of Rd , with 1≤ p≤ d− 1 (the terminology rank d− p is also used).

First, consider p = d− 1. Then A = A1 is an affine hyperplane (in Rd), and it is

given by an equation of the form

a1x1 + · · ·+ adxd + c = 0.

By best approximation, we mean that (a1, . . . ,ad ,c) solves the homogeneous linear

system



x11 · · · x1d 1
...

...
...

...

xn1 · · · xnd 1







a1

...

ad

c


=




0
...

0

0




in the least squares sense, subject to the condition that a = (a1, . . . ,ad) is a unit

vector, that is, a⊤a = 1, where Xi = (xi1, · · · ,xid).
If we form the symmetric matrix




x11 · · · x1d 1
...

...
...

...

xn1 · · · xnd 1




⊤


x11 · · · x1d 1
...

...
...

...

xn1 · · · xnd 1




involved in the normal equations, we see that the bottom row (and last column) of

that matrix is
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nµ1 · · · nµd n,

where nµ j = ∑n
i=1 xi j is n times the mean of the column C j of X .

Therefore, if (a1, . . . ,ad ,c) is a least squares solution, that is, a solution of the

normal equations, we must have

nµ1a1 + · · ·+ nµdad + nc = 0,

that is,

a1µ1 + · · ·+ adµd + c = 0,

which means that the hyperplane A1 must pass through the centroid µ of the data

points X1, . . . ,Xn. Then we can rewrite the original system with respect to the cen-

tered data Xi− µ , and we find that the variable c drops out and we get the system

(X− µ)a = 0,

where a = (a1, . . . ,ad).
Thus, we are looking for a unit vector a solving (X−µ)a = 0 in the least squares

sense, that is, some a such that a⊤a = 1 minimizing

a⊤(X− µ)⊤(X − µ)a.

Compute some SVD VDU⊤ of X−µ , where the main diagonal of D consists of the

singular values σ1 ≥ σ2 ≥ ·· · ≥ σd of X− µ arranged in descending order. Then

a⊤(X− µ)⊤(X − µ)a = a⊤UD2U⊤a,

where D2 = diag(σ2
1 , . . . ,σ

2
d ) is a diagonal matrix, so pick a to be the last column

in U (corresponding to the smallest eigenvalue σ2
d of (X − µ)⊤(X − µ)). This is a

solution to our best fit problem.

Therefore, if Ud−1 is the linear hyperplane defined by a, that is,

Ud−1 = {u ∈ Rd | 〈u,a〉= 0},

where a is the last column in U for some SVD VDU⊤ of X − µ , we have shown

that the affine hyperplane A1 = µ +Ud−1 is a best approximation of the data set

X1, . . . ,Xn in the least squares sense.

Is is easy to show that this hyperplane A1 = µ +Ud−1 minimizes the sum of the

square distances of each Xi to its orthogonal projection onto A1. Also, since Ud−1 is

the orthogonal complement of a, the last column of U , we see that Ud−1 is spanned

by the first d− 1 columns of U , that is, the first d− 1 principal directions of X− µ .

All this can be generalized to a best (d− k)-dimensional affine subspace Ak ap-

proximating X1, . . . ,Xn in the least squares sense (1 ≤ k ≤ d− 1). Such an affine

subspace Ak is cut out by k independent hyperplanes Hi (with 1≤ i≤ k), each given

by some equation

ai1x1 + · · ·+ aidxd + ci = 0.
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If we write ai = (ai1, · · · ,aid), to say that the Hi are independent means that

a1, . . . ,ak are linearly independent. In fact, we may assume that a1, . . . ,ak form an

orthonormal system.

Then, finding a best (d− k)-dimensional affine subspace Ak amounts to solving

the homogeneous linear system




X 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 X 1







a1

c1

...

ak

ck




=




0
...

0


 ,

in the least squares sense, subject to the conditions a⊤i a j = δi j, for all i, j with

1≤ i, j ≤ k, where the matrix of the system is a block diagonal matrix consisting of

k diagonal blocks (X ,1), where 1 denotes the column vector (1, . . . ,1) ∈Rn.

Again, it is easy to see that each hyperplane Hi must pass through the centroid µ
of X1, . . . ,Xn, and by switching to the centered data Xi− µ we get the system




X− µ 0 · · · 0
...

...
. . .

...

0 0 · · · X− µ







a1

...

ak


 =




0
...

0


 ,

with a⊤i a j = δi j for all i, j with 1≤ i, j ≤ k.

If VDU⊤ = X−µ is an SVD decomposition, it is easy to see that a least squares

solution of this system is given by the last k columns of U , assuming that the main

diagonal of D consists of the singular values σ1≥σ2≥ ·· · ≥σd of X−µ arranged in

descending order. But now the (d−k)-dimensional subspace Ud−k cut out by the hy-

perplanes defined by a1, . . . ,ak is simply the orthogonal complement of (a1, . . . ,ak),
which is the subspace spanned by the first d− k columns of U .

So the best (d− k)-dimensional affine subpsace Ak approximating X1, . . . ,Xn in

the least squares sense is

Ak = µ +Ud−k,

where Ud−k is the linear subspace spanned by the first d− k principal directions

of X − µ , that is, the first d− k columns of U . Consequently, we get the following

interesting interpretation of PCA (actually, principal directions):

Theorem 14.4. Let X be an n× d matrix of data points X1, . . . ,Xn, and let µ be the

centroid of the Xi’s. If X−µ =V DU⊤ is an SVD decomposition of X−µ and if the

main diagonal of D consists of the singular values σ1 ≥ σ2 ≥ ·· · ≥ σd , then a best

(d−k)-dimensional affine approximation Ak of X1, . . . ,Xn in the least squares sense

is given by

Ak = µ +Ud−k,

where Ud−k is the linear subspace spanned by the first d− k columns of U, the first

d− k principal directions of X− µ (1≤ k ≤ d− 1).
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There are many applications of PCA to data compression, dimension reduction,

and pattern analysis. The basic idea is that in many cases, given a data set X1, . . . ,Xn,

with Xi ∈ Rd , only a “small” subset of m < d of the features is needed to describe

the data set accurately.

If u1, . . . ,ud are the principal directions of X − µ , then the first m projections

of the data (the first m principal components, i.e., the first m columns of VD) onto

the first m principal directions represent the data without much loss of information.

Thus, instead of using the original data points X1, . . . ,Xn, with Xi ∈ Rd , we can use

their projections onto the first m principal directions Y1, . . . ,Ym, where Yi ∈ Rm and

m < d, obtaining a compressed version of the original data set.

For example, PCA is used in computer vision for face recognition. Sirovitch and

Kirby (1987) seem to be the first to have had the idea of using PCA to compress

facial images. They introduced the term eigenpicture to refer to the principal direc-

tions, ui. However, an explicit face recognition algorithm was given only later, by

Turk and Pentland (1991). They renamed eigenpictures as eigenfaces.

For details on the topic of eigenfaces, see Forsyth and Ponce [3] (Chapter 22,

Section 22.3.2), where you will also find exact references to Turk and Pentland’s

papers.

Another interesting application of PCA is to the recognition of handwritten dig-

its. Such an application is described in Hastie, Tibshirani, and Friedman, [5] (Chap-

ter 14, Section 14.5.1).

14.5 Problems

14.1. We observe m positions ((x1,y1), . . . ,(xm,ym)) of a point moving in the plane

(m ≥ 2), and assume that they are roughly on a straight line. Prove that the line

y = c+ dx that minimizes the error

(c+ dx1− y1)
2 + · · ·+(c+ dxm− ym)

2

is the line of equation

y = y+ d(x− x),

where

x =
x1 + · · ·+ xm

m
,

y =
y1 + · · ·+ ym

m
,

d =
∑m

i=1(xi− x)yi

∑m
i=1(xi− x)2

.

14.2. Find the least squares solution to the problem
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2 −1

2 2

−1 2



(

x1

x2

)
=




1

1

1


 .

Do the problem again with the right-hand sides




2

−1

2


 and




2

2

−1


 .

14.3. Given m real numbers (y1, . . . ,ym), prove that the constant function c that min-

imizes the error

e = (y1− c)2 + · · ·+(ym− c)2

is the mean y of the data,

y =
y1 + · · ·+ ym

m
.

Note that the corresponding error is the variance of the data.

14.4. Given the four points (−1,2), (0,0), (1,−3), (2,−5), find (in the least squares

sense)

(i) The best horizontal line y = c;

(ii) The best line y = c+ dx;

(iii) The best parabola y = c+ dx+ ex2.

14.5. Given the four points (1,1,3), (0,3,6), (2,1,5), (0,0,0), find the best plane

(in the least squares sense)

z = c+ dx+ ey

that fits the four points.

14.6. (a) Prove that if A has independent columns, then its pseudo-inverse is

(A⊤A)−1A⊤, which is also the left inverse of A.

(b) Prove that if A has independent rows, then its pseudo-inverse is A⊤(AA⊤)−1,

which is also the right inverse of A.

14.7. Prove Proposition 14.2.

14.8. Prove Proposition 14.3.

14.9. Let A be any invertible (real) n× n matrix.

(a) Prove that for every SVD A =VDU⊤ of A, the product VU⊤ is the same (i.e.,

if V1DU⊤1 = V2DU⊤2 , then V1U⊤1 = V2U⊤2 ). What does VU⊤ have to do with the

polar form of A?

(b) Given any invertible (real) n× n matrix A, prove that there is a unique or-

thogonal matrix Q ∈ O(n) such that ‖A−Q‖F is minimal (under the Frobenius

norm). In fact, prove that Q = VU⊤, where A = VDU⊤ is an SVD of A. Moreover,

if det(A)> 0, show that Q ∈ SO(n).
What can you say if A is singular (i.e., noninvertible)?
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Chapter 15

Quadratic Optimization Problems

15.1 Quadratic Optimization: The Positive Definite Case

In this chapter, we consider two classes of quadratic optimization problems that

appear frequently in engineering and in computer science (especially in computer

vision):

1. Minimizing

f (x) =
1

2
x⊤Ax+ x⊤b

over all x ∈ Rn, or subject to linear or affine constraints.

2. Minimizing

f (x) =
1

2
x⊤Ax+ x⊤b

over the unit sphere.

In both cases, A is a symmetric matrix. We also seek necessary and sufficient con-

ditions for f to have a global minimum.

Many problems in physics and engineering can be stated as the minimization

of some energy function, with or without constraints. Indeed, it is a fundamental

principle of mechanics that nature acts so as to minimize energy. Furthermore, if a

physical system is in a stable state of equilibrium, then the energy in that state should

be minimal. For example, a small ball placed on top of a sphere is in an unstable

equilibrium position. A small motion causes the ball to roll down. On the other hand,

a ball placed inside and at the bottom of a sphere is in a stable equilibrium position,

because the potential energy is minimal.

The simplest kind of energy function is a quadratic function. Such functions can

be conveniently defined in the form

P(x) = x⊤Ax− x⊤b,

where A is a symmetric n× n matrix, and x,b, are vectors in Rn, viewed as column

vectors. Actually, for reasons that will be clear shortly, it is preferable to put a factor

411
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1
2

in front of the quadratic term, so that

P(x) =
1

2
x⊤Ax− x⊤b.

The question is, under what conditions (on A) does P(x) have a global minimum,

preferably unique?

We give a complete answer to the above question in two stages:

1. In this section, we show that if A is symmetric positive definite, then P(x) has a

unique global minimum precisely when

Ax = b.

2. In Section 15.2, we give necessary and sufficient conditions in the general case,

in terms of the pseudo-inverse of A.

We begin with the matrix version of Definition 13.2.

Definition 15.1. A symmetric positive definite matrix is a matrix whose eigenvalues

are strictly positive, and a symmetric positive semidefinite matrix is a matrix whose

eigenvalues are nonnegative.

Equivalent criteria are given in the following lemma.

Lemma 15.1. Given any Euclidean space E of dimension n, the following properties

hold:

(1) Every self-adjoint linear map f : E→ E is positive definite iff

〈x, f (x)〉 > 0

for all x ∈ E with x 6= 0.

(2) Every self-adjoint linear map f : E→ E is positive semidefinite iff

〈x, f (x)〉 ≥ 0

for all x ∈ E.

Proof. (1) First, assume that f is positive definite. Recall that every self-adjoint

linear map has an orthonormal basis (e1, . . . ,en) of eigenvectors, and let λ1, . . . ,λn

be the corresponding eigenvalues. With respect to this basis, for every x = x1e1 +
· · ·+ xnen 6= 0, we have

〈x, f (x)〉 =
〈 n

∑
i=1

xiei, f
( n

∑
i=1

xiei

)〉
=
〈 n

∑
i=1

xiei,
n

∑
i=1

λixiei

〉
=

n

∑
i=1

λix
2
i ,

which is strictly positive, since λi > 0 for i = 1, . . . ,n, and x2
i > 0 for some i, since

x 6= 0.
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Conversely, assume that

〈x, f (x)〉 > 0

for all x 6= 0. Then for x = ei, we get

〈ei, f (ei)〉= 〈ei,λiei〉= λi,

and thus λi > 0 for all i = 1, . . . ,n.

(2) As in (1), we have

〈x, f (x)〉 =
n

∑
i=1

λix
2
i ,

and since λi ≥ 0 for i = 1, . . . ,n because f is positive semidefinite, we have

〈x, f (x)〉 ≥ 0, as claimed. The converse is as in (1) except that we get only λi ≥ 0

since 〈ei, f (ei)〉 ≥ 0. ⊓⊔

Some special notation is customary (especially in the field of convex optiniza-

tion) to express that a symmetric matrix is positive definite or positive semidefinite.

Definition 15.2. Given any n×n symmetric matrix A we write A� 0 if A is positive

semidefinite and we write A≻ 0 if A is positive definite.

It should be noted that we can define the relation

A� B

between any two n× n matrices (symmetric or not) iff A− B is symmetric posi-

tive semidefinite. It is easy to check that this relation is actually a partial order on

matrices, called the positive semidefinite cone ordering; for details, see Boyd and

Vandenberghe [1], Section 2.4.

If A is symmetric positive definite, it is easily checked that A−1 is also symmetric

positive definite. Also, if C is a symmetric positive definite m×m matrix and A is

an m×n matrix of rank n (and so m≥ n), then A⊤CA is symmetric positive definite.

We can now prove that

P(x) =
1

2
x⊤Ax− x⊤b

has a global minimum when A is symmetric positive definite.

Lemma 15.2. Given a quadratic function

P(x) =
1

2
x⊤Ax− x⊤b,

if A is symmetric positive definite, then P(x) has a unique global minimum for the

solution of the linear system Ax = b. The minimum value of P(x) is

P(A−1b) =−1

2
b⊤A−1b.



414 15 Quadratic Optimization Problems

Proof. Since A is positive definite, it is invertible, since its eigenvalues are all strictly

positive. Let x = A−1b, and compute P(y)−P(x) for any y ∈ Rn. Since Ax = b, we

get

P(y)−P(x) =
1

2
y⊤Ay− y⊤b− 1

2
x⊤Ax+ x⊤b

=
1

2
y⊤Ay− y⊤Ax+

1

2
x⊤Ax

=
1

2
(y− x)⊤A(y− x).

Since A is positive definite, the last expression is nonnegative, and thus

P(y)≥ P(x)

for all y ∈ Rn, which proves that x = A−1b is a global minimum of P(x). A simple

computation yields

P(A−1b) =−1

2
b⊤A−1b.

⊓⊔

Remarks:

(1) The quadratic function P(x) is also given by

P(x) =
1

2
x⊤Ax− b⊤x,

but the definition using x⊤b is more convenient for the proof of Lemma 15.2.

(2) If P(x) contains a constant term c ∈ R, so that

P(x) =
1

2
x⊤Ax− x⊤b+ c,

the proof of Lemma 15.2 still shows that P(x) has a unique global minimum for

x = A−1b, but the minimal value is

P(A−1b) =−1

2
b⊤A−1b+ c.

Thus, when the energy function P(x) of a system is given by a quadratic function

P(x) =
1

2
x⊤Ax− x⊤b,

where A is symmetric positive definite, finding the global minimum of P(x) is equiv-

alent to solving the linear system Ax = b. Sometimes, it is useful to recast a linear

problem Ax= b as a variational problem (finding the minimum of some energy func-

tion). However, very often, a minimization problem comes with extra constraints
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that must be satisfied for all admissible solutions. For instance, we may want to

minimize the quadratic function

Q(y1,y2) =
1

2

(
y2

1 + y2
2

)

subject to the constraint

2y1− y2 = 5.

The solution for which Q(y1,y2) is minimum is no longer (y1,y2) = (0,0), but in-

stead, (y1,y2) = (2,−1), as will be shown later.

Geometrically, the graph of the function defined by z = Q(y1,y2) in R3 is a

paraboloid of revolution P with axis of revolution Oz. The constraint

2y1− y2 = 5

corresponds to the vertical plane H parallel to the z-axis and containing the line

of equation 2y1− y2 = 5 in the xy-plane. Thus, the constrained minimum of Q is

located on the parabola that is the intersection of the paraboloid P with the plane H.

A nice way to solve constrained minimization problems of the above kind is to

use the method of Lagrange multipliers. But first, let us define precisely what kind

of minimization problems we intend to solve.

Definition 15.3. The quadratic constrained minimization problem consists in mini-

mizing a quadratic function

Q(y) =
1

2
y⊤C−1y− b⊤y

subject to the linear constraints

A⊤y = f ,

where C−1 is an m×m symmetric positive definite matrix, A is an m× n matrix of

rank n (so that m≥ n), and where b,y ∈Rm (viewed as column vectors), and f ∈Rn

(viewed as a column vector).

The reason for using C−1 instead of C is that the constrained minimization prob-

lem has an interpretation as a set of equilibrium equations in which the matrix that

arises naturally is C (see Strang [10]). Since C and C−1 are both symmetric positive

definite, this doesn’t make any difference, but it seems preferable to stick to Strang’s

notation.

The method of Lagrange consists in incorporating the n constraints A⊤y = f into

the quadratic function Q(y), by introducing extra variables λ = (λ1, . . . ,λn) called

Lagrange multipliers, one for each constraint. We form the Lagrangian

L(y,λ ) = Q(y)+λ⊤(A⊤y− f ) =
1

2
y⊤C−1y− (b−Aλ )⊤y−λ⊤ f .
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We shall prove that our constrained minimization problem has a unique solution

given by the system of linear equations

C−1y+Aλ = b,

A⊤y = f ,

which can be written in matrix form as

(
C−1 A

A⊤ 0

)(
y

λ

)
=

(
b

f

)
.

Note that the matrix of this system is symmetric. Eliminating y from the first equa-

tion

C−1y+Aλ = b,

we get

y =C(b−Aλ ),

and substituting into the second equation, we get

A⊤C(b−Aλ ) = f ,

that is,

A⊤CAλ = A⊤Cb− f .

However, by a previous remark, since C is symmetric positive definite and the

columns of A are linearly independent, A⊤CA is symmetric positive definite, and

thus invertible. Note that this way of solving the system requires solving for the

Lagrange multipliers first.

Letting e = b−Aλ , we also note that the system

(
C−1 A

A⊤ 0

)(
y

λ

)
=

(
b

f

)

is equivalent to the system

e = b−Aλ ,

y =Ce,

A⊤y = f .

The latter system is called the equilibrium equations by Strang [10]. Indeed, Strang

shows that the equilibrium equations of many physical systems can be put in the

above form. This includes spring-mass systems, electrical networks, and trusses,

which are structures built from elastic bars. In each case, y, e, b, C, λ , f , and K =
A⊤CA have a physical interpretation. The matrix K = A⊤CA is usually called the

stiffness matrix. Again, the reader is referred to Strang [10].
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In order to prove that our constrained minimization problem has a unique so-

lution, we proceed to prove that the constrained minimization of Q(y) subject

to A⊤y = f is equivalent to the unconstrained maximization of another function

−P(λ ). We get P(λ ) by minimizing the Lagrangian L(y,λ ) treated as a function of

y alone. Since C−1 is symmetric positive definite and

L(y,λ ) =
1

2
y⊤C−1y− (b−Aλ )⊤y−λ⊤ f ,

by Lemma 15.2 the global minimum (with respect to y) of L(y,λ ) is obtained for

the solution y of

C−1y = b−Aλ ,

that is, when

y =C(b−Aλ ),

and the minimum of L(y,λ ) is

min
y

L(y,λ ) =−1

2
(Aλ − b)⊤C(Aλ − b)−λ⊤ f .

Letting

P(λ ) =
1

2
(Aλ − b)⊤C(Aλ − b)+λ⊤ f ,

we claim that the solution of the constrained minimization of Q(y) subject to A⊤y =
f is equivalent to the unconstrained maximization of −P(λ ). Of course, since we

minimized L(y,λ ) with respect to y, we have

L(y,λ ) ≥−P(λ )

for all y and all λ . However, when the constraint A⊤y = f holds, L(y,λ ) = Q(y),
and thus for any admissible y, which means that A⊤y = f , we have

min
y

Q(y)≥max
λ
−P(λ ).

In order to prove that the unique minimum of the constrained problem Q(y) subject

to A⊤y = f is the unique maximum of −P(λ ), we compute Q(y)+P(λ ).

Lemma 15.3. The quadratic constrained minimization problem of Definition 15.3

has a unique solution (y,λ ) given by the system

(
C−1 A

A⊤ 0

)(
y

λ

)
=

(
b

f

)
.

Furthermore, the component λ of the above solution is the unique value for which

−P(λ ) is maximum.

Proof. As we suggested earlier, let us compute Q(y)+P(λ ), assuming that the con-

straint A⊤y = f holds. Eliminating f , since b⊤y = y⊤b and λ⊤A⊤y = y⊤Aλ , we
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get

Q(y)+P(λ ) =
1

2
y⊤C−1y− b⊤y+

1

2
(Aλ − b)⊤C(Aλ − b)+λ⊤ f

=
1

2
(C−1y+Aλ − b)⊤C(C−1y+Aλ − b).

Since C is positive definite, the last expression is nonnegative. In fact, it is null iff

C−1y+Aλ − b = 0,

that is,

C−1y+Aλ = b.

But then the unique constrained minimum of Q(y) subject to A⊤y = f is equal to

the unique maximum of −P(λ ) exactly when A⊤y = f and C−1y+Aλ = b, which

proves the lemma. ⊓⊔

Remarks:

(1) There is a form of duality going on in this situation. The constrained minimiza-

tion of Q(y) subject to A⊤y = f is called the primal problem, and the uncon-

strained maximization of −P(λ ) is called the dual problem. Duality is the fact

stated slightly loosely as

min
y

Q(y) = max
λ
−P(λ ).

Recalling that e = b−Aλ , since

P(λ ) =
1

2
(Aλ − b)⊤C(Aλ − b)+λ⊤ f ,

we can also write

P(λ ) =
1

2
e⊤Ce+λ⊤ f .

This expression often represents the total potential energy of a system. Again,

the optimal solution is the one that minimizes the potential energy (and thus

maximizes −P(λ )).
(2) It is immediately verified that the equations of Lemma 15.3 are equivalent to the

equations stating that the partial derivatives of the Lagrangian L(y,λ ) are null:

∂L

∂yi
= 0, i = 1, . . . ,m,

∂L

∂λ j
= 0, j = 1, . . . ,n.

Thus, the constrained minimum of Q(y) subject to A⊤y = f is an extremum of

the Lagrangian L(y,λ ). As we showed in Lemma 15.3, this extremum corre-
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sponds to simultaneously minimizing L(y,λ ) with respect to y and maximiz-

ing L(y,λ ) with respect to λ . Geometrically, such a point is a saddle point for

L(y,λ ).
(3) The Lagrange multipliers sometimes have a natural physical meaning. For ex-

ample, in the spring-mass system they correspond to node displacements. In

some general sense, Lagrange multipliers are correction terms needed to satisfy

equilibrium equations and the price paid for the constraints. For more details,

see Strang [10].

Going back to the constrained minimization of Q(y1,y2) =
1
2
(y2

1 + y2
2) subject to

2y1− y2 = 5,

the Lagrangian is

L(y1,y2,λ ) =
1

2

(
y2

1 + y2
2

)
+λ (2y1− y2− 5),

and the equations stating that the Lagrangian has a saddle point are

y1 + 2λ = 0,

y2−λ = 0,

2y1− y2− 5 = 0.

We obtain the solution (y1,y2,λ ) = (2,−1,−1).
Much more should be said about the use of Lagrange multipliers in optimization

or variational problems. This is a vast topic. Least squares methods and Lagrange

multipliers are used to tackle many problems in computer graphics and computer

vision; see Trucco and Verri [11], Metaxas [9], Jain, Katsuri, and Schunck [8],

Faugeras [4], and Foley, van Dam, Feiner, and Hughes [5]. For a lucid introduc-

tion to optimization methods, see Ciarlet [2].

15.2 Quadratic Optimization: The General Case

In this section, we complete the study initiated in Section 15.1 and give necessary

and sufficient conditions for the quadratic function 1
2
x⊤Ax+ x⊤b to have a global

minimum. We begin with the following simple fact:

Proposition 15.1. If A is an invertible symmetric matrix, then the function

f (x) =
1

2
x⊤Ax+ x⊤b

has a minimum value iff A � 0, in which case this optimal value is obtained for a

unique value of x, namely x∗ =−A−1b, and with
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f (A−1b) =−1

2
b⊤A−1b.

Proof. Observe that

1

2
(x+A−1b)⊤A(x+A−1b) =

1

2
x⊤Ax+ x⊤b+

1

2
b⊤A−1b.

Thus,

f (x) =
1

2
x⊤Ax+ x⊤b =

1

2
(x+A−1b)⊤A(x+A−1b)− 1

2
b⊤A−1b.

If A has some negative eigenvalue, say −λ (with λ > 0), if we pick any eigenvector

u of A associated with λ , then for any α ∈ R with α 6= 0, if we let x = αu−A−1b,

then since Au =−λ u, we get

f (x) =
1

2
(x+A−1b)⊤A(x+A−1b)− 1

2
b⊤A−1b

=
1

2
αu⊤Aαu− 1

2
b⊤A−1b

=−1

2
α2λ ‖u‖2

2−
1

2
b⊤A−1b,

and since α can be made as large as we want and λ > 0, we see that f has no

minimum. Consequently, in order for f to have a minimum, we must have A� 0. In

this case, since (x+A−1b)⊤A(x+A−1b)≥ 0, it is clear that the minimum value of

f is achieved when x+A−1b = 0, that is, x =−A−1b. ⊓⊔

Let us now consider the case of an arbitrary symmetric matrix A.

Proposition 15.2. If A is a symmetric matrix, then the function

f (x) =
1

2
x⊤Ax+ x⊤b

has a minimum value iff A � 0 and (I−AA+)b = 0, in which case this minimum

value is

p∗ =−1

2
b⊤A+b.

Furthermore, if A = U⊤ΣU is an SVD of A, then the optimal value is achieved by

all x ∈ Rn of the form

x =−A+b+U⊤
(

0

z

)
,

for any z ∈ Rn−r, where r is the rank of A.

Proof. The case that A is invertible is taken care of by Proposition 15.1, so we may

assume that A is singular. If A has rank r < n, then we can diagonalize A as
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A =U⊤
(

Σr 0

0 0

)
U,

where U is an orthogonal matrix and where Σr is an r× r diagonal invertible matrix.

Then we have

f (x) =
1

2
x⊤U⊤

(
Σr 0

0 0

)
Ux+ x⊤U⊤Ub

=
1

2
(Ux)⊤

(
Σr 0

0 0

)
Ux+(Ux)⊤Ub.

If we write

Ux =

(
y

z

)
and Ub =

(
c

d

)
,

with y,c ∈ Rr and z,d ∈Rn−r, we get

f (x) =
1

2
(Ux)⊤

(
Σr 0

0 0

)
Ux+(Ux)⊤Ub

=
1

2
(y⊤,z⊤)

(
Σr 0

0 0

)(
y

z

)
+(y⊤,z⊤)

(
c

d

)

=
1

2
y⊤Σry+ y⊤c+ z⊤d.

For y = 0, we get

f (x) = z⊤d,

so if d 6= 0, the function f has no minimum. Therefore, if f has a minimum, then

d = 0. However, d = 0 means that

Ub =

(
c

0

)
,

and we know from Section 14.1 that b is in the range of A (here, U is U⊤), which is

equivalent to (I−AA+)b = 0. If d = 0, then

f (x) =
1

2
y⊤Σry+ y⊤c,

and since Σr is invertible, by Proposition 15.1, the function f has a minimum iff

Σr � 0, which is equivalent to A� 0.

Therefore, we have proved that if f has a minimum, then (I−AA+)b = 0 and

A� 0. Conversely, if (I−AA+)b = 0 and A� 0, what we just did proves that f does

have a minimum.

When the above conditions hold, the minimum is achieved if y = −Σ−1
r c, z = 0

and d = 0, that is, for x∗ given by
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Ux∗ =

(
−Σ−1

r c

0

)
and Ub =

(
c

0

)
,

from which we deduce that

x∗ =−U⊤
(

Σ−1
r c

0

)
=−U⊤

(
Σ−1

r 0

0 0

)(
c

0

)
=−U⊤

(
Σ−1

r 0

0 0

)
Ub =−A+b

and the minimum value of f is

f (x∗) =−1

2
b⊤A+b.

For any x ∈ Rn of the form

x =−A+b+U⊤
(

0

z

)
,

for any z ∈Rn−r, our previous calculations show that f (x) =− 1
2
b⊤A+b. ⊓⊔

The case in which we add either linear constraints of the form C⊤x = 0 or affine

constraints of the form C⊤x = t (where t 6= 0) can be reduced to the unconstrained

case using a QR-decomposition of C. Let us show how to do this for linear con-

straints of the form C⊤x = 0.

If we use a QR decomposition of C, by permuting the columns, we may assume

that

C = Q⊤
(

R S

0 0

)
Π ,

where R is an r× r invertible upper triangular matrix and S is an r× (m− r) matrix

(C has rank r). Then, if we let

x = Q⊤
(

y

z

)
,

where y ∈ Rr and z ∈ Rn−r, then C⊤x = 0 becomes

Π⊤
(

R⊤ 0

S⊤ 0

)
Qx = Π⊤

(
R⊤ 0

S⊤ 0

)(
y

z

)
= 0,

which implies y = 0, and every solution of C⊤x = 0 is of the form

x = Q⊤
(

0

z

)
.

Our original problem becomes

minimize
1

2
(y⊤,z⊤)QAQ⊤

(
y

z

)
+(y⊤,z⊤)Qb

subject to y = 0, y ∈Rr, z ∈ Rn−r.
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Thus, the constraint C⊤x = 0 has been eliminated, and if we write

QAQ⊤ =

(
G11 G12

G21 G22

)

and

Qb =

(
b1

b2

)
, b1 ∈ Rr, b2 ∈ Rn−r,

our problem becomes

minimize
1

2
z⊤G22z+ z⊤b2, z ∈ Rn−r,

the problem solved in Proposition 15.2.

Constraints of the form C⊤x= t (where t 6= 0) can be handled in a similar fashion.

In this case, we may assume that C is an n×m matrix with full rank (so that m≤ n)

and t ∈ Rm. Then we use a QR-decomposition of the form

C = P

(
R

0

)
,

where P is an orthogonal matrix and R is an m×m invertible upper triangular matrix.

If we write

x = P

(
y

z

)
,

where y ∈ Rm and z ∈ Rn−m, the equation C⊤x = t becomes

(R⊤,0)P⊤x = t,

that is,

(R⊤,0)

(
y

z

)
= t,

which yields

R⊤y = t.

Since R is invertible, we get y = (R⊤)−1t, and then it is easy to see that our original

problem reduces to an unconstrained problem in terms of the matrix P⊤AP; the

details are left as an exercise.

15.3 Maximizing a Quadratic Function on the Unit Sphere

In this section we discuss various quadratic optimization problems mostly arising

from computer vision (image segmentation and contour grouping). These problems

can be reduced to the following basic optimization problem: Given an n× n real
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symmetric matrix A

maximize x⊤Ax

subject to x⊤x = 1, x ∈Rn.

In view of Lemma 14.2, the maximum value of x⊤Ax on the unit sphere is equal to

the largest eigenvalue λ1 of the matrix A, and it is achieved for any unit eigenvector

u1 associated with λ1.

A variant of the above problem often encountered in computer vision consists in

minimizing x⊤Ax on the ellipsoid given by an equation of the form

x⊤Bx = 1,

where B is a symmetric positive definite matrix. Since B is positive definite, it can

be diagonalized as

B = QDQ⊤,

where Q is an orthogonal matrix and D is a diagonal matrix,

D = diag(d1, . . . ,dn),

with di > 0, for i = 1, . . . ,n. If we define the matrices B1/2 and B−1/2 by

B1/2 = Qdiag
(√

d1, . . . ,
√

dn

)
Q⊤

and

B−1/2 = Qdiag
(

1/
√

d1, . . . ,1/
√

dn

)
Q⊤,

it is clear that these matrices are symmetric, that B−1/2BB−1/2 = I, and that B1/2

and B−1/2 are mutual inverses. Then, if we make the change of variable

x = B−1/2y,

the equation x⊤Bx = 1 becomes y⊤y = 1, and the optimization problem

maximize x⊤Ax

subject to x⊤Bx = 1, x ∈ Rn,

is equivalent to the problem

maximize y⊤B−1/2AB−1/2y

subject to y⊤y = 1, y ∈ Rn,

where y = B1/2x and where B−1/2AB−1/2 is symmetric.

We will see in Chapter 17 that the complex version of our basic optimization

problem in which A is a Hermitian matrix also arises, namely, given an n× n com-

plex Hermitian matrix A,
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maximize x∗Ax

subject to x∗x = 1, x ∈ Cn.

Again by Lemma 14.2, the maximum value of x∗Ax on the unit sphere is equal to

the largest eigenvalue λ1 of the matrix A and it is achieved for any unit eigenvector

u1 associated with λ1.

It is worth pointing out (and we will use this fact in Section 17.5) that if A is a

skew-Hermitian matrix, that is, if A∗ =−A, then x∗Ax is pure imaginary or zero.

Indeed, since z = x∗Ax is a scalar, we have z∗ = z (the conjugate of z), so we have

x∗Ax = (x∗Ax)∗ = x∗A∗x =−x∗Ax,

so x∗Ax+x∗Ax = 2Re(x∗Ax) = 0, which means that x∗Ax is pure imaginary or zero.

In particular, if A is a real matrix and if A is skew-symmetric, then

x⊤Ax = 0.

Thus, for any real matrix (symmetric or not),

x⊤Ax = x⊤H(A)x,

where H(A) = (A+A⊤)/2, the symmetric part of A.

There are situations in which it is necessary to add linear constraints to the prob-

lem of maximizing a quadratic function on the sphere. This problem was completely

solved by Golub [7] (1973). The problem is the following: Given an n×n real sym-

metric matrix A and an n× p matrix C,

minimize x⊤Ax

subject to x⊤x = 1, C⊤x = 0, x ∈ Rn.

Golub shows that the linear constraint C⊤x = 0 can be eliminated as follows: If

we use a QR decomposition of C, by permuting the columns, we may assume that

C = Q⊤
(

R S

0 0

)
Π ,

where R is an r× r invertible upper triangular matrix and S is an r× (p− r) matrix

(assuming C has rank r). Then if we let

x = Q⊤
(

y

z

)
,

where y ∈ Rr and z ∈ Rn−r, then C⊤x = 0 becomes

Π⊤
(

R⊤ 0

S⊤ 0

)
Qx = Π⊤

(
R⊤ 0

S⊤ 0

)(
y

z

)
= 0,
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which implies y = 0, and every solution of C⊤x = 0 is of the form

x = Q⊤
(

0

z

)
.

Our original problem becomes

minimize (y⊤,z⊤)QAQ⊤
(

y

z

)

subject to z⊤z = 1, z ∈ Rn−r,

y = 0, y ∈ Rr.

Thus, the constraint C⊤x = 0 has been eliminated, and if we write

QAQ⊤ =

(
G11 G12

G⊤12 G22

)
,

our problem becomes

minimize z⊤G22z

subject to z⊤z = 1, z ∈ Rn−r,

a standard eigenvalue problem. Observe that if we let

J =

(
0 0

0 In−r

)
,

then

JQAQ⊤J =

(
0 0

0 G22

)
,

and if we set

P = Q⊤JQ,

then

PAP = Q⊤JQAQ⊤JQ.

Now, Q⊤JQAQ⊤JQ and JQAQ⊤J have the same eigenvalues, so PAP and JQAQ⊤J

also have the same eigenvalues. It follows that the solutions of our optimization

problem are among the eigenvalues of K = PAP, and at least r of those are 0. Using

the fact that CC+ is the projection onto the range of C, where C+ is the pseudo-

inverse of C, it can also be shown that

P = I−CC+,

the projection onto the kernel of C⊤. In particular, when n ≥ p and C has full rank

(the columns of C are linearly independent), then we know that C+ = (C⊤C)−1C⊤

and
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P = I−C(C⊤C)−1C⊤.

This fact is used by Cour and Shi [3] and implicitly by Yu and Shi [12].

The problem of adding affine constraints of the form N⊤x = t, where t 6= 0, also

comes up in practice. At first glance, this problem may not seem harder than the

linear problem in which t = 0, but it is. This problem was extensively studied in a

paper by Gander, Golub, and von Matt [6] (1989).

Gander, Golub, and von Matt consider the following problem: Given an (n+
m)× (n+m) real symmetric matrix A (with n > 0), an (n+m)×m matrix N with

full rank, and a nonzero vector t ∈ Rm with
∥∥(N⊤)†t

∥∥ < 1 (where (N⊤)† denotes

the pseudo-inverse of N⊤),

minimize x⊤Ax

subject to x⊤x = 1, N⊤x = t, x ∈ Rn+m.

The condition
∥∥(N⊤)†t

∥∥ < 1 ensures that the problem has a solution and is not

trivial. The authors begin by proving that the affine constraint N⊤x = t can be elim-

inated. One way to do so is to use a QR decomposition of N. If

N = P

(
R

0

)
,

where P is an orthogonal matrix and R is an m×m invertible upper triangular matrix,

then if we observe that

x⊤Ax = x⊤PP⊤APP⊤x,

N⊤x = (R⊤,0)P⊤x = t,

x⊤x = x⊤PP⊤x = 1,

and if we write

P⊤AP =

(
B Γ⊤

Γ C

)

and

P⊤x =

(
y

z

)
,

then we get

x⊤Ax = y⊤By+ 2z⊤Γ y+ z⊤Cz,

R⊤y = t,

y⊤y+ z⊤z = 1.

Thus

y = (R⊤)−1t,

and if we write
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s2 = 1− y⊤y > 0

and

b = Γ y,

we get the simplified problem

minimize z⊤Cz+ 2z⊤b

subject to z⊤z = s2, z ∈Rm.

Unfortunately, if b 6= 0, Lemma 14.2 is no longer applicable. It is still possible

to find the minimum of the function z⊤Cz+ 2z⊤b using Lagrange multipliers, but

such a solution is too involved to be presented here. Interested readers will find a

thorough discussion in Gander, Golub, and von Matt [6].

15.4 Problems

15.1. If A is symmetric positive definite, prove that A−1 is also symmetric positive

definite. If C is a symmetric positive definite m×m matrix and A is an m×n matrix

of rank n (and so m≥ n), prove that A⊤CA is symmetric positive definite.

15.2. Minimize

Q =
1

2

(
y2

1 +
1

3
y2

2

)

subject to y1 + y2 = 1.

15.3. Find the nearest point to the origin on the hyperplane

y1 + · · ·+ ym = 1.

15.4. (i) Find the minimum of

Q =
1

2

(
y2

1 + 2y1y2

)
− y2

subject to y1 + y2 = 0.

(ii) Find the minimum of

Q =
1

2

(
y2

1 + y2
2 + y2

3

)

subject to y1− y2 = 1 and y2− y3 = 2.

15.5. Find the rectangle with corners at points (±y1,±y2) on the ellipse y2
1+4y2

2 = 1

such that the perimeter 4y1 + 4y2 is maximized.

15.6. What is the minimum-length least squares solution to
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15.7. Give the details of the proof showing that minimizing a quadratic function

f (x) =
1

2
x⊤Ax+ x⊤b

subject to constraints of the form C⊤x = t, where t 6= 0 and C is an n×m matrix

with full rank, reduces to a similar unconstrained problem.

Hint. Use a QR-decomposition of the form

C = P

(
R

0

)
,

where P is an orthogonal matrix and R is an m×m invertible upper triangular matrix,

and write

x = P

(
y

z

)
,

where y ∈ Rm and z ∈ Rn−m.

15.8. Let A be any symmetric n× n matrix, let b ∈ Rn, and let c ∈ R.

(a) Prove that if A� 0, then the set

S = {x ∈ Rn | x⊤Ax+ b⊤x+ c≤ 0}

is convex.

Hint. Intersect S with an arbitrary line determined by a point p and a unit vector u.

(b) Prove that if S as above is convex, then A� 0.

(c) Let H be an affine hyperplane defined by an equation of the form g⊤x+h= 0,

where we may assume that g is a unit vector. Prove that

H = {z ∈ Rn | z =−hg+(I− gg⊤)x, x ∈ Rn}

and that (g⊤)+ = g (where (g⊤)+ is the pseudo-inverse of g⊤). Prove that S∩H is

convex (where S is defined in (a)) iff

(I− gg⊤)A(I− gg⊤)� 0.

Prove that if there is some λ ∈ R such that A+λ gg⊤ � 0, then S∩H is convex but

that the converse is false.
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Chapter 16

Schur Complements and Applications

16.1 Schur Complements

Schur complements arise naturally in the process of inverting block matrices of the

form

M =

(
A B

C D

)

and in characterizing when symmetric versions of these matrices are positive defi-

nite or positive semidefinite. These characterizations come up in various quadratic

optimization problems; see Boyd and Vandenberghe [1], especially Appendix B. In

the most general case, pseudo-inverses are also needed.

In this chapter we introduce Schur complements and describe several interesting

ways in which they are used. Along the way we provide some details and proofs of

some results from Appendix A.5 (especially Section A.5.5) of Boyd and Vanden-

berghe [1].

Let M be an n× n matrix written as a 2× 2 block matrix

M =

(
A B

C D

)
,

where A is a p× p matrix and D is a q× q matrix, with n = p+ q (so B is a p× q

matrix and C is a q× p matrix). We can try to solve the linear system

(
A B

C D

)(
x

y

)
=

(
c

d

)
,

that is,

Ax+By = c,

Cx+Dy = d,

431
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by mimicking Gaussian elimination. If we assume that D is invertible, then we first

solve for y, getting

y = D−1(d−Cx),

and after substituting this expression for y in the first equation, we get

Ax+B(D−1(d−Cx)) = c,

that is,

(A−BD−1C)x = c−BD−1d.

If the matrix A−BD−1C is invertible, then we obtain the solution to our system

x = (A−BD−1C)−1(c−BD−1d),

y = D−1(d−C(A−BD−1C)−1(c−BD−1d)).

If A is invertible, then by eliminating x first using the first equation, we obtain

analogous formulas involving the matrix D−CA−1B. The above formulas suggest

that the matrices A−BD−1C and D−CA−1B play a special role and suggest the

followig definition:

Definition 16.1. Given any block matrix of the form

M =

(
A B

C D

)
,

if D is invertible, then the matrix A−BD−1C is called the Schur complement of D

in M. If A is invertible, then the matrix D−CA−1B is called the Schur complement

of A in M.

The above equations written as

x = (A−BD−1C)−1c− (A−BD−1C)−1BD−1d,

y =−D−1C(A−BD−1C)−1c

+ (D−1 +D−1C(A−BD−1C)−1BD−1)d,

yield a formula for the inverse of M in terms of the Schur complement of D in M,

namely

(
A B

C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
.

A moment of reflection reveals that

(
A B

C D

)−1

=

(
(A−BD−1C)−1 0

−D−1C(A−BD−1C)−1 D−1

)(
I −BD−1

0 I

)
,

and then
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(
A B

C D

)−1

=

(
I 0

−D−1C I

)(
(A−BD−1C)−1 0

0 D−1

)(
I −BD−1

0 I

)
.

It follows that

(
A B

C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
.

The above expression can be checked directly and has the advantage of requiring

only the invertibility of D.

Remark: If A is invertible, then we can use the Schur complement D−CA−1B of

A to obtain the following factorization of M:

(
A B

C D

)
=

(
I 0

CA−1 I

)(
A 0

0 D−CA−1B

)(
I A−1B

0 I

)
.

If D−CA−1B is invertible, we can invert all three matrices above, and we get another

formula for the inverse of M in terms of (D−CA−1B), namely,

(
A B

C D

)−1

=

(
A−1 +A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)
.

If A,D and both Schur complements A−BD−1C and D−CA−1B are all invertible,

by comparing the two expressions for M−1, we get the (nonobvious) formula

(A−BD−1C)−1 = A−1 +A−1B(D−CA−1B)−1CA−1.

Using this formula, we obtain another expression for the inverse of M involving the

Schur complements of A and D (see Horn and Johnson [2]):

(
A B

C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)
.

If we set D = I and change B to −B, we get

(A+BC)−1 = A−1−A−1B(I−CA−1B)−1CA−1,

a formula known as the matrix inversion lemma (see Boyd and Vandenberghe [1],

Appendix C.4, especially C.4.3).
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16.2 Symmetric Positive Definite Matrices and Schur

Complements

If we assume that our block matrix M is symmetric, so that A,D are symmetric and

C = B⊤, then we see that M is expressed as

M =

(
A B

B⊤ D

)
=

(
I BD−1

0 I

)(
A−BD−1B⊤ 0

0 D

)(
I BD−1

0 I

)⊤
,

which shows that M is similar to a block diagonal matrix (obviously, the Schur

complement, A−BD−1B⊤, is symmetric). As a consequence, we have the following

version of “Schur’s trick” to check whether M ≻ 0 for a symmetric matrix.

Proposition 16.1. For any symmetric matrix M of the form

M =

(
A B

B⊤ C

)
,

if C is invertible, then the following properties hold:

(1) M ≻ 0 iff C ≻ 0 and A−BC−1B⊤ ≻ 0.

(2) If C ≻ 0, then M � 0 iff A−BC−1B⊤ � 0.

Proof. (1) Observe that

(
I BD−1

0 I

)−1

=

(
I −BD−1

0 I

)
,

and we know that for any symmetric matrix T and any invertible matrix N, the

matrix T is positive definite (T ≻ 0) iff NT N⊤ (which is obviously symmetric) is

positive definite (NTN⊤ ≻ 0). But a block diagonal matrix is positive definite iff

each diagonal block is positive definite, which concludes the proof.

(2) This is because for any symmetric matrix T and any invertible matrix N, we

have T � 0 iff NT N⊤ � 0. ⊓⊔

Another version of Proposition 16.1 using the Schur complement of A instead of

the Schur complement of C also holds. The proof uses the factorization of M using

the Schur complement of A (see Section 16.1).

Proposition 16.2. For any symmetric matrix M of the form

M =

(
A B

B⊤ C

)
,

if A is invertible then the following properties hold:

(1) M ≻ 0 iff A≻ 0 and C−B⊤A−1B≻ 0.
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(2) If A≻ 0, then M � 0 iff C−B⊤A−1B� 0.

When C is singular (or A is singular), it is still possible to characterize when

a symmetric matrix M as above is positive semidefinite, but this requires using

a version of the Schur complement involving the pseudo-inverse of C, namely

A−BC+B⊤ (or the Schur complement, C−B⊤A+B, of A). We use the crierion of

Proposition 15.2, which tells us when a quadratic function of the form 1
2
x⊤Px+x⊤b

has a minimum and what this optimum value is (where P is a symmetric matrix).

16.3 Symmetric Positive Semidefinite Matrices and Schur

Complements

We now return to our original problem, characterizing when a symmetric matrix

M =

(
A B

B⊤ C

)

is positive semidefinite.

Thus, we want to know when the function

f (x,y) = (x⊤,y⊤)

(
A B

B⊤ C

)(
x

y

)
= x⊤Ax+ 2x⊤By+ y⊤Cy

has a minimum with respect to both x and y. If we hold y constant, Proposition 15.2

implies that f (x,y) has a minimum iff A � 0 and (I−AA+)By = 0, and then the

minimum value is

f (x∗,y) =−y⊤B⊤A+By+ y⊤Cy = y⊤(C−B⊤A+B)y.

Since we want f (x,y) to be uniformly bounded from below for all x,y, we must have

(I−AA+)B = 0. Now, f (x∗,y) has a minimum iff C−B⊤A+B � 0. Therefore, we

have established that f (x,y) has a minimum over all x,y iff

A� 0, (I−AA+)B = 0, C−B⊤A+B� 0.

Similar reasoning applies if we first minimize with respect to y and then with respect

to x, but this time, the Schur complement A−BC+B⊤ of C is involved. Putting all

these facts together, we get our main result:

Theorem 16.1. Given any symmetric matrix

M =

(
A B

B⊤ C

)

the following conditions are equivalent:
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(1) M � 0 (M is positive semidefinite).

(2) A� 0, (I−AA+)B = 0, C−B⊤A+B� 0.

(3) C � 0, (I−CC+)B⊤ = 0, A−BC+B⊤ � 0.

If M � 0 as in Theorem 16.1, then it is easy to check that we have the following

factorizations (using the fact that A+AA+ = A+ and C+CC+ =C+):

(
A B

B⊤ C

)
=

(
I BC+

0 I

)(
A−BC+B⊤ 0

0 C

)(
I 0

C+B⊤ I

)

and (
A B

B⊤ C

)
=

(
I 0

B⊤A+ I

)(
A 0

0 C−B⊤A+B

)(
I A+B

0 I

)
.

16.4 Problems

16.1. Supply the details of the argument showing that if D is invertible, then

(
A B

C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
.

16.2. Let X be a symmetric n× n matrix and let x ∈Rn be a vector. Prove that

X � xx⊤

iff (
X x

x⊤ 1

)
� 0.

16.3. Consider the following quadratic optimization problem with quadratic con-

straints

minimize x⊤A1x+ 2b⊤1 x

subject to x⊤A2x+ 2b⊤2 x≤ 0,

where A1,A2 are symmetric n× n matrices and b1,b2 ∈ Rn. Using the fact that

tr(Axx⊤) = x⊤Ax, prove that the above problem is equivalent to the problem

minimize tr(A1X)+ 2b⊤1 x

subject to tr(A2X)+ 2b⊤2 x≤ 0, X = xx⊤,

where A1,A2 are symmetric n×n matrices, X is a symmetric matrix with X � 0, and

b1,b2 ∈ Rn.

The above problem is hard to solve, but it can be relaxed to the following prob-

lem:
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minimize tr(A1X)+ 2b⊤1 x

subject to tr(A2X)+ 2b⊤2 x≤ 0, X � xx⊤,

where A1,A2,X are symmetric n× n matrices, and b1,b2 ∈ Rn.

Show that the relaxed problem is equivalent to the problem

minimize tr(A1X)+ 2b⊤1 x

subject to tr(A2X)+ 2b⊤2 x≤ 0,

(
X x

x⊤ 1

)
� 0,

where A1,A2,X are symmetric n× n matrices, and b1,b2 ∈ Rn.

The above is an SDP program, and a number of methods are available to solve it;

see Boyd and Vandenberghe [1].
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Chapter 17

Quadratic Optimization and Contour Grouping

17.1 Formulation of the Problem

This chapter presents a new and exciting application of quadratic optimization meth-

ods to the problem of contour grouping in computer vision. It turns out that this

problem leads to finding the local maxima of a Hermitian matrix depending on a

parameter. We are thus led to the problem of finding the derivative of an eigenvalue

and the derivative of some eigenvector associated with this eigenvalue, in the case

of a normal matrix. The problem also leads naturally to the consideration of the field

of values of a matrix, a concept studied as early as 1918 by Toeplitz and Hausdorff.

We prove that the field of values is convex, a theorem due to Toeplitz and Hausdorff.

This fact is helpful in improving the search for local maxima.

Many problems in computer vision can be cast as quadratic optimization prob-

lems. In a seminal paper, Shi and Malik [5] showed how image segmentation can be

performed using certain types of graph cuts called normalized cuts. Inspired by this

work, Jianbo Shi and his students Qihui Zhu and Gang Song investigated the prob-

lem of contour grouping in 2D images [6]. Recently, this method was significantly

improved and a better optimization function was introduced; see Kennedy, Gallier,

and Shi [3]. We present a method using the new optimization function but for sim-

plicity, we use the older method described in [6]. The problem is to find 1D (closed)

curve-like structures in images. The goal is to find cycles linking small edges called

edgels.

The method uses a directed graph in which the nodes are edgels and the edges

connect pairs of edgels within some distance. Every edge has a weight Wi j measur-

ing the (directed) collinearity of two edgels using the elastic energy between these

edgels.

Given a weighted directed graph G = (V,E,W ), we seek a set of edges S ⊆ V (a

cut) and an ordering O on S that maximizes a certain objective function,

C(S,O,k) =
1−Ecut(S)− Icut(S,O,k)

T (k)
,

439
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where

1. Ecut(S) measures how strongly S is separated from its surrounding background

(external cut);

2. Icut(S,O,k) is a measure of the entanglement of the edges between the nodes in

S (internal cut);

3. T (k) is the tube size of the cut; it depends on the thickness factor k (in fact,

T (k) = k/|S|).
Maximizing C(S,O,k) is a hard combinatorial problem, so Shi, Zhu, and Gong

had the idea of converting the orginal problem to a simpler problem using a circular

embedding.

The main idea is that a cycle is an image of the unit circle. Thus, we try to map

the nodes of the graph onto the unit circle, but nodes not in a cycle will be mapped

to the origin. A point on the unit circle has coordinates

(cosθ ,sin θ ),

which are conveniently encoded as the complex number

z = cosθ + i sinθ = eiθ .

The nodes in a cycle will be mapped to the complex numbers

z j = eiθ j , θ j =
2π j

|S| .

The maximum jumping angle θmax will also play a role; this is the maximum of the

angle between two consecutive nodes. Then, Shi and Zhu proved that maximizing

C(S,O,k) is equivalent to maximizing the circular embedding score

Ce(r,θ ,θmax) =
1

θmax
∑

θi<θ j≤θi+θmax

ri>0, r j>0

Pi j/|S|,

where:

1. The matrix P = (Pi j) is obtained from the weight matrix W (of the graph G =
(V,E,W )) by a suitable normalization;

2. r j ∈ {0,1};
3. θ j is an angle specifying the ordering of the nodes in the cycle;

4. θmax is the maximum jumping angle.

This optimization problem is still hard to solve. Consequently, Shi and Zhu con-

sidered a continuous relaxation of the probem by allowing r j to be any real number

in the interval [0,1] and θ j to be any angle (within a suitable range). In the circular

embedding, a node in then represented by the complex number

x j = r je
iθ j .
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We also introduce the average jumping angle

∆θ = θk−θ j.

Then it is not hard to see that the numerator of Ce(r,θ ,θmax) is well approximated

by the expression

∑
j,k

Pjk cos(θk−θ j−∆θ ) = ∑
j,k

Re(x∗jxk · e−i∆θ ).

Thus, Ce(r,θ ,θmax) is well approximated by

1

θmax

∑ j,k Re(x∗jxk · e−i∆θ )

∑ j |x j|2
.

This term can be written in terms of the matrix P as

Ce(r,θ ,θmax)≈
1

θmax

Re(x∗Px · e−i∆θ)

x∗x
,

where x ∈ Cn is the vector x = (x1, . . . ,xn). The matrix P is a real matrix, but in

general, it is neither symmetric nor normal (PP∗ = P∗P). If we write δ = ∆θ and

if we assume that 0 < δmin ≤ δ ≤ δmax, we need to solve the following quadratic

optimization problem:

maximize Re(x∗e−iδ Px)

subject to x∗x = 1, x ∈ Cn; δmin ≤ δ ≤ δmax.

At first glance, this problem does not look like any of the standard quadratic

optimization problems on the unit sphere. Nevertheless, we show that it reduces to

a standard quadratic optimization problem involving a Hermitian matrix.

Let

c = e−iδ = a+ ib,

with a = cosδ and b = −sinδ . Following Horn and Johnson [1], for any (real or

complex) n× n matrix P let H(P) be the Hermitian part of P and let S(P) be the

skew-Hermitian part of P, where H(P) and S(P) are given by

H(P) =
P+P∗

2
and S(P) =

P−P∗

2
.

Obviously,

H(P)∗ = H(P), S(P)∗ =−S(P), and P = H(P)+ S(P).

Observe that 1
i
S(P) = −iS(P) is Hermitian. If P is a real matrix, then H(P) is said

to be symmetric and S(P) is said to be skew-symmetric. In this case,
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H(P) =
P+P⊤

2
and S(P) =

P−P⊤

2
.

For every complex number z = x+ iy, recall that

Re(z) = y =
1

2
(z+ z).

Now, z = x∗cPx is a complex number and z = z∗, viewing z as a 1× 1 matrix, so

Re(x∗ cPx) =
1

2
(x∗ cPx+(x∗ cPx)∗) =

1

2
(x∗ cPx+ x∗ cP⊤x) = x∗

1

2
(cP+ cP⊤)x.

The matrix cP+ cP⊤ is clearly Hermitian, and in fact,

1

2
(cP+ cP⊤) =

1

2
((a+ ib)P+(a− ib)P⊤)

= a
1

2
(P+P⊤)+ ib

1

2
(P−P⊤) = aH(P)+ ibS(P).

Define the Hermitian matrix H as

H = aH(P)+ ibS(P) =
1

2
(cP+ cP⊤).

Observe that

H =
1

2
(cP+ cP⊤) =

1

2
(cP+(cP)∗) = H(cP),

the Hermitian part of cP, and since c = e−iδ , we have

H = H(e−iδ P).

In view of the above, our optimimization problem can also be stated as

maximize x∗H(δ )x

subject to x∗x = 1, x ∈ Cn; δmin ≤ δ ≤ δmax,

with

H(δ ) = H(e−iδ P) = cosδ H(P)− i sinδ S(P),

a Hermitian matrix.

By Lemma 14.2, the optimal value is the largest eigenvalue λ1 of H(δ ) over all δ
such that δmin ≤ δ ≤ δmax, and it is attained for the associated complex eigenvector

x = xre + ixim.

To study the variation of the eigenvalues of H(δ ), we will need to compute the

derivative of H(δ ) with respect to δ , denoted by H ′(δ ). We have

H ′(δ ) =−sinδH(P)− icosδS(P).
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17.2 Derivatives of Eigenvalues and Eigenvectors for Normal

Matrices

Let X(δ ) be a normal matrix that depends differentiably on δ , let λ be some eigen-

value of X , which we assume to be simple (it has algebraic multiplicity 1), and let

u be the corresponding unit eigenvector. We are going to derive formulas for the

derivative of λ and the derivative of u. We adapt the derivation given by Peter Lax

[4] (Chapter 9, Section 2) to normal matrices. The step missing in Lax is the appli-

cation of the pseudo-inverse. However, Lax’s derivation applies to arbitrary matrices

X . A similar derivation is given in a blog by Terence Tao, assuming that the matrix

X has only simple eigenvalues. The simplification afforded by normal matrices is

that there is no need to deal with the dual space, since Xu = λ u iff X∗u = λ u iff

u∗X = λ u∗. When the eigenvalues are all simple, we can use a basis of eigenvectors

(u1, . . . ,un) and its dual basis (u∗1, . . . ,u
∗
n), because Xui = λ ui iff u∗i X = λ u∗i (where

u∗i (u j) = δi j).

It is proved in Lax [4] (Chapter 9, Theorem 7 and Theorem 8) that if λ is a simple

eigenvalue of X(δ ) for δ = δ0 and if u is a unit eigenvector associated with λ , then

in a small open interval around δ0, the matrix X(δ ) has a simple eigenvalue λ (δ )
that is differentiable (with λ (δ0) = λ ) and that there is a choice of an eigenvector

u(t) associated with λ (t), so that u(t) is also differentiable (with u(δ0) = u). In the

case of an eigenvalue, the proof uses the implicit function theorem applied to the

characteristic polynomial det(λ I−X(δ )) = f (λ ,δ ). The proof of differentiability

for an eigenvector is more involved and uses the nonvanishing of some principal

minor of det(λ I−X(δ )).
Since explicit formulas (for normal matrices) for the derivative of a simple eigen-

value and the derivative of the corresponding unit eigenvector are not so easily found

in the literature, we will prove the following proposition in full detail:

Proposition 17.1. Let X(δ ) be a normal matrix that depends differentiably on δ . If

λ is any simple eigenvalue of X at δ0 (it has algebraic multiplicity 1) and if u is the

corresponding unit eigenvector, then the derivatives at δ = δ0 of λ (δ ) and u(δ ) are

given by

λ ′ = u∗X ′u,

u′ = (λ I−X)+X ′u,

where (λ I−X)+ is the pseudo-inverse of λ I−X, X ′ is the derivative of X at δ = δ0,

and u′ is orthogonal to u.

Proof. If X is a normal matrix, then by Lemma 12.2, we known that Xu = λ u iff

X∗u = λ u, and so if Xu = λ u, then

u∗X = λ u∗.

Taking the derivative of Xu = λ u and using the chain rule, we get
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X ′u+Xu′ = λ ′u+λ u′.

By taking the inner product with u∗, we get

u∗X ′u+ u∗Xu′ = λ ′u∗u+λ u∗u′.

However, u∗X = λ u∗, so

u∗Xu′ = λ u∗u′,

and since u is a unit vector, u∗u = 1, so

u∗X ′u+λ u∗u′ = λ ′+λ u∗u′,

that is,

λ ′ = u∗X ′u.

Let us rewrite the equation

X ′u+Xu′= λ ′u+λ u′

as

(λ I−X)u′ = (X ′−λ ′I)u.

We need to show that this equation has a solution, and for this, it is enough to prove

that (X ′− λ ′I)u is in the range of λ I−X . However, the range of λ I−X is equal

to the orthogonal complement of the kernel of its adjoint (λ I − X)∗ = λ I− X∗,
and since λ is a simple eigenvalue of X , λ is also a simple eigenvalue of X∗ and

Ker(λ I−X) = Ker(λ I−X∗) =Cu, the one-dimensional space spanned by the unit

eigenvector u. Thus, (X ′− λ ′I)u is in the range of λ I−X iff it is orthogonal to

Ker(λ I−X∗) = Cu iff

u∗(X ′−λ ′I)u = 0

iff

u∗X ′u−λ ′u∗u = 0,

that is, λ ′ = u∗X ′u, which we have just proved.

Therefore the set of solutions of the linear equation

(λ I−X)u′ = (X ′−λ ′I)u

is an affine line whose direction is the one-dimensional subspace spanned by the

unit eigenvector u.

By Theorem 14.2, the pseudo-inverse of λ I−X yields a solution of minimum

norm belonging to the orthogonal complement of the kernel of λ I−X , that is, a

solution orthogonal to the unit vector u, given by

u′ = (λ I−X)+(X ′−λ ′I)u.

Actually, because X is normal, we claim that
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(λ I−X)+u = 0,

and so

u′ = (λ I−X)+X ′u.

For this, it is enough to prove that if X is a normal matrix and if Xu = 0, then

X+u = 0. Indeed, since λ I−X is also normal and since (λ I−X)u = 0, the above

fact implies that (λ I−X)+u = 0.

Now, since X is a (real) normal matrix, by Theorem 12.7 it can be block diago-

nalized with respect to an orthogonal matrix U as

X =UΛU⊤,

where Λ is the (real) block diagonal matrix

Λ = diag(B1, . . . ,Bn),

consisting either of 2× 2 blocks of the form

B j =

(
λ j −µ j

µ j λ j

)

with µ j 6= 0 or of one-dimensional blocks Bk = (λk). If we write

Λ =

(
Λr 0

0 0

)
,

where Λ is invertible (with rank r) and all the other entries are zero, then by Propo-

sition 14.1, the pseudo-inverse of X is given by

X+ =UΛ+U⊤ =U

(
Λ−1

r 0

0 0

)
U⊤.

Now, Xu = 0 implies that (
Λr 0

0 0

)
U⊤u = 0,

which means that

U⊤u =

(
0

y

)

with dim(y) = n− r. Then we have

X+u =U

(
Λ−1

r 0

0 0

)
U⊤u =U

(
Λ−1

r 0

0 0

)(
0

y

)
= 0,

as claimed. ⊓⊔

Applying the above to the Hermitian matrix H(δ ), we get
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λ ′(δ ) = u∗H(δ )u =−u∗(sinδH(P)+ icosδS(P))u.

The derivative u′(δ ) orthogonal to u is given by

u′(δ ) = (λ (δ )I−H(δ ))+H ′(δ )u(δ ),

where (λ (δ )I−H(δ ))+ is the pseudo-inverse of λ (δ )I−H(δ ).

17.3 Relationship between the Eigenvectors of P and H(δ )

Experimental evidence suggests that there is a close relationship between the eigen-

vectors of the real matrix P and the eigenvectors of the Hermitian matrix H(δ ). If P

is a normal matrix, we can indeed prove such a relationship.

Recall that a matrix P is normal if P commutes with its transpose, that is,

PP⊤ = P⊤P.

Proposition 17.2. For any normal matrix P if u+ iv is an eigenvector of P for the

eigenvalue λ + iµ , then u+ iv is also an eigenvector of H = aH(P)+ ibS(P) for the

real eigenvalue aλ − bµ . Furthermore, all the eigenvalues of H = aH(P)+ ibS(P)
are of the form aλ − bµ , where λ + iµ is an eigenvalue of P.

Proof. If P is a normal matrix, then by Lemma 12.2 we know that a complex vector

u+ iv is an eigenvector of P for the eigenvalue λ + iµ iff u+ iv is an eigenvector of

P⊤ for the conjugate eigenvalue, λ − iµ .

As a consequence,

H(u+ iv) =
1

2
(cP+ cP⊤)(u+ iv)

=
1

2
(cP(u+ iv)+ cP⊤(u+ iv))

=
1

2
(c(λ + iµ)+ c(λ − iµ))(u+ iv)

= Re(c(λ + iµ))(u+ iv)

= (aλ − bµ)(u+ iv),

since c = a+ ib. The last statement holds because a normal matrix is diagonalizable

(over an orthonormal basis with respect to the Hermitian inner product). ⊓⊔

With the values of a and b as in Section 17.1,

aλ − bµ = λ cosδ + µ sin δ = λ (δ ).

If we write

λ + iµ = ρ(cosϕ + i sinϕ),
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then we get

λ (δ ) = λ cosδ + µ sinδ = cosϕ cosδ + sinϕ sinδ = ρ cos(ϕ− δ ).

The function δ 7→ ρ cos(ϕ− δ ) has a maximum for δ = ϕ .

This confirms the experimental evidence that the numerator ρ cos(ϕ− δ ) of the

eigenvalue λ (δ ) of H(δ ) associated with λ + iµ has a local maximum exactly when

Re(u∗Pu · c)

(subject to u∗u = 1) has a local maximum, which also happens for δ = ϕ . It appears

that these results still hold as long as P is not “too distant” from a normal matrix.

It would be desirable to measure how far a matrix A is from being normal. Ac-

cording to Horn and Johnson [1] (Chapter 3, Problem 18, page 156), this can be

done using the defect from normality.

Definition 17.1. If σ1, . . . ,σn are the singular values of A listed in decreasing order

and λ1, . . . ,λn are the eigenvalues of A listed so that |λ1| ≥ · · · ≥ |λn|, then the defect

from normality of A with respect to the Frobenius norm is defined by

δF(A) =

√
n

∑
i=1

(σ2
i −|λi|2).

Recall that the singular values σ1, . . . ,σn of A are the nonnegative square roots

of the eigenvalues of A∗A (and AA∗), so that the Frobenius norm of A is given by

‖A‖F =
√

tr(A∗A) =

√
n

∑
i=1

σ2
i .

For any upper triangular Schur decomposition of A,

A =U(D+T)U∗,

where U is a unitary matrix, D is the diagonal matrix D = diag(λ1, . . . ,λn) and T

is a strictly upper triangular matrix, since the Frobenius norm is unitarily invariant,

which means that

‖A‖F = ‖D+T‖F .

Since D is a diagonal matrix, a straightforward computation shows that

‖A‖2
F = ‖D‖2

F + ‖F‖2
F .

However,

‖D‖2
F =

n

∑
i=1

|λi|2,

and since ‖A‖2
F = ∑n

i=1 σ2
i , we conclude that
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‖T‖2
F =

n

∑
i=1

(σ2
i −|λi|2).

Therefore, the quantity ∑n
i=1(σ

2
i −|λi|2) is always nonnegative, and moreover, ‖T‖F

has the same value for all upper triangular Schur decompositions of A, namely, the

defect from normality of A,

δF(A) =

√
n

∑
i=1

(σ2
i −|λi|2).

We have also proved that A is normal iff

n

∑
i=1

(σ2
i −|λi|2) = 0,

which implies that

σi = |λi|
for i = 1, . . . ,n. Indeed, if A is normal, then A can be diagonalized with respect to a

unitary matrix U , so that A =UΛU∗ and then

U∗U =UΛ∗ΛU∗,

which proves that the singular values of A are indeed |λ1|, . . . , |λn|.
Conversely, if

σi = |λi|
for i = 1, . . . ,n, then

n

∑
i=1

(σ2
i −|λi|2) = 0,

which, as we proved above, implies that A is normal. Thus, we have just proved the

following proposition:

Proposition 17.3. A matrix A is normal iff

(1) ∑n
i=1 σ2

i = ∑n
i=1 |λi|2, or

(2) σi = |λi|, for i = 1, . . . ,n.

The quantity δF(A) =
√

∑n
i=1(σ

2
i −|λi|2) measures the defect from normality of

A. If δF(A) is “small,” then A behaves much like a normal matrix.

Also observe that if ‖‖ is any unitarily invariant matrix norm, then (following

Horn and Johnson [1] (Chapter 3, Problem 31, page 192) we can define the defect

from normality of A with respect to the norm ‖‖ by

δ (A,‖ ‖) = inf{‖T‖ | A =U(D+T)U∗},

where U(D+T )U∗ is any upper triangular Schur decomposition of A. Intuitively,

A is “almost normal” iff δ (A,‖‖) is small. In the case of the Frobenius norm, we
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proved that

δ (A,‖ ‖F) = δF(A) =

√
n

∑
i=1

(σ2
i −|λi|2).

17.4 Study of the Continuous Relaxation of the Problem

In this section, we study the variations of the the objective function

f (x,δ ) = x∗(cosδ H(P)− i sinδ S(P))x,

where x ∈ Cn with ‖x‖= 1, and 0≤ δ ≤ 2π .

Figures 17.1, 17.2, and 17.3 show plots of the eigenvalues of various matrices as

functions of δ ∈ [0,2π) and were produced by Ryan Kennedy. Figure 17.4 corre-

sponds to an actual image.
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Fig. 17.1 The eigenvalues of a matrix H(δ ) that is not normal.

It turns out that x∗H(δ )x≤ |x∗Px| for all x and all δ , and this has some important

implications regarding the local maxima of these two functions.

Proposition 17.4. For any (real) matrix P if we write x∗Px = |x∗Px|(cosϕ + i sinϕ)
and H(δ ) = cosδ H(P)− i sinδ S(P) (as usual), then

x∗H(δ )x = |x∗Px|cos(δ −ϕ).

Proof. First, let us compute x∗Hx and |x∗Px|. We can write

P = H(P)+ S(P) = H(P)+ i(−iS(P)) = H1 + iH2,
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Fig. 17.2 The eigenvalues of a normal matrix H(δ ).
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Fig. 17.3 The eigenvalues of a matrix H(δ ) that is near normal.

with H1 = H(P) and H2 = −iS(P). Recall that H1 and H2 are Hermitian, so α =
x∗H1x and β = x∗H2x are both real, and we have

x∗Px = x∗H1x+ ix∗H2x = α + iβ .

Now,

H = cosδ H(P)− i sinδ S(P) = cosδ H1 + sinδ H2,

and so

x∗Hx = cosδ x∗H1x+ sinδ x∗H2x = cosδ α + sinδ β .

In summary,
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Fig. 17.4 The eigenvalues of the matrix for an actual image.

x∗Hx = cosδ α + sinδ β ,

x∗Px = α + iβ .

Since x∗Px = |x∗Px|(cosϕ + i sin ϕ), we have α = |x∗Px|cosϕ and β = |x∗Px|sinϕ
and we get

x∗Hx = cosδ α + sinδ β = |x∗Px|(cosδ cosϕ + sinδ sin ϕ) = |x∗Px|cos(δ −ϕ).

⊓⊔

The equation

x∗Hx = |x∗Px|cos(δ −ϕ)

implies that

x∗Hx≤ |x∗Px|
for all x ∈ Cn and all δ (0≤ δ ≤ 2π), with equality iff

δ = ϕ ,

the argument (phase angle) of x∗Px. In particular, for x fixed, f (x,δ ) = x∗Hx has a

local optimum when δ = ϕ , and in this case, x∗Hx = |x∗Px|.
The inequality x∗Hx ≤ |x∗Px| also implies that if |x∗Px| achieves a local max-

imum for some vector x, then f (x,δ ) = x∗Hx achieves a local maximum equal to

|x∗Px| for δ = ϕ and for the same x (where ϕ is the argument of x∗Px).

Indeed, we know that f (x,ϕ) = |x∗Px|, and if f (x,ϕ) were not a local maximum

at (x,ϕ), then for every open set U ⊆ Cn× [0,2π ] with (x,ϕ) ∈U , there would be

some pair (y,η) ∈U such that



452 17 Quadratic Optimization and Contour Grouping

f (y,η) > f (x,ϕ) = |x∗Px|,

and since

|x∗Px|< f (y,η) ≤ |y∗Py|,
we would have |y∗Py| > |x∗Px|. In particular, we can pick the open set U ⊆ Cn×
[0,2π ] to be a product U = Ω × (δ − ε,δ + ε), where Ω is some arbitrary open

subset of Cn, and the above reasoning shows that |y∗Py| > |x∗Px| for some y ∈ Ω ,

contradicting the fact that x is a local maximum of |x∗Px|.
Now, since H is a Hermitian matrix, for δ fixed, we know that if f (x,δ ) = x∗Hx

has a local maximum for x, then x must be an eigenvector of H. Therefore, we

proved that if |x∗Px| achieves a local maximum for some unit vector x, then x must

be an eigenvector of H(δ ) for some δ , namely, the argument of x∗Px.

Generally, if f (x,δ ) = x∗Hx is a local maximum of f at (x,δ ), then |x∗Px| is not

necessarily a local maximum at x.

However, we can show that if f (x,δ ) = x∗Hx is a local maximum of f at (x,δ ),
then δ = ϕ , the phase angle of |x∗Px|, and so x∗Hx = |x∗Px|.

This is because

x∗Hx = |x∗Px|cos(δ −ϕ),

and for every open subset U ⊆ Cn× [0,2π ] with (x,δ ) ∈U , we can find some η
small enough that (x,δ +η) ∈U and |δ +η−ϕ |< |δ −ϕ |, and thus

x∗H(δ +η)x > x∗H(δ )x,

contradicting the fact that (x,δ ) is a local maximum.

Unfortunately, this does not seem to help much in finding for which δ the func-

tion f (x,δ ) has local maxima.

17.5 The Field of Values

The determination of the local extrema of |x∗Px| (with x∗x = 1) is closely related to

the structure of the set of complex numbers

F(P) = {x∗Px ∈ C | x ∈ Cn, x∗x = 1},

known as the field of values of P or the numerical range of P; see Horn and Johnson

[2] (Chapter 1).

The notation W (P) is also commonly used, corresponding to the German ter-

minology “Wertvorrat” or “Wertevorrat.” This set was studied as early as 1918 by

Toeplitz and Hausdorff. Toeplitz proved that the boundary of F(P) is convex, and

Hausdorff proved the remarkable fact that F(P) itself is convex. The quantity

r(P) = max{|z| | z ∈ F(P)}
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is called the numerical radius of P. It is obviously of interest to us, since it corre-

sponds to the maximum of |x∗Px| over all unit vectors x.

Figures 17.5, 17.6, and 17.7 give examples of numerical ranges and were pro-

duced by Ryan Kennedy.
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Fig. 17.5 Numerical range of a matrix that is not normal.
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Fig. 17.6 Numerical range of a normal matrix.

Here is a summary of properties of the field of values relevant to our problem

(assuming P is an n× n matrix):

(1) The set F(P) is a compact subset of the complex plane C.

(2) F(P) is convex.

(3) Every eigenvalue of P belongs to F(P).
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Fig. 17.7 Numerical range of a matrix that is near normal.

(4) If P is normal, then F(P) is the convex hull of its eigenvalues.

(5) If P is Hermitian, then F(P) is a real closed interval [αn,α1], where αn is the

smallest eigenvalue of P and α1 is the largest eigenvalue of P.

(6) F(U∗PU) = F(P), for every unitary matrix U .

(7) F(H(P)) = Re(F(P)) and F(S(P)) = Im(F(P)).
(8) F(P+αI) = F(P)+α .

(9) F(αP) = αF(P).
(10) If α is a sharp point of the boundary ∂F(P) of F(P), then α is an eigenvalue

of P.

(11) The boundary ∂F(P) of F(P) has at most n sharp points.

(12) If the boundary ∂F(P) of F(P) is C1 (does not have any sharp point), then

every eigenvalue of P is in the interior of F(P).
(13) The boundary ∂F(P) of P is a piecewise algebraic curve.

(14) If λ ∈ ∂F(P) for some eigenvalue λ of P, then

a. Every eigenvector associated with λ is orthogonal to every eigenvector

associated with every eigenvalue µ 6= λ of P.

b. The dimension of the eigenspace associated with λ is equal to the alge-

braic multiplicity of λ .

(15) If P is a real matrix, then F(P) is symmetric with respect to the x-axis.

Let us prove (2), since it is the main property of the field of values. Rather than

following the proof given in Horn and Johnson [2] (Chapter 1, Section 1.3), which

reduces the general case to the two-dimensional case, we give a proof much closer

to Hausdorff’s original proof based on a path connectivity argument (a similar proof

is outlined in Horn and Johnson [2]; Section 1.3, Problem 7).

Lemma 17.1. If A is any Hermitian matrix, then for any λ ∈ C, the set

LA(λ ) = {x ∈ Cn | x∗Ax = λ , x∗x = 1}
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is path connected (which means that there is a continuous curve contained in LA(λ )
joining any two points in LA(λ )). Furthermore, for any α ∈ C, the set LαA(λ ) is

also path connected.

Proof. Because A is Hermitian, x∗Ax is real, its eigenvalues are real, and it can be

diagonalized with respect to a unitary matrix. Thus λ ∈ R and, by properties (6)

and (8) above, we may assume that λ = 0 and that A is a real diagonal matrix,

A = diag(a1, . . . ,an). In this case,

F(A) =

{
n

∑
j=1

a j|x j|2 | (x1, . . . ,xn) ∈ Cn,
n

∑
j=1

|x j|2 = 1

}
.

Let x,y ∈ Cn be two unit vectors x,y ∈ LA(0), that is, such that

n

∑
j=1

a j|x j|2 =
n

∑
j=1

a j|y j|2.

If we write x j = r je
iθi , with r j ∈R, r j ≥ 0, and θ j ∈ [0,2π), it is clear that the points

(r1eiθ1 , . . . ,rneiθn) ∈ LA(0) and (r1, . . . ,rn) ∈ LA(0) are connected by the continuous

curve

γ1(t) = (r1eiθ1(1−t), . . . ,rneiθn(1−t)),

where γ1(t) ∈ LA(0) for all t ∈ [0,1]. Therefore, it is enough to prove that any two

points x,y ∈ LA(0), with x j,y j ∈R and x j,y j ≥ 0, are path connected. This is indeed

the case, since the continuous curve

γ2(t) =
(√

(1− t)x2
1 + ty2

1, . . . ,
√
(1− t)x2

n + ty2
n

)

stays in LA(0) and connects x and y. The second part of the lemma follows from the

fact that F(αP) = αF(P) (property (9)). ⊓⊔

We can now prove property (2). For any complex matrix A, the matrix H(A)
is Hermitian and S(A) is skew-Hermitian. However, if S is skew-Hermitian, then

S =−i iS where iS is Hermitian.

Theorem 17.1. (Toeplitz and Hausdorff) For every complex matrix A, the field of

values F(A) is convex.

Proof. We need to prove that for any two distinct complex numbers α,β ∈ C, if

α,β ∈ F(A), then (1− t)α + tβ ∈ F(A) for all t ∈ [0,1]. By Properties (8) and

(9), we may assume that α = 0 and β = 1. Let x,y ∈ Cn be unit vectors such that

x∗Ax = 0 and y∗Ay = 1. Since the skew-Hermitian part S(A) of A is a scalar multiple

of the Hermitian matrix iS(A), by Lemma 17.1, the set

LS(A)(0) = {x ∈ Cn | x∗S(A)x = 0, x∗x = 1}
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is path connected. Because x∗Ax= 0 and y∗Ay= 1 are real and because S(A) is skew-

Hermitian, as remarked in Section 15.3, x∗S(A)x and y∗S(A)y are pure imaginary

or zero, so we must have x∗S(A)x = y∗S(A)y = 0. Therefore, x,y ∈ LS(A)(0), and

there is some continuous curve γ(t) in LS(A)(0) such that γ(0) = x and γ(1) = y.

Consequently, since H(A) is Hermitian, γ(t)∗H(A)γ(t) ∈ R, and the function

γ(t)∗Aγ(t) = γ(t)∗H(A)γ(t)+ γ(t)∗S(A)γ(t) = γ(t)∗H(A)γ(t)

is a real and continuous function from γ(0)∗Aγ(0) = x∗Ax = 0 to γ(1)∗Aγ(1) =
y∗Ay = 1, which proves that [0,1]⊆ F(A). Therefore, F(A) is indeed convex. ⊓⊔

Property (12) shows that in general, the eigenvalues of P do not yield the local

maxima of |x∗Px|. Property (14) shows that if some eigenvalue λ of P belongs to

∂F(P), then λ behaves like an eigenvalue of a normal matrix. Property (9) implies

that

F(e−iδ P) = e−iδ F(P),

and so

F(P) = eiδ F(e−iδ P).

Geometrically, this means that F(P) is obtained from F(e−iδ P) by rotating it by δ .

This with (5) and (7) yields a nice way of finding supporting lines for the convex set

F(P). To show this, we use a proposition from Horn and Johnson [2], whose proof

is quite simple:

Proposition 17.5. For any n× n matrix P and any unit vector x ∈ Cn, the following

properties are equivalent:

(1) Re(x∗Px) = max{Re(z) | z ∈ F(P)}.
(2) x∗H(P)x = max{r | r ∈ F(H(P))}.
(3) The vector x is an eigenvector of H(P) corresponding to the largest eigenvalue

λ1 of H(P).

In fact, Proposition 17.5 immediately implies that

max{Re(z) | z ∈ F(P)} = max{r | r ∈ F(H(P))}= λ1.

As a consequence, for every angle δ ∈ [0,2π), if we let λδ be the largest eigenvalue

of the matrix H(e−iδ P) and if xδ is a corresponding unit eigenvector, then zδ =
x∗δ Pxδ is on the boundary ∂F(P) of F(P), and the line Lδ given by

Lδ =
{

eiδ (λδ + ti) | t ∈ R
}
=
{
(x,y) ∈ R2 | cosδ x+ sinδ y−λδ = 0

}

is a supporting line of F(P) at zδ . This is because by Proposition 17.5, the vertical

line through the real point λδ is the supporting line to F(P) at λδ , and the line Lδ is

obtained by rotating by δ .

Observe that the triple (cosδ ,sin δ ,λδ ) satisfies the equation

det(wI− uH1− vH2) = 0,
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in the variables u,v,w, since λδ is the largest eigenvalue of the matrix H(e−iδ P) =
cosδ H1 + sin δ H2 (recall that H1 = H(P) and H2 = −iS(P)). We can extend the

domain of the variables u,v,w to be C, in which case, the equation

det(uH1 + vH2 +wI) = 0

defines a set of projective lines in the complex projective plane CP2, each one given

by the equation

ux+ vy+wz = 0,

in homogeneous coordinates (x : y : z), and this set of lines is the set of tangent lines

of a complex projective algebraic curve C(P).
The above equation is the so-called equation in line coordinates of the curve

C(P). Since all supporting lines of F(P) have line coordinates of the form (cosδ ,

sinδ ,−λδ ), they are among such tangent lines, and it is easy to see that the convex

hull of the set of real points of the curve C(P) is F(P). The curve C(P) first intro-

duced and studied by Rudolph Kippenhahn in 1951 (note: Francis Murnaghan also

briefly discussed this curve in 1932), is called the boundary generating curve of P.

It is an algebraic curve of class n, which means that n tangent lines to the curve

pass that through any “general” point. The degree of this curve is n(n−1) minus the

number of multiple tangents counted with their multiplicity.

17.6 Problems

17.1. Prove properties (2)–(9) of the field of values.

17.2. Prove Proposition 17.5.
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Chapter 18

Basics of Manifolds and Classical Lie Groups:
The Exponential Map, Lie Groups, and Lie
Algebras

Le rôle prépondérant de la théorie des groupes en mathématiques a été longtemps insoupçon-

né; il y a quatre-vingts ans, le nom même de groupe était ignoré. C’est Galois qui, le premier,

en a eu une notion claire, mais c’est seulement depuis les travaux de Klein et surtout de Lie

que l’on a commencé à voir qu’il n’y a presque aucune théorie mathématique où cette no-

tion ne tienne une place importante.

—Henri Poincaré

18.1 The Exponential Map

This chapter is an introduction to manifolds, Lie groups, and Lie algebras.

The inventors of Lie groups and Lie algebras (starting with Lie!) regarded Lie

groups as groups of symmetries of various topological or geometric objects. Lie al-

gebras were viewed as the “infinitesimal transformations” associated with the sym-

metries in the Lie group. For example, the group SO(n) of rotations is the group

of orientation-preserving isometries of the Euclidean space En. The Lie algebra

so(n,R) consisting of real skew-symmetric n× n matrices is the corresponding set

of infinitesimal rotations. The geometric link between a Lie group and its Lie alge-

bra is the fact that the Lie algebra can be viewed as the tangent space to the Lie group

at the identity. There is a map from the tangent space to the Lie group, called the ex-

ponential map. The Lie algebra can be considered as a linearization of the Lie group

(near the identity element), and the exponential map provides the “delinearization,”

i.e., it takes us back to the Lie group. These concepts have a concrete realization in

the case of groups of matrices, and for this reason we begin by studying the behavior

of the exponential maps on matrices.

We begin by defining the exponential map on matrices and proving some of its

properties. The exponential map allows us to “linearize” certain algebraic properties

of matrices. It also plays a crucial role in the theory of linear differential equations

with constant coefficients. But most of all, as we mentioned earlier, it is a stepping-

stone to Lie groups and Lie algebras. On the way to Lie algebras, we derive the

459
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classical “Rodrigues-like” formulae for rotations and for rigid motions in R2 and

R3. We give an elementary proof that the exponential map is surjective for both

SO(n) and SE(n), not using any topology, just our normal forms for matrices.

The last section gives a quick introduction to Lie groups and Lie algebras. We

define manifolds as embedded submanifolds of RN , and we define linear Lie groups,

using the famous result of Cartan (apparently actually due to Von Neumann) that a

closed subgroup of GL(n,R) is a manifold, and thus a Lie group. This way, Lie alge-

bras can be “computed” using tangent vectors to curves of the form t 7→ A(t), where

A(t) is a matrix. This section is inspired from Artin [6], Chevalley [12], Marsden

and Ratiu [33], Curtis [14], Howe [23], and Sattinger and Weaver [42].

Given an n× n (real or complex) matrix A = (ai j), we would like to define the

exponential eA of A as the sum of the series

eA = In + ∑
p≥1

Ap

p!
= ∑

p≥0

Ap

p!
,

letting A0 = In. The problem is, Why is it well-defined? The following lemma shows

that the above series is indeed absolutely convergent.

Lemma 18.1. Let A = (ai j) be a (real or complex) n× n matrix, and let

µ = max{|ai j| | 1≤ i, j ≤ n}.

If Ap = (a
(p)
i j ), then

∣∣a(p)
i j

∣∣ ≤ (nµ)p

for all i, j, 1≤ i, j ≤ n. As a consequence, the n2 series

∑
p≥0

a
(p)
i j

p!

converge absolutely, and the matrix

eA = ∑
p≥0

Ap

p!

is a well-defined matrix.

Proof. The proof is by induction on p. For p = 0, we have A0 = In, (nµ)0 = 1, and

the lemma is obvious. Assume that

|a(p)
i j | ≤ (nµ)p

for all i, j, 1≤ i, j ≤ n. Then we have

∣∣a(p+1)
i j

∣∣=
∣∣∣∣∣

n

∑
k=1

a
(p)
i k ak j

∣∣∣∣∣≤
n

∑
k=1

∣∣a(p)
i k

∣∣∣∣ak j

∣∣ ≤ µ
n

∑
k=1

∣∣a(p)
i k

∣∣≤ nµ(nµ)p
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and so,
∣∣a(p+1)

i j

∣∣ ≤ (nµ)p+1 for all i, j, 1 ≤ i, j ≤ n. For every pair (i, j) such that

1≤ i, j ≤ n, since ∣∣a(p)
i j

∣∣≤ (nµ)p,

the series

∑
p≥0

∣∣a(p)
i j

∣∣
p!

is bounded by the convergent series

enµ = ∑
p≥0

(nµ)p

p!
,

and thus it is absolutely convergent. This shows that

eA = ∑
k≥0

Ak

k!

is well defined. ⊓⊔

It is instructive to compute explicitly the exponential of some simple matrices.

As an example, let us compute the exponential of the real skew-symmetric matrix

A =

(
0 −θ
θ 0

)
.

We need to find an inductive formula expressing the powers An. Let us observe that

(
0 −θ
θ 0

)
= θ

(
0 −1

1 0

)
and

(
0 −θ
θ 0

)2

=−θ 2

(
1 0

0 1

)
.

Then, letting

J =

(
0 −1

1 0

)
,

we have

A4n = θ 4nI2,

A4n+1 = θ 4n+1J,

A4n+2 =−θ 4n+2I2,

A4n+3 =−θ 4n+3J,

and so

eA = I2 +
θ

1!
J− θ 2

2!
I2−

θ 3

3!
J+

θ 4

4!
I2 +

θ 5

5!
J− θ 6

6!
I2−

θ 7

7!
J+ · · · .
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Rearranging the order of the terms, we have

eA =

(
1− θ 2

2!
+

θ 4

4!
− θ 6

6!
+ · · ·

)
I2 +

(
θ

1!
− θ 3

3!
+

θ 5

5!
− θ 7

7!
+ · · ·

)
J.

We recognize the power series for cosθ and sinθ , and thus

eA = cosθ I2 + sinθJ,

that is

eA =

(
cosθ −sinθ
sinθ cosθ

)
.

Thus, eA is a rotation matrix! This is a general fact. If A is a skew-symmetric

matrix, then eA is an orthogonal matrix of determinant +1, i.e., a rotation matrix.

Furthermore, every rotation matrix is of this form; i.e., the exponential map from

the set of skew-symmetric matrices to the set of rotation matrices is surjective. In

order to prove these facts, we need to establish some properties of the exponential

map. But before that, let us work out another example showing that the exponential

map is not always surjective. Let us compute the exponential of a real 2× 2 matrix

with null trace of the form

A =

(
a b

c −a

)
.

We need to find an inductive formula expressing the powers An. Observe that

A2 = (a2 + bc)I2 =−det(A)I2.

If a2 + bc = 0, we have

eA = I2 +A.

If a2 + bc < 0, let ω > 0 be such that ω2 =−(a2 + bc). Then, A2 =−ω2I2. We get

eA = I2 +
A

1!
− ω2

2!
I2−

ω2

3!
A+

ω4

4!
I2 +

ω4

5!
A− ω6

6!
I2−

ω6

7!
A+ · · · .

Rearranging the order of the terms, we have

eA =

(
1− ω2

2!
+

ω4

4!
− ω6

6!
+ · · ·

)
I2 +

1

ω

(
ω− ω3

3!
+

ω5

5!
− ω7

7!
+ · · ·

)
A.

We recognize the power series for cosω and sinω , and thus

eA = cosω I2 +
sinω

ω
A.

If a2 + bc > 0, let ω > 0 be such that ω2 = (a2 + bc). Then A2 = ω2I2. We get

eA = I2 +
A

1!
+

ω2

2!
I2 +

ω2

3!
A+

ω4

4!
I2 +

ω4

5!
A+

ω6

6!
I2 +

ω6

7!
A+ · · · .
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Rearranging the order of the terms, we have

eA =

(
1+

ω2

2!
+

ω4

4!
+

ω6

6!
+ · · ·

)
I2 +

1

ω

(
ω +

ω3

3!
+

ω5

5!
+

ω7

7!
+ · · ·

)
A.

If we recall that coshω =
(
eω + e−ω

)
/2 and sinhω =

(
eω − e−ω

)
/2, we recognize

the power series for coshω and sinhω , and thus

eA = coshω I2 +
sinhω

ω
A.

It immediately verified that in all cases,

det
(
eA
)
= 1.

This shows that the exponential map is a function from the set of 2× 2 matrices

with null trace to the set of 2× 2 matrices with determinant 1. This function is

not surjective. Indeed, tr(eA) = 2cosω when a2 + bc < 0, tr(eA) = 2coshω when

a2 + bc > 0, and tr(eA) = 2 when a2 + bc = 0. As a consequence, for any matrix A

with null trace,

tr
(
eA
)
≥−2,

and any matrix B with determinant 1 and whose trace is less than −2 is not the

exponential eA of any matrix A with null trace. For example,

B =

(
a 0

0 a−1

)
,

where a < 0 and a 6=−1, is not the exponential of any matrix A with null trace.

A fundamental property of the exponential map is that if λ1, . . . ,λn are the eigen-

values of A, then the eigenvalues of eA are eλ1 , . . . ,eλn . For this we need two lemmas.

Lemma 18.2. Let A and U be (real or complex) matrices, and assume that U is

invertible. Then

eUAU−1

=UeAU−1.

Proof. A trivial induction shows that

UApU−1 = (UAU−1)p,

and thus

eUAU−1
= ∑

p≥0

(UAU−1)p

p!
= ∑

p≥0

UApU−1

p!

=U

(
∑
p≥0

Ap

p!

)
U−1 =UeAU−1.

⊓⊔



464 18 Basics of Manifolds and Classical Lie Groups

Say that a square matrix A is an upper triangular matrix if it has the following

shape, 


a11 a12 a13 . . . a1n−1 a1n

0 a22 a23 . . . a2n−1 a2n

0 0 a33 . . . a3n−1 a3n

...
...

...
. . .

...
...

0 0 0 . . . an−1n−1 an−1n

0 0 0 . . . 0 ann



,

i.e., ai j = 0 whenever j < i, 1≤ i, j ≤ n.

Lemma 18.3. Given any complex n×n matrix A, there is an invertible matrix P and

an upper triangular matrix T such that

A = PT P−1.

Proof. We prove by induction on n that if f : Cn → Cn is a linear map, then there

is a basis (u1, . . . ,un) with respect to which f is represented by an upper triangular

matrix. For n = 1 the result is obvious. If n > 1, since C is algebraically closed,

f has some eigenvalue λ1 ∈ C, and let u1 be an eigenvector for λ1. We can find

n− 1 vectors (v2, . . . ,vn) such that (u1,v2, . . . ,vn) is a basis of Cn, and let W be the

subspace of dimension n−1 spanned by (v2, . . . ,vn). In the basis (u1,v2 . . . ,vn), the

matrix of f is of the form 


a11 a12 . . . a1n

0 a22 . . . a2n

...
...

. . .
...

0 an2 . . . ann


 ,

since its first column contains the coordinates of λ1u1 over the basis (u1,v2, . . . ,vn).
Letting p : Cn →W be the projection defined such that p(u1) = 0 and p(vi) = vi

when 2≤ i≤ n, the linear map g : W →W defined as the restriction of p◦ f to W is

represented by the (n−1)×(n−1) matrix (ai j)2≤i, j≤n over the basis (v2, . . . ,vn). By

the induction hypothesis, there is a basis (u2, . . . ,un) of W such that g is represented

by an upper triangular matrix (bi j)1≤i, j≤n−1.

However,

Cn = Cu1⊕W,

and thus (u1, . . . ,un) is a basis for Cn. Since p is the projection from Cn =Cu1⊕W

onto W and g : W →W is the restriction of p ◦ f to W , we have

f (u1) = λ1u1

and

f (ui+1) = a1 iu1 +
n−1

∑
j=1

bi ju j+1



18.1 The Exponential Map 465

for some a1 i ∈ C, when 1 ≤ i ≤ n− 1. But then the matrix of f with respect to

(u1, . . . ,un) is upper triangular. Thus, there is a change of basis matrix P such that

A = PT P−1 where T is upper triangular. ⊓⊔

Remark: If E is a Hermitian space, the proof of Lemma 18.3 can be easily adapted

to prove that there is an orthonormal basis (u1, . . . ,un) with respect to which the

matrix of f is upper triangular. In terms of matrices, this means that there is a unitary

matrix U and an upper triangular matrix T such that A = UTU∗. This is usually

known as Schur’s lemma. Using this result, we can immediately rederive the fact

that if A is a Hermitian matrix, then there is a unitary matrix U and a real diagonal

matrix D such that A =UDU∗.

If A = PTP−1 where T is upper triangular, note that the diagonal entries on T

are the eigenvalues λ1, . . . ,λn of A. Indeed, A and T have the same characteristic

polynomial. This is because if A and B are any two matrices such that A = PBP−1,

then

det(A−λ I) = det(PBP−1−λ PIP−1),

= det(P(B−λ I)P−1),

= det(P)det(B−λ I)det(P−1),

= det(P)det(B−λ I)det(P)−1,

= det(B−λ I).

Furthermore, it is well known that the determinant of a matrix of the form




λ1−λ a12 a13 . . . a1n−1 a1n

0 λ2−λ a23 . . . a2n−1 a2n

0 0 λ3−λ . . . a3n−1 a3n

...
...

...
. . .

...
...

0 0 0 . . . λn−1−λ an−1n

0 0 0 . . . 0 λn−λ




is (λ1− λ ) · · · (λn− λ ), and thus the eigenvalues of A = PTP−1 are the diagonal

entries of T . We use this property to prove the following lemma.

Lemma 18.4. Given any complex n× n matrix A, if λ1, . . . ,λn are the eigenvalues

of A, then eλ1 , . . . ,eλn are the eigenvalues of eA. Furthermore, if u is an eigenvector

of A for λi, then u is an eigenvector of eA for eλi .

Proof. By Lemma 18.3 there is an invertible matrix P and an upper triangular matrix

T such that

A = PT P−1.

By Lemma 18.2,
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ePT P−1
= PeT P−1.

However, we showed that A and T have the same eigenvalues, which are the di-

agonal entries λ1, . . . ,λn of T , and eA = ePT P−1
= PeT P−1 and eT have the same

eigenvalues, which are the diagonal entries of eT . Clearly, the diagonal entries of

eT are eλ1 , . . . ,eλn . Now, if u is an eigenvector of A for the eigenvalue λ , a simple

induction shows that u is an eigenvector of An for the eigenvalue λ n, from which is

follows that u is an eigenvector of eA for eλ . ⊓⊔
As a consequence, we can show that

det(eA) = etr(A),

where tr(A) is the trace of A, i.e., the sum a11 + · · ·+ ann of its diagonal entries,

which is also equal to the sum of the eigenvalues of A. This is because the determi-

nant of a matrix is equal to the product of its eigenvalues, and if λ1, . . . ,λn are the

eigenvalues of A, then by Lemma 18.4, eλ1 , . . . ,eλn are the eigenvalues of eA, and

thus

det
(
eA
)
= eλ1 · · ·eλn = eλ1+···+λn = etr(A).

This shows that eA is always an invertible matrix, since ez is never null for every

z ∈C. In fact, the inverse of eA is e−A, but we need to prove another lemma. This is

because it is generally not true that

eA+B = eAeB,

unless A and B commute, i.e., AB = BA. We need to prove this last fact.

Lemma 18.5. Given any two complex n× n matrices A,B, if AB = BA, then

eA+B = eAeB.

Proof. Since AB = BA, we can expand (A+B)p using the binomial formula:

(A+B)p =
p

∑
k=0

(
p

k

)
AkBp−k,

and thus
1

p!
(A+B)p =

p

∑
k=0

AkBp−k

k!(p− k)!
.

Note that for any integer N ≥ 0, we can write

2N

∑
p=0

1

p!
(A+B)p =

2N

∑
p=0

p

∑
k=0

AkBp−k

k!(p− k)!

=

(
N

∑
p=0

Ap

p!

)(
N

∑
p=0

Bp

p!

)
+ ∑

max(k,l)>N
k+l≤2N

Ak

k!

Bl

l!
,
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where there are N(N + 1) pairs (k, l) in the second term. Letting

‖A‖= max{|ai j| | 1≤ i, j ≤ n}, ‖B‖= max{|bi j| | 1≤ i, j ≤ n},

and µ = max(‖A‖,‖B‖), note that for every entry ci j in
(
Ak/k!

)(
Bl/l!

)
we have

|ci j| ≤ n
(nµ)k

k!

(nµ)l

l!
≤ (n2µ)2N

N!
.

As a consequence, the absolute value of every entry in

∑
max(k,l)>N

k+l≤2N

Ak

k!

Bl

l!

is bounded by

N(N + 1)
(n2µ)2N

N!
,

which goes to 0 as N 7→ ∞. From this, it immediately follows that

eA+B = eAeB.

⊓⊔

Now, using Lemma 18.5, since A and −A commute, we have

eAe−A = eA+−A = e0n = In,

which shows that the inverse of eA is e−A.

We will now use the properties of the exponential that we have just established

to show how various matrices can be represented as exponentials of other matrices.

18.2 The Lie Groups GL(n,R), SL(n,R), O(n), SO(n), the Lie

Algebras gl(n,R), sl(n,R), o(n), so(n), and the Exponential

Map

First, we recall some basic facts and definitions. The set of real invertible n× n

matrices forms a group under multiplication, denoted by GL(n,R). The subset of

GL(n,R) consisting of those matrices having determinant +1 is a subgroup of

GL(n,R), denoted by SL(n,R). It is also easy to check that the set of real n× n or-

thogonal matrices forms a group under multiplication, denoted by O(n). The subset

of O(n) consisting of those matrices having determinant +1 is a subgroup of O(n),
denoted by SO(n). We will also call matrices in SO(n) rotation matrices. Staying

with easy things, we can check that the set of real n× n matrices with null trace
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forms a vector space under addition, and similarly for the set of skew-symmetric

matrices.

Definition 18.1. The group GL(n,R) is called the general linear group, and its

subgroup SL(n,R) is called the special linear group. The group O(n) of orthog-

onal matrices is called the orthogonal group, and its subgroup SO(n) is called the

special orthogonal group (or group of rotations). The vector space of real n× n

matrices with null trace is denoted by sl(n,R), and the vector space of real n× n

skew-symmetric matrices is denoted by so(n).

Remark: The notation sl(n,R) and so(n) is rather strange and deserves some ex-

planation. The groups GL(n,R), SL(n,R), O(n), and SO(n) are more than just

groups. They are also topological groups, which means that they are topological

spaces (viewed as subspaces of Rn2
) and that the multiplication and the inverse

operations are continuous (in fact, smooth). Furthermore, they are smooth real man-

ifolds.1 Such objects are called Lie groups. The real vector spaces sl(n) and so(n)
are what is called Lie algebras. However, we have not defined the algebra structure

on sl(n,R) and so(n) yet. The algebra structure is given by what is called the Lie

bracket, which is defined as

[A, B] = AB−BA.

Lie algebras are associated with Lie groups. What is going on is that the Lie

algebra of a Lie group is its tangent space at the identity, i.e., the space of all tangent

vectors at the identity (in this case, In). In some sense, the Lie algebra achieves a

“linearization” of the Lie group. The exponential map is a map from the Lie algebra

to the Lie group, for example,

exp: so(n)→ SO(n)

and

exp: sl(n,R)→ SL(n,R).

The exponential map often allows a parametrization of the Lie group elements by

simpler objects, the Lie algebra elements.

One might ask, What happened to the Lie algebras gl(n,R) and o(n) associated

with the Lie groups GL(n,R) and O(n)? We will see later that gl(n,R) is the set of

all real n× n matrices, and that o(n) = so(n).
The properties of the exponential map play an important role in studying a Lie

group. For example, it is clear that the map

exp: gl(n,R)→GL(n,R)

1 We refrain from defining manifolds right now, not to interupt the flow of intuitive ideas.
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is well-defined, but since every matrix of the form eA has a positive determinant,

exp is not surjective. Similarly, since

det(eA) = etr(A),

the map

exp: sl(n,R)→ SL(n,R)

is well-defined. However, we showed in Section 18.1 that it is not surjective either.

As we will see in the next theorem, the map

exp: so(n)→ SO(n)

is well-defined and surjective. The map

exp: o(n)→O(n)

is well-defined, but it is not surjective, since there are matrices in O(n) with deter-

minant−1.

Remark: The situation for matrices over the field C of complex numbers is quite

different, as we will see later.

We now show the fundamental relationship between SO(n) and so(n).

Theorem 18.1. The exponential map

exp: so(n)→ SO(n)

is well-defined and surjective.

Proof. First, we need to prove that if A is a skew-symmetric matrix, then eA is a

rotation matrix. For this, first check that

(
eA
)⊤

= eA⊤ .

Then, since A⊤ =−A, we get

(
eA
)⊤

= eA⊤ = e−A,

and so (
eA
)⊤

eA = e−AeA = e−A+A = e0n = In,

and similarly,

eA
(
eA
)⊤

= In,

showing that eA is orthogonal. Also,

det
(
eA
)
= etr(A),
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and since A is real skew-symmetric, its diagonal entries are 0, i.e., tr(A) = 0, and so

det(eA) = +1.

For the surjectivity, we will use Theorem 12.9 and Theorem 12.10. Theorem 12.9

says that for every skew-symmetric matrix A there is an orthogonal matrix P such

that A = PDP⊤, where D is a block diagonal matrix of the form

D =




D1 . . .
D2 . . .

...
...

. . .
...

. . . Dp




such that each block Di is either 0 or a two-dimensional matrix of the form

Di =

(
0 −θi

θi 0

)

where θi ∈ R, with θi > 0. Theorem 12.10 says that for every orthogonal matrix R

there is an orthogonal matrix P such that R = PE P⊤, where E is a block diagonal

matrix of the form

E =




E1 . . .
E2 . . .

...
...

. . .
...

. . . Ep




such that each block Ei is either 1, −1, or a two-dimensional matrix of the form

Ei =

(
cosθi −sinθi

sinθi cosθi

)
.

If R is a rotation matrix, there is an even number of −1’s and they can be grouped

into blocks of size 2 associated with θ = π . Let D be the block matrix associated

with E in the obvious way, where an entry 0 in D is associated with a 1 in E and

where

Di =

(
0 −θi

θi 0

)

is associated with the rotation matrix

Ei =

(
cosθi −sinθi

sinθi cosθi

)
.

Since by Lemma 18.2

eA = ePDP−1
= PeDP−1,

and since D is a block diagonal matrix, we can compute eD by computing the expo-

nentials of its blocks. If Di = 0, we get Ei = e0 =+1, and if
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Di =

(
0 −θi

θi 0

)
,

we showed earlier that

eDi =

(
cosθi −sinθi

sinθi cosθi

)
,

exactly the block Ei. Thus, E = eD, and as a consequence,

eA = ePDP−1
= PeDP−1 = PEP−1 = PE P⊤ = R.

This shows the surjectivity of the exponential. ⊓⊔

When n = 3 (and A is skew-symmetric), it is possible to work out an explicit

formula for eA. For any 3× 3 real skew-symmetric matrix

A =




0 −c b

c 0 −a

−b a 0


 ,

letting θ =
√

a2 + b2 + c2 and

B =




a2 ab ac

ab b2 bc

ac bc c2


 ,

we have the following result known as Rodrigues’s formula (1840).

Lemma 18.6. The exponential map exp: so(3)→ SO(3) is given by

eA = cosθ I3 +
sinθ

θ
A+

(1− cosθ )

θ 2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A+

(1− cosθ )

θ 2
A2

if θ 6= 0, with e03 = I3.

Proof. Here is a proof sketch. First, prove that

A2 =−θ 2I+B,

AB = BA = 0.

From the above, deduce that

A3 =−θ 2A,

and for any k≥ 0,
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A4k+1 = θ 4kA,

A4k+2 = θ 4kA2,

A4k+3 =−θ 4k+2A,

A4k+4 =−θ 4k+2A2.

Then prove the desired result by writing the power series for eA and regrouping

terms so that the power series for cos and sin show up. ⊓⊔
The above formulae are the well-known formulae expressing a rotation of axis

specified by the vector (a,b,c) and angle θ . Since the exponential is surjective, it

is possible to write down an explicit formula for its inverse (but it is a multivalued

function!). This has applications in kinematics, robotics, and motion interpolation.

18.3 Symmetric Matrices, Symmetric Positive Definite Matrices,

and the Exponential Map

Recall that a real symmetric matrix is called positive (or positive semidefinite) if

its eigenvalues are all positive or null, and positive definite if its eigenvalues are

all strictly positive. We denote the vector space of real symmetric n× n matrices

by S(n), the set of symmetric positive matrices by SP(n), and the set of symmetric

positive definite matrices by SPD(n).
The next lemma shows that every symmetric positive definite matrix A is of the

form eB for some unique symmetric matrix B. The set of symmetric matrices is a

vector space, but it is not a Lie algebra because the Lie bracket [A,B] is not symmet-

ric unless A and B commute, and the set of symmetric (positive) definite matrices is

not a multiplicative group, so this result is of a different flavor as Theorem 18.1.

Lemma 18.7. For every symmetric matrix B, the matrix eB is symmetric positive

definite. For every symmetric positive definite matrix A, there is a unique symmetric

matrix B such that A = eB.

Proof. We showed earlier that

(
eB
)⊤

= eB⊤ .

If B is a symmetric matrix, then since B⊤ = B, we get

(
eB
)⊤

= eB⊤ = eB,

and eB is also symmetric. Since the eigenvalues λ1, . . . ,λn of the symmetric matrix

B are real and the eigenvalues of eB are eλ1 , . . . ,eλn , and since eλ > 0 if λ ∈R, eB is

positive definite.

If A is symmetric positive definite, by Theorem 12.8 there is an orthogonal matrix

P such that A = PDP⊤, where D is a diagonal matrix
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D =




λ1 . . .
λ2 . . .

...
...

. . .
...

. . . λn


 ,

where λi > 0, since A is positive definite. Letting

L =




logλ1 . . .
logλ2 . . .

...
...

. . .
...

. . . logλn


 ,

it is obvious that eL = D, with logλi ∈ R, since λi > 0.

Let

B = PLP⊤.

By Lemma 18.2, we have

eB = ePLP⊤ = ePLP−1

= PeLP−1 = PeL P⊤ = PDP⊤ = A.

Finally, we prove that if B1 and B2 are symmetric and A = eB1 = eB2 , then B1 = B2.

Since B1 is symmetric, there is an orthonormal basis (u1, . . . ,un) of eigenvectors of

B1. Let µ1, . . . ,µn be the corresponding eigenvalues. Similarly, there is an orthonor-

mal basis (v1, . . . ,vn) of eigenvectors of B2. We are going to prove that B1 and B2

agree on the basis (v1, . . . ,vn), thus proving that B1 = B2.

Let µ be some eigenvalue of B2, and let v = vi be some eigenvector of B2 associ-

ated with µ . We can write

v = α1u1 + · · ·+αnun.

Since v is an eigenvector of B2 for µ and A = eB2 , by Lemma 18.4

A(v) = eµv = eµα1u1 + · · ·+ eµαnun.

On the other hand,

A(v) = A(α1u1 + · · ·+αnun) = α1A(u1)+ · · ·+αnA(un),

and since A = eB1 and B1(ui) = µiui, by Lemma 18.4 we get

A(v) = eµ1α1u1 + · · ·+ eµnαnun.

Therefore, αi = 0 if µi 6= µ . Letting

I = {i | µi = µ , i ∈ {1, . . . ,n}},

we have
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v = ∑
i∈I

αiui.

Now,

B1(v) = B1

(
∑
i∈I

αiui

)
= ∑

i∈I

αiB1(ui) = ∑
i∈I

αiµiui

= ∑
i∈I

αiµui = µ

(
∑
i∈I

αiui

)
= µv,

since µi = µ when i ∈ I. Since v is an eigenvector of B2 for µ ,

B2(v) = µv,

which shows that

B1(v) = B2(v).

Since the above holds for every eigenvector vi, we have B1 = B2. ⊓⊔

Lemma 18.7 can be reformulated as stating that the map exp: S(n)→ SPD(n) is

a bijection. It can be shown that it is a homeomorphism.

It should be noted that Lemma 18.7 is a key ingredient in the log-Euclidean

framework due to Arsigny, Fillard, Pennec and Ayache, which has important appli-

cations to medical imaging, especially diffusion tensor imaging (DTI) [2, 3, 4, 5].

In the case of invertible matrices, the polar form theorem can be reformulated as

stating that there is a bijection between the topological space GL(n,R) of real n×n

invertible matrices (also a group) and O(n)×SPD(n).
As a corollary of the polar form theorem (Theorem 13.1) and Lemma 18.7, we

have the following result: For every invertible matrix A there is a unique orthogonal

matrix R and a unique symmetric matrix S such that

A = ReS.

Thus, we have a bijection between GL(n,R) and O(n)× S(n). But S(n) itself is

isomorphic to Rn(n+1)/2. Thus, there is a bijection between GL(n,R) and O(n)×
Rn(n+1)/2. It can also be shown that this bijection is a homeomorphism. This is an

interesting fact. Indeed, this homeomorphism essentially reduces the study of the

topology of GL(n,R) to the study of the topology of O(n). This is nice, since it can

be shown that O(n) is compact.

In A = ReS, if det(A) > 0, then R must be a rotation matrix (i.e., det(R) = +1),

since det
(
eS
)
> 0. In particular, if A ∈ SL(n,R), since det(A) = det(R) = +1, the

symmetric matrix S must have a null trace, i.e., S ∈ S(n)∩sl(n,R). Thus, we have a

bijection between SL(n,R) and SO(n)× (S(n)∩ sl(n,R)).
We can also use the results of Section 12.4 to show that the exponential map is a

surjective map from the skew-Hermitian matrices to the unitary matrices.
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18.4 The Lie Groups GL(n,C), SL(n,C), U(n), SU(n), the Lie

Algebras gl(n,C), sl(n,C), u(n), su(n), and the Exponential

Map

The set of complex invertible n× n matrices forms a group under multiplication,

denoted by GL(n,C). The subset of GL(n,C) consisting of those matrices having

determinant +1 is a subgroup of GL(n,C), denoted by SL(n,C). It is also easy to

check that the set of complex n× n unitary matrices forms a group under multipli-

cation, denoted by U(n). The subset of U(n) consisting of those matrices having

determinant +1 is a subgroup of U(n), denoted by SU(n). We can also check that

the set of complex n× n matrices with null trace forms a real vector space under

addition, and similarly for the set of skew-Hermitian matrices and the set of skew-

Hermitian matrices with null trace.

Definition 18.2. The group GL(n,C) is called the general linear group, and its sub-

group SL(n,C) is called the special linear group. The group U(n) of unitary matri-

ces is called the unitary group, and its subgroup SU(n) is called the special unitary

group. The real vector space of complex n×n matrices with null trace is denoted by

sl(n,C), the real vector space of skew-Hermitian matrices is denoted by u(n), and

the real vector space u(n)∩ sl(n,C) is denoted by su(n).

Remarks:

(1) As in the real case, the groups GL(n,C), SL(n,C), U(n), and SU(n) are also

topological groups (viewed as subspaces of R2n2
), and in fact, smooth real man-

ifolds. Such objects are called (real) Lie groups. The real vector spaces sl(n,C),
u(n), and su(n) are Lie algebras associated with SL(n,C), U(n), and SU(n).
The algebra structure is given by the Lie bracket, which is defined as

[A, B] = AB−BA.

(2) It is also possible to define complex Lie groups, which means that they are

topological groups and smooth complex manifolds. It turns out that GL(n,C)
and SL(n,C) are complex manifolds, but not U(n) and SU(n).

� One should be very careful to observe that even though the Lie algebras

sl(n,C), u(n), and su(n) consist of matrices with complex coefficients,

we view them as real vector spaces. The Lie algebra sl(n,C) is also a complex

vector space, but u(n) and su(n) are not! Indeed, if A is a skew-Hermitian matrix,

iA is not skew-Hermitian, but Hermitian!

Again the Lie algebra achieves a “linearization” of the Lie group. In the complex

case, the Lie algebras gl(n,C) is the set of all complex n× n matrices, but u(n) 6=
su(n), because a skew-Hermitian matrix does not necessarily have a null trace.



476 18 Basics of Manifolds and Classical Lie Groups

The properties of the exponential map also play an important role in studying

complex Lie groups. For example, it is clear that the map

exp: gl(n,C)→GL(n,C)

is well-defined, but this time, it is surjective! One way to prove this is to use the

Jordan normal form. Similarly, since

det
(
eA
)
= etr(A),

the map

exp: sl(n,C)→ SL(n,C)

is well-defined, but it is not surjective! As we will see in the next theorem, the maps

exp: u(n)→ U(n)

and

exp: su(n)→ SU(n)

are well-defined and surjective.

Theorem 18.2. The exponential maps

exp: u(n)→ U(n) and exp: su(n)→ SU(n)

are well-defined and surjective.

Proof. First, we need to prove that if A is a skew-Hermitian matrix, then eA is a

unitary matrix. For this, first check that

(
eA
)∗

= eA∗ .

Then, since A∗ =−A, we get

(
eA
)∗

= eA∗ = e−A,

and so (
eA
)∗

eA = e−AeA = e−A+A = e0n = In,

and similarly, eA
(
eA
)∗

= In, showing that eA is unitary. Since

det
(
eA
)
= etr(A),

if A is skew-Hermitian and has null trace, then det(eA) = +1.

For the surjectivity we will use Theorem 12.11. First, assume that A is a unitary

matrix. By Theorem 12.11, there is a unitary matrix U and a diagonal matrix D

such that A = UDU∗. Furthermore, since A is unitary, the entries λ1, . . . ,λn in D

(the eigenvalues of A) have absolute value +1. Thus, the entries in D are of the form

cosθ + i sinθ = eiθ . Thus, we can assume that D is a diagonal matrix of the form
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D =




eiθ1 . . .
eiθ2 . . .

...
...

. . .
...

. . . eiθp


 .

If we let E be the diagonal matrix

E =




iθ1 . . .
iθ2 . . .

...
...

. . .
...

. . . iθp




it is obvious that E is skew-Hermitian and that

eE = D.

Then, letting B =UEU∗, we have

eB = A,

and it is immediately verified that B is skew-Hermitian, since E is.

If A is a unitary matrix with determinant +1, since the eigenvalues of A are

eiθ1 , . . . ,eiθp and the determinant of A is the product

eiθ1 · · ·eiθp = ei(θ1+···+θp)

of these eigenvalues, we must have

θ1 + · · ·+θp = 0,

and so, E is skew-Hermitian and has zero trace. As above, letting

B =UEU∗,

we have

eB = A,

where B is skew-Hermitian and has null trace. ⊓⊔

We now extend the result of Section 18.3 to Hermitian matrices.
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18.5 Hermitian Matrices, Hermitian Positive Definite Matrices,

and the Exponential Map

Recall that a Hermitian matrix is called positive (or positive semidefinite) if its eigen-

values are all positive or null, and positive definite if its eigenvalues are all strictly

positive. We denote the real vector space of Hermitian n× n matrices by H(n), the

set of Hermitian positive matrices by HP(n), and the set of Hermitian positive defi-

nite matrices by HPD(n).
The next lemma shows that every Hermitian positive definite matrix A is of the

form eB for some unique Hermitian matrix B. As in the real case, the set of Hermitian

matrices is a real vector space, but it is not a Lie algebra because the Lie bracket

[A,B] is not Hermitian unless A and B commute, and the set of Hermitian (positive)

definite matrices is not a multiplicative group.

Lemma 18.8. For every Hermitian matrix B, the matrix eB is Hermitian positive

definite. For every Hermitian positive definite matrix A, there is a unique Hermitian

matrix B such that A = eB.

Proof. It is basically the same as the proof of Theorem 18.8, except that a Hermitian

matrix can be written as A = UDU∗, where D is a real diagonal matrix and U is

unitary instead of orthogonal. ⊓⊔
Lemma 18.8 can be reformulated as stating that the map exp: H(n)→ HPD(n)

is a bijection. In fact, it can be shown that it is a homeomorphism. In the case of

complex invertible matrices, the polar form theorem can be reformulated as stating

that there is a bijection between the topological space GL(n,C) of complex n× n

invertible matrices (also a group) and U(n)×HPD(n). As a corollary of the polar

form theorem and Lemma 18.8, we have the following result: For every complex

invertible matrix A, there is a unique unitary matrix U and a unique Hermitian matrix

S such that

A =U eS.

Thus, we have a bijection between GL(n,C) and U(n)×H(n). But H(n) itself is

isomorphic to Rn2
, and so there is a bijection between GL(n,C) and U(n)×Rn2

.

It can also be shown that this bijection is a homeomorphism. This is an interesting

fact. Indeed, this homeomorphism essentially reduces the study of the topology of

GL(n,C) to the study of the topology of U(n). This is nice, since it can be shown

that U(n) is compact (as a real manifold).

In the polar decomposition A = UeS, we have |det(U)| = 1, since U is unitary,

and tr(S) is real, since S is Hermitian (since it is the sum of the eigenvalues of S,

which are real), so that det
(
eS
)
> 0. Thus, if det(A) = 1, we must have det

(
eS
)
= 1,

which implies that S ∈H(n)∩sl(n,C). Thus, we have a bijection between SL(n,C)
and SU(n)× (H(n)∩ sl(n,C)).

In the next section we study the group SE(n) of affine maps induced by orthog-

onal transformations, also called rigid motions, and its Lie algebra. We will show

that the exponential map is surjective. The groups SE(2) and SE(3) play play a

fundamental role in robotics, dynamics, and motion planning.
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18.6 The Lie Group SE(n) and the Lie Algebra se(n)

First, we review the usual way of representing affine maps of Rn in terms of (n+
1)× (n+ 1) matrices.

Definition 18.3. The set of affine maps ρ of Rn, defined such that

ρ(X) = RX +U,

where R is a rotation matrix (R ∈ SO(n)) and U is some vector in Rn, is a group

under composition called the group of direct affine isometries, or rigid motions,

denoted by SE(n).

Every rigid motion can be represented by the (n+ 1)× (n+ 1)matrix

(
R U

0 1

)

in the sense that (
ρ(X)

1

)
=

(
R U

0 1

)(
X

1

)

iff

ρ(X) = RX +U.

Definition 18.4. The vector space of real (n+ 1)× (n+ 1) matrices of the form

A =

(
Ω U

0 0

)
,

where Ω is a skew-symmetric matrix and U is a vector in Rn, is denoted by se(n).

Remark: The group SE(n) is a Lie group, and its Lie algebra turns out to be se(n).

We will show that the exponential map exp: se(n)→ SE(n) is surjective. First,

we prove the following key lemma.

Lemma 18.9. Given any (n+ 1)× (n+ 1) matrix of the form

A =

(
Ω U

0 0

)

where Ω is any matrix and U ∈ Rn,

Ak =

(
Ω k Ω k−1U

0 0

)
,
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where Ω 0 = In. As a consequence,

eA =

(
eΩ VU

0 1

)
,

where

V = In + ∑
k≥1

Ω k

(k+ 1)!
.

Proof. A trivial induction on k shows that

Ak =

(
Ω k Ω k−1U

0 0

)
.

Then we have

eA = ∑
k≥0

Ak

k!
,

= In+1 + ∑
k≥1

1

k!

(
Ω k Ω k−1U

0 0

)
,

=

(
In +∑k≥0

Ω k

k! ∑k≥1
Ω k−1

k!
U

0 1

)
,

=

(
eΩ VU

0 1

)
.

⊓⊔

We can now prove our main theorem. We will need to prove that V is invertible

when Ω is a skew-symmetric matrix. It would be tempting to write V as

V = Ω−1(eΩ − I).

Unfortunately, for odd n, a skew-symmetric matrix of order n is not invertible! Thus,

we have to find another way of proving that V is invertible. However, observe that

we have the following useful fact:

V = In + ∑
k≥1

Ω k

(k+ 1)!
=

∫ 1

0
eΩtdt.

This is what we will use in Theorem 18.3 to prove surjectivity.

Theorem 18.3. The exponential map

exp: se(n)→ SE(n)

is well-defined and surjective.
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Proof. Since Ω is skew-symmetric, eΩ is a rotation matrix, and by Theorem 18.1,

the exponential map

exp: so(n)→ SO(n)

is surjective. Thus, it remains to prove that for every rotation matrix R, there is some

skew-symmetric matrix Ω such that R = eΩ and

V = In + ∑
k≥1

Ω k

(k+ 1)!

is invertible. By Theorem 12.9, for every skew-symmetric matrix Ω there is an

orthogonal matrix P such that Ω = PDP⊤, where D is a block diagonal matrix of

the form

D =




D1 . . .
D2 . . .

...
...

. . .
...

. . . Dp




such that each block Di is either 0 or a two-dimensional matrix of the form

Di =

(
0 −θi

θi 0

)

where θi ∈R, with θi > 0. Actually, we can assume that θi 6= k2π for all k ∈Z, since

when θi = k2π we have eDi = I2, and Di can be replaced by two one-dimensional

blocks each consisting of a single zero. To compute V , since Ω = PDP⊤ = PDP−1,

observe that

V = In + ∑
k≥1

Ω k

(k+ 1)!

= In + ∑
k≥1

PDkP−1

(k+ 1)!

= P

(
In + ∑

k≥1

Dk

(k+ 1)!

)
P−1

= PWP−1,

where

W = In + ∑
k≥1

Dk

(k+ 1)!
.

We can compute

W = In + ∑
k≥1

Dk

(k+ 1)!
=

∫ 1

0
eDtdt,

by computing
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W =




W1 . . .
W2 . . .

...
...

. . .
...

. . . Wp




by blocks. Since

eDi =

(
cosθi −sinθi

sin θi cosθi

)

when Di is a 2× 2 skew-symmetric matrix and Wi =
∫ 1

0 eDitdt, we get

Wi =

(∫ 1
0 cos(θit)dt

∫ 1
0 −sin(θit)dt∫ 1

0 sin(θit)dt
∫ 1

0 cos(θit)dt

)
=

1

θi

(
sin(θit) |10 cos(θit) |10
−cos(θit) |10 sin(θit) |10

)
,

that is,

Wi =
1

θi

(
sin θi −(1− cosθi)

1− cosθi sinθi

)
,

and Wi = 1 when Di = 0. Now, in the first case, the determinant is

1

θ 2
i

(
(sin θi)

2 +(1− cosθi)
2
)
=

2

θ 2
i

(1− cosθi),

which is nonzero, since θi 6= k2π for all k ∈ Z. Thus, each Wi is invertible, and so is

W , and thus, V = PWP−1 is invertible. ⊓⊔

In the case n = 3, given a skew-symmetric matrix

Ω =




0 −c b

c 0 −a

−b a 0


 ,

letting θ =
√

a2 + b2 + c2, it it easy to prove that if θ = 0, then

eA =

(
I3 U

0 1

)
,

and that if θ 6= 0 (using the fact that Ω 3 =−θ 2Ω ), then

eΩ = I3 +
sinθ

θ
Ω +

(1− cosθ )

θ 2
Ω 2

and

V = I3 +
(1− cosθ )

θ 2
Ω +

(θ − sinθ )

θ 3
Ω 2.

Our next goal is to define embedded submanifolds and (linear) Lie groups. Before

doing this, we believe that some readers might appreciate a review of the notion of

the derivative of a function between two normed vector spaces.
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18.7 The Derivative of a Function Between Normed Vector

Spaces, a Review

In this brief section, we review some basic notions of differential calculus, in par-

ticular, the derivative of a function f : E → F , where E and F are normed vec-

tor spaces. In most cases, E = Rn and F = Rm. However, if we need to deal with

infinite-dimensional manifolds, then it is necessary to allow E and F to be infinite-

dimensional. This section can be omitted by readers already familiar with this stan-

dard material. We omit all proofs and refer the reader to standard analysis textbooks

such as Lang [29, 28], Munkres [38], Abraham and Marsden [1], Choquet-Bruhat

[13], Schwartz [43], or Cartan [10] for a complete exposition.

Let E and F be two normed vector spaces, let A⊆ E be some open subset of A,

and let a ∈ A be some element of A. Even though a is a vector, we may also call it a

point.

The idea behind the derivative of the function f at a is that it is a linear approx-

imation (actually, an affine approximation) of f in a small open set around a. The

difficulty is to make sense of the quotient

f (a+ h)− f (a)

h
,

where h is a vector. We circumvent this difficulty in two stages.

A first possibility is to consider the directional derivative with respect to a vector

u 6= 0 in E .

We can consider the vector f (a+ tu)− f (a), where t ∈ R (or t ∈ C). Now

f (a+ tu)− f (a)

t

makes sense.

The idea is that in E , the points of the form a+ tu for t in some small closed

interval [−ε,+ε] of R (or C) form a line segment [r,s] in A containing a, and that

the image of this line segment defines a small curve segment on f (A). This curve

(segment) is defined by the map t 7→ f (a+ tu), from [r, s] to F , and the directional

derivative Du f (a) defines the direction of the tangent line at a to this curve.

Definition 18.5. Let E and F be two normed spaces, let A be a nonempty open

subset of E , and let f : A→ F be any function. For any a ∈ A, for any u 6= 0 in E ,

the directional derivative of f at a with respect to the vector u, denoted by Du f (a),
is the limit (if it exists)

lim
t→0,t∈U

f (a+ tu)− f (a)

t
,

where U = {t ∈ R | a+ tu∈ A, t 6= 0} (or U = {t ∈ C | a+ tu∈ A, t 6= 0}).
Since the map t 7→ a+ tu is continuous, and since A−{a} is open, the inverse

image U of A−{a} under the above map is open, and the definition of the limit in

Definition 18.5 makes sense.
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Remark: Since the notion of limit is purely topological, the existence and value of

a directional derivative is independent of the choice of norms in E and F , as long as

they are equivalent norms.

The directional derivative is sometimes called the Gâteaux derivative.

In the special case that E = R, F = R and we let u = 1 (i.e., the real number 1,

viewed as a vector), it is immediately verified that D1 f (a) = f ′(a). When E =R (or

E = C) and F is any normed vector space, the derivative D1 f (a), also denoted by

f ′(a), provides a suitable generalization of the notion of derivative.

However, when E has dimension ≥ 2, directional derivatives present a serious

problem, which is that their definition is not sufficiently uniform. Indeed, there is no

reason to believe that the directional derivatives with respect to all nonzero vectors

u share something in common. As a consequence, a function can have all directional

derivatives at a, and yet not be continuous at a. Two functions may have all direc-

tional derivatives in some open sets, and yet their composition may not. Thus, we

introduce a more uniform notion.

Definition 18.6. Let E and F be two normed spaces, let A be a nonempty open

subset of E , and let f : A→ F be any function. For any a ∈ A, we say that f is

differentiable at a ∈ A if there are a linear continuous map L : E→ F and a function

ε(h) such that

f (a+ h) = f (a)+L(h)+ ε(h)‖h‖
for every a+ h∈ A, where

lim
h→0,h∈U

ε(h) = 0,

with U = {h∈ E | a+h∈ A, h 6= 0}. The linear map L is denoted by D f (a), or D fa,

or d f (a), or d fa, or f ′(a), and it is called the Fréchet derivative, or total derivative,

or derivative, or total differential, or differential, of f at a.

Since the map h 7→ a+h from E to E is continuous, and since A is open in E , the

inverse image U of A−{a} under the above map is open in E , and it makes sense

to say that

lim
h→0,h∈U

ε(h) = 0.

Note that for every h ∈U , since h 6= 0, ε(h) is uniquely determined, since

ε(h) =
f (a+ h)− f (a)−L(h)

‖h‖ ,

and the value ε(0) plays absolutely no role in this definition. It does no harm to

assume that ε(0) = 0, and we will assume this from now on.

Remark: Since the notion of limit is purely topological, the existence and value of

a derivative is independent of the choice of norms in E and F , as long as they are

equivalent norms.

The following proposition shows that our new definition is consistent with the

definition of the directional derivative and that the continuous linear map L is

unique, if it exists.
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Proposition 18.1. Let E and F be two normed spaces, let A be a nonempty open

subset of E, and let f : A→ F be any function. For any a ∈ A, if D f (a) is defined,

then f is continuous at a and f has a directional derivative Du f (a) for every u 6= 0

in E. Furthermore,

Du f (a) = D f (a)(u),

and thus D f (a) is uniquely defined.

Proof. If L = D f (a) exists, then for any nonzero vector u ∈ E , because A is open,

for any t ∈ R−{0} (or t ∈ C−{0}) small enough, a+ tu∈ A, so

f (a+ tu) = f (a)+L(tu)+ ε(tu)‖tu‖= f (a)+ tL(u)+ |t|ε(tu)‖u‖,

which implies that

L(u) =
f (a+ tu)− f (a)

t
− |t|

t
ε(tu)‖u‖,

and since limt 7→0 ε(tu) = 0, we deduce that

L(u) = D f (a)(u) = Du f (a).

Because

f (a+ h) = f (a)+L(h)+ ε(h)‖h‖
for all h such that ‖h‖ is small enough, L is continuous, and limh 7→0 ε(h)‖h‖ = 0,

we have limh 7→0 f (a+ h) = f (a), that is, f is continuous at a. ⊓⊔

Observe that the uniqueness of D f (a) follows from Proposition 18.1. Also, when

E is of finite dimension, it is easily shown that every linear map is continuous, and

this assumption is then redundant.

If D f (a) exists for every a ∈ A, we get a map

D f : A→L(E;F),

called the derivative of f on A, and also denoted by d f . Here L(E;F) denotes the

vector space of continuous linear maps from E to F .

When E is of finite dimension n, for any basis (u1, . . . ,un) of E , we can define the

directional derivatives with respect to the vectors in the basis (u1, . . . ,un) (actually,

we can also do it for an infinite basis). In this way, we obtain the definition of partial

derivatives, as follows:

Definition 18.7. For any two normed spaces E and F , if E is of finite dimension n,

then for every basis (u1, . . . ,un) for E , for every a∈ E , for every function f : E→F ,

the directional derivatives Du j
f (a) (if they exist) are called the partial derivatives

of f with respect to the basis (u1, . . . ,un). The partial derivative Du j
f (a) is also

denoted by ∂ j f (a), or
∂ f
∂x j

(a).
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The notation
∂ f
∂x j

(a) for a partial derivative, although customary and going back

to Leibniz, is a “logical obscenity.” Indeed, the variable x j really has nothing to do

with the formal definition. This is just another of these situations in which tradition

is just too hard to overthrow!

We now consider a number of standard results about derivatives.

Proposition 18.2. Given two normed spaces E and F, if f : E → F is a constant

function, then D f (a) = 0, for every a ∈ E. If f : E → F is a continuous affine map,

then D f (a) =
−→
f , for every a ∈ E, where

−→
f denotes the linear map associated with

f .

Proposition 18.3. Given a normed space E and a normed vector space F, for any

two functions f ,g : E → F, for every a ∈ E, if D f (a) and Dg(a) exist, then D( f +
g)(a) and D(λ f )(a) exist, and

D( f + g)(a) = D f (a)+Dg(a),

D(λ f )(a) = λ D f (a).

Proposition 18.4. Given three normed vector spaces E1, E2, and F, for any contin-

uous bilinear map f : E1×E2→ F, for every (a,b) ∈ E1×E2, D f (a,b) exists, and

for every u ∈ E1 and v ∈ E2,

D f (a,b)(u,v) = f (u,b)+ f (a,v).

We now state the very useful chain rule.

Theorem 18.4. Given three normed spaces E, F, and G, let A be an open set in E,

and let B an open set in F. For any functions f : A→ F and g : B→ G such that

f (A)⊆ B, for any a∈A, if D f (a) exists and Dg( f (a)) exists, then D(g◦ f )(a) exists,

and

D(g ◦ f )(a) = Dg( f (a))◦D f (a).

Theorem 18.4 has many interesting consequences. We mention two corollaries.

Proposition 18.5. Given two normed spaces E and F, let A be some open subset in

E, let B be some open subset in F, let f : A→ B be a bijection from A to B, and

assume that D f exists on A and that D f−1 exists on B. Then for every a ∈ A,

D f−1( f (a)) = (D f (a))−1.

Proposition 18.5 has the remarkable consequence that the two vector spaces E

and F have the same dimension. In other words, a local property, the existence of

a bijection f between an open set A of E and an open set B of F such that f is

differentiable on A and f−1 is differentiable on B, implies a global property, that the

two vector spaces E and F have the same dimension.

If both E and F are of finite dimension, for any basis (u1, . . . ,un) of E and any

basis (v1, . . . ,vm) of F , every function f : E → F is determined by m functions

fi : E→ R (or fi : E→C), where
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f (x) = f1(x)v1 + · · ·+ fm(x)vm,

for every x ∈ E . Then we get

D f (a)(u j) = D f1(a)(u j)v1 + · · ·+D fi(a)(u j)vi + · · ·+D fm(a)(u j)vm,

that is,

D f (a)(u j) = ∂ j f1(a)v1 + · · ·+ ∂ j fi(a)vi + · · ·+ ∂ j fm(a)vm.

Since the jth column of the m× n matrix representing D f (a) with respect to

the bases (u1, . . . ,un) and (v1, . . . ,vm) is equal to the components of the vector

D f (a)(u j) over the basis (v1, . . . ,vm), the linear map D f (a) is determined by the

m× n matrix J( f )(a) = (∂ j fi(a)):

J( f )(a) =




∂1 f1(a) ∂2 f1(a) . . . ∂n f1(a)
∂1 f2(a) ∂2 f2(a) . . . ∂n f2(a)

...
...

. . .
...

∂1 fm(a) ∂2 fm(a) . . . ∂n fm(a)


 ,

or

J( f )(a) =




∂ f1

∂x1
(a)

∂ f1

∂x2
(a) . . .

∂ f1

∂xn
(a)

∂ f2

∂x1

(a)
∂ f2

∂x2

(a) . . .
∂ f2

∂xn
(a)

...
...

. . .
...

∂ fm

∂x1

(a)
∂ fm

∂x2

(a) . . .
∂ fm

∂xn
(a)




.

This matrix is called the Jacobian matrix of D f at a. When m = n, the determi-

nant det(J( f )(a)) of J( f )(a) is called the Jacobian (or Jacobian determinant) of

D f (a).
We know that this determinant depends only on D f (a), and not on specific bases.

However, partial derivatives give a means for computing it.

When E = Rn and F = Rm, for any function f : Rn→ Rm, it is easy to compute

the partial derivatives
∂ fi
∂x j

(a). We simply treat the function fi : Rn→R as a function

of its jth argument, leaving the others fixed, and compute the derivative as the usual

derivative.

Example 18.1. For example, consider the function f : R2→ R2, defined by

f (r,θ ) = (r cosθ ,r sin θ ).

Then we have

J( f )(r,θ ) =

(
cosθ −r sinθ
sinθ r cosθ

)
,

and the Jacobian (determinant) has value det(J( f )(r,θ )) = r.
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In the case E =R (or E =C), for any function f : R→ F (or f : C→ F), the Ja-

cobian matrix of D f (a) is a column vector. In fact, this column vector is just D1 f (a).
Then for every λ ∈ R (or λ ∈ C), D f (a)(λ ) = λ D1 f (a). This case is sufficiently

important to warrant a definition.

Definition 18.8. Given a function f : R→ F (or f : C→ F), where F is a normed

space, the vector

D f (a)(1) = D1 f (a)

is called the vector derivative or velocity vector (in the real case) at a. We usually

identify D f (a) with its Jacobian matrix D1 f (a), which is the column vector cor-

responding to D1 f (a). By abuse of notation, we also let D f (a) denote the vector

D f (a)(1) = D1 f (a).

When E = R, the physical interpretation is that f defines a (parametric) curve

that is the trajectory of some particle moving in Rm as a function of time, and the

vector D1 f (a) is the velocity of the moving particle f (t) at t = a.

Example 18.2.

1. When A = (0,1) and F = R3, a function f : (0,1)→ R3 defines a (parametric)

curve in R3. If f = ( f1, f2, f3), its Jacobian matrix at a ∈ R is

J( f )(a) =




∂ f1

∂ t
(a)

∂ f2

∂ t
(a)

∂ f3

∂ t
(a)



.

2. When E =R2 and F =R3, a function ϕ : R2→R3 defines a parametric surface.

Letting ϕ = ( f ,g,h), its Jacobian matrix at a ∈ R2 is

J(ϕ)(a) =




∂ f

∂u
(a)

∂ f

∂v
(a)

∂g

∂u
(a)

∂g

∂v
(a)

∂h

∂u
(a)

∂h

∂v
(a)



.

3. When E = R3 and F = R, for a function f : R3 → R, the Jacobian matrix at

a ∈ R3 is

J( f )(a) =

(
∂ f

∂x
(a)

∂ f

∂y
(a)

∂ f

∂ z
(a)

)
.

More generally, when f : Rn→R, the Jacobian matrix at a∈Rn is the row vector
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J( f )(a) =

(
∂ f

∂x1

(a) · · · ∂ f

∂xn
(a)

)
.

Its transpose is a column vector called the gradient of f at a, denoted by grad f (a)
or ∇ f (a). Then, given any v ∈ Rn, note that

D f (a)(v) =
∂ f

∂x1

(a)v1 + · · ·+
∂ f

∂xn
(a)vn = grad f (a) · v,

the scalar product of grad f (a) and v.

When E , F , and G have finite dimensions, (u1, . . . ,up) is a basis for E , (v1, . . . ,vn)
is a basis for F , and (w1, . . . ,wm) is a basis for G, if A is an open subset of E , B is an

open subset of F , for any functions f : A→ F and g : B→G such that f (A)⊆ B, for

any a ∈ A, letting b = f (a) and h = g ◦ f , if D f (a) exists and Dg(b) exists, then by

Theorem 18.4, the Jacobian matrix J(h)(a) = J(g ◦ f )(a) with respect to the bases

(u1, . . . ,up) and (w1, . . . ,wm) is the product of the Jacobian matrices J(g)(b) with

respect to the bases (v1, . . . ,vn) and (w1, . . . ,wm), and J( f )(a) with respect to the

bases (u1, . . . ,up) and (v1, . . . ,vn):

J(h)(a) =




∂g1

∂y1

(b)
∂g1

∂y2

(b) . . .
∂g1

∂yn
(b)

∂g2

∂y1

(b)
∂g2

∂y2

(b) . . .
∂g2

∂yn
(b)

...
...

. . .
...

∂gm

∂y1

(b)
∂gm

∂y2

(b) . . .
∂gm

∂yn
(b)







∂ f1

∂x1

(a)
∂ f1

∂x2

(a) . . .
∂ f1

∂xp
(a)

∂ f2

∂x1

(a)
∂ f2

∂x2

(a) . . .
∂ f2

∂xp
(a)

...
...

. . .
...

∂ fn

∂x1

(a)
∂ fn

∂x2

(a) . . .
∂ fn

∂xp
(a)




.

Thus, we have the familiar formula

∂hi

∂x j
(a) =

k=n

∑
k=1

∂gi

∂yk

(b)
∂ fk

∂x j
(a).

Given two normed spaces E and F of finite dimension, given an open subset A of

E , if a function f : A→ F is differentiable at a ∈ A, then its Jacobian matrix is well

defined.

� One should be warned that the converse is false. There are functions such that

all the partial derivatives exist at some a ∈ A, yet the function is not differen-

tiable at a, and not even continuous at a.

However, there are sufficient conditions on the partial derivatives for D f (a) to

exist, namely, continuity of the partial derivatives. If f is differentiable on A, then f

defines a function D f : A→L(E;F). It turns out that the continuity of the partial

derivatives on A is a necessary and sufficient condition for D f to exist and to be

continuous on A.
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Theorem 18.5. Given two normed affine spaces E and F, where E is of finite dimen-

sion n and where (u1, . . . ,un) is a basis of E, given any open subset A of E, given

any function f : A→ F, the derivative D f : A→L(E;F) is defined and continuous

on A iff every partial derivative ∂ j f (or
∂ f
∂x j

) is defined and continuous on A, for

all j, 1 ≤ j ≤ n. As a corollary, if F is of finite dimension m, and (v1, . . . ,vm) is a

basis of F, the derivative D f : A→L(E;F) is defined and continuous on A iff every

partial derivative ∂ j fi (or
∂ fi
∂x j

) is defined and continuous on A, for all i, j, 1≤ i≤m,

1≤ j ≤ n.

Definition 18.9. Given two normed affine spaces E and F and an open subset A of

E , we say that a function f : A→ F is a C0-function on A if f is continuous on A.

We say that f : A→ F is a C1-function on A if D f exists and is continuous on A.

Let E and F be two normed affine spaces, let U ⊆ E be an open subset of E and

let f : E→ F be a function such that D f (a) exists for all a∈U . If D f (a) is injective

for all a ∈U , we say that f is an immersion (on U), and if D f (a) is surjective for all

a ∈U , we say that f is a submersion (on U).

When E and F are finite-dimensional with dim(E) = n and dim(F) =m, if m≥ n,

then f is an immersion iff the Jacobian matrix J( f )(a) has full rank (n) for all a∈E ,

and if n ≥ m, then f is a submersion iff the Jacobian matrix J( f )(a) has full rank

(m) for all a ∈ E .

A very important theorem is the inverse function theorem. In order for this the-

orem to hold for infinite-dimensional spaces, it is necessary to assume that our

normed spaces are complete.

Given a normed vector space E we say that a sequence (un)n with un ∈ E is a

Cauchy sequence if for every ε > 0, there is some N > 0 such that for all m,n≥ N,

‖un− um‖< ε.

A normed vector space E is complete iff every Cauchy sequence converges. A com-

plete normed vector space is also called a Banach space, after Stefan Banach (1892–

1945).

Fortunately, R,C, and every finite-dimensional (real or complex) normed vector

space is complete. A real (resp. complex) vector space E is a real (resp. complex)

Hilbert space if it is complete as a normed space with the norm ‖u‖ =
√
〈u,u〉 in-

duced by its Euclidean (resp. Hermitian) inner product (of course, positive definite).

Definition 18.10. Given two topological spaces E and F and an open subset A of

E , we say that a function f : A→ F is a local homeomorphism from A to F if for

every a ∈ A, there are an open set U ⊆ A containing a and an open set V containing

f (a) such that f is a homeomorphism from U to V = f (U). If B is an open subset

of F , we say that f : A→ F is a (global) homeomorphism from A to B if f is a

homeomorphism from A to B = f (A).
If E and F are normed spaces, we say that f : A→ F is a local diffeomorphism

from A to F if for every a ∈ A, there are an open set U ⊆ A containing a and an

open set V containing f (a) such that f is a bijection from U to V , f is a C1-function
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on U , and f−1 is a C1-function on V = f (U). We say that f : A→ F is a (global)

diffeomorphism from A to B if f is a homeomorphism from A to B = f (A), f is a

C1-function on A, and f−1 is a C1-function on B.

Note that a local diffeomorphism is a local homeomorphism. Also, as a conse-

quence of Proposition 18.5, if f is a diffeomorphism on A, then D f (a) is a linear

isomorphism for every a ∈ A.

Theorem 18.6. (Inverse function theorem) Let E and F be complete normed spaces,

let A be an open subset of E, and let f : A→ F be a C1-function on A. The following

properties hold:

(1) For every a ∈ A, if D f (a) is a linear isomorphism, then there exist some open

subset U ⊆ A containing a and some open subset V of F containing f (a) such

that f is a diffeomorphism from U to V = f (U). Furthermore,

D f−1( f (a)) = (D f (a))−1.

For every neighborhood N of a, the image f (N) of N is a neighborhood of f (a),
and for every open ball U ⊆ A of center a, the image f (U) of U contains some

open ball of center f (a).
(2) If D f (a) is invertible for every a ∈ A, then B = f (A) is an open subset of F, and

f is a local diffeomorphism from A to B. Furthermore, if f is injective, then f is

a diffeomorphism from A to B.

Part (1) of Theorem 18.6 is often referred to as the “(local) inverse function theo-

rem.” It plays an important role in the study of manifolds and (ordinary) differential

equations.

If E and F are both of finite dimension, the case in which D f (a) is just injective

or just surjective is also important for defining manifolds, using implicit definitions.

We finally reach the best vantage point of our hike, the formal definition of (lin-

ear) Lie groups and Lie algebras.

18.8 Finale: Manifolds, Lie Groups, and Lie Algebras

In this section we attempt to define precisely Lie groups and Lie algebras. One of

the reasons that Lie groups are nice is that they have a differential structure, which

means that the notion of tangent space makes sense at any point of the group. Fur-

thermore, the tangent space at the identity happens to have some algebraic structure,

that of a Lie algebra. Roughly, the tangent space at the identity provides a “lin-

earization” of the Lie group, and it turns out that many properties of a Lie group

are reflected in its Lie algebra, and that the loss of information is not too severe.

The challenge that we are facing is that unless our readers are already familiar with

manifolds, the amount of basic differential geometry required to define Lie groups

and Lie algebras in full generality is overwhelming.
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Fortunately, all the Lie groups that we need to consider are subspaces of RN for

some sufficiently large N. In fact, they are all isomorphic to subgroups of GL(N,R)
for some suitable N, even SE(n), which is isomorphic to a subgroup of SL(n+ 1).
Such groups are called linear Lie groups (or matrix groups). Since the groups under

consideration are subspaces of RN , we do not need the definition of an abstract

manifold. We just have to define embedded submanifolds (also called submanifolds)

of RN (in the case of GL(n,R), N = n2). This is the path that we will follow.

In general, the difficult part in proving that a subgroup of GL(n,R) is a Lie group

is to prove that it is a manifold. Fortunately, there is a characterization of the linear

groups that obviates much of the work. This characterization rests on two theorems.

First, a Lie subgroup H of a Lie group G (where H is an embedded submanifold

of G) is closed in G (see Warner [47], Chapter 3, Theorem 3.21, page 97). Second,

a theorem of Von Neumann and Cartan asserts that a closed subgroup of GL(n,R)
is an embedded submanifold, and thus, a Lie group (see Warner [47], Chapter 3,

Theorem 3.42, page 110). Thus, a linear Lie group is a closed subgroup of GL(n,R).
Since our Lie groups are subgroups (or isomorphic to subgroups) of GL(n,R)

for some suitable n, it is easy to define the Lie algebra of a Lie group using curves.

This approach to define the Lie algebra of a matrix group is followed by a number

of authors, such as Curtis [14]. However, Curtis is rather cavalier, since he does not

explain why the required curves actually exist, and thus, according to his definition,

Lie algebras could be the trivial vector space! Although we will not prove the theo-

rem of Von Neumann and Cartan, we feel that it is important to make clear why the

definitions make sense, i.e., why we are not dealing with trivial objects.

A small annoying technical problem will arise in our approach, the problem with

discrete subgroups. If A is a subset of RN , recall that A inherits a topology from RN

called the subspace topology, and defined such that a subset V of A is open if

V = A∩U

for some open subset U of RN . A point a ∈ A is said to be isolated if there is there

is some open subset U of RN such that

{a}= A∩U,

in other words, if {a} is an open set in A.

The group GL(n,R) of real invertible n× n matrices can be viewed as a subset

of Rn2
, and as such, it is a topological space under the subspace topology (in fact, a

dense open subset of Rn2
). One can easily check that multiplication and the inverse

operation are continuous, and in fact smooth (i.e., C∞-continuously differentiable).

This makes GL(n,R) a topological group. Any subgroup G of GL(n,R) is also a

topological space under the subspace topology. A subgroup G is called a discrete

subgroup if it has some isolated point. This turns out to be equivalent to the fact that

every point of G is isolated, and thus, G has the discrete topology (every subset of G

is open). Now, because GL(n,R) is Hausdorff, it can be shown that every discrete

subgroup of GL(n,R) is closed (which means that its complement is open). Thus,
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discrete subgroups of GL(n,R) are Lie groups! But these are not very interesting

Lie groups, and so we will consider only closed subgroups of GL(n,R) that are not

discrete.

Let us now review the definition of an embedded submanifold. For simplicity, we

restrict our attention to smooth manifolds. For detailed presentations, see DoCarmo

[15, 16], Milnor [35], Lee [30], Tu [46], Marsden and Ratiu [33], Guillemin and

Pollack [20], Berger and Gostiaux [8], or Warner [47]. For the sake of brevity, we

use the terminology manifold (but other authors would say embedded submanifolds,

or something like that).

The intuition behind the notion of a smooth manifold in RN is that a subspace M

is a manifold of dimension m if every point p ∈M is contained in some open subset

set U of M (in the subspace topology) that can be parametrized by some function

ϕ : Ω →U from some open subset Ω of the origin in Rm, and that ϕ has some nice

properties that allow the definition of smooth functions on M and of the tangent

space at p. For this, ϕ has to be at least a homeomorphism, but more is needed: ϕ
must be smooth, and the derivative ϕ ′(0m) at the origin must be injective (letting

0m = (0, . . . ,0)︸ ︷︷ ︸
m

).

Definition 18.11. Given any integers N,m, with N ≥ m ≥ 1, an m-dimensional

smooth manifold in RN , for short a manifold, is a nonempty subset M of RN such

that for every point p ∈ M there are two open subsets Ω ⊆ Rm and U ⊆ M, with

p ∈ U , and a smooth function ϕ : Ω → RN such that ϕ is a homeomorphism be-

tween Ω and U = ϕ(Ω), and ϕ ′(t0) is injective, where t0 = ϕ−1(p). The function

ϕ : Ω →U is called a (local) parametrization of M at p. If 0m ∈Ω and ϕ(0m) = p,

we say that ϕ : Ω →U is centered at p.

Recall that M ⊆ RN is a topological space under the subspace topology, and U

is some open subset of M in the subspace topology, which means that U = M ∩W

for some open subset W of RN . Since ϕ : Ω →U is a homeomorphism, it has an

inverse ϕ−1 : U → Ω that is also a homeomorphism, called a (local) chart. Since

Ω ⊆ Rm, for every point p ∈ M and every parametrization ϕ : Ω →U of M at p,

we have ϕ−1(p) = (z1, . . . ,zm) for some zi ∈ R, and we call z1, . . . ,zm the local

coordinates of p (with respect to ϕ−1). We often refer to a manifold M without

explicitly specifying its dimension (the integer m).

Intuitively, a chart provides a “flattened” local map of a region on a manifold.

For instance, in the case of surfaces (2-dimensional manifolds), a chart is analogous

to a planar map of a region on the surface. For a concrete example, consider a map

giving a planar representation of a country, a region on the earth, a curved surface.

Remark: We could allow m = 0 in definition 18.11. If so, a manifold of dimension

0 is just a set of isolated points, and thus it has the discrete topology. In fact, it can

be shown that a discrete subset of RN is countable. Such manifolds are not very

exciting, but they do correspond to discrete subgroups.
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Example 18.3. The unit sphere S2 in R3 defined such that

S2 =
{
(x,y,z) ∈ R3 | x2 + y2 + z2 = 1

}

is a smooth 2-manifold, because it can be parametrized using the following two

maps ϕ1 and ϕ2:

ϕ1 : (u,v) 7→
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,

u2 + v2− 1

u2 + v2 + 1

)

and

ϕ2 : (u,v) 7→
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,

1− u2− v2

u2 + v2 + 1

)
.

The map ϕ1 corresponds to the inverse of the stereographic projection from the

north pole N = (0,0,1) onto the plane z = 0, and the map ϕ2 corresponds to the

inverse of the stereographic projection from the south pole S = (0,0,−1) onto the

plane z = 0, as illustrated in Figure 18.1. We leave as an exercise to check that the

map ϕ1 parametrizes S2−{N} and that the map ϕ2 parametrizes S2−{S} (and that

they are smooth, homeomorphisms, etc.). Using ϕ1, the open lower hemisphere is

parametrized by the open disk of center O and radius 1 contained in the plane z = 0.

bc

bc

bc

bc

bc

bc

O

N

S

ϕ1(u,v)

ϕ2(u,v)

(u,v)

z = 0

Fig. 18.1 Inverse stereographic projections.

The chart ϕ−1
1 assigns local coordinates to the points in the open lower hemi-

sphere. If we draw a grid of coordinate lines parallel to the x and y axes inside

the open unit disk and map these lines onto the lower hemisphere using ϕ1, we

get curved lines on the lower hemisphere. These “coordinate lines” on the lower

hemisphere provide local coordinates for every point on the lower hemisphere. For
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this reason, older books often talk about curvilinear coordinate systems to mean the

coordinate lines on a surface induced by a chart. We urge our readers to define a

manifold structure on a torus. This can be done using four charts.

Every open subset of RN is a manifold in a trivial way. Indeed, we can use the

inclusion map as a parametrization. In particular, GL(n,R) is an open subset of Rn2
,

since its complement is closed (the set of invertible matrices is the inverse image of

the determinant function, which is continuous). Thus, GL(n,R) is a manifold. We

can view GL(n,C) as a subset of R(2n)2
using the embedding defined as follows:

For every complex n×n matrix A, construct the real 2n×2n matrix such that every

entry a+ ib in A is replaced by the 2× 2 block

(
a −b

b a

)
,

where a,b ∈ R. It is immediately verified that this map is in fact a group isomor-

phism. Thus, we can view GL(n,C) as a subgroup of GL(2n,R), and as a manifold

in R(2n)2
.

A 1-manifold is called a (smooth) curve, and a 2-manifold is called a (smooth)

surface (although some authors require that they also be connected).

The following two lemmas provide the link with the definition of an abstract

manifold. The first lemma is easily proved using the inverse function theorem.

Lemma 18.10. Given an m-dimensional manifold M in RN , for every p ∈M there

are two open sets O,W ⊆RN with 0N ∈O and p ∈M∩W , and a smooth diffeomor-

phism ϕ : O→W, such that ϕ(0N) = p and

ϕ(O∩ (Rm×{0N−m})) = M∩W.

The next lemma is easily proved from Lemma 18.10 (see Berger and Gostiaux

[8], Theorem 2.1.9, or DoCarmo [16], Chapter 0, Section 4). It is a key technical

result used to show that interesting properties of maps between manifolds do not

depend on parametrizations.

Lemma 18.11. Given an m-dimensional manifold M in RN , for every p ∈ M and

any two parametrizations ϕ1 : Ω1→U1 and ϕ2 : Ω2→U2 of M at p, if U1∩U2 6= /0,

the map ϕ−1
2 ◦ϕ1 : ϕ−1

1 (U1∩U2)→ ϕ−1
2 (U1∩U2) is a smooth diffeomorphism.

The maps ϕ−1
2 ◦ϕ1 : ϕ−1

1 (U1∩U2)→ ϕ−1
2 (U1∩U2) are called transition maps.

Lemma 18.11 is illustrated in Figure 18.2.

Using Definition 18.11, it may be quite hard to prove that a space is a manifold.

Therefore, it is handy to have alternative characterizations such as those given in the

next proposition:

Proposition 18.6. A subset M ⊆Rm+k is an m-dimensional manifold iff either

(1) for every p ∈ M, there are some open subset W ⊆ Rm+k with p ∈W and a

(smooth) submersion f : W →Rk such that W ∩M = f−1(0),
or
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U1

U2

Ω1

Ω2

U1 ∩U2ϕ−1
2 ◦ϕ1

ϕ1

ϕ2

ϕ−1
1 (U1 ∩U2)

ϕ−1
2 (U1 ∩U2)

Fig. 18.2 Parametrizations and transition functions.

(2) for every p ∈ M, there are some open subset W ⊆ Rm+k with p ∈W and a

(smooth) map f : W →Rk such that f ′(p) is surjective and W ∩M = f−1(0).

Observe that condition (2), although apparently weaker than condition (1), is in

fact equivalent to it, but more convenient in practice. This is because to say that

f ′(p) is surjective means that the Jacobian matrix of f ′(p) has rank k, which means

that some determinant is nonzero, and because the determinant function is con-

tinuous, this must hold in some open subset W1 ⊆W containing p. Consequently,

the restriction f1 of f to W1 is indeed a submersion and f−1
1 (0) = W1 ∩ f−1(0) =

W1∩W ∩M =W1∩M.

A proof of Proposition 18.6 can be found in Lafontaine [27] or Berger and Gos-

tiaux [8]. Lemma 18.10 and Proposition 18.6 are actually equivalent to Definition

18.11. This equivalence is also proved in Lafontaine [27] and Berger and Gostiaux

[8].

The proof, which is somewhat illuminating, is based on two technical lemmas

that are proved using the inverse function theorem (see Problem 18.24 and, for some

help, Guillemin and Pollack [20], Chapter 1, Sections 3 and 4).

Lemma 18.12. Let U ⊆Rm be an open subset ofRm and pick some a∈U. If f : U→
Rn is a smooth immersion at a, i.e., d fa is injective (so m ≤ n), then there are an

open set V ⊆Rn with f (a) ∈V, an open subset U ′ ⊆U with a ∈U ′ and f (U ′)⊆V,

an open subset O⊆ Rn−m, and a diffeomorphism θ : V →U ′×O such that

θ ( f (x1, . . . ,xm)) = (x1, . . . ,xm,0, . . . ,0),

for all (x1, . . . ,xm) ∈U ′.
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Lemma 18.13. Let W ⊆ Rm be an open subset of Rm and pick some a ∈ W. If

f : W → Rn is a smooth submersion at a, i.e., d fa is surjective (so m ≥ n), then

there are an open set V ⊆W ⊆ Rm with a ∈ V and a diffeomorphism ψ : O→ V,

with domain O⊆ Rm, such that

f (ψ(x1, . . . ,xm)) = (x1, . . . ,xn),

for all (x1, . . . ,xm) ∈ O.

Using Lemmas 18.12 and 18.13, we can prove the following theorem, which

confirms that all our characterizations of a manifold are equivalent.

Theorem 18.7. A nonempty subset M ⊆ RN is an m-manifold (with 1 ≤ m ≤ N) iff

any of the following conditions hold:

(1) For every p ∈M, there are two open subsets Ω ⊆ Rm and U ⊆M, with p ∈U,

and a smooth function ϕ : Ω → RN such that ϕ is a homeomorphism between

Ω and U = ϕ(Ω), and ϕ ′(0) is injective, where p = ϕ(0).
(2) For every p∈M, there are two open sets O,W ⊆RN with 0N ∈O and p∈M∩W,

and a smooth diffeomorphism ϕ : O→W, such that ϕ(0N) = p and

ϕ(O∩ (Rm×{0N−m})) = M∩W.

(3) For every p ∈M, there are some open subset W ⊆RN with p ∈W and a smooth

submersion f : W →RN−m such that W ∩M = f−1(0).
(4) For every p ∈M, there are some open subset W ⊆ RN with p ∈W and N−m

smooth functions fi : W → R such that the linear forms d f1(p), . . . ,d fN−m(p)
are linearly independent and

W ∩M = f−1
1 (0)∩·· ·∩ f−1

N−m(0).

Proof. If (1) holds, then by Lemma 18.12, replacing Ω by a smaller open subset

Ω ′⊆Ω if necessary, there are some open subset V ⊆RN with p∈V and ϕ(Ω ′)⊆V ,

an open subset O′ ⊆ RN−m, and some diffeomorphism θ : V →Ω ′×O′ such that

(θ ◦ϕ)(x1, . . . ,xm) = (x1, . . . ,xm,0, . . . ,0),

for all (x1, . . . ,xm) ∈Ω ′. Observe that the above condition implies that

(θ ◦ϕ)(Ω ′) = θ (V )∩ (Rm×{(0, . . . ,0)}).

Since ϕ is a homeomorphism between Ω and its image in M and since Ω ′ ⊆ Ω
is an open subset, ϕ(Ω ′) = M ∩W ′ for some open subset W ′ ⊆ RN , so if we let

W =V ∩W ′, because ϕ(Ω ′)⊆V , it follows that ϕ(Ω ′) = M∩W and

θ (W ∩M) = θ (ϕ(Ω ′)) = θ (V )∩ (Rm×{(0, . . . ,0)}).

However, θ is injective and θ (W ∩M)⊆ θ (W ), so
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θ (W ∩M) = θ (W )∩θ (V)∩ (Rm×{(0, . . . ,0)})
= θ (W ∩V )∩ (Rm×{(0, . . . ,0)})
= θ (W )∩ (Rm×{(0, . . . ,0)}).

If we let O = θ (W ), we get

θ−1(O∩ (Rm×{(0, . . . ,0)})) = M∩W,

which is (2).

If (2) holds, we can write ϕ−1 = ( f1, . . . , fN), and because ϕ−1 : W → O is a

diffeomorphism, d f1(q), . . . ,d fN(q) are linearly independent for all q ∈W , so the

map

f = ( fm+1, . . . , fN)

is a submersion f : W →RN−m, and we have f (x) = 0 iff fm+1(x) = · · ·= fN(x) = 0

iff

ϕ−1(x) = ( f1(x), . . . , fm(x),0, . . . ,0)

iff ϕ−1(x) ∈O∩ (Rm×{0N−m}) iff x ∈ ϕ(O∩ (Rm×{0N−m}) = M∩W , because

ϕ(O∩ (Rm×{0N−m})) = M∩W.

Thus, M∩W = f−1(0), which is (3).

The proof that (3) implies (2) uses Lemma 18.13 instead of Lemma 18.12. If

f : W → RN−m is the submersion such that M ∩W = f−1(0) given by (3), then

by Lemma 18.13, there are open subsets V ⊆W , O ⊆ RN and a diffeomorphism

ψ : O→V such that

f (ψ(x1, . . . ,xN)) = (x1, . . . ,xN−m)

for all (x1, . . . ,xN) ∈O. If σ is the permutation of variables given by

σ(x1, . . . ,xm,xm+1, . . . ,xN) = (xm+1, . . . ,xN ,x1, . . . ,xm),

then ϕ = ψ ◦σ is a diffeomorphism such that

f (ϕ(x1, . . . ,xN)) = (xm+1, . . . ,xN)

for all (x1, . . . ,xN) ∈O. If we denote the restriction of f to V by g, it is clear that

M∩V = g−1(0),

and because g(ϕ(x1, . . . ,xN)) = 0 iff (xm+1, . . . ,xN) = 0N−m and ϕ is a bijection,

M∩V = {(y1, . . . ,yN) ∈V | g(y1, . . . ,yN) = 0}
= {ϕ(x1, . . . ,xN) | (∃(x1, . . . ,xN) ∈ O)(g(ϕ(x1, . . . ,xN)) = 0)}
= ϕ(O∩ (Rm×{0N−m})),
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which is (2).

If (2) holds, then ϕ : O→W is a diffeomorphism,

O∩ (Rm×{0N−m}) = Ω ×{0N−m}

for some open subset Ω ⊆ Rm, and the map ψ : Ω →RN given by

ψ(x) = ϕ(x,0N−m)

is an immersion on Ω and a homeomorphism onto U ∩M, which implies (1).

If (3) holds, then if we write f = ( f1, . . . , fN−m) with fi : W → R, then the

fact that d f (p) is a submersion is equivalent to the fact that the linear forms

d f1(p), . . . ,d fN−m(p) are linearly independent and

M∩W = f−1(0) = f−1
1 (0)∩·· ·∩ f−1

N−m(0).

Finally, if (4) holds, then if we define f : W → RN−m by

f = ( f1, . . . , fN−m),

because d f1(p), . . . ,d fN−m(p) are linearly independent we get a smooth map that is

a submersion at p such that

M∩W = f−1(0).

Now, f is a submersion at p iff d f (p) is surjective, which means that a certain

determinant is nonzero, and since the determinant function is continuous, this deter-

minant is nonzero on some open subset W ′ ⊆W containing p, so if we restrict f to

W ′, we get an immersion on W ′ such that M∩W ′ = f−1(0). ⊓⊔

Condition (4) says that locally (that is, in a small open set of M containing p ∈
M), M is “cut out” by N −m smooth functions fi : W → R in the sense that the

portion of the manifold M∩W is the intersection of the N−m hypersurfaces f−1
i (0)

(the zero-level sets of the fi) and that this intersection is “clean,” which means that

the linear forms d f1(p), . . . ,d fN−m(p) are linearly independent.

As an illustration of Theorem 18.7, we can show again that the sphere

Sn = {x ∈ Rn+1 | ‖x‖2
2− 1 = 0}

is an n-dimensional manifold in Rn+1. Indeed, the map f : Rn+1 → R given by

f (x) = ‖x‖2
2− 1 is a submersion (for x 6= 0), since

d f (x)(y) = 2
n+1

∑
k=1

xkyk.

We can also show that the rotation group SO(n) is an
n(n−1)

2
-dimensional mani-

fold in Rn2
. Indeed, GL+(n) is an open subset of Rn2

(recall that GL+(n) = {A ∈
GL(n) | det(A)> 0}), and if f is defined by
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f (A) = A⊤A− I,

where A ∈GL+(n), then f (A) is symmetric, so f (A) ∈ S(n) = R
n(n+1)

2 .

It is easy to show (using directional derivatives) that

d f (A)(H) = A⊤H +H⊤A.

But then d f (A) is surjective for all A∈ SO(n), because if S is any symmetric matrix,

we see that

d f (A)

(
AS

2

)
= S.

Since SO(n) = f−1(0), we conclude that SO(n) is indeed a manifold.

A similar argument proves that O(n) is an
n(n−1)

2
-dimensional manifold. Using

the map f : GL(n)→R given by A 7→ det(A), we can prove that SL(n) is a manifold

of dimension n2− 1.

Remark: We have d f (A)(B) = det(A)tr(A−1B) for every A ∈GL(n), where

f (A) = det(A).
The third characterization of Theorem 18.7 suggests the following definition.

Definition 18.12. Let f : Rm+k → Rk be a smooth function. A point p ∈ Rm+k is

called a critical point (of f ) if d fp is not surjective, and a point q ∈ Rk is called a

critical value (of f ) if q = f (p), for some critical point p∈Rm+k. A point p ∈Rm+k

is a regular point (of f ) if p is not critical, i.e., d fp is surjective, and a point q∈Rk is

a regular value (of f ) if it is not a critical value. In particular, any q∈Rk− f (Rm+k)
is a regular value and q∈ f (Rm+k) is a regular value iff every p∈ f−1(q) is a regular

point (but in contrast, q is a critical value iff some p ∈ f−1(q) is critical).

Part (3) of Theorem 18.7 implies the following useful proposition:

Proposition 18.7. Given any smooth function f : Rm+k → Rk, for every regular

value q ∈ f (Rm+k), the preimage Z = f−1(q) is a manifold of dimension m.

Definition 18.12 and Proposition 18.7 can be generalized to manifolds (see Prob-

lem 18.24). Regular and critical values of smooth maps play an important role in

differential topology. Firstly, given a smooth map f : Rm+k → Rk, almost every

point of Rk is a regular value of f . To make this statement precise, one needs the

notion of a set of measure zero. Then Sard’s theorem says that the set of critical val-

ues of a smooth map has measure zero. Secondly, if we consider smooth functions

f : Rm+1 → R, a point p ∈ Rm+1 is critical iff d fp = 0. Then we can use second-

order derivatives to further classify critical points. The Hessian matrix of f (at p) is

the matrix of second-order partials

H f (p) =

(
∂ 2 f

∂xi∂x j
(p)

)
,
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and a critical point p is a nondegenerate critical point if H f (p) is a nonsingular

matrix. The remarkable fact is that at a nondegenerate critical point p, the local

behavior of f is completely determined, in the sense that after a suitable change of

coordinates (given by a smooth diffeomorphism),

f (x) = f (p)− x2
1−·· ·− x2

λ + x2
λ+1+ · · ·+ x2

m+1

near p, where λ , called the index of f at p, is an integer that depends only on p

(in fact, λ is the number of negative eigenvalues of H f (p)). This result is known as

Morse’s lemma (after Marston Morse, 1892-1977).

Smooth functions whose critical points are all nondegenerate are called Morse

functions. It turns out that every smooth function f : Rm+1→R gives rise to a large

supply of Morse functions by adding a linear function to it. More precisely, the set

of a ∈ Rm+1 for which the function fa given by

fa(x) = f (x)+ a1x1 + · · ·+ am+1xm+1

is not a Morse function has measure zero.

Morse functions can be used to study topological properties of manifolds. In a

sense to be made precise and under certain technical conditions, a Morse function

can be used to reconstruct a manifold by attaching cells, up to homotopy equiva-

lence. However, these results are way beyond the scope of this book. A fairly el-

ementary exposition of nondegenerate critical points and Morse functions can be

found in Guillemin and Pollack [20] (Chapter 1, Section 7). Sard’s theorem is proved

in Appendix 1 of Guillemin and Pollack [20] and also in Chapter 2 of Milnor [35].

Morse theory (starting with Morse’s lemma) and much more is discussed in Mil-

nor [36], widely recognized as a mathematical masterpiece. An excellent and more

leisurely introduction to Morse theory is given in Matsumoto [34], where a proof of

Morse’s lemma is also given.

Let us now review the definitions of a smooth curve in a manifold and the tangent

vector at a point of a curve.

Definition 18.13. Let M be an m-dimensional manifold in RN . A smooth curve γ in

M is any function γ : I→ M, where I is an open interval in R, such that for every

t ∈ I, letting p = γ(t), there are some parametrization ϕ : Ω → U of M at p and

some open interval ]t− ε, t + ε[⊆ I such that the curve ϕ−1 ◦ γ : ]t− ε, t + ε[→Rm

is smooth.

Using Lemma 18.11, it is easily shown that Definition 18.13 does not depend on

the choice of the parametrization ϕ : Ω →U at p.

Lemma 18.11 also implies that γ viewed as a curve γ : I→ RN is smooth. Then

the tangent vector to the curve γ : I→ RN at t, denoted by γ ′(t), is the value of the

derivative of γ at t (a vector in RN) computed as usual:

γ ′(t) = lim
h 7→0

γ(t + h)− γ(t)

h
.
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Given any point p ∈M, we will show that the set of tangent vectors to all smooth

curves in M through p is a vector space isomorphic to the vector space Rm. The

tangent vector at p to a curve γ on a manifold M is illustrated in Figure 18.3.

bc

γ ′(t)

γ

p M

Fig. 18.3 Tangent vector to a curve on a manifold.

Given a smooth curve γ : I → M, for any t ∈ I, letting p = γ(t), since M is a

manifold, there is a parametrization ϕ : Ω →U such that ϕ(0m) = p ∈U and some

open interval J ⊆ I with t ∈ J and such that the function

ϕ−1 ◦ γ : J→ Rm

is a smooth curve, since γ is a smooth curve. Letting α = ϕ−1 ◦ γ , the derivative

α ′(t) is well-defined, and it is a vector in Rm. But ϕ ◦α : J →M is also a smooth

curve, which agrees with γ on J, and by the chain rule,

γ ′(t) = ϕ ′(0m)(α
′(t)),

since α(t) = 0m (because ϕ(0m) = p and γ(t) = p). Observe that γ ′(t) is a vector in

RN . Now, for every vector v ∈ Rm, the curve α : J→Rm defined such that

α(u) = (u− t)v

for all u ∈ J is clearly smooth, and α ′(t) = v. This shows that the set of tangent

vectors at t to all smooth curves (in Rm) passing through 0m is the entire vector

space Rm. Since every smooth curve γ : I → M agrees with a curve of the form

ϕ ◦α : J→M for some smooth curve α : J→ Rm (with J ⊆ I) as explained above,

and since it is assumed that ϕ ′(0m) is injective, ϕ ′(0m) maps the vector space Rm
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injectively to the set of tangent vectors to γ at p, as claimed. All this is summarized

in the following definition.

Definition 18.14. Let M be an m-dimensional manifold in RN . For every point p ∈
M, the tangent space TpM at p is the set of all vectors in RN of the form γ ′(0),
where γ : I → M is any smooth curve in M such that p = γ(0). The set TpM is a

vector space isomorphic to Rm. Every vector v ∈ TpM is called a tangent vector to

M at p.

We can now define Lie groups (postponing defining smooth maps).

Definition 18.15. A Lie group is a nonempty subset G of RN (N ≥ 1) satisfying the

following conditions:

(a) G is a group.

(b) G is a manifold in RN .

(c) The group operation · : G×G→G and the inverse map −1 : G→G are smooth.

(Smooth maps are defined in Definition 18.18). It is immediately verified that

GL(n,R) is a Lie group. Since all the Lie groups that we are considering are sub-

groups of GL(n,R), the following definition is in order.

Definition 18.16. A linear Lie group is a subgroup G of GL(n,R) (for some n≥ 1)

which is a smooth manifold in Rn2
.

Let M(n,R) denote the set of all real n× n matrices (invertible or not). If we

recall that the exponential map

exp: A 7→ eA

is well defined on M(n,R), we have the following crucial theorem due to Von Neu-

mann and Cartan.

Theorem 18.8. A closed subgroup G of GL(n,R) is a linear Lie group. Further-

more, the set g defined such that

g= {X ∈M(n,R) | etX ∈G for all t ∈ R}

is a vector space equal to the tangent space TIG at the identity I, and g is closed un-

der the Lie bracket [−,−] defined such that [A,B] = AB−BA for all A,B ∈M(n,R).

Theorem 18.8 applies even when G is a discrete subgroup, but in this case, g is

trivial (i.e., g= {0}). For example, the set of nonnull reals R∗=R−{0}=GL(1,R)
is a Lie group under multiplication, and the subgroup

H = {2n | n ∈ Z}
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is a discrete subgroup of R∗. Thus, H is a Lie group. On the other hand, the set

Q∗ =Q−{0} of nonnull rational numbers is a multiplicative subgroup of R∗, but it

is not closed, since Q is dense in R.

The proof of Theorem 18.8 involves proving that when G is not a discrete sub-

group, there is an open subset Ω ⊆M(n,R) such that 0n,n ∈ Ω , an open subset

W ⊆M(n,R) such that I ∈W , and that exp: Ω →W is a diffeomorphism such that

exp(Ω ∩g) =W ∩G.

If G is closed and not discrete, we must have m≥ 1, and g has dimension m.

With the help of Theorem 18.8 it is now very easy to prove that SL(n), O(n),
SO(n), SL(n,C), U(n), and SU(n) are Lie groups and to figure out what are their

Lie algebras. (Of course, GL(n,R) is a Lie group, as we already know.)

For example, if G = GL(n,R), as etA is invertible for every matrix, A ∈M(n,R),
we deduce that the Lie algebra, gl(n,R), of GL(n,R) is equal to M(n,R). We also

claim that the Lie algebra, sl(n,R), of SL(n,R) is the set of all matrices with zero

trace. Indeed, sl(n,R) is the subalgebra of gl(n,R) consisting of all matrices X ∈
gl(n,R) such that

det(etX ) = 1

for all t ∈R, and because det(etX ) = etr(tX), for t = 1, we get tr(X) = 0, as claimed.

We can also prove that SE(n) is a Lie group as follows. Recall that we can view

every element of SE(n) as a real (n+ 1)× (n+ 1) matrix

(
R U

0 1

)

where R ∈ SO(n) and U ∈ Rn. In fact, such matrices belong to SL(n+ 1). This

embedding of SE(n) into SL(n+ 1) is a group homomorphism, since the group

operation on SE(n) corresponds to multiplication in SL(n+ 1):

(
RS RV +U

0 1

)
=

(
R U

0 1

)(
S V

0 1

)
.

Note that the inverse is given by

(
R−1 −R−1U

0 1

)
=

(
R⊤ −R⊤U

0 1

)
.

Also note that the embedding shows that as a manifold, SE(n) is diffeomorphic to

SO(n)×Rn (given a manifold M1 of dimension m1 and a manifold M2 of dimension

m2, the product M1 ×M2 can be given the structure of a manifold of dimension

m1 +m2 in a natural way). Thus, SE(n) is a Lie group with underlying manifold

SO(n)×Rn, and in fact, a subgroup of SL(n+ 1).

� Even though SE(n) is diffeomorphic to SO(n)×Rn as a manifold, it is not

isomorphic to SO(n)×Rn as a group, because the group multiplication
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on SE(n) is not the multiplication on SO(n)×Rn. Instead, SE(n) is a semidirect

product of SO(n) and Rn; see Chapter 2, Problem 2.19.

Returning to Theorem 18.8, the vector space g is called the Lie algebra of the

Lie group G. Lie algebras are defined as follows.

Definition 18.17. A (real) Lie algebra A is a real vector space together with a bi-

linear map [·, ·] : A ×A →A called the Lie bracket on A such that the following

two identities hold for all a,b,c ∈A :

[a, a] = 0,

and the so-called Jacobi identity

[a, [b, c]]+ [c, [a, b]]+ [b, [c, a]] = 0.

It is immediately verified that [b,a] =−[a,b].

In view of Theorem 18.8, the vector space g= TIG associated with a Lie group

G is indeed a Lie algebra. Furthermore, the exponential map exp: g→ G is well-

defined. In general, exp is neither injective nor surjective, as we observed earlier.

Theorem 18.8 also provides a kind of recipe for “computing” the Lie algebra g =
TIG of a Lie group G. Indeed, g is the tangent space to G at I, and thus we can use

curves to compute tangent vectors. Actually, for every X ∈ TIG, the map

γX : t 7→ etX

is a smooth curve in G, and it is easily shown that γ ′X(0) = X . Thus, we can use

these curves. As an illustration, we show that the Lie algebras of SL(n) and SO(n)
are the matrices with null trace and the skew-symmetric matrices.

Let t 7→R(t) be a smooth curve in SL(n) such that R(0) = I. We have det(R(t)) =
1 for all t ∈]− ε, ε [. Using the chain rule, we can compute the derivative of the

function

t 7→ det(R(t))

at t = 0, and we get

det′I(R
′(0)) = 0.

It is an easy exercise to prove that

det′I(X) = tr(X),

and thus tr(R′(0)) = 0, which says that the tangent vector X = R′(0) has null trace.

Clearly, sl(n,R) has dimension n2− 1.

Let t 7→ R(t) be a smooth curve in SO(n) such that R(0) = I. Since each R(t) is

orthogonal, we have

R(t)R(t)⊤ = I

for all t ∈]− ε, ε [. Taking the derivative at t = 0, we get
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R′(0)R(0)⊤+R(0)R′(0)⊤ = 0,

but since R(0) = I = R(0)⊤, we get

R′(0)+R′(0)⊤ = 0,

which says that the tangent vector X = R′(0) is skew-symmetric. Since the diagonal

elements of a skew-symmetric matrix are null, the trace is automatically null, and

the condition det(R) = 1 yields nothing new. This shows that o(n) = so(n). It is

easily shown that so(n) has dimension n(n− 1)/2.

As a concrete example, the Lie algebra so(3) of SO(3) is the real vector space

consisting of all 3× 3 real skew-symmetric matrices. Every such matrix is of the

form 


0 −d c

d 0 −b

−c b 0




where b,c,d ∈R. The Lie bracket [A,B] in so(3) is also given by the usual commu-

tator, [A,B] = AB−BA.

We can define an isomorphism of Lie algebras ψ : (R3,×)→ so(3) by the for-

mula

ψ(b,c,d) =




0 −d c

d 0 −b

−c b 0


 .

It is indeed easy to verify that

ψ(u× v) = [ψ(u), ψ(v)].

It is also easily verified that for any two vectors u = (b,c,d) and v = (b′,c′,d′) in

R3

ψ(u)(v) = u× v.

The exponential map exp: so(3)→ SO(3) is given by Rodrigues’s formula (see

Lemma 18.6):

eA = cosθ I3 +
sinθ

θ
A+

(1− cosθ )

θ 2
B,

or equivalently by

eA = I3 +
sin θ

θ
A+

(1− cosθ )

θ 2
A2

if θ 6= 0, where

A =




0 −d c

d 0 −b

−c b 0


 ,

θ =
√

b2 + c2 + d2, B = A2 +θ 2I3, and with e03 = I3.

Using the above methods, it is easy to verify that the Lie algebras gl(n,R),
sl(n,R), o(n), and so(n), are respectively M(n,R), the set of matrices with null
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trace, and the set of skew-symmetric matrices (in the last two cases). A similar com-

putation can be done for gl(n,C), sl(n,C), u(n), and su(n), confirming the claims

of Section 18.4. It is easy to show that gl(n,C) has dimension 2n2, sl(n,C) has

dimension 2(n2− 1), u(n) has dimension n2, and su(n) has dimension n2− 1.

For example, the Lie algebra su(2) of SU(2) (or S3) is the real vector space

consisting of all 2×2 (complex) skew-Hermitian matrices of null trace. Every such

matrix is of the form

i(dσ1 + cσ2 + bσ3) =

(
ib c+ id

−c+ id −ib

)
,

where b,c,d ∈ R, and σ1,σ2,σ3 are the Pauli spin matrices (see Section 9.1), and

thus the matrices iσ1, iσ2, iσ3 form a basis of the Lie algebra su(2). The Lie bracket

[A,B] in su(2) is given by the usual commutator, [A,B] = AB−BA.

It is easily checked that the vector space R3 is a Lie algebra if we define the Lie

bracket on R3 as the usual cross product u× v of vectors. Then we can define an

isomorphism of Lie algebras ϕ : (R3,×)→ su(2) by the formula

ϕ(b,c,d) =
i

2
(dσ1 + cσ2 + bσ3) =

1

2

(
ib c+ id

−c+ id −ib

)
.

It is indeed easy to verify that

ϕ(u× v) = [ϕ(u), ϕ(v)].

Returning to su(2), letting θ =
√

b2 + c2 + d2, we can write

dσ1 + cσ2 + bσ3 =

(
b −ic+ d

ic+ d −b

)
= θA,

where

A =
1

θ
(dσ1 + cσ2 + bσ3) =

1

θ

(
b −ic+ d

ic+ d −b

)
,

so that A2 = I, and it can be shown that the exponential map exp: su(2)→ SU(2)
is given by

exp(iθA) = cosθ 1+ i sinθ A.

In view of the isomorphism ϕ : (R3,×)→ su(2), where

ϕ(b,c,d) =
1

2

(
ib c+ id

−c+ id −ib

)
= i

θ

2
A,

the exponential map can be viewed as a map exp: (R3,×)→ SU(2) given by the

formula

exp(θv) =

[
cos

θ

2
, sin

θ

2
v

]
,
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for every vector θv, where v is a unit vector in R3 and θ ∈ R. In this form, exp(θv)
is a quaternion corresponding to a rotation of axis v and angle θ .

As we showed, SE(n) is a Lie group, and its lie algebra se(n) described in Section

18.6 is easily determined as the subalgebra of sl(n+1) consisting of all matrices of

the form (
B U

0 0

)

where B∈ so(n) and U ∈Rn. Thus, se(n) has dimension n(n+1)/2. The Lie bracket

is given by

(
B U

0 0

)(
C V

0 0

)
−
(

C V

0 0

)(
B U

0 0

)
=

(
BC−CB BV −CU

0 0

)
.

We conclude by indicating the relationship between homomorphisms of Lie groups

and homomorphisms of Lie algebras. First, we need to explain what is meant by a

smooth map between manifolds.

Definition 18.18. Let M1 (m1-dimensional) and M2 (m2-dimensional) be manifolds

in RN . A function f : M1→M2 is smooth if for every p ∈M1 there are parametriza-

tions ϕ : Ω1→U1 of M1 at p and ψ : Ω2→U2 of M2 at f (p) such that f (U1)⊆U2

and

ψ−1 ◦ f ◦ϕ : Ω1→ Rm2

is smooth.

Using Lemma 18.11, it is easily shown that Definition 18.18 does not depend on

the choice of the parametrizations ϕ : Ω1→U1 and ψ : Ω2→U2. A smooth map f

between manifolds is a smooth diffeomorphism if f is bijective and both f and f−1

are smooth maps.

We now define the derivative of a smooth map between manifolds.

Definition 18.19. Let M1 (m1-dimensional) and M2 (m2-dimensional) be mani-

folds in RN . For any smooth function f : M1 → M2 and any p ∈ M1, the function

f ′p : TpM1 → Tf (p)M2, called the tangent map of f at p, or derivative of f at p, or

differential of f at p, is defined as follows: For every v ∈ TpM1 and every smooth

curve γ : I→M1 such that γ(0) = p and γ ′(0) = v,

f ′p(v) = ( f ◦ γ)′(0).

The map f ′p is also denoted by d fp or Tp f . Doing a few calculations involving

the facts that

f ◦ γ = ( f ◦ϕ)◦ (ϕ−1 ◦ γ) and γ = ϕ ◦ (ϕ−1 ◦ γ)

and using Lemma 18.11, it is not hard to show that f ′p(v) does not depend on the

choice of the curve γ . It is easily shown that f ′p is a linear map.
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Finally, we define homomorphisms of Lie groups and Lie algebras and see how

they are related.

Definition 18.20. Given two Lie groups G1 and G2, a homomorphism (or map) of

Lie groups is a function f : G1 → G2 that is a homomorphism of groups and a

smooth map (between the manifolds G1 and G2). Given two Lie algebras A1 and

A2, a homomorphism (or map) of Lie algebras is a function f : A1→ A2 that is a

linear map between the vector spaces A1 and A2 and that preserves Lie brackets,

i.e.,

f ([A,B]) = [ f (A), f (B)]

for all A,B ∈A1.

An isomorphism of Lie groups is a bijective function f such that both f and f−1

are maps of Lie groups, and an isomorphism of Lie algebras is a bijective function

f such that both f and f−1 are maps of Lie algebras. It is immediately verified that

if f : G1→ G2 is a homomorphism of Lie groups, then f ′I : g1→ g2 is a homomor-

phism of Lie algebras. If some additional assumptions are made about G1 and G2

(for example, connected, simply connected), it can be shown that f is pretty much

determined by f ′I .

Alert readers must have noticed that we only defined the Lie algebra of a linear

group. In the more general case, we can still define the Lie algebra g of a Lie group

G as the tangent space TIG at the identity I. The tangent space g = TIG is a vector

space, but we need to define the Lie bracket. This can be done in several ways. We

explain briefly how this can be done in terms of so-called adjoint representations.

This has the advantage of not requiring the definition of left-invariant vector fields,

but it is still a little bizarre!

Given a Lie group G, for every a ∈ G we define left translation as the map

La : G→ G such that La(b) = ab for all b ∈ G, and right translation as the map

Ra : G→ G such that Ra(b) = ba for all b ∈ G. The maps La and Ra are diffeo-

morphisms, and their derivatives play an important role. The inner automorphisms

Ra−1 ◦La (also written as Ra−1La) also play an important role. Note that

Ra−1La(b) = aba−1.

The derivative

(Ra−1La)
′
I : TIG→ TIG

of Ra−1La : G→ G at I is an isomorphism of Lie algebras, and since TIG = g, we

get a map denoted by Ada : g→ g. The map a 7→Ada is a map of Lie groups

Ad: G→GL(g),

called the adjoint representation of G (where GL(g) denotes the Lie group of all

bijective linear maps on g).

In the case of a linear group, one can verify that

Ad(a)(X) = Ada(X) = aXa−1
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for all a ∈ G and all X ∈ g. The derivative

Ad′I : g→ gl(g)

of Ad: G→ GL(g) at I is map of Lie algebras, denoted by ad : g→ gl(g), called

the adjoint representation of g. (Recall that Theorem 18.8 immediately implies that

the Lie algebra gl(g) of GL(g) is the vector space of all linear maps on g).

In the case of a linear group, it can be verified that

ad(A)(B) = [A, B]

for all A,B ∈ g. One can also check that the Jacobi identity on g is equivalent to the

fact that ad preserves Lie brackets, i.e., ad is a map of Lie algebras:

ad([A, B]) = [ad(A), ad(B)]

for all A,B∈ g (where on the right, the Lie bracket is the commutator of linear maps

on g). Thus, we recover the Lie bracket from ad.

This is the key to the definition of the Lie bracket in the case of a general Lie

group (not just a linear Lie group). We define the Lie bracket on g as

[A, B] = ad(A)(B).

To be complete, we would have to define the exponential map exp: g→ G for a

general Lie group. For this we would need to introduce some left-invariant vector

fields induced by the derivatives of the left translations, and integral curves associ-

ated with such vector fields.

This is not hard, but we feel that it is now time to stop our introduction to Lie

groups and Lie algebras, even though we have not even touched many important

topics, for instance vector fields and differential foms. Readers who wish to learn

more about Lie groups and Lie algebras should consult (more or less listed in order

of difficulty) Curtis [14], Sattinger and Weaver [42], Hall [21], and Marsden and

Ratiu [33]. The excellent lecture notes by Carter, Segal, and Macdonald [11] consti-

tute a very efficient (although somewhat terse) introduction to Lie algebras and Lie

groups. Classics such as Weyl [48] and Chevalley [12] are definitely worth consult-

ing, although the presentation and the terminology may seem a bit old fashioned.

For more advanced texts, one may consult Abraham and Marsden [1], Warner [47],

Sternberg [45], Bröcker and tom Dieck [9], and Knapp [26]. For those who read

French, Mneimné and Testard [37] is very clear and quite thorough, and uses very

little differential geometry, although it is more advanced than Curtis. Chapter 1, by

Bryant, in Freed and Uhlenbeck [17] is also worth reading, but the pace is fast,

and Chapters 7 and 8 of Fulton and Harris [18] are very good, but familiarity with

manifolds is assumed.
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18.9 Applications of Lie Groups and Lie Algebras

Some applications of Lie groups and Lie algebras to robotics and motion planning

are discussed in Selig [44] and Murray, Li, and Sastry [39]. Applications to physics

are discussed in Sattinger and Weaver [42] and Marsden and Ratiu [33].

The fact that the exponential maps exp: so(3)→ SO(3) and exp: se(3)→ SE(3)
are surjective is important in robotics applications. Indeed, some matrices associated

with joints arising in robot kinematics can be written as exponentials eθs, where θ
is a joint angle and s ∈ se(3) is the so-called joint screw (see Selig [44], Chapter 4).

One should also observe that if a rigid motion (R,b) is used to define the position

of a rigid body, then the velocity of a point p is given by (R′p+b′). In other words,

the element (R′,b′) of the Lie algebra se(3) is a sort of velocity vector.

The surjectivity of the exponential map exp: se(3)→ SE(3) implies that there

is a map log: SE(3)→ se(3), although it is multivalued. Still, this log “function”

can be used to perform motion interpolation. For instance, given two rigid motions

B1,B2 ∈ SE(3) specifying the position of a rigid body B, we can compute log(B1)
and log(B2), which are just elements of the Euclidean space se(3), form the linear

interpolant (1− t) log(B1)+ t log(B2), and then apply the exponential map to get an

interpolating rigid motion

e(1−t) log(B1)+t log(B2).

Of course, this can also be done for a sequence of rigid motions B1, . . . ,Bn, where

n > 2, and instead of using affine interpolation between two consecutive positions,

a polynomial spline can be used to interpolate between the log(Bi)’s in se(3). This

approach has been investigated by Kim, M.-J., Kim, M.-S. and Shin [24, 25], and

Park and Ravani [40, 41].

R.S. Ball published a treatise on the theory of screws in 1900 [7]. Basically, Ball’s

screws are rigid motions, and his instantaneous screws correspond to elements of the

Lie algebra se(3) (they are rays in se(3)). A screw system is simply a subspace of

se(3). Such systems were first investigated by Ball [7]. The first heuristic classifi-

cation of screw systems was given by Hunt [22]. Screw systems play an important

role in kinematics, see McCarthy [31] and Selig [44], Chapter 8.

Lie groups and Lie algebras are also a key ingredient in the use of symmetries

in motion, to reduce the number of parameters in the equations of motion, and in

optimal control. Such applications are described in a very exciting paper by Marsden

and Ostrowski [32] (see also the references in this paper).

18.10 Problems

18.1. Given a Hermitian space E , for every linear map f : E → E , prove that there

is an orthonormal basis (u1, . . . ,un) with respect to which the matrix of f is upper

triangular. In terms of matrices, this means that there is a unitary matrix U and an

upper triangular matrix T such that A =UTU∗.
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Remark: This extension of Lemma 18.3 is usually known as Schur’s lemma.

18.2. Prove that the torus obtained by rotating a circle of radius b contained in a

plane containing the z-axis and whose center is on a circle of center O and radius b in

the xy-plane is a manifold by giving four parametrizations. What are the conditions

required on a,b?

Hint. What about

x = acosθ + bcosθ cosϕ ,

y = asinθ + bsinθ cosϕ ,

z = bsinϕ?

18.3. (a) Prove that the maps ϕ1 and ϕ2 parametrizing the sphere are indeed smooth

and injective, that ϕ ′1(u,v) and ϕ ′2(u,v) are injective, and that ϕ1 and ϕ2 give the

sphere the structure of a manifold.

(b) Prove that the map ψ1 : ∆(1)→ S2 defined such that

ψ1(x,y) =
(

x, y,
√

1− x2− y2
)
,

where ∆(1) is the unit open disk, is a parametrization of the open upper hemisphere.

Show that there are five other similar parametrizations, which, together with ψ1,

make S2 into a manifold.

18.4. Use Lemma 18.11 to prove that Definition 18.13 does not depend on the

choice of the parametrization ϕ : Ω →U at p.

18.5. Given a linear Lie group G, for every X ∈ TIG, letting γ be the smooth curve

in G

γX : t 7→ etX ,

prove that γ ′X(0) = X .

18.6. Prove that

det′I(X) = tr(X).

Hint. Find the directional derivative

lim
t→0

det(I+ tX)− det(I)

t
.

18.7. Confirm that gl(n,C), sl(n,C), u(n), and su(n), are the vector spaces of ma-

trices described in Section 18.4. Prove that gl(n,C) has dimension 2n2, sl(n,C) has

dimension 2(n2− 1), u(n) has dimension n2, and su(n) has dimension n2− 1.

18.8. Prove that the map ϕ : (R3,×)→ su(2) defined by the formula

ϕ(b,c,d) =
i

2
(dσ1 + cσ2 + bσ3) =

1

2

(
ib c+ id

−c+ id −ib

)
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is an isomorphism of Lie algebras. If

A =
1

θ

(
b −ic+ d

ic+ d −b

)
,

where θ =
√

b2 + c2 + d2, prove that the exponential map exp: su(2)→ SU(2) is

given by

exp(iθA) = cosθ 1+ i sinθ A.

18.9. Prove that Definition 18.18 does not depend on the parametrizations ϕ : Ω1→
U1 and ψ : Ω2→U2.

18.10. In Definition 18.19, prove that f ′p(v) does not depend on the choice of the

curve γ , and that f ′p is a linear map.

18.11. In the case of a linear group, prove that

Ad(a)(X) = Ada(X) = aXa−1

for all a ∈ G and all X ∈ g.

18.12. In the case of a linear group, prove that

ad(A)(B) = [A, B]

for all A,B ∈ g.

Check that the Jacobi identity on g is equivalent to the fact that ad preserves Lie

brackets, i.e., ad is a map of Lie algebras:

ad([A, B]) = [ad(A), ad(B)]

for all A,B∈ g (where on the right, the Lie bracket is the commutator of linear maps

on g).

18.13. Consider the Lie algebra su(2), whose basis is the Pauli spin matrices

σ1,σ2,σ3 (see Chapter 6, Section 9.1). The map ad(X) is a linear map for every

X ∈ g, since ad: g → gl(g). Compute the matrices representing ad(σ1), ad(σ2),
ad(σ3).

18.14. (a) Consider the affine maps ρ of A2 defined such that

ρ

(
x

y

)
=

(
cosθ −sinθ
sinθ cosθ

)(
x

y

)
+

(
u

v

)
,

where θ ,u,v ∈R.

Given any map ρ as above, letting

R =

(
cosθ −sinθ
sinθ cosθ

)
, X =

(
x

y

)
, and U =

(
u

v

)
,
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ρ can be represented by the 3× 3 matrix

A =

(
R U

0 1

)
=




cosθ −sinθ u

sinθ cosθ v

0 0 1




in the sense that (
ρ(X)

1

)
=

(
R U

0 1

)(
X

1

)

iff

ρ(X) = RX +U.

Prove that these maps are affine bijections and that they form a group, denoted by

SE(2) (the direct affine isometries, or rigid motions, of A2). Prove that such maps

preserve the inner product of R2, i.e., that for any four points a,b,c,d ∈ A2,

ρ(−→ac) ·ρ(−→bd) =−→ac ·−→bd.

If θ 6= k2π (k ∈ Z), prove that ρ has a unique fixed point cρ , and that with respect

to any frame with origin cρ , ρ is a rotation of angle θ and of center cρ .

(b) Let us now consider the set of matrices of the form




0 −θ u

θ 0 v

0 0 0




where θ ,u,v ∈ R. Verify that this set of matrices is a vector space isomorphic to

(R3,+). This vector space is denoted by se(2). Show that in general, AB 6= BA.

(c) Given a matrix

A =




0 −θ u

θ 0 v

0 0 0




letting

Ω =

(
0 −θ
θ 0

)
and U =

(
u

v

)

we can write

A =

(
Ω U

0 0

)
.

Prove that

An =

(
Ω n Ω n−1U

0 0

)

where Ω 0 = I2. Prove that if θ = 0, then

eA =

(
I2 U

0 1

)
,
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and that if θ 6= 0, then

eA =




cosθ −sinθ u
θ sinθ + v

θ (cosθ − 1)
sinθ cosθ u

θ (−cosθ + 1)+ v
θ sinθ

0 0 1


 .

Hint. Letting V = Ω−1(eΩ − I2), prove that

V = I2 + ∑
k≥1

Ω k

(k+ 1)!

and that

eA =

(
eΩ VU

0 1

)
.

Another proof consists in showing that

A3 =−θ 2A,

and that

eA = I3 +
sinθ

θ
A+

1− cosθ

θ 2
A2.

(d) Prove that eA is a direct affine isometry in SE(2). If θ 6= k2π (k ∈ Z), prove

that V is invertible, and thus prove that the exponential map exp: se(2)→ SE(2) is

surjective. How do you need to restrict θ to get an injective map?

Remark: Rigid motions can be used to describe the motion of rigid bodies in the

plane. Given a fixed Euclidean frame (O,(e1,e2)), we can assume that some moving

frame (C,(u1,u2)) is attached (say glued) to a rigid body B (for example, at the

center of gravity of B) so that the position and orientation of B in the plane are

completely (and uniquely) determined by some rigid motion

A =

(
R U

0 1

)
,

where U specifies the position of C with respect to O, and R specifies the orientation

(i.e., angle) of B with respect to the fixed frame (O,(e1,e2)). Then, a motion of B in

the plane corresponds to a curve in the space SE(2). The space SE(2) is topologi-

cally quite complex (in particular, it is “curved”). The exponential map allows us to

work in the simpler (noncurved) Euclidean space se(2). Thus, given a sequence of

“snapshots” of B, say B0,B1, . . . ,Bm, we can try to find an interpolating motion (a

curve in SE(2)) by finding a simpler curve in se(2) (say, a B-spline) using the in-

verse of the exponential map. Of course, it is desirable that the interpolating motion

be reasonably smooth and “natural.” Computer animations of such motions can be

easily implemented.

18.15. (a) Consider the set of affine maps ρ of A3 defined such that
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ρ(X) = RX +U,

where R is a rotation matrix (an orthogonal matrix of determinant +1) and U is

some vector in R3. Every such a map can be represented by the 4× 4 matrix

(
R U

0 1

)

in the sense that (
ρ(X)

1

)
=

(
R U

0 1

)(
X

1

)

iff

ρ(X) = RX +U.

Prove that these maps are affine bijections and that they form a group, denoted by

SE(3) (the direct affine isometries, or rigid motions, of A3). Prove that such maps

preserve the inner product of R3, i.e., that for any four points a,b,c,d ∈ A3,

ρ(−→ac) ·ρ(−→bd) =−→ac ·−→bd.

Prove that these maps do not always have a fixed point.

(b) Let us now consider the set of 4× 4 matrices of the form

A =

(
Ω U

0 0

)
,

where Ω is a skew-symmetric matrix

Ω =




0 −c b

c 0 −a

−b a 0


 ,

and U is a vector in R3.

Verify that this set of matrices is a vector space isomorphic to (R6,+). This

vector space is denoted by se(3). Show that in general, AB 6= BA.

(c) Given a matrix

A =

(
Ω U

0 0

)

as in (b), prove that

An =

(
Ω n Ω n−1U

0 0

)

where Ω 0 = I3. Given

Ω =




0 −c b

c 0 −a

−b a 0


 ,
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let θ =
√

a2 + b2 + c2. Prove that if θ = 0, then

eA =

(
I3 U

0 1

)
,

and that if θ 6= 0, then

eA =

(
eΩ VU

0 1

)
,

where

V = I3 + ∑
k≥1

Ω k

(k+ 1)!
.

(d) Prove that

eΩ = I3 +
sinθ

θ
Ω +

(1− cosθ )

θ 2
Ω 2

and

V = I3 +
(1− cosθ )

θ 2
Ω +

(θ − sinθ )

θ 3
Ω 2.

Hint. Use the fact that Ω 3 =−θ 2Ω .

(e) Prove that eA is a direct affine isometry in SE(3). Prove that V is invertible.

Hint. Assume that the inverse of V is of the form

W = I3 + aΩ + bΩ 2,

and show that a,b, are given by a system of linear equations that always has a unique

solution.

Prove that the exponential map exp: se(3)→ SE(3) is surjective. You may use

the fact that exp: so(3)→ SO(3) is surjective, where

exp(Ω) = eΩ = I3 +
sinθ

θ
Ω +

(1− cosθ )

θ 2
Ω 2.

Remark: Rigid motions can be used to describe the motion of rigid bodies in space.

Given a fixed Euclidean frame (O,(e1,e2,e3)), we can assume that some moving

frame (C,(u1,u2,u3)) is attached (say glued) to a rigid body B (for example, at

the center of gravity of B) so that the position and orientation of B in space are

completely (and uniquely) determined by some rigid motion

A =

(
R U

0 1

)
,

where U specifies the position of C with respect to O, and R specifies the orientation

of B with respect to the fixed frame (O,(e1,e2,e3)). Then a motion of B in space

corresponds to a curve in the space SE(3). The space SE(3) is topologically quite

complex (in particular, it is “curved”). The exponential map allows us to work in

the simpler (noncurved) Euclidean space se(3). Thus, given a sequence of “snap-
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shots” of B, say B0,B1, . . . ,Bm, we can try to find an interpolating motion (a curve

in SE(3)) by finding a simpler curve in se(3) (say, a B-spline) using the inverse of

the exponential map. Of course, it is desirable that the interpolating motion be rea-

sonably smooth and “natural.” Computer animations of such motions can be easily

implemented.

18.16. Let A and B be the 4× 4 matrices

A =




0 −θ1 0 0

θ1 0 0 0

0 0 0 −θ2

0 0 θ2 0




and

B =




cosθ1 −sinθ1 0 0

sinθ1 cosθ1 0 0

0 0 cosθ2 −sinθ2

0 0 sinθ2 cosθ2




where θ1,θ2 ≥ 0. (i) Compute A2, and prove that

B = eA,

where

eA = In + ∑
p≥1

Ap

p!
= ∑

p≥0

Ap

p!
,

letting A0 = In. Use this to prove that for every orthogonal 4× 4 matrix B there is a

skew-symmetric matrix A such that

B = eA.

(ii) Given a skew-symmetric 4× 4 matrix A, prove that there are two skew-

symmetric matrices A1 and A2 and some θ1,θ2 ≥ 0 such that

A = A1 +A2,

A3
1 =−θ 2

1 A1,

A3
2 =−θ 2

2 A2,

A1A2 = A2A1 = 0,

tr(A2
1) =−2θ 2

1 ,

tr(A2
2) =−2θ 2

2 ,

and where Ai = 0 if θi = 0 and A2
1 +A2

2 =−θ 2
1 I4 if θ2 = θ1.

Using the above, prove that

eA = I4 +
sinθ1

θ1

A1 +
sinθ2

θ2

A2 +
(1− cosθ1)

θ 2
1

A2
1 +

(1− cosθ2)

θ 2
2

A2
2.
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(iii) Given an orthogonal 4×4 matrix B, prove that there are two skew-symmetric

matrices A1 and A2 and some θ1,θ2 ≥ 0 such that

B = I4 +
sinθ1

θ1

A1 +
sinθ2

θ2

A2 +
(1− cosθ1)

θ 2
1

A2
1 +

(1− cosθ2)

θ 2
2

A2
2,

where

A3
1 =−θ 2

1 A1,

A3
2 =−θ 2

2 A2,

A1A2 = A2A1 = 0,

tr(A2
1) =−2θ 2

1 ,

tr(A2
2) =−2θ 2

2 ,

and where Ai = 0 if θi = 0 and A2
1 +A2

2 =−θ 2
1 I4 if θ2 = θ1. Prove that

1

2
(B−B⊤) =

sinθ1

θ1

A1 +
sinθ2

θ2

A2,

1

2
(B+B⊤) = I4 +

(1− cosθ1)

θ 2
1

A2
1 +

(1− cosθ2)

θ 2
2

A2
2,

tr(B) = 2cosθ1 + 2cosθ2.

(iv) Prove that if sinθ1 = 0 or sinθ2 = 0, then A1,A2, and the cosθi can be com-

puted from B. Prove that if θ2 = θ1, then

B = cosθ1I4 +
sinθ1

θ1
(A1 +A2),

and cosθ1 and A1 +A2 can be computed from B.

(v) Prove that

1

4
tr

((
B−B⊤

)2
)
= 2cos2 θ1 + 2cos2 θ2− 4.

Prove that cosθ1 and cosθ2 are solutions of the equation

x2− sx+ p = 0,

where

s =
1

2
tr(B), p =

1

8
(tr(B))2− 1

16
tr

((
B−B⊤

)2
)
− 1.

Prove that we also have

cos2 θ1 cos2 θ2 = det

(
1

2

(
B+B⊤

))
.
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If sinθi 6= 0 for i = 1,2 and cosθ2 6= cosθ1, prove that the system

1

2

(
B−B⊤

)
=

sinθ1

θ1

A1 +
sinθ2

θ2

A2,

1

4

(
B+B⊤

)(
B−B⊤

)
=

sinθ1 cosθ1

θ1

A1 +
sinθ2 cosθ2

θ2

A2

has a unique solution for A1 and A2.

(vi) Prove that A = A1 +A2 has an orthonormal basis of eigenvectors such that

the first two are a basis of the plane with respect to which B is a rotation of angle

θ1, and the last two are a basis of the plane with respect to which B is a rotation of

angle θ2.

Remark: I do not know a simple way to compute such an orthonormal basis of

eigenvectors of A = A1 +A2, but it should be possible!

18.17. (a) Consider the map, f : GL+(n)→ S(n), given by

f (A) = A⊤A− I.

Check that

d f (A)(H) = A⊤H +H⊤A,

for any matrix, H.

(b) Consider the map, f : GL(n)→ R, given by

f (A) = det(A).

Prove that d f (I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity

matrix). Then, prove that

d f (A)(B) = det(A)tr(A−1B),

where A ∈GL(n).
(c) Use the map A 7→ det(A)− 1 to prove that SL(n) is a manifold of dimension

n2− 1.

(d) Let J be the (n+ 1)× (n+ 1) diagonal matrix

J =

(
In 0

0 −1

)
.

We denote by SO(n,1) the group of real (n+ 1)× (n+ 1) matrices:

SO(n,1) = {A ∈GL(n+ 1) | A⊤JA = J and det(A) = 1}.

Check that SO(n,1) is indeed a group with the inverse of A given by A−1 = JA⊤J

(this is the special Lorentz group). Consider the function f : GL+(n+1)→ S(n+1),
given by
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f (A) = A⊤JA− J,

where S(n+ 1) denotes the space of (n+ 1)× (n+ 1) symmetric matrices. Prove

that

d f (A)(H) = A⊤JH +H⊤JA

for any matrix H. Prove that d f (A) is surjective for all A ∈ SO(n,1) and that

SO(n,1) is a manifold of dimension
n(n+1)

2
.

18.18. (a) Given any matrix

B =

(
a b

c −a

)
∈ sl(2,C),

if ω2 = a2+bc and ω is any of the two complex roots of a2+bc, prove that if ω 6= 0,

then

eB = coshω I+
sinh ω

ω
B,

and eB = I+B if a2 + bc = 0. Observe that tr(eB) = 2cosh ω .

Prove that the exponential map exp: sl(2,C)→ SL(2,C) is not surjective. For

instance, prove that (
−1 1

0 −1

)

is not the exponential of any matrix in sl(2,C).
(b) Recall that a matrix N is nilpotent if there is some m ≥ 0 such that Nm = 0.

Let A be any n× n matrix of the form A = I−N, where N is nilpotent. Why is A

invertible? prove that there is some B such that eB = I−N as follows: Recall that

for any y ∈ R such that |y− 1| is small enough, we have

log(y) =−(1− y)− (1− y)2

2
−·· ·− (1− y)k

k
−·· · .

Since N is nilpotent, we have Nm = 0, where m is the smallest integer with this

propery. Then the expression

B = log(I−N) =−N− N2

2
−·· ·− Nm−1

m− 1

is well defined. Use a formal power series argument to show that eB = A. We denote

B by log(A).
(c) Let A ∈GL(n,C). Prove that there is some matrix B so that eB = A. Thus the

exponential map exp: gl(n,C)→GL(n,C) is surjective.

First, use the fact that A has a Jordan form PJP−1. Then show that finding a log

of A reduces to finding a log of every Jordan block of J. Since every Jordan block

J has a fixed nonzero constant λ on the diagonal, with 1’s immediately above each

diagonal entry, and zeros everywhere else, we can write J as (λ I)(I−N), where
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N is nilpotent. Find B1 and B2 such that λ I = eB1 , I−N = eB2 , and B1B2 = B2B1.

Conclude that J = eB1+B2 .

18.19. Let Br = {x = (x1, . . . ,xn) ∈Rn | x2
1 + · · ·+x2

n < r} be the open ball of radius

r (centered at the origin) in Rn (where r > 0). Prove that the map

x 7→ rx√
r2− (x2

1 + · · ·+ x2
n)

is a diffeomorphism of Br onto Rn (where x = (x1, . . . ,xn)).

Hint. Compute explicity the inverse of this map.

18.20. A smooth bijective map of manifolds need not be a diffeomorphism. For

example, show that f : R→R given by f (x) = x3 is not a diffeomorphism.

18.21. (a) Let X ⊆ RM and Y ⊆ RN be two smooth manifolds of dimension m and

n respectively. We can make X ×Y ⊆ RM+N into a smooth manifold of dimen-

sion m + n as follows: for any (p,q) ∈ X ×Y , if ϕ : Ω1 → U and ψ : Ω2 → V

are parametrizations at p ∈ U ⊆ X and q ∈ V ⊆ Y respectively, then show that

ϕ×ψ : Ω1×Ω2→U ×V is indeed a parametrization at (p,q) ∈ X ×Y . Since the

U×V ’s cover X×Y , these parametrizations make X×Y into a manifold.

Check that T(p,q)(X×Y ) = TpX×TqY .

(b) Given a set X , let ∆ = {(x,x) | x ∈ X} ⊆ X ×X , called the diagonal of X . If

X is a manifold, then prove that ∆ is a manifold diffeomorphic to X .

(c) The graph of a function f : X → Y is the subset of X×Y given by

graph( f ) = {(x, f (x)) | x ∈ X}.

Define F : X → graph( f ) by F(x) = (x, f (x)). Prove that if X and Y are smooth

manifolds and if f is smooth, then F is a diffeomorphism and thus graph( f ) is a

manifold diffeomorphic to X .

(d) Given any (smooth) map f : X → X , some x ∈ X is a fixed point of f if

f (x) = x. Prove that f has a fixed point iff graph( f )∩∆ 6= /0 (where ∆ is the diagonal

in X×X).

18.22. Recall from Problem 12.6 the Cayley parametrization of rotation matrices in

SO(n) given by

C(B) = (I−B)(I+B)−1,

where B is any n× n skew-symmetric matrix. In that problem, it was shown that

C(B) is a rotation matrix that does not admit −1 as an eigenvalue and that every

such rotation matrix is of the form C(B).
(a) If you have not already done so, prove that the map B 7→C(B) is injective.

(b) Prove that

dC(B)(A) = DA((I−B)(I+B)−1) =−[I+(I−B)(I+B)−1]A(I +B)−1.

Hint. First, show that DA(B
−1) =−B−1AB−1 (where B is invertible) and that
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DA( f (B)g(B)) = (DA f (B))g(B)+ f (B)(DAg(B)),

where f and g are differentiable matrix functions.

Deduce that dC(B) is injective for every skew-symmetric matrix B. If we identify

the space of n× n skew-symmetric matrices with Rn(n−1)/2, show that the Cayley

map C : Rn(n−1)/2→ SO(n) is a parametrization of SO(n).
(c) Now consider n = 3, i.e., SO(3). Let E1, E2, and E3 be the rotations about the

x-axis, y-axis, and z-axis, respectively, by the angle π , i.e.,

E1 =




1 0 0

0 −1 0

0 0 −1


 , E2 =



−1 0 0

0 1 0

0 0 −1


 , E3 =



−1 0 0

0 −1 0

0 0 1


 .

Prove that the four maps

B 7→C(B), B 7→ E1C(B), B 7→ E2C(B), B 7→ E3C(B),

where B is skew-symmetric, are parametrizations of SO(3) and that the union of the

images of C, E1C, E2C, and E3C covers SO(3), so that SO(3) is a manifold.

(d) Let A be any square matrix (not necessarily invertible). Prove that there is

some diagonal matrix E with entries +1 or −1 such that EA+ I is invertible.

(e) Prove that every rotation matrix A ∈ SO(n) is of the form

A = E(I−B)(I+B)−1,

for some skew-symmetric matrix B and some diagonal matrix E with entries +1 and

−1, and where the number of −1 is even. Moreover, prove that every orthogonal

matrix A ∈O(n) is of the form

A = E(I−B)(I+B)−1,

for some skew-symmetric matrix B and some diagonal matrix E with entries +1

and −1. The above provide parametrizations for SO(n) (resp. O(n)) that show that

SO(n) and O(n) are manifolds. However, observe that the number of these charts

grows exponentially with n.

18.23. Let J be the 2× 2 matrix

J =

(
1 0

0 −1

)

and let SU(1,1) be the set of 2× 2 complex matrices

SU(1,1) = {A | A∗JA = J, det(A) = 1},

where A∗ is the conjugate transpose of A.

(a) Prove that SU(1,1) is the group of matrices of the form
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A =

(
a b

b a

)
, with aa− bb = 1.

If

g =

(
1 −i

1 i

)
,

prove that the map from SL(2,R) to SU(1,1) given by

A 7→ gAg−1

is a group isomorphism.

(b) Prove that the Möbius transformation

z 7→ z− i

z+ i

associated with g is a bijection between the upper half-plane H and the unit open

disk D = {z ∈ C | |z|< 1}. Prove that the map from SU(1,1) to S1×D given by

(
a b

b a

)
7→ (a/|a|,b/a)

is a continuous bijection (in fact, a homeomorphism). Conclude that SU(1,1) is

topologically an open solid torus.

18.24. (a) Let W ⊆Rm be an open subset of Rm and pick some a∈W . If f : W→Rn

is a smooth submersion at a, i.e., d fa is surjective (so m ≥ n), prove that there are

an open set V ⊆W ⊆Rm with a ∈V and a diffeomorphism ψ with domain O⊆Rm

such that ψ(O) =V and

f (ψ(x1, . . . ,xm)) = (x1, . . . ,xn),

for all (x1, . . . ,xm) ∈ O.

Hint. Since d fa is surjective, the rank of the Jacobian matrix (∂ fi/∂x j(a)) (1≤ i≤
n, 1≤ j≤m) is n, and after some permutation of Rm, we may assume that the square

matrix B = (∂ fi/∂x j(a)) (1≤ i, j ≤ n) is invertible. Define the map h : W →Rm by

h(x) = ( f1(x), . . . , fn(x),xn+1, . . . ,xm),

where x = (x1, . . . ,xm). Check that the Jacobian matrix of h at a is invertible. Then

apply the inverse function theorem and finish up.

(b) Let f : M → N be a map of smooth manifolds. A point p ∈ M is called a

critical point (of f ) if d fp is not surjective, and a point q ∈ N is called a critical

value (of f ) if q = f (p), for some critical point p ∈M. A point p ∈M is a regular

point (of f ) if p is not critical, i.e., d fp is surjective, and a point q ∈ N is a regular

value (of f ) if it is not a critical value. In particular, any q ∈ N− f (M) is a regular

value and q ∈ f (M) is a regular value if every p ∈ f−1(q) is a regular point (but in

contrast, q is a critical value if some p ∈ f−1(q) is critical).
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Prove that for every regular value q ∈ f (M), the preimage Z = f−1(q) is a mani-

fold of dimension dim(M)− dim(N).
Hint. Pick any p∈ f−1(q) and some parametrizations ϕ at p and ψ at q with ϕ(0) =
p and ψ(0) = q and consider h = ψ−1 ◦ f ◦ϕ . Prove that dh0 is surjective and then

apply (a).

(c) Under the same assumptions as (b), prove that for every point p∈ Z = f−1(q),
the tangent space TpZ is the kernel of d fp : TpM→ TqN.

(d) If X ,Z ⊆ RN are manifolds and Z ⊆ X , we say that Z is a submanifold of X .

Assume that there is a smooth function g : X→Rk and that 0∈Rk is a regular value

of g. Then by (b), Z = g−1(0) is a submanifold of X of dimension dim(X)− k. Let

g = (g1, . . . ,gk), with each gi a function gi : X → R. Prove that for any p ∈ X , dgp

is surjective iff the linear forms (dgi)p : TpX → R are linearly independent. In this

case, we say that g1, . . . ,gk are independent at p. We also say that Z is cut out by

g1, . . . ,gk when

Z = {p ∈ X | g1(p) = 0, . . . ,gk(p) = 0}
with g1, . . . ,gk independent for all p ∈ Z.

Let f : X → Y be a smooth map of manifolds and let q ∈ f (X) be a regular

value. Prove that Z = f−1(q) is a submanifold of X cut out by k = dim(X)−dim(Y )
independent functions.

Hint. Pick some parametrization ψ at q such that ψ(0) = q and check that 0 is a

regular value of g = ψ−1 ◦ f , so that g1, . . . ,gk work.

(e) Let U ⊆Rm be an open subset of Rm and pick some a∈U . If f : U →Rn is a

smooth immersion at a, i.e., d fa is injective (so m≤ n), prove that there are an open

set V ⊆ Rn with f (a) ∈ V , an open subset U ′ ⊆U with a ∈U ′ and f (U ′) ⊆ V , an

open subset O⊆ Rn−m, and a diffeomorphism ϕ : V →U ′×O such that

ϕ( f (x1, . . . ,xm)) = (x1, . . . ,xm,0, . . . ,0),

for all (x1, . . . ,xm) ∈U ′.
Hint. Since d fa is injective, the rank of the Jacobian matrix (∂ fi/∂x j(a)) (1≤ i≤ n,

1≤ j ≤ m) is m, and after some permutation of Rn, we may assume that the square

matrix B= (∂ fi/∂x j(a)) (1≤ i, j≤m) is invertible. Define the map g : U×Rn−m→
Rn by

g(x,y) = ( f1(x), . . . , fm(x),y1 + fm+1(x), . . . ,yn−m + fn(x)),

where x = (x1, . . . ,xm) and y = (y1, . . . ,yn−m). Check that the Jacobian matrix of g

at (a,0) is invertible. Then apply the inverse function theorem and finish up.

Now assume that Z is a submanifold of X . Prove that locally, Z is cut out by

independent functions. This means that if k = dim(X)−dim(Z), the codimension of

Z in X , then for every z ∈ Z, there are k independent functions g1, . . . ,gk defined on

some open subset W ⊆ X with z ∈W , such that Z∩W is the common zero set of the

gi’s.

(f) We would like to generalize our result in (b) to the more general situation in

which we have a smooth map f : X→Y , but this time, we have a submanifold Z ⊆Y
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and we are investigating whether f−1(Z) is a submanifold of X . In particular, if X

is also a submanifold of Y and f is the inclusion of X into Y , then f−1(Z) = X ∩Z.

Convince yourself that in general, the intersection of two submanifolds is not a

submanifold. Try examples involving curves and surfaces and you will see how bad

the situation can be. What is needed is a notion generalizing that of a regular value,

and this turns out to be the notion of transversality.

We say that f is transversal to Z if

d fp(TpX)+Tf (p)Z = Tf (p)Y,

for all p ∈ f−1(Z). (Recall that if U and V are subspaces of a vector space E , then

U +V is the subspace U +V = {u+ v ∈ E | u ∈U, v ∈V}). In particular, if f is the

inclusion of X into Y , the transversality condition is

TpX +TpZ = TpY,

for all p ∈ X ∩Z.

Draw several examples of transversal intersections to understand better this con-

cept. Prove that if f is transversal to Z, then f−1(Z) is a submanifold of X of codi-

mension equal to dim(Y )− dim(Z).
Hint. The set f−1(Z) is a manifold if for every p ∈ f−1(Z), there is some open

subset U ⊆ X with p ∈U and f−1(Z)∩U is a manifold. First, use (e) to assert that

locally near q = f (p), Z is cut out by k = dim(Y )− dim(Z) independent functions

g1, . . . ,gk, so that locally near p, the preimage f−1(Z) is cut out by g1 ◦ f , . . . ,gk ◦ f .

If we let g = (g1, . . . ,gk), it is a submersion, and the issue is to prove that 0 is a

regular value of g ◦ f in order to apply (b). Show that transversality is just what is

needed to show that 0 is a regular value of g ◦ f .

(g) With the same assumptions as in (f) ( f is transversal to Z), if W = f−1(Z),
prove that for every p ∈W ,

TpW = (d fp)
−1(Tf (p)Z),

the preimage of Tf (p)Z by d fp : TpX → Tf (p)Y . In particular, if f is the inclusion of

X into Y , then

Tp(X ∩Z) = TpX ∩TpZ.

(h) Let X ,Z ⊆Y be two submanifolds of Y , with X compact, Z closed, dim(X)+
dim(Z) = dim(Y ), and X transversal to Z. Prove that X ∩Z consists of a finite set of

points.
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Birkhäuser, first edition, 1996.

27. Jacques Lafontaine. Introduction aux Variétés Différentielles. PUG, first edition, 1996.

28. Serge Lang. Real and Functional Analysis. GTM 142. Springer-Verlag, third edition, 1996.

29. Serge Lang. Undergraduate Analysis. UTM. Springer-Verlag, second edition, 1997.

30. John M. Lee. Introduction to Smooth Manifolds. GTM No. 218. Springer Verlag, first edition,

2006.

31. J.M. McCarthy. Introduction to Theoretical Kinematics. MIT Press, first edition, 1990.



528 18 Basics of Manifolds and Classical Lie Groups

32. Jerrold E. Marsden and Jim Ostrowski. Symmetries in motion: Geometric foundations of

motion control. Nonlinear Science Today, 1998.

33. Jerrold E. Marsden and T.S. Ratiu. Introduction to Mechanics and Symmetry. TAM, Vol. 17.

Springer-Verlag, first edition, 1994.

34. Yukio Matsumoto. An Introduction to Morse Theory. Translations of Mathematical Mono-

graphs No 208. AMS, first edition, 2002.

35. John W. Milnor. Topology from the Differentiable Viewpoint. The University Press of Virginia,

second edition, 1969.

36. John W. Milnor. Morse Theory. Annals of Math. Series, No. 51. Princeton University Press,

third edition, 1969.
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Chapter 19

Basics of the Differential Geometry of Curves

19.1 Introduction: Parametrized Curves

In this chapter we consider parametric curves, and we introduce two important in-

variants, curvature and torsion (in the case of a 3D curve).

Properties of curves can be classified into local properties and global properties.

Local properties are the properties that hold in a small neighborhood of a point on

a curve. Curvature is a local property. Local properties can be studied more con-

veniently by assuming that the curve is parametrized locally. Thus, it is important

and useful to study parametrized curves. In order to study the global properties of a

curve, such as the number of points where the curvature is extremal, the number of

times that a curve wraps around a point, or convexity properties, topological tools

are needed. A proper study of global properties of curves really requires the intro-

duction of the notion of a manifold, a concept beyond the scope of this book. In

this chapter we study only local properties of parametrized curves. Readers inter-

ested in learning about curves as manifolds and about global properties of curves

are referred to do Carmo [7] and Berger and Gostiaux [2]. Kreyszig [15] is also an

excellent source, which does a great job at tracing the origin of concepts. It turns out

that it is easier to study the notions of curvature and torsion if a curve is parametrized

by arc length, and thus we will discuss briefly the notion of arc length.

Let E be some normed affine space of finite dimension, for the sake of simplicity

the Euclidean space E2 or E3. Recall that the Euclidean space Em is obtained from

the affine space Am by defining on the vector space Rm the standard inner product

(x1, . . . ,xm) · (y1, . . . ,ym) = x1y1 + · · ·+ xmym.

The corresponding Euclidean norm is

‖(x1, . . . ,xm)‖ =
√

x2
1 + · · ·+ x2

m.

Inspired by a kinematic view, we can define a curve as a continuous map f : ]a,b[→
E from an open interval I =]a,b[ of R to the affine space E . From this point of view

529
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we can think of the parameter t ∈ ]a,b[ as time, and the function f gives the position

f (t) at time t of a moving particle. The image f (I) ⊆ E of the interval I is the

trajectory of the particle. In fact, asking only that f be continuous turns out to be

too liberal, as rather strange curves turn out to be definable, such as “square-filling

curves,” due to Peano, Hilbert, Sierpiński, and others (see the problems).

Example 19.1. A very pretty square-filling curve due to Hilbert is defined by a se-

quence (hn) of polygonal lines hn : [0,1]→ [0,1]× [0,1] starting from the simple

pattern h0 (a “square cap” ⊓) shown on the left in Figure 19.1.

Fig. 19.1 A sequence of Hilbert curves h0,h1,h2.

The curve hn+1 is obtained by scaling down hn by a factor of 1
2
, and connecting

the four copies of this scaled–down version of hn obtained by rotating by π/2 (left

lower part), rotating by −π/2 and translating right (right lower part), translating up

(left upper part), and translating diagonally (right upper part), as illustrated in Figure

19.1.

It can be shown that the sequence (hn) converges (pointwise) to a continuous

curve h : [0,1]→ [0,1]× [0,1] whose trace is the entire square [0,1]× [0,1]. The

Hilbert curve h is nowhere differentiable. It also has infinite length! The curve h5 is

shown in Figure 19.2.

Actually, there are many fascinating curves that are only continuous, fractal

curves being a major example (see Edgar [8]), but for our purposes we need the

existence of the tangent at every point of the curve (except perhaps for finitely many
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Fig. 19.2 The Hilbert curve h5.

points). This leads us to require that f : ]a,b[→ E be at least continuously differ-

entiable. Recall that a function f : ]a,b[→ An is of class Cp, or is Cp-continuous,

if all the derivatives f (k) exist and are continuous for all k, 0≤ k ≤ p (when p = 0,

f (0) = f ). Thus, we require f to be at least a C1-function. However, asking that

f : ]a,b[→ E be a Cp-function for p≥ 1 still allows unwanted curves.

Example 19.2. The plane curve defined such that

f (t) =




(0, e1/t) if t < 0;

(0, 0) if t = 0;

(e−1/t , 0) if t > 0;

is a C∞-function, but f ′(0) = 0, and thus the tangent at the origin is undefined. What

happens is that the curve has a sharp “corner” at the origin.

Example 19.3. Similarly, the plane curve defined such that

f (t) =




(−e1/t , e1/t sin(e−1/t)) if t < 0;

(0, 0) if t = 0;

(e−1/t , e−1/t sin(e1/t)) if t > 0;

shown in Figure 19.3 is a C∞-function, but f ′(0)= 0. In this case, the curve oscillates

more and more rapidly as it approaches the origin.

The problem with the above examples is that the origin is a singular point for

which f ′(0) = 0 (a stationary point).
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-0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15 0.2

-0.1

-0.05

0.05

0.1

Fig. 19.3 Stationary point at the origin.

Although it is possible to define the tangent when f is sufficiently differentiable

and when for every t ∈ ]a,b[ , f (p)(t) 6= 0 for some p≥ 1 (where f (p) denotes the pth

derivative of f ), a systematic study is rather cumbersome. Thus, we will restrict our

attention to curves having only regular points, that is, for which f ′(t) 6= 0 for every

t ∈ ]a,b[ . However, we will allow functions f : ]a,b[→ E that are not necessarily

injective, unless stated otherwise.

Definition 19.1. An open curve (or open arc) of class Cp is a map f : ]a,b[→ E of

class Cp, with p≥ 1, where ]a,b[ is an open interval (allowing a =−∞ or b =+∞).

The set of points f (]a,b[) in E is called the trace of the curve f . A point f (t) is

regular at t ∈ ]a,b[ if f ′(t) exists and f ′(t) 6= 0, and stationary otherwise. A regular

open curve (or regular open arc) of class Cp is an open curve of class Cp, with

p≥ 1, such that every point is regular, i.e., f ′(t) 6= 0 for every t ∈ ]a,b[ .

Note that Definition 19.1 is stated for an open interval ]a,b[ , and thus f may not

be defined at a or b. If we want to include the boundary points at a and b in the curve

(when a 6=−∞ and b 6=+∞), we use the following definition.

Definition 19.2. A curve (or arc) of class Cp is a map f : [a,b]→ E , with p ≥
1, such that the restriction of f to ]a,b[ is of class Cp, and where f (i)(a) =
limt→a,t>a f (i)(t) and f (i)(b) = limt→b,t<b f (i)(t) exist, where 0 ≤ i ≤ p. A regu-

lar curve (or regular arc) of class Cp is a curve of class Cp, with p ≥ 1, such that

every point is regular, i.e., f ′(t) 6= 0 for every t ∈ [a,b]. The set of points f ([a,b]) in

E is called the trace of the curve f .

It should be noted that even if f is injective, the trace f (I) of f may be self-

intersecting.

Example 19.4. Consider the curve f : R→ E2 defined such that
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f1(t) =
t(1+ t2)

1+ t4
,

f2(t) =
t(1− t2)

1+ t4
.

The trace of this curve, shown in Figure 19.4, is called the “lemniscate of

Bernoulli” and it has a self-intersection at the origin. The map f is continuous,

and in fact bijective, but its inverse f−1 is not continuous. Self-intersection is due to

the fact that

lim
t→−∞

f (t) = lim
t→+∞

f (t) = f (0).

Fig. 19.4 Lemniscate of Bernoulli.

If we consider a curve f : [a,b]→ E and we assume that f is injective on the

entire closed interval [a,b], then the trace f ([a,b]) of f has no self-intersection.

Such curves are usually called Jordan arcs, or simple arcs. The theory of Jordan

arcs f : [a,b]→ E where f is only required to be continuous is quite rich. Because

[a,b] is compact, f is in fact a homeomorphism between [a,b] and f ([a,b]). Many

fractal curves are only continuous Jordan arcs that are not differentiable.

We can also define closed curves. A simple way to do so is to say that a closed

curve is a curve f : [a,b]→ E such that f (a) = f (b). However, this does not ensure

that the derivatives at a and b agree, a situation that is quite undesirable. A better

solution is to define a closed curve as an open curve f : R→ E , where f is periodic.

Definition 19.3. A closed curve (or closed arc) of class Cp is a map f : R→ E such

that f is of class Cp, with p≥ 1, and such that f is periodic, which means that there

is some T > 0 such that f (x+T ) = f (x) for all x ∈ R. A regular closed curve (or

regular closed arc) of class Cp is a closed curve of class Cp, with p ≥ 1, such that

every point is regular, i.e., f ′(t) 6= 0 for every t ∈ R. The set of points f ([0,T ]) (or

f (R)) in E is called the trace of the curve f .
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A closed curve is a Jordan curve (or a simple closed curve) if f is injective on

the interval [0,T [ . A Jordan curve has no self-intersection. The ellipse defined by

the map t 7→ (acost, bsint) is an example of a closed curve of type C∞ that is a

Jordan curve. In this example, the period is T = 2π . Again, the theory of Jordan

curves f : [0,T ]→ E where f is only required to be continuous is quite rich.

An observant reader may have noticed that a curve has been defined as a map

f : ]a,b[→ E (or f : [a,b] → E ), rather than as a certain set of points. In fact,

it is possible for the trace of a curve to be defined by many parametrizations,

as illustrated by the unit circle, which is the trace of the parametrized curves

fk : ]0,2π [→ E (or fk : [0,2π ]→ E ), where fk(t) = (coskt, sinkt), with k ≥ 1. A

clean way to handle this phenomenon is to define a notion of geometric curve (or

arc). Such a treatment is given in Berger and Gostiaux [2]. For our purposes it will

be sufficient to define a notion of change of parameter that does not change the “ge-

ometric shape” of the trace. Recall that a diffeomorphism g : ]a,b[→ ]c,d[ of class

Cp from an open interval ]a,b[ to another open interval ]c,d[ is a bijection such

that both g : ]a,b[→ ]c,d[ and its inverse g−1 : ]c,d[→ ]a,b[ are Cp-functions. This

implies that g′(t) 6= 0 for every t ∈ ]a,b[ .

Definition 19.4. Two regular curves f : ]a,b[→ E and g : ]c,d[→ E of class Cp,

with p≥ 1, are Cp-equivalent if there is a diffeomorphism θ : ]a,b[→ ]c,d[ of class

Cp such that f = g ◦θ .

It is immediately verified that Definition 19.4 yields an equivalence relation on

open curves. Definition 19.4 is adapted to curves, by extending the notion of Cp-

diffeomorphism to closed intervals in the obvious way.

Remark: Using Definition 19.4, we could define a geometric curve (or arc) of

class Cp as an equivalence class of (parametrized) curves. This is done in Berger

and Gostiaux [2].

From now on, in most cases we will drop the word “regular” when referring to

regular curves, and simply say “curves.” Also, when we refer to a point f (t) on a

curve, we mean that t ∈ ]a,b[ for an open curve f : ]a,b[→ E , and t ∈ [a,b] for a

curve f : [a,b]→ E . In the case of a closed curve f : R→ E , we can assume that

t ∈ [0,T ], where T is the period of f , and thus closed curves will be treated simply

as curves in the sequel. We now define tangent lines and osculating planes. Accord-

ing to Kreyszig [15], the term osculating plane was apparently first introduced by

Tinseau in 1780.

19.2 Tangent Lines and Osculating Planes

We begin with the definition of a tangent line.

Definition 19.5. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→
E of class Cp), with p ≥ 1, given any point M0 = f (t) on the curve, if f is locally
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injective at M0 and if for any point M1 = f (t + h) near M0 the line Tt,h determined

by the points M0 and M1 has a limit Tt when h 6= 0 approaches 0, we say that Tt is

the tangent line to f in M0 = f (t) at t.

More precisely, if there is an open interval ]t −η , t +η [⊆ ]a,b[ (with η > 0)

such that M1 = f (t +h) 6= f (t) = M0 for all h 6= 0 with h∈ ]−η , η [ and the line Tt,h

determined by the points M0 and M1 has a limit Tt when h 6= 0 approaches 0 (with

h ∈ ]−η , η [ ), then Tt is the tangent line to f in M0 at t.

For simplicity we will often say “tangent,” instead of “tangent line.” The defi-

nition is simpler when f is a simple curve (there is no danger that M1 = M0 when

h 6= 0). In this chapter there will be situations where it is notationally more con-

venient to denote the vector
−→
ab by b− a. The following lemma shows why regular

points are important.

Lemma 19.1. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→ E

of class Cp), with p ≥ 1, given any point M0 = f (t) on the curve, if M0 is a regular

point at t, then the tangent line to f in M0 at t exists and is determined by the

derivative f ′(t) of f at t.

Proof. Provided that M0 6= M1, the line Tt,h is determined by the point M0 and the

vector M1−M0 = f (t + h)− f (t). By the definition of f ′(t), we have

f (t + h)− f (t) = h f ′(t)+ hε(h),

where limh→0,h 6=0 ε(h) = 0. We claim that there must be an open interval ]t−η , t +
η [⊆ ]a,b[ (with η > 0) such that f (t + h) 6= f (t) for all h 6= 0 with −η < h < η .

Otherwise, since f ′(t) exists, for every α > 0 there is some η > 0 such that

∥∥∥∥
f (t + h)− f (t)

h
− f ′(t)

∥∥∥∥≤ α

for all h, with −η < h < η , and since f (t + h)− f (t) = 0 for some h 6= 0 with

h ∈ ]−η , η [ , we would have ‖ f ′(t)‖ ≤ α . Since this holds for every α > 0, we

would have f ′(t) = 0, a contradiction. Thus, the line Tt,h is determined by the point

M0 and the vector f ′(t)+ε(h), which has the limit f ′(t) when h 6= 0 tends to 0, with

h ∈ ]−η ,+η [ . Thus, the line Tt,h has for limit the line determined by M0 and the

derivative f ′(t) of f at t. ⊓⊔

Remark: If f ′(t) = 0, the above argument breaks down. However, if f is a Cp-

function and f (p)(t) 6= 0 for some p ≥ 2, where p is the smallest integer with that

property, we can show that the line Tt,h has the limit determined by M0 and the

derivative f (p)(t). Thus, the tangent line may still exist at a stationary point. For

example, the curve f defined by the map t 7→ (t2, t3) is a C∞-function, but f ′(0) = 0.

Nevertheless, the tangent at the origin is defined for t = 0 (it is the x-axis). However,

some strange things can happen at a stationary point. Assuming that a curve is of

class Cp for p large enough, using Taylor’s formula it is possible to study precisely

the behavior of the curve at a stationary point.
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Note that the tangent at a point can exist, even when the derivative f ′ is not

continuous at this point.

Example 19.5. The C0-curve f defined such that

f (t) =

{
(t, t2 sin(1/t)) if t 6= 0;

(0,0) if t = 0;

and shown in Figure 19.5 has a tangent at t = 0.

-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4

-0.2

-0.1

0.1

0.2

Fig. 19.5 Curve with tangent at O and yet f ′ discontinuous at O.

Indeed, f (0) = (0, 0), and limt→0 t sin(1/t) = 0, and the derivative at t = 0 is the

vector (1,0). For t 6= 0,

f ′(t) = (1, 2t sin(1/t)− cos(1/t)),

which has no limit as t tends to 0. Thus, f ′ is discontinuous at 0. What happens is

that f oscillates more and more near the origin, but the amplitude of the oscillations

decreases.

If g = f ◦θ is a curve Cp-equivalent to f , where θ is a Cp-diffeomorphism, the

tangent at θ (t) to f exists iff the tangent at t to g exists, and the two tangents are

identical. Indeed, g′(t) = f ′(u)θ ′(t), where u = θ (t), and since θ ′(t) 6= 0 because θ
is a diffeomorphism, the result is clear. Thus, the notion of tangent is intrinsic to the

geometric curve defined by f . We now consider osculating planes.

Definition 19.6. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→
E of class Cp), with p ≥ 2, given any point M0 = f (t) on the curve, if the tangent

Tt at M0 exists, the point M1 = f (t + h) is not on Tt for h 6= 0 small enough, and

the plane Pt,h determined by the tangent Tt and the point M1 has a limit Pt as h 6= 0

approaches 0, we say that Pt is the osculating plane to f in M0 = f (t) at t.
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More precisely, if the tangent Tt at M0 exists, there is an open interval ]t−η , t +
η [⊆ ]a,b[ (with η > 0) such that the point M1 = f (t +h) is not on Tt for every h 6= 0

with h ∈ ]−η ,+η [ , and the plane Pt,h determined by the tangent Tt and the point

M1 has a limit Pt when h 6= 0 approaches 0 (with h ∈ ]−η ,+η [ ), we say that Pt is

the osculating plane to f in M0 = f (t) at t.

Again, the definition is simpler when f is a simple curve. The following lemma

gives a simple condition for the existence of the osculating plane at a point.

Lemma 19.2. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→ E

of class Cp), with p ≥ 2, given any point M0 = f (t) on the curve, if f ′(t) and f ′′(t)
are linearly independent (which implies that M0 is a regular point at t), then the

osculating plane to f in M0 at t exists and is determined by the first and second

derivatives f ′(t) and f ′′(t) of f at t.

Proof. The plane Pt,h is determined by the point M0, the vector f ′(t), and the vector

M1−M0 = f (t+h)− f (t), provided that M1−M0 and f ′(t) are linearly independent.

By Taylor’s formula, for h > 0 small enough we have

f (t + h)− f (t) = h f ′(t)+
h2

2
f ′′(t)+

h2

2
ε(h),

where limh→0,h 6=0 ε(h) = 0. By an argument similar to that used in Lemma 19.1,

we can show that there is some open interval ]t −η , t +η [⊆ ]a,b[ (with η > 0)

such that for every h 6= 0 with −η < h < η , the point M1 = f (t + h) is not on

the tangent Tt (otherwise, we could prove that f ′′(t) is the limit of a sequence of

vectors proportional to f ′(t), and thus that f ′(t) and f ′′(t) are linearly dependent, a

contradiction). Thus, for h 6= 0 with h ∈ ]−η ,+η [ , the plane Pt,h is determined by

the point M0, the vector f ′(t), and the vector f ′′(t)+ε(h), which has the limit f ′′(t)
as h 6= 0 tends to 0, with h ∈ ]−η ,+η [ . Thus, the plane Pt,h has for limit the plane

determined by M0 and the derivatives f ′(t) and f ′′(t) of f at t, since f ′(t) and f ′′(t)
are assumed to be linearly independent. ⊓⊔

When f ′(t) and f ′′(t) exist and are linearly independent, it is sometimes said that

f is biregular at t, and that f (t) is a biregular point at t. From the kinematic point

of view, the osculating plane at time t is determined by the position of the moving

particle f (t), the velocity vector f ′(t), and the acceleration vector f ′′(t).

Remark: If the curve f is a plane curve, then the osculating plane at every regular

point is the plane containing the curve. Even when f ′(t) and f ′′(t) are linearly de-

pendent, the osculating plane may still exist, for instance, if there are two derivatives

f (p)(t) 6= 0 and f (q)(t) 6= 0 that are linearly independent, with p < q, the smallest

integers with that property.

In general, the curve crosses its osculating plane at the point of contact t.

If g = f ◦θ is a curve Cp-equivalent to f , where θ is a Cp-diffeomorphism, the

osculating plane at θ (t) to f exists iff the osculating plane at t to g exists, and these

two planes are identical. Indeed, g′(t) = f ′(u)θ ′(t), and
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g′′(t) = f ′′(u)θ ′(t)2 + f ′(u)θ ′′(t),

where u = θ (t). Since θ ′(t) 6= 0 because θ is a diffeomorphism, the planes defined

by ( f ′(u), f ′′(u)) and (g′(t),g′′(t)) are identical. Thus, the notion of osculating plane

is intrinsic to the geometric curve defined by f .

It should also be noted that the notions of tangent and osculating plane are affine

notions, that is, preserved under affine bijections.

We now consider the notion of arc length. For this, we assume that the affine

space E is a normed affine space of finite dimension with norm ‖ ‖. For simplicity,

we can assume that E = En.

19.3 Arc Length

Given an interval [a,b] (where a 6= −∞ and b 6= +∞), a subdivision of [a,b] is any

finite increasing sequence t0, . . . , tn such that t0 = a, tn = b, and ti < ti+1, for all i, 0≤
i≤ n−1, where n≥ 1. Given any curve f : [a,b]→E of class Cp, with p≥ 0, for any

subdivision σ = t0, . . . , tn of [a,b] we obtain a polygonal line f (t0), f (t1), . . . , f (tn)
with endpoints f (a) and f (b), and we define the length of this polygonal line as

l(σ) =
n−1

∑
i=0

‖ f (ti+1)− f (ti)‖.

Definition 19.7. For any curve f : [a,b]→ E of class Cp, with p≥ 0, if the set L ( f )
of the lengths l(σ) of the polygonal lines induced by all subdivisions σ = t0, . . . , tn
of [a,b] is bounded, we say that f is rectifiable, and we call the least upper bound

l( f ) of the set L ( f ) the length of f .

It is obvious that ‖ f (b)− f (a)‖ ≤ l( f ). If g = f ◦ θ is a curve Cp-equivalent to

f , where θ is a Cp-diffeomorphism, since θ ′(t) 6= 0, θ is a strictly increasing or

decreasing function, and thus the set of sums of the form l(σ) is the same for both

f and g. Thus, the notion of length is intrinsic to the geometric curve defined by f .

This is false if θ is not strictly increasing or decreasing. The following lemma can

be shown.

Lemma 19.3. For any curve f : [a,b]→ E of class Cp, with p≥ 1, f is rectifiable.

Remark: In fact, Lemma 19.3 can be shown under the hypothesis that f is of class

C0, and that f ′(t) exists and ‖ f ′(t)‖ ≤M for some M ≥ 0, for all t ∈ [a,b].

Definition 19.8. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→
E of class Cp), with p ≥ 1, for any closed interval [t0, t] ⊆ ]a,b[ (or [t0, t] ⊆ [a,b],
in the case of a curve), letting f[t0,t] be the restriction of f to [t0, t], the length

l( f[t0 ,t]) (which exists, by Lemma 19.3) is called the arc length of f[t0,t]. For any

fixed t0 ∈ ]a,b[ (or any fixed t0 ∈ [a,b], in the case of a curve), we define the func-

tion s : ]a,b[→ R (or s : [a,b]→ R, in the case of a curve), called algebraic arc
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length w.r.t. t0, as follows:

s(t) =

{
l( f[t0,t]) if [t0, t]⊆ ]a,b[ ;
−l( f[t0,t]) if [t, t0]⊆ ]a,b[ ;

(and similarly in the case of a curve, except that [t0, t]⊆ [a,b] or [t, t0]⊆ [a,b]).

For the sake of brevity, we will often call s the arc length, rather than algebraic

arc length w.r.t. t0.

Lemma 19.4. For any open curve f : ]a,b[→ E of class Cp (or curve f : [a,b]→ E

of class Cp), with p≥ 1, for any fixed t0 ∈ ]a,b[ (or t0 ∈ [a,b], in the case of a curve),

the algebraic arc length s(t) w.r.t. t0 is of class Cp, and furthermore, s′(t) = ‖ f ′(t)‖.

Thus, the arc length is given by the integral

s(t) =

∫ t

t0

‖ f ′(u)‖du.

In particular, when E = En and the norm is the Euclidean norm, we have

s(t) =

∫ t

t0

√
f ′1(u)

2 + · · ·+ f ′n(u)2 du.

where f = ( f1, . . . , fn). The number ‖ f ′(t)‖ is often called the speed of f (t) at time

t. For every regular point at t, the unit vector

t =
f ′(t)
‖ f ′(t)‖

is called the unit tangent (vector) at t.

Now, if f : ]a,b[→E (or f : [a,b]→ E ) is a regular curve of class Cp, with p≥ 1,

since s′(t) = ‖ f ′(t)‖, and f ′(t) 6= 0 for all t ∈ ]a,b[ (or t ∈ [a,b]), we have s′(t)> 0

for all t ∈ ]a,b[ (or t ∈ [a,b]). The mean value theorem implies that s is injective,

and that s : ]a,b[→ ]s(a),s(b)[ (or s : [a,b]→ [s(a),s(b)]) is a diffeomorphism of

class Cp. In particular, the curve f ◦ϕ : ]s(a),s(b)[→ E (or f ◦ϕ : [s(a),s(b)]→ E ),

with ϕ = s−1, is Cp-equivalent to the original curve f , but it is parametrized by the

arc length s ∈ ]s(a),s(b)[ (or s ∈ [s(a),s(b)]). As a consequence, since ϕ = s−1, we

have

ϕ ′(s(t)) = (s′(t))−1,

and letting g = f ◦ϕ , by the chain rule

g′(s(t)) = f ′(ϕ(s(t)))ϕ ′(s(t)) = f ′(t)(s′(t))−1 =
f ′(t)
‖ f ′(t)‖ .

This shows that ‖g′(s)‖ = 1, i.e., that when a regular curve is parametrized by arc

length, its velocity vector has unit length. From a kinematic point of view, when
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a curve is parametrized by arc length, the moving particle travels at constant unit

speed.

Remark: If a curve f (or a closed curve) is of class Cp, for p≥ 1, and it is a Jordan

arc, then the algebraic arc length s : [a,b]→R w.r.t. t0 is strictly increasing, and thus

injective. Thus, s−1 exists, and the curve can still be parametrized by arc length as

g = f ◦ s−1. However, g′(s) exists only when s(t) corresponds to a regular point at

t. Thus, it still seems necessary to restrict our attention to regular curves, in order to

avoid complications.

We now consider the notion of curvature. In order to do so, we assume that the

affine space E has a Euclidean structure (an inner product), and that the norm on E

is the norm induced by this inner product. For simplicity, we assume that E = En.

19.4 Curvature and Osculating Circles (Plane Curves)

In a Euclidean space, orthogonality makes sense, and we can define normal lines

and normal planes. We begin with plane curves, i.e., the case where E = E2.

Definition 19.9. Given a regular plane curve f : ]a,b[→ E (or f : [a,b]→ E ) of

class Cp, with p ≥ 1, the normal line Nt to f at t is the line through f (t) and

orthogonal to the tangent line Tt to f at t. Any nonnull vector defining the direction

of the normal line Nt is called a normal vector to f at t.

From now on, we also assume that we are dealing with curves f that are biregular

for all t. This means that f ′(t) and f ′′(t) always exist and are linearly independent.

A fairly intuitive way to introduce the notion of curvature is to study the variation

of the normal line Nt to a curve f at t, in a small neighborhood of t. The intuition

is that the normal Nt to f at t rotates around a certain point, and that the “speed”

of rotation of the normal measures how much the curve bends around t. In other

words, the rate at which the normal turns corresponds to the curvature of the curve

at t. Another way to look at it is to focus on the point around which the normal turns,

the center of curvature C at t, and to consider the radius R of the circle centered at C

and tangent to the curve at f (t) (i.e., tangent to the tangent line to f at t). Intuitively,

the smaller R is, the faster the curve bends, and thus the curvature can be defined

as 1/R.

Let us assume that some origin O is chosen in the affine plane, and to simplify

the notation, for any curve f let us denote f (t)−O by M(t) or M, for any point

P denote P−O by P, denote P−M by
−→
MP, and denote f ′(t) by M′(t) or M′. The

normal line Nt to f at t is the set of points P such that

M′ ·−→MP = 0,

or equivalently
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M′ ·P = M′ ·M.

Similarly, for any small δ 6= 0 such that f (t +δ ) is defined, the normal line Nt+δ to

f at t + δ is the set of points Q such that

M′(t + δ ) ·Q = M′(t + δ ) ·M(t + δ ).

Thus, the intersection point P of Nt and Nt+δ , if it exists, is given by the equations

M′ ·P = M′ ·M,

M′(t + δ ) ·P = M′(t + δ ) ·M(t + δ ).

Thus, P would also satisfy the equation obtained by subtracting the first one from

the second, that is,

(M′(t + δ )−M′) ·P = M′(t + δ ) ·M(t + δ )−M′ ·M.

This equation can be written as

(
M′(t + δ )−M′

δ

)
·P =

(
M′(t + δ )−M′

δ

)
·M(t + δ )

+ M′ ·
(

M(t + δ )−M

δ

)
,

and as δ 6= 0 tends to 0, it has the following equation for limit:

M′′ ·P = M′′ ·M+M′ ·M′,

that is,

M′′ ·−→MP = ‖M′‖2.

Consequently, if it exists, P is the intersection of the two lines of equations

M′ ·−→MP = 0

M′′ ·−→MP = ‖M′‖2.

Thus, if M′ and M′′ are linearly independent, which is equivalent to saying that

f ′(t) and f ′′(t) are linearly independent, i.e., f is biregular at t, the above two equa-

tions have a unique solution P. Also, the above analysis shows that the intersection

of the two normals Nt and Nt+δ , for δ 6= 0 small enough, has a limit C (really, C(t)).
This limit is called the center of curvature of f at t. It is possible to compute the

distance R = ‖−→MC‖, the radius of curvature at t, and the coordinates of C, given

any affine frame for the plane. It is worth noting that the equation

M′′ ·P = M′′ ·M+M′ ·M′

is obtained by taking the derivative of the equation
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M′ ·P = M′ ·M

with respect to t. This observation can be used to compute the coordinates of the

center of curvature, but first we show that the radius of curvature has a very sim-

ple expression when the curve is parametrized by arc length. Indeed, in this case,

‖ f ′(s)‖ = ‖M′‖ = 1, that is, f ′(s) · f ′(s) = 1, and by taking the derivatives of both

sides, we get

f ′′(s) · f ′(s) = 0,

which shows that f ′′(s) = M′′ and f ′(s) = M′ are orthogonal, and since the center

of curvature C is determined by the equations

M′ ·−→MC = 0,

M′′ ·−→MC = ‖M′‖2,

the vector
−→
MC must be collinear with M′′ (since it is orthogonal to M′, which itself

is orthogonal to M′′). Then, letting

n =
M′′

‖M′′‖

be the unit vector associated with the acceleration vector M′′, we have
−→
MC = Rn,

and since ‖M′‖= 1, from M′′ ·−→MC = ‖M′‖2 we get

M′′ ·−→MC = M′′ ·R M′′

‖M′′‖ = R
(M′′ ·M′′)
‖M′′‖ = R

‖M′′‖2

‖M′′‖ = R ‖M′′‖= 1,

that is,

R =
1

‖M′′‖ =
1

‖ f ′′(s)‖ .

Thus, the radius of curvature is the inverse of the norm of the acceleration vector

f ′′(s). We define the curvature κ as the inverse of the radius of curvature R, that is,

as

κ = ‖ f ′′(s)‖.
In summary, when the curve f is parametrized by arc length, we found that the

curvature κ and the radius of curvature R are defined by the equations

κ = ‖ f ′′(s)‖, R =
1

κ
.

We now come back to the general case. Assuming that M′ and M′′ are linearly

independent, we can write
−→
MC = αM′ + β M′′, for some unique α,β . Since C is

determined by the equations
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M′ ·−→MC = 0,

M′′ ·−→MC = ‖M′‖2,

we get the system

(M′ ·M′)α +(M′ ·M′′)β = 0,

(M′ ·M′′)α +(M′′ ·M′′)β = ‖M′‖2,

and we also note that

R
2 =
−→
MC ·−→MC =

−→
MC · (αM′+β M′′) = β‖M′‖2.

The reader can verify that we obtain

β =
‖M′‖4

‖M′‖2‖M′′‖2− (M′ ·M′′)2
,

and thus

R
2 =

‖M′‖6

‖M′‖2‖M′′‖2− (M′ ·M′′)2
.

However, if we remember about the cross product of vectors and the Lagrange iden-

tity, we have

‖M′‖2‖M′′‖2− (M′ ·M′′)2 = ‖M′×M′′‖2,

and thus

R =
‖M′‖3

‖M′×M′′‖ =
‖ f ′(t)‖3

‖ f ′(t)× f ′′(t)‖ ,

and the curvature is given by

κ =
‖M′×M′′‖
‖M′‖3

=
‖ f ′(t)× f ′′(t)‖
‖ f ′(t)‖3

.

In summary, when the curve f is not necessarily parametrized by arc length, we

found that the curvature κ and the radius of curvature R are defined by the equations

κ =
‖ f ′(t)× f ′′(t)‖
‖ f ′(t)‖3

, R =
1

κ
.

Note that from an analytical point of view, the curvature has the advantage of

being defined at every regular point, since κ = 0 when either f ′′(t) = 0 or f ′′(t) is

collinear to f ′(t), whereas at such points, the radius of curvature goes to +∞.

We leave as an exercise to show that if g = f ◦ θ is a curve Cp-equivalent to f ,

where θ is a Cp-diffeomorphism, then

κ =
‖ f ′(u)× f ′′(u)‖
‖ f ′(u)‖3

=
‖g′(t)× g′′(t)‖
‖g′(t)‖3

,
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where u = θ (t), i.e., κ has the same value for both f and g. Thus, the curvature

is an invariant intrinsic to the geometric curve defined by f . In view of the above

considerations, we give the following definition of the curvature, which is more

intrinsic.

Definition 19.10. For any regular plane curve f : ]a,b[→ E (or f : [a,b]→ E ) of

class Cp parametrized by arc length, with p ≥ 2, the curvature κ at s is defined as

the nonnegative real number κ = ‖ f ′′(s)‖. For every s such that f ′′(s) 6= 0, letting

n = f ′′(s)/‖ f ′′(s)‖ be the unit vector associated with f ′′(s), we have f ′′(s) = κn,

the point C defined such that C− f (s) = n/κ is the center of curvature at s, and

R = 1/κ is the radius of curvature at s. The circle of center C and of radius R is

called the osculating circle to f at s. When f ′′(s) = 0, by convention R = ∞, and

the center of curvature is undefined.

The locus of the center of curvature is a curve that is regular, except at points for

which R ′ = 0. Properties of this curve, called the evolute, will be given in Lemma

19.5.

Example 19.6. The evolute of an ellipse, the center of curvature corresponding to

a specific point on the ellipse, and the osculating circle at that point are shown in

Figure 19.6.

Fig. 19.6 The evolute of an ellipse, and an osculating circle.

It is also possible to define the notion of osculating circle more geometrically as

a limit, in the spirit of the definition of a tangent.
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Definition 19.11. Given any plane curve f : ]a,b[→ E (or f : [a,b]→ E ) of class

Cp, with p≥ 1, and given any point M0 = f (t) on the curve, if f is locally injective

at M0, the tangent Tt to f at t exists, and the circle Σt,h tangent to Tt and passing

through M1 has a limit Σt as h 6= 0 approaches 0, we say that Σt is the osculating

circle to f in M0 = f (t) at t.

More precisely, if there is an open interval ]t −η , t +η [⊆ ]a,b[ (with η > 0)

such that, M1 = f (t +h) 6= f (t) = M0 for all h 6= 0 with h ∈ ]−η , η [ , the tangent Tt

to f at t exists, and the circle Σt,h tangent to Tt and passing through M1 has a limit

Σt as h 6= 0 approaches 0 (with h ∈ ]−η , η [ ), we say that Σt is the osculating circle

to f in M0 = f (t) at t.

It is not hard to show that if the center of curvature C (and thus the radius of

curvature R) exists at t, then the osculating circle at t is indeed the circle of center

C and radius R (also called circle of curvature at t).

Remark: It is possible that the osculating circle exists at a point t but that the center

of curvature at t is undefined.

Example 19.7. Consider the curve defined such that

f (t) =

{
(t, t2 + t3 sin(1/t)) if t 6= 0;

(0,0) if t = 0,

and shown in Figure 19.7.
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Fig. 19.7 Osculating circle at O exists and yet f ′′(0) is undefined.

We leave as an exercise to show that the osculating circle for t = 0 is the circle

of center
(
0, 1

2

)
, but f ′′(0) is undefined, so that the center of curvature is undefined

at t = 0. This is because the intersection point of the normal line N0 at t = 0 (the

y-axis) and the normal Nδ for δ small oscillates forever as δ goes to zero.
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In general, the osculating circle intersects the curve in another point besides the

point of contact, which means that near the point of contact, one of the two branches

of the curve is outside the osculating circle, and the other branch is inside. This

property fails for points on an axis of symmetry for the curve, such as the points on

the axes of an ellipse.

Osculating circles give a very good approximation of the curve around each

(biregular) point. We will see in later examples that plotting enough osculating cir-

cles gives the illusion that the curve is plotted, when in fact it is not!

Recalling that we denoted the (unit) tangent vector f ′(s) at s by t, and the unit

normal vector f ′′(s)/‖ f ′′(s)‖ by n, since

t′ = f ′′(s) = κn,

we have

t′ = κn.

Since t ·n = 0 and n ·n = 1, by taking derivatives of these equations we get n ·n′ = 0

and t′ ·n+ t ·n′= 0. Since n′ is orthognal to n, it is collinear to t, and from the second

equation, since t′ = κn, we get

κn ·n+ t ·n′= κ + t ·n′ = 0,

and thus

n′ =−κt.

Using the identity n′ =−κt, we can also show the following lemma, confirming

the geometric characterization of the center of curvature.

Lemma 19.5. For any regular plane curve f : ]a,b[→ E (or f : [a,b]→ E ) of class

Cp parametrized by arc length, with p ≥ 2, assuming that f ′′(s) 6= 0, the center of

curvature is on a curve c of class C0 defined such that c(s)− f (s) = Rn, where

R = 1/‖ f ′′(s)‖ and n = f ′′(s)/‖ f ′′(s)‖, and whenever R ′(s) 6= 0, c is regular at s

and c′(s) = R ′n, which means that the normal to f at s is the tangent to c at s.

Proof. Fixing any origin O in the plane, from c(s)− f (s) = Rn we have

c(s)−O = f (s)−O+Rn,

and thus

c′(s) = f ′(s)+R
′n+Rn′,

and since n′ =−κt, with κ = 1/R, we get

c′(s) = t+R
′n− t = R

′n.

⊓⊔

In other words, for every s where κ ′/κ2 is defined and not equal to zero, the point

c(s) is regular. This is not the case for points for which the curvature is minimal or
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maximal. The example of an ellipse is typical (see below). The curve c defined in

Lemma 19.5 is called the evolute of the curve f . Conversely, f is called the involute

of c.

Summarizing the discussion before Definition 19.10, we also have the following

lemma.

Lemma 19.6. For any regular plane curve f : ]a,b[→ E (or f : [a,b]→ E ) of class

Cp, with p≥ 2, the curvature at t is given by the expression

κ =
‖ f ′(t)× f ′′(t)‖
‖ f ′(t)‖3

.

Furthermore, whenever f ′(t)× f ′′(t) 6= 0, the center of curvature C defined such that

C− f (t) = n/κ is the limit of the intersection of any normal Nt+δ and the normal

Nt at t as δ 6= 0 small enough approaches 0.

Lemma 19.6 gives us a way of calculating the curvature at any point, for any

(regular) parametrization of a curve. Let us now determine the coordinates of the

center of curvature (when defined). Let (O, i, j) be an orthonormal frame for the

plane, and let the curve be defined by the map f (t) =O+u(t)i+v(t)j. The equation

of the normal to f at t is (x− u)u′+(y− v)v′ = 0, or

u′x+ v′y = uu′+ vv′.

As we noted earlier, the center of curvature is obtained by intersecting this normal

with the line whose equation is obtained by taking the derivative of the equation of

the normal w.r.t. t. Thus, the center of curvature is the solution of the system

u′x+ v′y = uu′+ vv′,

u′′x+ v′′y = uu′′+ vv′′+ u′2 + v′2.

We leave as an exercise to verify that the solution is given by

x = u− v′(u′2 + v′2)
u′v′′− v′u′′

,

y = v+
u′(u′2 + v′2)
u′v′′− v′u′′

,

provided that u′v′′− v′u′′ 6= 0. One will also check that the radius of curvature is

given by

R =
(u′2 + v′2)3/2

|u′v′′− v′u′′| .

This result can also be obtained from Lemma 19.6, by calculating the coordinates

of the cross product f ′(t)× f ′′(t).
We now give a few examples.
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Example 19.8. If f is a straight line, then f ′′(t) = 0, and thus the curvature is null

for every point of a line.

Example 19.9. A circle of radius a can be defined by

x = acost,

y = asin t.

We have u′ =−asint, v′ = acost, u′′ =−acost, v′′ =−asint, and thus

u′v′′− v′u′′ = (−asint)(−asin t)− (acost)(−acost) = a2

and

u′2 + v′2 = a2(sin2 t + cos2 t) = a2,

and thus

R =
(u′2 + v′2)3/2

|u′v′′− v′u′′| = a

and κ = 1/a. Thus, as expected, the circle has constant curvature 1/a, where a is

its radius, and the center of curvature is reduced to a single point, the center of the

circle. Indeed, every normal to the circle goes through it!

Example 19.10. An ellipse is defined by

x = a cosθ ,

y = b sinθ .

The equation of the normal to the ellipse at θ is

(x− a cosθ )(−asinθ )+ (y− b sinθ )(bcosθ ) = 0,

or

asinθ x− bcosθ y = sinθ cosθ (a2− b2).

Assuming that a ≥ b (the other case being similar), and letting c2 = a2− b2, the

above equation is

asinθ x− bcosθ y = c2 sinθ cosθ .

We leave as an exercise to show that the radius of curvature is

R =
(a2 sin2 θ + b2 cos2 θ )3/2

ab
,

and, that the center of curvature is on the curve defined by

x =
c2

a
cos3 θ , y =−c2

b
sin3 θ .
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This curve has four cusps, corresponding to the two maxima and minima of the

curvature. Letting

N =

(
c2

a
cosθ ,0

)

be the intersection of the normal to the point M on the ellipse with Ox, and d =
‖MN‖ be the distance between M and N, we leave as an exercise to show that the

radius of curvature is given by

R =
a2

b4
d3.

It is fun to plot the locus of the center of curvature and enough osculating circles to

the ellipse. Figure 19.8 shows 64 osculating circles of the ellipse

x2

a2
+

y2

b2
= 1

(with a≥ b), for a = 4, b = 2, and the locus of the center of curvature. Although the

ellipse is not explicitly plotted, it seems to be present!
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Fig. 19.8 Osculating circles of an ellipse.
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Example 19.11. The logarithmic spiral given in polar coordinates by r = aemθ , or

by

x = aemθ cosθ ,

y = aemθ sinθ

(with a > 0), is particularly interesting. We leave as an exercise to show that the

radius of curvature is

R = a
√

1+m2 emθ ,

and that the center of curvature is on the spiral (in fact, equal to the original spiral)

defined by

x =−maemθ sinθ ,

y = maemθ cosθ .

Fig. 19.9 Osculating circles of a logarithmic spiral.
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Figure 19.9 shows 50 osculating circles of the logarithmic spiral given in polar

coordinates by r = aemθ , for a = 0.6 and m = 0.1. The spiral definitely shows up

very clearly, even though it is not explicitly plotted. Also, note that since the radius

of curvature is increasing, no two osculating circles intersect!

Example 19.12. The cardioid given in polar coordinates by r = a(1+ cosθ ), or by

x = a(1+ cosθ )cosθ ,

y = a(1+ cosθ )sinθ ,

is also a neat example. Figure 19.10 shows 50 osculating circles of the cardioid

given in polar coordinates by r = a(1+cosθ ), for a = 2, and the locus of the center

of curvature.
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Fig. 19.10 Osculating circles of a cardioid.

We leave as an exercise to show that the radius of curvature is

R =

∣∣∣∣
2a

3
cos(θ/2)

∣∣∣∣,
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and that the center of curvature is on the cardioid defined by

x =
2a

3
+

a

3
(1− cosθ )cosθ ,

y =
a

3
(1− cosθ )sin θ .

We conclude our discussion of the curvature of plane curves with a brief look at

the algebraic curvature. Since a plane can be oriented, it is possible to give a sign

to the curvature. Let us assume that the plane is oriented by an othonormal frame

(O, i, j), assumed to have a positive orientation, and that the curve f is parametrized

by arc length. Then, given any unit tangent vector t at s to a curve f , there exists a

unit normal vector ν such that (O, t,ν) has positive orientation. In fact, if θ is the

angle (mod 2π) between i and t, so that

t = cosθ i+ sinθ j,

we have

ν = cos(θ +π/2) i+ sin(θ +π/2) j =−sinθ i+ cosθ j.

Note that this normal vector ν is not necessarily equal to the unit normal vector

n = f ′′(s)/‖ f ′′(s)‖: It can be of the opposite direction. Furthermore, ν exists for

every regular point, even when f ′′(s) = 0, which is not true of n. We define the

algebraic curvature k at s as the real number (negative, null, or positive) such that

f ′′(s) = kν.

We also define the algebraic radius of curvature R as R = 1/k. Clearly, κ = |k| and

R = |R|. Thus, we also have

t′ = kν,

and it is immediately verified that the center of curvature is still given by C− f (s) =
Rν , and that

ν ′ =−kt.

The algebraic curvature plays an important role in some global theorems of dif-

ferential geometry. It is also possible to prove that if c : ]a, b[→ R is a continuous

function and s0 ∈ ]a, b[ , then there is a unique curve f : ]a, b[→ E such that f (s0)
is any given point, f ′(s0) is any given vector, and such that c(s) is the algebraic

curvature of f . Roughly speaking, the algebraic curvature k determines the curve

completely, up to rigid motion.

� One should be careful to note that this result fails if we consider the cur-

vature κ instead of the algebraic curvature k. Indeed, it is possible that

k(s) = c(s) = 0, and thus that κ(s) = 0. Such points may be inflection points, and

counterexamples to the above result with κ instead of k are easily found. However,

if we require c(s)> 0 for all s, the above result holds for the curvature κ .

We now consider curves in affine Euclidean 3D spaces (i.e. E = E3).
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19.5 Normal Planes and Curvature (3D Curves)

The first thing to do is to define the notion of a normal plane.

Definition 19.12. Given any regular 3D curve f : ]a,b[→ E (or f : [a,b]→ E ) of

class Cp, with p ≥ 2, the normal plane Nt to f at t is the plane through f (t) and

orthogonal to the tangent line Tt to f at t. The intersection of the normal plane and

the osculating plane (if it exists) is called the principal normal line to f at t.

In order to get an intuitive idea of the notion of curvature, we need to look at

the variation of the normal plane around t, since there are infinitely many normal

lines to a given line in 3-space. This time, we will see that the normal plane rotates

around a line perpendicular to the osculating plane (called the polar axis at t). The

intersection of this line with the osculating plane is the center of curvature. But

now, not only does the normal plane rotate around an axis, so do the osculating

plane and the plane containing the tangent line and normal to the osculating plane,

called the rectifying plane. Thus, a second quantity, called the torsion, will make its

appearance. But let us go back to the intersection of normal planes around t.

Actually, the treatment that we gave for the plane extends immediately to space

(in 3D). Indeed, the normal plane Nt to f at t is the set of points P such that

M′ ·−→MP = 0,

or equivalently

M′ ·P = M′ ·M.

Similarly, for any small δ 6= 0 such that f (t + δ ) is defined, the normal plane Nt+δ

to f at t + δ is the set of points Q such that

M′(t + δ ) ·Q = M′(t + δ ) ·M(t + δ ).

Thus, the intersection points P of Nt and Nt+δ , if they exist, are given by the equa-

tions

M′ ·P = M′ ·M,

M′(t + δ ) ·P = M′(t + δ ) ·M(t + δ ).

As in the planar case, for δ very small, the intersection of the two planes Nt and

Nt+δ is given by the equations

M′ ·−→MP = 0,

M′′ ·−→MP = ‖M′‖2.

Thus, if M′ and M′′ are linearly independent, which is equivalent to saying that

f ′(t) and f ′′(t) are linearly independent, i.e., f is biregular at t, the above two equa-

tions define a unique line ∆ orthogonal to the osculating plane. This line is called
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the polar axis at t. Also, the above analysis shows that the intersection of the two

normal planes Nt and Nt+δ , for δ 6= 0 small enough, has the limit ∆ . Since the line ∆
is perpendicular to the osculating plane, it intersects the osculating plane in a single

point C (really, C(t)), the center of curvature of f at t. The distance R = ‖−→MC‖ is

the radius of curvature at t, and its inverse κ = 1/R is the curvature at t. Note that

C is on the normal line to the curve f at t contained in the osculating plane, i.e., on

the principal normal at t.

19.6 The Frenet Frame (3D Curves)

When f ′(t) and f ′′(t) are linearly independent, we can find a unit vector in the

plane spanned by f ′(t) and f ′′(t) and orthogonal to the unit tangent vector t =
f ′(t)/‖ f ′(t)‖ at t, and equal to the unit vector f ′′(t)/‖ f ′′(t)‖ when f ′(t) and f ′′(t)
are orthogonal, namely the unit vector

n =
−( f ′(t) · f ′′(t)) f ′(t)+ ‖ f ′(t)‖2 f ′′(t)
‖− ( f ′(t) · f ′′(t)) f ′(t)+ ‖ f ′(t)‖2 f ′′(t)‖ .

The unit vector n is called the principal normal vector to f at t. Note that n defines

the direction of the principal normal at t. We define the binormal vector b at t

as b = t× n. Thus, the triple (t,n,b) is a basis of orthogonal unit vectors. It is

usually called the Frenet (or Frenet–Serret) frame at t (this concept was introduced

independently by Frenet, in 1847, and Serret, in 1850). This concept is sufficiently

important to warrant the following definition.

Definition 19.13. Given a biregular 3D curve f : ]a,b[→ E (or f : [a,b]→ E ) of

class Cp, with p≥ 2, the Frenet frame (or Frenet trihedron) at t is the triple (t,n,b)
consisting of the three orthogonal unit vectors such that t = f ′(t)/‖ f ′(t)‖ is the unit

tangent vector at t,

n =
−( f ′(t) · f ′′(t)) f ′(t)+ ‖ f ′(t)‖2 f ′′(t)
‖− ( f ′(t) · f ′′(t)) f ′(t)+ ‖ f ′(t)‖2 f ′′(t)‖

is a unit vector orthogonal to t called the principal normal vector to f at t, and

b = t× n is the binormal vector at t. The plane containing t and b is called the

rectifying plane at t.

As we will see shortly, the principal normal n has a simpler expression when the

curve is parametrized by arc length. The calculations of R are still valid, since the

cross product M′×M′′ makes sense in 3-space, and thus we have

R =
‖M′‖3

‖M′×M′′‖ =
‖ f ′(t)‖3

‖ f ′(t)× f ′′(t)‖ ,

and the curvature is given by
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κ =
‖M′×M′′‖
‖M′‖3

=
‖ f ′(t)× f ′′(t)‖
‖ f ′(t)‖3

.

Example 19.13. Consider the curve given by

f (t) = (t, t2, t3),

known as the twisted cubic. We have f ′(t) = (1,2t,3t2) and f ′′(t) = (0,2,6t), and

thus at t = 0 (the origin), the vectors

f ′(t) = (1,0,0) and f ′′(t) = (0,2,0)

are orthogonal, and the Frenet frame (t,n,b) consists of the three unit vectors i =
(1,0,0), j = (0,1,0), and k = (0,0,1). Thus, the osculating plane is the xy-plane,

the normal plane is the yz-plane, and the rectifying plane is the xz-plane. It is easily

checked that

f ′× f ′′ = (6t2,−6t,2),

and the curvature at t is given by

κ(t) =
2(9t4 + 9t2+ 1)1/2

(9t4 + 4t2 + 1)3/2
.

In particular, κ(0) = 2, and the polar line is the vertical line in the yz-plane passing

through the point C =
(
0, 1

2
,0
)
, the center of curvature.

When the curve is parametrized by arc length, t = f ′(s), and we obtain the same

results as in the planar case, namely,

R =
1

‖M′′‖ =
1

‖ f ′′(s)‖ .

The radius of curvature is the inverse of the norm of the acceleration vector f ′′(s),
and the curvature κ is

κ = ‖ f ′′(s)‖.
Again, as in the planar case, the curvature is an invariant intrinsic to the geometric

curve defined by f .

We now consider how the rectifying plane varies. This will uncover the torsion.

According to Kreyszig [15], the term torsion was first used by de la Vallée in 1825.

We leave as an easy exercise to show that the osculating plane rotates around the

tangent line for points t + δ close enough to t.
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19.7 Torsion (3D Curves)

Recall that the rectifying plane is the plane orthogonal to the principal normal at t

passing through f (t). Thus, its equation is

n ·−→MP = 0,

where n is the principal normal vector. However, things get a bit messy when we

take the derivative of n, because of the denominator, and it is easier to use the vector

N =−( f ′(t) · f ′′(t)) f ′(t)+ ‖ f ′(t)‖2 f ′′(t),

which is collinear to n, but not necessarily a unit vector. Still, we have N ·M′ = 0,

which is the important fact. Since the equation of the rectifying plane is N ·−→MP = 0

or

N ·P = N ·M,

by familiar reasoning, the equation of a rectifying plane for δ 6= 0 small enough is

N(t + δ ) ·P = N(t + δ ) ·M(t + δ ),

and we can easily prove that the intersection of these two planes is given by the

equations

N ·−→MP = 0,

N′ ·−→MP = N ·M′ = 0,

since N ·M′= 0. Thus, if N and N′ are linearly independent, the intersection of these

two planes is a line in the rectifying plane, passing through the point M = f (t). We

now have to take a closer look at N′. It is easily seen that

N′ =−(‖M′′‖2 +M′ ·M′′′)M′+(M′ ·M′′)M′′+ ‖M′‖2M′′′.

Thus, N and N′ are linearly independent iff M′, M′′, and M′′′ are linearly indepen-

dent. Now, since the line in question is in the rectifying plane, every point P on this

line can be expressed as −→
MP = αb+β t,

where α and β are related by the equation

(N′ ·b)α +(N′ · t)β = 0,

obtained from N′ ·−→MP = 0. However, t = M′/‖M′‖, and it is immediate that

b =
M′×M′′

‖M′×M′′‖ .
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Recalling that the radius of curvature is given by R = ‖M′‖3/‖M′×M′′‖, it is

tempting to investigate the value of α when β = R. Then the equation

(N′ ·b)α +(N′ · t)β = 0

becomes

(N′ · (M′×M′′))α + ‖M′‖2(N′ ·M′) = 0.

Since

N′ =−(‖M′′‖2 +M′ ·M′′′)M′+(M′ ·M′′)M′′+ ‖M′‖2M′′′,

we get

N′ · (M′×M′′) = ‖M′‖2(M′,M′′,M′′′),

where (M′,M′′,M′′′) is the mixed product of the three vectors, i.e., their determi-

nant, and since N ·M′ = 0, we get N′ ·M′+N ·M′′ = 0. Thus,

N′ ·M′ =−N ·M′′ = (M′ ·M′′)2−‖M′‖2‖M′′‖2 =−‖M′×M′′‖2,

and finally, we get

‖M′‖2(M′,M′′,M′′′)α−‖M′‖2‖M′×M′′‖2 = 0,

which yields

α =
‖M′×M′′‖2

(M′,M′′,M′′′)
.

So finally, we have shown that the axis of rotation of the rectifying planes for t + δ
close to t is determined by the vector

−→
MP = αb+Rt,

or equivalently, that

(κt+ τb) ·−→MP = 0,

where κ is the curvature and τ =−1/α is called the torsion at t, and is given by

τ =− (M′,M′′,M′′′)
‖M′×M′′‖2

.

Its inverse T = 1/τ is called the radius of torsion at t. The vector −τt+κb giving

the direction of the axis or rotation of the rectifying plane is called the Darboux

vector. In summary, we have obtained the following formulae for the curvature and

the torsion of a 3D-curve:

κ =
‖ f ′(t)× f ′′(t)‖
‖ f ′(t)‖3

, τ =− ( f ′(t), f ′′(t), f ′′′(t))
‖ f ′(t)× f ′′(t)‖2

.

Example 19.14. Returning to the example of the twisted cubic
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f (t) = (t, t2, t3),

since f ′(t) = (1,2t,3t2), f ′′(t) = (0,2,6t), and f ′′′(t) = (0,0,6), we get

( f ′, f ′′, f ′′′) = 12,

and since

f ′× f ′′ = (6t2,−6t,2),

the torsion at t is given by

τ(t) =− 3

9t4 + 9t2+ 1
.

In particular, τ(0) =−3, and the rectifying plane rotates around the line through the

origin and of direction

−τt+κb = (3,2,0).

The twisted cubic, the locus of the centers of curvature, the Frenet frame, the polar

line (D), and the Darboux vector (Db) corresponding to t = 0 are shown in Figure

19.11.
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Fig. 19.11 The twisted cubic, the centers of curvature, a Frenet frame, a polar line, and a Darboux

vector.
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If g = f ◦ θ is a curve Cp-equivalent to f , where θ is a Cp-diffeomorphism, we

leave as an exercise to prove that

τ =− ( f ′(u), f ′′(u), f ′′′(u))
‖ f ′(u)× f ′′(u)‖2

=− (g′(t),g′′(t),g′′′(t))
‖g′(t)× g′′(t)‖2

,

where u = θ (t), i.e., τ has the same value for both f and g. Thus, the torsion is an

invariant intrinsic to the geometric curve defined by f .

19.8 The Frenet Equations (3D Curves)

Assuming that curves are parametrized by arc length, we are now going to see how

κ and τ reappear naturally when we determine how the Frenet frame (t,n,b) varies

with s, and more specifically, in expressing (t′,n′,b′) over the basis (t,n,b). We

claim that

t′ = κn,

n′ =−κt− τb,

b′ = τn,

where κ is the curvature, and τ turns out to be the torsion.

We have t′= κn by definition of the curvature. Since ‖b‖= b ·b = 1 and t ·b= 0,

by taking derivatives we get

b ·b′ = 0

and

t′ ·b =−t ·b′,
and thus

t ·b′ =−t′ ·b =−κn ·b = 0.

This shows that b′ is collinear to n, and thus that

b′ = τn,

for some real τ . From ‖n‖= n ·n = 1, n · t = 0, and n ·b = 0, by taking derivatives

we get

n ·n′ = 0, n′ · t =−n · t′, n′ ·b =−n ·b′.
Since t′ = κn and b′ = τn, we get

n′ · t =−n · t′ =−n ·κn =−κ

and

n′ ·b =−n ·b′ =−n · τn =−τ.
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But the components of n′ over (t,n,b) are indeed n′ · t, n′ ·n, and n′ ·b, and thus

n′ =−κt− τb.

In matrix form we can write the equations know as the Frenet (or Frenet–Serret)

equations as

(t′,n′,b′) = (t,n,b)




0 −κ 0

κ 0 τ
0 −τ 0


 .

We can now verify that τ agrees with the geometric interpretation given before.

The axis of rotation of the rectifying plane is the line given by the intersection of

the two planes of equations

n ·−→MP = 0,

n′ ·−→MP = 0,

and since

n′ =−κt− τb,

the second equation is equivalent to

(κt+ τb) ·−→MP = 0.

This is exactly the equation that we found earlier with τ =−1/α , where

α =
‖M′×M′′‖2

(M′,M′′,M′′′)
.

Remarks:

(1) Some authors, including Darboux ([6], Livre I, Chapter 1) and Élie Cartan ([5],

Chapter VII, Section 2), define the torsion as −τ , in which case

τ =
(M′,M′′,M′′′)
‖M′×M′′‖2

,

and the Frenet equations take the form

(t′,n′,b′) = (t,n,b)




0 −κ 0

κ 0 −τ
0 τ 0


 .

A possible advantage of this choice is the elimination of the negative sign in the

expression for τ above, and the fact that it may be slightly easier to remember

the Frenet matrix, since signs on descending diagonals remain the same. An-
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other possible advantage is that the Frenet matrix has a similar shape in higher

dimension (≥ 4). Books on Computer-Aided Gemetric Design seem to prefer

this choice. On the other hand, do Carmo [7] and Berger and Gostiaux [2] use

the opposite convention (as we do).

(2) It should also be noted that if we let

ω = τt+κb,

often called the Darboux vector, then (abbreviating three equations in one using

a slight abuse of notation)

(t′,n′,b′) = ω× (t,n,b),

which shows that the vectors t′,n′,b′ are the velocities of the tips of the unit

frame, and that the unit frame rotates around an instantaneous axis of rotation

passing through the origin of the frame, whose direction is the vector ω = τt+
κb.

We now summarize the above considerations in the following definition and

lemma.

Definition 19.14. Given a biregular 3D curve f : ]a,b[→ E (or f : [a,b]→ E ) of

class Cp parametrized by arc length, with p ≥ 3, given the Frenet frame (t,n,b)
at s, the curvature κ at s is the nonnegative real number such that t′ = κn, the

torsion τ at s is the real number such that b′ = τn, the radius of curvature at s is

the nonnegative real number R = 1/κ , the radius of torsion at s is the real number

T = 1/τ , the center of curvature at s is the point C on the principal normal such

that C− f (s) = Rn, and the polar axis at s is the line orthogonal to the osculating

plane passing through the center of curvature.

Again, we stress that the curvature κ and the torsion τ are intrinsic invariants of

the geometric curve defined by f .

Lemma 19.7. Given a biregular 3D curve f : ]a,b[→ E (or f : [a,b]→ E ) of class

Cp parametrized by arc length, with p ≥ 3, given the Frenet frame (t,n,b) at s, we

have the Frenet (or Frenet–Serret) equations

(t′,n′,b′) = (t,n,b)




0 −κ 0

κ 0 τ
0 −τ 0


 .

Given any parametrization for f , the curvature κ and the torsion τ are given by

the expressions

κ =
‖ f ′(t)× f ′′(t)‖
‖ f ′(t)‖3

and

τ =− ( f ′(t), f ′′(t), f ′′′(t))
‖ f ′(t)× f ′′(t)‖2

.
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Furthermore, for δ small enough, the normal plane at t + δ rotates around the

polar axis, a line othogonal to the osculating plane and passing through the center

of curvature, and the rectifying plane at t + δ rotates around the line defined by the

point of contact at t and the vector −τt+κb (the Darboux vector).

The torsion measures how the osculating plane rotates around the tangent. Let

us show that if f is a biregular curve and if τ = 0 for all t, then f is a plane curve.

We can assume that f is parametrized by arc length. Since b′ = τn, and we are

assuming that τ = 0, we have b′ = 0, which means that b is a constant vector. Since

f is biregular, b 6= 0. But now, choosing any origin O and observing that

(O f (s) ·b)′ = f ′(s) ·b+O f (s) ·b′ = t ·b+ 0 = 0,

we conclude that O f (s) ·b = λ for some constant λ . Since b 6= 0, we conclude that

f (s) is in a plane.

� One should be careful to note that the above result is false if f has points

that are not biregular, i.e., if f ′′(s) = 0 for some s. We leave as an exercise

to find an example of a regular nonplanar curve such that τ = 0.

As an example of the computation of the torsion, consider the circular helix de-

fined by

f (t) = (acost, asin t, kt).

It is easy to show that the curvature is given by

κ =
a

a2 + k2

and that the torsion is given by

τ =− k

a2 + k2
.

Thus, both the curvature and the torsion are constant!

The intrinsic nature of the curvature and the torsion is illustrated by the follow-

ing result. If c : ]a, b[→ R+ is a continuous positive C1 function, d : ]a, b[→ R
is a continuous function, and s0 ∈ ]a, b[ , then there is a unique biregular 3D curve

f : ]a, b[→ E such that f (s0) is any given point, f ′(s0) is any given vector, f ′′(s0)
is any given vector, and such that c(s) is the curvature of f , and d(s) is the torsion

of f . Roughly speaking, the curvature and the torsion determine a biregular curve

completely, up to rigid motion.

� The hypothesis that c(s) > 0 for all s is crucial, and the above result is

false if this condition is not satisfied everywhere.
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19.9 Osculating Spheres (3D Curves)

We conclude our discussion of curves in 3-space by discussing briefly the notion of

osculating sphere. According to Kreyszig [15], osculating spheres were first consid-

ered by Fuss in 1806.

Definition 19.15. For any 3D curve f : ]a,b[→ E (or f : [a,b]→ E ) of class Cp,

with p ≥ 3, and given any point M0 = f (t) on the curve, if the polar axis at t exists,

f is locally injective at M0, and the sphere Σt,h centered on the polar axis and passing

through the points M0 and M1 = f (t + h) has a limit Σt as h 6= 0 approaches 0, we

say that Σt is the osculating sphere to f in M0 = f (t) at t. More precisely, if the polar

axis at t exists and if there is an open interval ]t−η , t+η [⊆ ]a,b[ (with η > 0) such

that the point M1 = f (t +h) is distinct from M0 for every h 6= 0 with h ∈ ]−η ,+η [
and the sphere Σt,h centered on the polar axis and passing through the points M0 and

M1 has a limit Σt as h 6= 0 approaches 0 (with h ∈ ]−η ,+η [ ), we say that Σt is the

osculating sphere to f in M0 = f (t) at t.

Again, the definition is simpler when f is a simple curve. The following lemma

gives a simple condition for the existence of the osculating sphere at a point.

Lemma 19.8. For any 3D curve f : ]a,b[→ E (or f : [a,b] → E ) of class Cp

parametrized by arc length, with p ≥ 3, given any point M0 = f (s) on the curve,

if M0 is a biregular point at s and if R ′ is defined, then the osculating sphere to f in

M0 at s exists and has its center Ω on the polar axis ∆ , such that Ω−C =−T R ′b,

where T is the radius of torsion, R is the radius of curvature, C is the center of

curvature, and b is the binormal, at s.

According to Kreyszig [15], the formula

Ω −M = Rn−T R
′b

is due to de Saint Venant (1845). When s varies, the polar axis generates a surface,

and the center Ω of the osculating sphere generates a curve on this surface. In gen-

eral, this surface consists of the tangents to this curve (called line of striction or edge

of regression of the ruled surface).

Figure 19.12 illustrates the Frenet frame, the polar axis, the center of curvature,

and the osculating sphere. It also shows the osculating plane, the normal plane, and

the rectifying plane.

The twisted cubic and the locus of the centers of osculating spheres are shown

in Figure 19.13. The tangent surface, that is, the surface consisting of the tangent

lines to the twisted cubic; the curve of centers of osculating spheres; and two great

circles of osculating spheres corresponding to t = 1
5
, are shown in Figure 19.14. The

tangent surface is the envelope of the osculating planes. The surface generated by

the polar lines is shown in Figure 19.15. This surface is the envelope of the normal

planes to the twisted cubic. The curve of the centers of osculating spheres is a line

of striction (or edge of regression) on this surface.

Finally, we discuss the case of curves in Euclidean spaces of dimension n≥ 4.



564 19 Basics of the Differential Geometry of Curves

bc

bc

M0

C

Ω

∆

b

tn

Fig. 19.12 The Frenet frame, polar axis, center of curvature, and osculating sphere.

19.10 The Frenet Frame for nD Curves (n≥ 4)

Given a curve f : ]a,b[→ En (or f : [a,b]→ En) of class Cp, with p ≥ n, it is in-

teresting to consider families (e1(t), . . . ,en(t)) of orthonormal frames. Moreover, if

for every k, with 1 ≤ k ≤ n, the kth derivative f (k)(t) of the curve f (t) is a linear

combination of (e1(t), . . . ,ek(t)) for every t ∈ ]a,b[ , then such a frame plays the role

of a generalized Frenet frame. This leads to the following definition:

Definition 19.16. Let f : ]a,b[→En (or f : [a,b]→ En) be a curve of class Cp, with

p≥ n. A family (e1(t), . . . ,en(t)) of orthonormal frames, where each ei : ]a,b[→En

is Cn−i-continuous for i = 1, . . . ,n− 1 and en is C1-continuous, is called a moving

frame along f . Furthermore, a moving frame (e1(t), . . . ,en(t)) along f such that for

every k, with 1≤ k ≤ n, the kth derivative f (k)(t) of f (t) is a linear combination of

(e1(t), . . . ,ek(t)) for every t ∈ ]a,b[ , is called a Frenet n-frame or Frenet frame.

If (e1(t), . . . ,en(t)) is a moving frame, then

ei(t) · e j(t) = δi j for all i, j, 1≤ i, j ≤ n.
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Fig. 19.13 The twisted cubic and the curve of centers of osculating spheres.

Lemma 19.9. Let f : ]a,b[→ En (or f : [a,b]→ En) be a curve of class Cp, with

p≥ n, such that the derivatives f (1)(t), . . . , f (n−1)(t) of f (t) are linearly independent

for all t ∈ ]a,b[ . Then there is a unique Frenet n-frame (e1(t), . . . ,en(t)) satisfying

the following conditions:

(1) The k-frames ( f (1)(t), . . . , f (k)(t)) and (e1(t), . . . ,ek(t)) have the same orienta-

tion for all k, with 1≤ k ≤ n− 1.

(2) The frame (e1(t), . . . ,en(t)) has positive orientation.

Proof. Since ( f (1)(t), . . . , f (n−1)(t)) is linearly independent, we can use the Gram–

Schmidt orthonormalization procedure (see Lemma 6.7) to construct (e1(t), . . .,
en−1(t)) from ( f (1)(t), . . . , f (n−1)(t)). We use the generalized cross product to define

en, where

en = e1×·· ·× en−1.

From the Gram–Schmidt procedure, it is easy to check that ek(t) is Cn−k for 1 ≤
k ≤ n− 1, and since the components of en are certain determinants involving the

components of (e1, . . . ,en−1), it is also clear that en is C1. ⊓⊔

The Frenet n-frame given by Lemma 19.9 is called the distinguished Frenet n-

frame. We can now prove a generalization of the Frenet–Serret formula that gives an

expression of the derivatives of a moving frame in terms of the moving frame itself.
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Fig. 19.14 The tangent surface and the centers of osculating spheres.

Lemma 19.10. Let f : ]a,b[→ En (or f : [a,b]→ En) be a curve of class Cp, with

p≥ n, such that the derivatives f (1)(t), . . . , f (n−1)(t) of f (t) are linearly independent

for all t ∈ ]a,b[ . Then for any moving frame (e1(t), . . . ,en(t)), if we write ωi j(t) =
e′i(t) · e j(t), we have

e′i(t) =
n

∑
j=1

ωi j(t)e j(t),

with

ω ji(t) =−ωi j(t),

and there are some functions αi(t) such that

f ′(t) =
n

∑
i=1

αi(t)ei(t).

Furthermore, if (e1(t), . . . ,en(t)) is the distinguished Frenet n-frame associated with

f , then we also have

α1(t) = ‖ f ′(t)‖, αi(t) = 0 for i≥ 2,

and
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Fig. 19.15 The polar surface and the twisted cubic.

ωi j(t) = 0 for j > i+ 1.

Proof. Since (e1(t), . . . ,en(t)) is a moving frame, it is an orthonormal basis, and

thus f ′(t) and e′i(t) are linear combinations of (e1(t), . . . ,en(t)). Also, we know that

e′i(t) =
n

∑
j=1

(e′i(t) · e j(t))e j(t),

and since ei(t) · e j(t) = δi j, by differentiating, if we write ωi j(t) = e′i(t) · e j(t), we

get

ω ji(t) =−ωi j(t).

Now if (e1(t), . . . ,en(t)) is the distinguished Frenet frame, by construction, ei(t) is

a linear combination of f (1)(t), . . . , f (i)(t), and so e′i(t) is a linear combination of

f (2)(t), . . . , f (i+1)(t), hence of (e1(t), . . . ,ei+1(t)). ⊓⊔

In matrix form, when (e1(t), . . . ,en(t)) is the distinguished Frenet frame, the row

vector (e′1(t), . . . ,e
′
n(t)) can be expressed in terms of the row vector (e1(t), . . . ,en(t))

via a skew-symmetric matrix ω , as shown below:

(e′1(t), . . . ,e
′
n(t)) =−(e1(t), . . . ,en(t))ω(t),
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where

ω =




0 ω12

−ω12 0 ω23

−ω23 0
. . .

. . .
. . . ωn−1n

−ωn−1n 0



.

The next lemma shows the effect of a reparametrization and of a rigid motion.

Lemma 19.11. Let f : ]a,b[→ En (or f : [a,b]→ En) be a curve of class Cp, with

p≥ n, such that the derivatives f (1)(t), . . . , f (n−1)(t) of f (t) are linearly independent

for all t ∈ ]a,b[ . Let h : En→ En be a rigid motion, and assume that the correspond-

ing linear isometry is R. Let f̃ = h ◦ f . The following properties hold:

(1) For any moving frame (e1(t), . . . ,en(t)), the n-tuple (ẽ1(t), . . . , ẽn(t)), where

ẽi(t) = R(ei(t)), is a moving frame along f̃ , and we have

ω̃i j(t) = ωi j(t) and ‖ f̃ ′(t)‖= ‖ f ′(t)‖.

(2) For any orientation-preserving diffeormorphism ρ : ]c,d[→ ]a,b[ (i.e., ρ ′(t)> 0

for all t ∈ ]c,d[ ), if we write f̃ = f ◦ ρ , then for any moving frame (e1(t), . . .,
en(t)) on f , the n-tuple (ẽ1(t), . . . , ẽn(t)), where ẽi(t) = ei(ρ(t)), is a moving

frame on f̃ . Furthermore, if ‖ f̃ ′(t)‖ 6= 0, then

ω̃i j(t)

‖ f̃ ′(t)‖
=

ωi j(ρ(t))

‖ f ′(ρ(t))‖ .

The proof is straightforward and is omitted.

The above lemma suggests the definition of the curvatures κ1, . . . ,κn−1.

Definition 19.17. Let f : ]a,b[→En (or f : [a,b]→ En) be a curve of class Cp, with

p≥ n, such that the derivatives f (1)(t), . . . , f (n−1)(t) of f (t) are linearly independent

for all t ∈ ]a,b[ . If (e1(t), . . . ,en(t)) is the distinguished Frenet frame associated with

f , we define the ith curvature κi of f by

κi(t) =
ωi i+1(t)

‖ f ′(t)‖ ,

with 1≤ i≤ n− 1.

Observe that the matrix ω(t) can be written as

ω(t) = ‖ f ′(t)‖κ(t),

where
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κ =




0 κ12

−κ12 0 κ23

−κ23 0
. . .

. . .
. . . κn−1n

−κn−1n 0



.

The matrix κ is sometimes called the Cartan matrix.

Lemma 19.12. Let f : ]a,b[→ En (or f : [a,b]→ En) be a curve of class Cp, with

p≥ n, such that the derivatives f (1)(t), . . . , f (n−1)(t) of f (t) are linearly independent

for all t ∈ ]a,b[ . Then for every i, with 1≤ i≤ n− 2, we have κi(t)> 0.

Proof. Lemma 19.9 shows that e1, . . . ,en−1 are expressed in terms of f (1), . . ., f (n−1)

by a triangular matrix (ai j) whose diagonal entries ai i are strictly positive, i.e., we

have

ei =
i

∑
j=1

ai j f ( j),

for i = 1, . . . ,n− 1, and thus

f (i) =
i

∑
j=1

bi je j,

for i = 1, . . . ,n− 1, with bi i = a−1
i i > 0. Then, since ei+1 · f ( j) = 0 for j ≤ i, we get

‖ f ′‖κi = ωi i+1 = e′i · ei+1 = ai i f (i+1) · ei+1 = ai ibi+1 i+1,

and since ai ibi+1 i+1 > 0, we get κi > 0 (i = 1, . . . ,n− 2). ⊓⊔

Our previous reasoning in the 3D case is immediately extended to show that the

limit of the intersection of the normal hyperplane at t+δ with the normal hyperplane

at t (for δ small) with the osculating plane is a point C such that C− f (t) = (1/κ1)e1.

Thus, we obtain a geometric interpretation for the curvature κ1, and it is also possi-

ble to obtain an interpretation for the other κi.

We conclude by exploring to what extent the curvatures κ1, . . ., κn−1 determine

a curve satisfying the nondegeneracy conditions of Lemma 19.9. Basically, such

curves are defined up to a rigid motion.

Lemma 19.13. Let f : ]a,b[→ En and f̃ : ]a,b[→ En (or f : [a,b] → En and

f̃ : [a,b]→ En) be two curves of class Cp, with p ≥ n, and satisfying the nondegen-

eracy conditions of Lemma 19.9. Denote the distinguished Frenet frames associated

with f and f̃ by (e1(t), . . . ,en(t)) and (ẽ1(t), . . . , ẽn(t)). If κi(t) = κ̃i(t) for every i,

with 1 ≤ i ≤ n− 1, and ‖ f ′(t)‖ = ‖ f̃ ′(t)‖ for all t ∈ ]a,b[ , then there is a unique

rigid motion h such that

f̃ = h ◦ f .

Proof. Fix t0 ∈ ]a,b[ . First of all, there is a unique rigid motion h such that
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h( f (t0)) = f̃ (t0) and R(ei(t0)) = ẽi(t0),

for all i, with 1 ≤ i≤ n, where R is the linear isometry associated with h (in fact, a

rotation). Consider the curve f = h ◦ f . The hypotheses of the lemma and Lemma

19.11 imply that

ωi j(t) = ω̃i j(t) = ωi j(t), ‖ f
′
(t)‖= ‖ f̃ ′(t)‖= ‖ f ′(t)‖,

and, by construction, (e1(t0), . . . ,en(t0)) = (ẽ1(t0), . . . , ẽn(t0)) and f (t0) = f̃ (t0). Let

δ (t) =
n

∑
i=1

(ei(t)− ẽi(t)) · (ei(t)− ẽi(t)).

Then we have

δ ′(t) = 2
n

∑
i=1

(ei(t)− ẽi(t)) · (ei
′(t)− ẽi

′(t))

=−2
n

∑
i=1

(ei(t) · ẽi
′(t)+ ẽi(t) · ei

′(t)).

Using the Frenet equations, we get

δ ′(t) =−2
n

∑
i=1

n

∑
j=1

ωi jei · ẽ j− 2
n

∑
i=1

n

∑
j=1

ωi je j · ẽi

=−2
n

∑
i=1

n

∑
j=1

ωi jei · ẽ j− 2
n

∑
j=1

n

∑
i=1

ω jiei · ẽ j

=−2
n

∑
i=1

n

∑
j=1

ωi jei · ẽ j + 2
n

∑
j=1

n

∑
i=1

ωi jei · ẽ j

= 0,

since ω is skew-symmetric. Thus, δ (t) is constant, and since the Frenet frames at t0

agree, we get δ (t) = 0. Then ei(t) = ẽi(t) for all i, and since ‖ f
′
(t)‖ = ‖ f̃ ′(t)‖, we

have

f
′
(t) = ‖ f

′
(t)‖e1(t) = ‖ f̃ ′(t)‖ẽ1(t) = f̃ ′(t),

so that f (t)− f̃ (t) is constant. However, f (t0) = f̃ (t0), and so f (t) = f̃ (t) and f̃ =
f = h ◦ f . ⊓⊔

Finally, the lemma below settles the issue of the existence of a curve with pre-

scribed curvature functions.

Lemma 19.14. Let κ1, . . . ,κn−1 be functions defined on some open ]a,b[ containing

0 with κi Cn−i−1-continuous for i = 1, . . . ,n−1, and with κi(t)> 0 for i = 1, . . . ,n−
2 and all t ∈ ]a,b[ . Then there is curve f : ]a,b[→ En of class Cp, with p ≥ n,
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satisfying the nondegeneracy conditions of Lemma 19.9 such that ‖ f ′(t)‖ = 1 and

f has the n− 1 curvatures κ1(t), . . . ,κn−1(t).

Proof. Let X(t) be the matrix whose columns consist of the vectors e1(t), . . ., en(t)
of the Frenet frame along f . Consider the system of ODEs,

X ′(t) =−X(t)κ(t),

with initial conditions X(0) = I, where κ(t) is the skew-symmetric matrix of curva-

tures. By a standard result in ODEs, there is a unique solution X(t).
We claim that X(t) is an orthogonal matrix. For this, note that

(XX⊤)′ = X ′X⊤+X(X⊤)′ =−XκX⊤−Xκ⊤X⊤

= −XκX⊤+XκX⊤ = 0.

Since X(0) = I, we get XX⊤ = I. If F(t) is the first column of X(t), we define the

curve f by

f (s) =

∫ s

0
F(t)dt,

with s ∈ ]a,b[ . It is easily checked that f is a curve parametrized by arc length, with

Frenet frame X(s), and with curvatures κis. ⊓⊔

19.11 Applications

Many engineering problems can be reduced to finding curves having some desired

properties. This is certainly true of mechanical engineering and robotics, where var-

ious trajectories must be computed, and of computer graphics and medical imaging,

where contours of shapes, for instance organs, are modeled as curves. In most prac-

tical applications it is necessary to consider curves composed of various segments.

The problem then arises to join these segments as smoothly as possible, without

restricting too much the number of degrees of freedom required for the design. Var-

ious kinds of splines were invented to solve this problem. If the curve segments are

defined parametrically in terms of polynomials, a simple way to achieve continuity

is to enforce the agreement of enough derivatives at junction points. This leads to

parametric Cn-continuity and to B-splines. The theory of B-splines is quite exten-

sive. Among the many references, we recommend Farin [10, 9], Hoschek and Lasser

[14], Bartels, Beatty, and Barsky [1], Fiorot and Jeannin [11, 12], Piegl and Tiller

[17], or Gallier [13].

Because parametric continuity is easy to formulate, piecewise curves based on

parametric continuity are popular. Additionally, there are occasions in which para-

metric continuity is required. For example, if a spline is used to represent the trajec-

tory of an object, parametric continuity guarantees that the object moves smoothly

at the junction between two curve segments. However, there are applications for

which parametric continuity is too constraining, since it depends on details of the
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parametrization that are not relevant to the shape of the curve. For example, if a

curve is used to represent the boundary of an object, then only the outline of the

curve is important. Thus, more flexible continuity conditions (usually called geo-

metric continuity) based only on the geometry of the curve have been investigated.

For plane curves, one may consider tangent continuity, or curvature continuity. For

space curves, one may consider tangent continuity, curvature continuity, or torsion

continuity. One may also want to consider higher-order continuity of the curvature

κ and of the torsion τ , which means considering the continuity of higher deriva-

tives of κ and τ . Another notion is geometric continuity, or Gn-continuity. Roughly

speaking, two curves join with Gn-continuity if there is a reparametrization (a dif-

feomorphism) after which the curves join with parametric Cn-continuity. As a con-

sequence, geometric continuity may be defined using the chain rule, in terms of

a certain connection matrix. Yet another notion is Frenet frame continuity. Again,

there is a vast literature on these topics, and we refer the readers to Farin [10, 9],

Hoschek and Lasser [14], Bartels, Beatty, and Barsky [1], and Piegl and Tiller [17].

Complex shapes are usually represented in a piecewise fashion, composed of

primitive elements smoothly joined. Traditional methods focus on achieving a spe-

cific level of interelement continuity, but the resulting shapes often possess bulges

and undulations, and thus are of poor quality. They lack fairness. Fairness refers to

the quality of regularity of the curvature (and torsion, for a space curve) of a curve.

For a curve to be fair, it is required that the curvature vary gradually and oscillate as

little as possible. Furthermore, the maximum rate of change of curvature should be

minimized. This suggests several approaches.

• Minimal energy curve (which bends as little as possible): Minimize

∫

C
κ2ds

where κ is the curvature.

• Minimal variation curve (which bends as smoothly as possible): Minimize

∫

C

(
d(κn)

ds

)2

ds

where κ is the curvature and n is the principal normal.

Another possibility is to minimize

∫

C

[(
dκ

ds

)2

+

(
dτ

ds

)2
]

ds

where κ is the curvature and τ is the torsion.

These problems may be cast as constrained optimization problems. Interelement

continuity is solved by incorporating a penalty function. Interested readers are re-

ferred to the Ph.D. dissertations of Moreton [16] and Welch [18] for more details.
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It should also be mentioned that it is possible to define a notion of affine normal

and a notion of affine curvature without appealing to the concept of an inner prod-

uct. For some interesting applications, see Calabi, Olver, and Tannenbaum [4] and

Calabi, Olver, Shakiban, Tannenbaum, and Haker [3].

19.12 Problems

19.1. Plot the curve f defined by

f (t) =




(−e1/t , e1/t sin(e−1/t)) if t < 0;

(0, 0) if t = 0;

(e−1/t , e−1/t sin(e1/t)) if t > 0.

Verify that f ′(0) = 0 and that the curve oscillates around the origin.

19.2. Plot the curve f defined by

f (t) =

{
(t, t2 sin(1/t)) if t 6= 0;

(0,0) if t = 0.

Show that f ′(0) = (1,0) and that f ′(t) = (1, 2t sin(1/t)−cos(1/t)) for t 6= 0. Verify

that f ′ is discontinuous at 0.

19.3. Let f : ]a,b[→ E be and open curve of class C∞. For some t ∈ ]a,b[ , assume

that f ′(t) = 0, but also that there exist some integers p,q with 1 ≤ p < q such that

f (p)(t) is the first derivative not equal to 0 and f (q)(t) is the first derivative not equal

to 0 and not collinear to f (p)(t). Show that by Taylor’s formula, for h > 0 small

enough, we have

f (t + h)− f (t) =

(
hp

p!
+λp+1

hp+1

(p+ 1)!
+ · · ·+λq−1

hq−1

(q− 1)!

)
f (p)(t)

+
hq

q!
f (q)(t)+

hq

q!
ε(h),

where limh→0,h 6=0 ε(h) = 0.

As a consequence, the curve is tangent to the line of direction f (p)(t) passing

through f (t). Show that the curve has the following appearance locally at t:

1. p is odd. The curve traverses every secant through f (t).
1a. q is even. Locally, the curve is entirely on the same side of its tangent at f (t).

This looks like an ordinary point.

1b. q is odd. Locally, the curve has an inflection point at f (t), i.e., the two arcs of

the curve meeting at f (t) are on different sides of the tangent.

2. p is even. The curve does not traverse any secant through f (t). It has a cusp.
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2a. q is even. In this case, the two arcs of the curve meeting at f (t) are on the same

side of the tangent. We say that we have a cusp of the second kind.

2b. q is odd. In this case, the two arcs of the curve meeting at f (t) are on different

sides of the tangent. We say that we have a cusp of the first kind.

Draw examples for (p = 1,q= 2), (p = 1,q= 3), (p = 2,q= 3), and (p = 2,q=
4).

19.4. Draw the curve defined such that

x(t) =
2t2

1+ t2
,

y(t) =
2t3

1+ t2
.

Show that the point (0,0) is a cusp and that the line of equation x = 2 is an asymp-

tote. This curve is called the cissoid of Diocles.

19.5. (a) Draw the curve defined such that

x(t) = sin t,

y(t) = cost + logtan
t

2
.

Show that the point (1,0) is a cusp and that the line of equation x = 0 is an asymp-

tote.

(b) Show that the length of the segment of the tangent of the curve between the

point of contact and the y-axis is of constant length 1. For this reason, this curve is

called a tractrix.

19.6. (a) Given a tractrix specified by

x(t) = asin t,

y(t) = acost + a logtan
t

2
,

show that the curvature is given by κ = | tan t|.
(b) Show that the center of curvature is on the curve

x(t) =
a

sin t
,

y(t) = a logtan
t

2
.

Show that this curve has the implicit equation

x = acosh

(
y

a

)
.

Draw this curve, called a catenary.
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Note. Recall that the hyperbolic functions cosh and sinh are defined by

coshu =
eu + e−u

2
and sinhu =

eu− e−u

2
.

19.7. (a) Draw the curve f defined such that

x(t) = ae−bt cost,

y(t) = ae−bt sin t,

where a,b > 0.

Show that the curve approaches the origin (0,0) as t →+∞, spiraling around it.

This curve is called a logarithmic spiral.

(b) Show that f ′(t)→ (0,0) as t→+∞, and that

lim
t→+∞

∫ t

t0

√
x′(u)2 + y′(u)2 du

is finite. Conclude that f has finite arc length in [t0,∞[.

19.8. (A square-filling curve due to Hilbert) This version of the Hilbert curve is

defined in terms of four maps f1, f2, f3, f4 defined by

x′ =
1

2
x− 1

2
, y′ =

1

2
y+ 1,

x′ =
1

2
x+

1

2
, y′ =

1

2
y+ 1,

x′ =−1

2
y+ 1, y′ =

1

2
x+

1

2
,

x′ =
1

2
y− 1, y′ =−1

2
x+

1

2
.

(a) Prove that these maps are affine. Can you describe geometrically what their

action is (rotation, translation, scaling?)

(b) Given any polygonal line L, define the following sequence of poygonal lines:

S0 = L,

Sn+1 = f1(Sn)∪ f2(Sn)∪ f3(Sn)∪ f4(Sn).

Construct S1 starting from the polygonal line L=((−1,0),(0,1)), ((0,1), (1,0)).
Can you figure out what Sn looks like in general? (you may want to write a

computer program, and iterate at least 6 times).

(c) Prove that Sn has a limit that is a continuous curve not C1 anywhere and that

is space–filling, in the sense that its image is the entire unit square.

19.9. Consider the curve f over [0,1] defined such that
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f (t) =

{
(t, t sin(π/t) if t 6= 0,

(0,0) if t = 0.

Show geometrically that the arc length of the portion of curve corresponding to

the interval [1/(n+ 1), 1/n] is at least 1/
(
n+ 1

2

)
. Use this to show that the length

of the curve in the interval [1/N, 1] is greater than 2∑N
n=1 1/(n+ 1). Conclude that

this curve is not rectifiable.

19.10. Consider a polynomial curve of degree m defined by the control points

(b0, . . . ,bm) over [0,1]. Prove that the curvature at b0 is

κ(0) =
m− 1

m

‖−−→b0b1×
−−→
b1b2‖

‖−−→b0b1‖3
,

and that the curvature at bm is given by

κ(1) =
m− 1

m

‖−−−−→bm−1bm×
−−−−−−→
bm−2bm−1‖

‖−−−−→bm−1bm‖3
.

Show that the torsion at b0 is given by

τ(0) =−m− 2

m

(
−−→
b0b1,

−−→
b0b2,

−−→
b0b3)

‖−−→b0b1×
−−→
b1b2‖2

.

If a = ‖−−→b0b1‖ and h is the distance from b2 to the line (b0,b1), show that

κ(0) =
m− 1

m

h

a2
.

If c is the distance from b3 to the plane spanned by (b0,b1,b2) (the osculating plane),

show that

|τ(0)|= m− 2

m

c

ah
.

19.11. Consider the curve defined such that

f (t) =

{
(t, t2 + t3 sin(1/t)) if t 6= 0;

(0,0) if t = 0.

Show that the osculating circle for t = 0 is the circle of center
(
0, 1

2

)
and that f ′′(0)

is undefined, so that the center of curvature is undefined at t = 0.

19.12. Show that the solution of the system

u′x+ v′y = uu′+ vv′,

u′′x+ v′′y = uu′′+ vv′′+ u′2 + v′2,

is given by
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x = u− v′(u′2 + v′2)
u′v′′− v′u′′

,

y = v+
u′(u′2 + v′2)
u′v′′− v′u′′

,

provided that u′v′′− v′u′′ 6= 0. Show that the radius of curvature is given by

R =
(u′2 + v′2)3/2

|u′v′′− v′u′′| .

19.13. (a) Given an ellipse

x = a cosθ ,

y = b sinθ ,

show that the radius of curvature is given by

R =
(a2 sin2 θ + b2 cos2 θ )3/2

ab
,

and that the center of curvature is on the curve defined by

x =
c2

a
cos3 θ ,

y =−c2

b
sin3 θ .

This curve is called an astroid.

(b) Letting N =
(

c2

a
cosθ ,0

)
be the intersection of the normal to the point M on

the ellipse with Ox, and d = ‖MN‖ be the distance between M and N, show that the

radius of curvature is given by

R =
a2

b4
d3.

19.14. Given a parabola of equation y2 = 2px, compute the radius of curvature and

show that the center of curvature is on the curve of equation

y2 =
8

27p
(x− p)3.

Show that this is a cuspidal cubic with a cusp at (p,0).

19.15. Given a hyperbola

x = a coshθ ,

y = b sinhθ ,
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compute the radius of curvature and show that the center of curvature is on the curve

defined by

x =
c2

a
cosh3 θ ,

y =−c2

b
sinh3 θ .

Note. The function cosh and sinh are defined in Problem 19.6.

19.16. Given a logarithmic spiral specified by

x = aemθ cosθ ,

y = aemθ sinθ ,

where a > 0, show that the radius of curvature is

R = a
√

1+m2 emθ ,

and that the center of curvature is on the spiral defined by

x =−maemθ sinθ ,

y = maemθ cosθ .

Show that this is the original spiral

19.17. Given a cardioid

x = a(1+ cosθ )cosθ ,

y = a(1+ cosθ )sinθ ,

show that the radius of curvature is

R =

∣∣∣∣
2a

3
cos(θ/2)

∣∣∣∣,

and that the center of curvature is on the cardioid defined by

x =
2a

3
+

a

3
(1− cosθ )cosθ ,

y =
a

3
(1− cosθ )sin θ .

19.18. A plane curve is defined in polar coordinates if

x = ρ(θ )cosθ ,

y = ρ(θ )sinθ ,
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for some function ρ of the polar angle θ .

(a) Prove that the element of arc length is given by

ds =
√

ρ2 +(ρ ′)2 dθ .

(b) Prove that the curvature is given by

κ =
2(ρ ′)2−ρρ ′′+ρ2

[(ρ ′)2 +ρ2]3/2
.

19.19. Give an example of a regular nonplanar curve such that τ = 0.

19.20. A circular helix is defined by

f (t) = (acost, asin t, kt).

Show that the curvature is given by

κ =
a

a2 + k2

and that the torsion is given by

τ =− k

a2 + k2
.

19.21. If C is a regular plane curve parametrized by arc length, let C′(s) = t be the

tangent vector at s, and write

t = cosϕ i+ sinϕj,

where (i, j) is an orthonormal basis.

(a) Show that the algebraic curvature k(s) is given by

k =
dϕ

ds
.

(b) Letting

C(s) = x(s)i+ y(s)j,

we have dx = cosϕ ds and dy = sinϕ ds. If k(s) = f (s) for some C0-function f ,

show that

ϕ =

∫
f (s)ds+ϕ0

and thus that

x =

∫
cosϕ(s)ds+ a,

y =

∫
sinϕ(s)ds+ b,
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for some constants ϕ0,a,b.

Remark: Integrals of the above form are known as Fresnel integrals, and were first

encountered by Fresnel (1788–1827) in the context of refraction problems.

(c) Study the curves defined such that k = cs+ d, for some constants c,d (such

curves are called clothoids, or Cornu spirals).

19.22. Write a computer program that takes as input the parametric equation (not

necessarily arc length parametrized) of a curve. Your program will generate a graph

of the curve and animate the Frenet frame, osculating circle, and osculating sphere,

along the curve. Try your program on a C2-continuous B-spline to observe disconti-

nuities of the osculating sphere.

19.23. Given a circle C and a point O on C, consider the set of all lines ∆ such that

if p 6= O is any point on C, the line ∆ is the line passing through p and forming an

angle with the normal Np at p equal to the angle of Np with pO (in other words, ∆ is

obtained by reflecting pO about the normal Np at p). When p = O, the line ∆ is the

diameter through O. Prove that the lines ∆ are tangent to a cardioid (see Problem

19.17).

Remark: The above problem can be viewed as a problem of optics. If a light source

is placed at O, the reflections of the light rays emanating from O will have a cardioid

as envelope. Such curves are also called caustics.

19.24. Using a recursion scheme in which [0,1] is initially subdivided into four

equal intervals and the square [0,1]× [0,1] is initially subdivided into four equal

subsquares, give an analytic definition for the functions hn : [0,1]→ [0,1]× [0,1]
involved in defining the Hilbert curve (see Figure 19.1). Prove that the sequence hn

converges to a continuous function h. Prove that the hn can be chosen to be injective

but that h cannot be injective.

19.25. Two biregular curves f and g in E3 are called Bertrand curves if they have a

common principal normal at any of their points.

(a) If f is a plane biregular curve, then prove that any involute of the locus of

centers of curvatures of f is a Bertrand curve of f . Any two Bertrand curves are

parallel, in the sense that the distance measured along the common principal normal,

between corresponding points of the two Bertrand curves, is constant.

(b) If f ∗ and f are Bertrand curves, then f ∗ has an equation of the form

f ∗(t) = f (t)+ a(t)n,

where n is the principal normal to f at t. We will prove shortly that a(t) must be a

constant.

Assuming that f and f ∗ are Bertrand curves, using the fact that

f ∗(t) = f (t)+ a(t)n,



19.12 Problems 581

observe that

a2(t) = ( f ∗− f ) · ( f ∗− f ),

and prove that

d

dt
(a2) = 2( f ∗− f ) ·

(
d

dt
( f ∗)− d

dt
( f )

)
= 0.

Conlude that a(t) is constant.

Let t and t∗ be the unit tangent vectors to f and f ∗, respectively. Using the fact

that
d

dt
(t∗ · t) = dt∗

dt
· t+ t∗ · dt

dt
,

prove that
d

dt
(t∗ · t) = 0.

Let

t∗ · t = cosα,

a constant. Observe that α is the constant angle between the tangents at correspond-

ing points of the Bertrand curves.

Now, assuming that f and f ∗ are both parametrized by arc lengths, s and s∗,
respectively, we have

f ∗(s) = f (s)+ a(s)n.

Prove that

cosα =
ds

ds∗
(1− aκ).

Also prove that

‖t∗× t‖=
∥∥∥∥

ds

ds∗
aτn

∥∥∥∥ .

Conclude that

aτ
ds

ds∗
= sinα,

where the sign of α is suitably chosen. From

ds

ds∗
(1− aκ) = cosα and aτ

ds

ds∗
= sinα,

prove that
1− aκ

aτ
= cotα,

and thus, letting c1 = a, c2 = acotα , that the linear equation

c1κ + c2τ = 1

holds between κ and τ .
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(c) Conversely, assume that that the linear equation

c1κ + c2τ = 1

holds between κ and τ . We shall prove that f has the Bertrand curve

f ∗(s) = f (s)+ c1n.

Prove that
d f ∗

ds
= (1− c1κ)t+ c1τb.

In view of the equation

c1κ + c2τ = 1,

letting c = c2/c1, prove that

d f ∗

ds
= c1τ(ct+b).

Conclude that the unit tangent vector to C∗ is

t∗ =
ct+b√
1+ c2

,

that
dt∗

ds
=

1√
1+ c2

(cκ− τ)n,

and that C and C∗ are Bertrand curves.

Thus, we have proved that a curve C has a Bertrand curve iff a linear equation

c1κ + c2τ = 1

holds between κ and τ (Bertrand, 1850).

Extra Credit: Prove that a circular helix is the only nonplanar biregular curve hav-

ing more than one Bertrand curve.

References

1. Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An Introduction to Splines for Use

in Computer Graphics and Geometric Modelling. Morgan Kaufmann, first edition, 1987.
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Chapter 20

Basics of the Differential Geometry of Surfaces

20.1 Introduction

The purpose of this chapter is to introduce the reader to some elementary concepts

of the differential geometry of surfaces. Our goal is rather modest: We simply want

to introduce the concepts needed to understand the notion of Gaussian curvature,

mean curvature, principal curvatures, and geodesic lines. Almost all of the material

presented in this chapter is based on lectures given by Eugenio Calabi in an upper

undergraduate differential geometry course offered in the fall of 1994. Most of the

topics covered in this course have been included, except a presentation of the global

Gauss–Bonnet–Hopf theorem, some material on special coordinate systems, and

Hilbert’s theorem on surfaces of constant negative curvature.

What is a surface? A precise answer cannot really be given without introducing

the concept of a manifold. An informal answer is to say that a surface is a set of

points in R3 such that for every point p on the surface there is a small (perhaps very

small) neighborhood U of p that is continuously deformable into a little flat open

disk. Thus, a surface should really have some topology. Also, locally, unless the

point p is “singular,” the surface looks like a plane.

Properties of surfaces can be classified into local properties and global prop-

erties. In the older literature, the study of local properties was called geometry in

the small, and the study of global properties was called geometry in the large. Lo-

cal properties are the properties that hold in a small neighborhood of a point on a

surface. Curvature is a local property. Local properties can be studied more conve-

niently by assuming that the surface is parametrized locally. Thus, it is important

and useful to study parametrized patches. In order to study the global properties of

a surface, such as the number of its holes or boundaries, global topological tools

are needed. For example, closed surfaces cannot really be studied rigorously using a

single parametrized patch, as in the study of local properties. It is necessary to cover

a closed surface with various patches, and these patches need to overlap in some

clean fashion, which leads to the notion of a manifold.

585
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Another more subtle distinction should be made between intrinsic and extrin-

sic properties of a surface. Roughly speaking, intrinsic properties are properties of

a surface that do not depend on the way the surface is immersed in the ambient

space, whereas extrinsic properties depend on properties of the ambient space. For

example, we will see that the Gaussian curvature is an intrinsic concept, whereas the

normal to a surface at a point is an extrinsic concept. The distinction between these

two notions is clearer in the framework of Riemannian manifolds, since manifolds

provide a way of defining an abstract space not immersed in some a priori given

ambient space, but readers should have some awareness of the difference between

intrinsic and extrinsic properties.

In this chapter we focus exclusively on the study of local properties, both intrinsic

and extrinsic, and manifolds are completely left out. Readers eager to learn more

differential geometry and about manifolds are refereed to do Carmo [12], Berger

and Gostiaux [4], Lafontaine [29], and Gray [23]. A more complete list of references

can be found in Section 20.11.

By studying the properties of the curvature of curves on a surface, we will be

led to the first and second fundamental forms of a surface. The study of the normal

and tangential components of the curvature will lead to the normal curvature and

to the geodesic curvature. We will study the normal curvature, and this will lead us

to principal curvatures, principal directions, the Gaussian curvature, and the mean

curvature. In turn, the desire to express the geodesic curvature in terms of the first

fundamental form alone will lead to the Christoffel symbols. The study of the varia-

tion of the normal at a point will lead to the Gauss map and its derivative, and to the

Weingarten equations. We will also quote Bonnet’s theorem about the existence of a

surface patch with prescribed first and second fundamental forms. This will require

a discussion of the Theorema Egregium and of the Codazzi–Mainardi compatibil-

ity equations. We will take a quick look at curvature lines, asymptotic lines, and

geodesics, and conclude by quoting a special case of the Gauss–Bonnet theorem.

Since this chapter is just a brief introduction to the local theory of the differen-

tial geometry of surfaces, the following additional references are suggested. For an

intuitive introduction to differential geometry there is no better source that the beau-

tiful presentation given in Chapter IV of Hilbert and Cohn-Vossen [25]. The style is

informal, and there are occasional mistakes, but there are amazingly powerful ge-

ometric insights. The reader will have a taste of the state of differential geometry

in the 1920s. For a taste of the differential geometry of surfaces in the 1980s, we

highly recommend Chapter 10 and Chapter 11 in Berger and Gostiaux [4]. These

remarkable chapters are written as a guide, basically without proofs, and assume a

certain familiarity with differential geometry, but we believe that most readers could

easily read them after completing this chapter. For a comprehensive and yet fairly

elementary treatment of the differential geometry of curves and surfaces we highly

recommend do Carmo [12] and Kreyszig [28]. Another nice and modern presenta-

tion of differential geometry including many examples in Mathematica can be found

in Gray [23]. The older texts by Stoker [42] and Hopf [26] are also recommended.

For the (very) perseverant reader interested in the state of surface theory around

the 1900s, nothing tops Darboux’s four–volume treatise [9, 10, 7, 8]. Actually, Dar-
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boux is a real gold mine for all sorts of fascinating (often long forgotten) results.

For a very interesting article on the history of differential geometry see Paulette

Libermann’s article in Dieudonné [11], Chapter IX. More references can be found

in Section 20.11. Some interesting applications of the differential geometry of sur-

faces to geometric design can be found in the Ph.D. theses of Henry Moreton [38]

and William Welch [44]; see Section 20.13 for a glimpse of these applications.

20.2 Parametrized Surfaces

In this chapter we consider exclusively surfaces immersed in the affine space A3.

In order to be able to define the normal to a surface at a point, and the notion of

curvature, we assume that some inner product is defined on R3. Unless specified

otherwise, we assume that this inner product is the standard one, i.e.,

(x1,x2,x3) · (y1,y2,y3) = x1y1 + x2y2 + x3y3.

The Euclidean space obtained from A3 by defining the above inner product on R3

is denoted by E3 (and similarly, E2 is associated with A2).

Let Ω be some open subset of the plane R2. Recall that a map X : Ω → E3 is

Cp-continuous if all the partial derivatives

∂ i+ jX

∂ui∂v j
(u,v)

exist and are continuous for all i, j such that 0 ≤ i+ j ≤ p, and all (u,v) ∈ R2. A

surface is a map X : Ω → E3, as above, where X is at least C3-continuous. It turns

out that in order to study surfaces, in particular the important notion of curvature,

it is very useful to study the properties of curves on surfaces. Thus, we will begin

by studying curves on surfaces. The curves arising as plane sections of a surface by

planes containing the normal line at some point of the surface will play an important

role. Indeed, we will study the variation of the “normal curvature” of such curves.

We will see that in general, the normal curvature reaches a maximum value κ1 and

a minimum value κ2. This will lead us to the notion of Gaussian curvature (it is the

product K = κ1κ2).

Actually, we will need to impose an extra condition on a surface X so that the tan-

gent plane (and the normal) at any point is defined. Again, this leads us to consider

curves on X .

A curve C on X is defined as a map C : t 7→ X(u(t),v(t)), where u and v are

continuous functions on some open interval I contained in Ω . We also assume that

the plane curve t 7→ (u(t),v(t)) is regular, that is, that

(
du

dt
(t),

dv

dt
(t)

)
6= (0,0) for all t ∈ I.
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For example, the curves v 7→ X(u0,v) for some constant u0 are called u-curves, and

the curves u 7→ X(u,v0) for some constant v0 are called v-curves. Such curves are

also called the coordinate curves.

We would like the curve t 7→ X(u(t),v(t)) to be a regular curve for all regular

curves t 7→ (u(t),v(t)), i.e., to have a well-defined tangent vector for all t ∈ I. The

tangent vector dC(t)/dt to C at t can be computed using the chain rule:

dC

dt
(t) =

∂X

∂u
(u(t),v(t))

du

dt
(t)+

∂X

∂v
(u(t),v(t))

dv

dt
(t).

Note that
dC

dt
(t),

∂X

∂u
(u(t),v(t)) and

∂X

∂v
(u(t),v(t))

are vectors, but for simplicity of notation, we omit the vector symbol in these ex-

pressions.1

It is customary to use the following abbreviations: The partial derivatives

∂X

∂u
(u(t),v(t)) and

∂X

∂v
(u(t),v(t))

are denoted by Xu(t) and Xv(t), or even by Xu and Xv, and the derivatives

dC

dt
(t),

du

dt
(t) and

dv

dt
(t)

are denoted by Ċ(t), u̇(t), and v̇(t), or even by Ċ, u̇, and v̇. When the curve C is

parametrized by arc length s, we denote

dC

ds
(s),

du

ds
(s), and

dv

ds
(s)

by C′(s), u′(s), and v′(s), or even by C′, u′, and v′. Thus, we reserve the prime

notation to the case where the parametrization of C is by arc length.

� Note that it is the curve C : t 7→ X(u(t),v(t)) that is parametrized by arc

length, not the curve t 7→ (u(t),v(t)).

Using this notation Ċ(t) is expressed as follows:

Ċ(t) = Xu(t)u̇(t)+Xv(t)v̇(t),

or simply as

Ċ = Xuu̇+Xvv̇.

1 Also, traditionally, the result of multiplying a vector u by a scalar λ is denoted by λ u, with the

scalar on the left. In the expressions above involving partial derivatives, the scalar is written on

the right of the vector rather on the left. Although possibly confusing, this appears to be standard

practice.
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Now, if we want Ċ 6= 0 for all regular curves t 7→ (u(t),v(t)), we must require that Xu

and Xv be linearly independent. Equivalently, we must require that the cross product

Xu×Xv be nonnull.

Definition 20.1. A surface patch X , for short a surface X , is a map X : Ω → E3

where Ω is some open subset of the plane R2 and where X is at least C3-continuous.

We say that the surface X is regular at (u,v) ∈ Ω if Xu×Xv 6= 0, and we also say

that p = X(u,v) is a regular point of X . If Xu×Xv = 0, we say that p = X(u,v) is a

singular point of X . The surface X is regular on Ω if Xu×Xv 6= 0, for all (u,v) ∈Ω .

The subset X(Ω) of E3 is called the trace of the surface X .

Remark: It often often desirable to define a (regular) surface patch X : Ω → E3

where Ω is a closed subset of R2. If Ω is a closed set, we assume that there is some

open subset U containing Ω and such that X can be extended to a (regular) surface

over U (i.e., that X is at least C3-continuous).

Given a regular point p = X(u,v), since the tangent vectors to all the curves

passing through a given point are of the form Xuu̇+Xvv̇, it is obvious that they form

a vector space of dimension 2 isomorphic to R2 called the tangent space at p, and

denoted by Tp(X). Note that (Xu,Xv) is a basis of this vector space Tp(X). The set of

tangent lines passing through p and having some tangent vector in Tp(X) as direction

is an affine plane called the affine tangent plane at p. Geometrically, this is an object

different from Tp(X), and it should be denoted differently (perhaps as ATp(X)?).2

Nevertheless, we will use the notation Tp(X) like everybody else, but by calling it

tangent plane instead of tangent space, we hope that the potential confusion will be

eliminated.

The unit vector

Np =
Xu×Xv

‖Xu×Xv‖
is called the unit normal vector at p, and the line through p of direction Np is

the normal line to X at p. This time, we can use the notation Np for the line, to

distinguish it from the vector Np.

Example 20.1. Let Ω =]−1,1[× ]−1,1[ , and let X be the surface patch defined by

x =
2au

u2 + v2 + 1
, y =

2bv

u2 + v2 + 1
, z =

c(1− u2− v2)

u2 + v2 + 1
,

where a,b,c > 0. The surface X is a portion of an ellipsoid. Let

t 7→ (t, t2)

be the piece of parabola corresponding to t ∈ ]− 1,1[ . Then we obtain the curve

C(t) = X(t, t2) on the surface X . It is easily verified that the unit normal to the

2 It would probably be better to denote the tangent space by
−→
T p(X) and the tangent plane by

Tp(X), but nobody else does!
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surface is

N(u,v) = (2bcu/Z,2acv/Z,ab(1− u2− v2)/Z),

where

Z2 = 4b2c2u2 + 4a2c2v2 + a2b2(1− u2− v2)2.

The portion of ellipsoid X , the curve C on X , some unit normals, and some tangent

vectors (for u = 1
3
,v = 1

9
), are shown in Figure 20.1, for a = 5, b = 4, c = 3.
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Fig. 20.1 A curve C on a surface X .

� The fact that we are not requiring the map X defining a surface X : Ω →
E3 to be injective may cause problems. Indeed, if X is not injective, it

may happen that p = X(u0,v0) = X(u1,v1) for some (u0,v0) and (u1,v1) such that

(u0,v0) 6= (u1,v1). In this case, the tangent plane Tp(X) at p is not well-defined.

Indeed, we really have two pairs of partial derivatives (Xu(u0,v0),Xv(u0,v0)) and

(Xu(u1,v1),Xv(u1,v1)), and the planes spanned by these pairs could be distinct. In

this case there are really two tangent planes T(u0,v0)(X) and T(u1,v1)(X) at the point

p where X has a self-intersection. Similarly, the normal Np is not well-defined, and

we really have two normals N(u0,v0) and N(u1,v1) at p.

We could avoid the problem entirely by assuming that X is injective. This will

rule out many surfaces that come up in practice. If necessary, we use the notation
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T(u,v)(X) or N(u,v), which removes possible ambiguities. However, it is a more cum-

bersome notation, and we will continue to write Tp(X) and Np, being aware that this

may be an ambiguous notation, and that some additional information is needed.

The tangent space may also be undefined when p is not a regular point.

Example 20.2. Considering the surface X = (x(u,v),y(u,v),z(u,v)) defined such

that

x = u(u2 + v2),

y = v(u2 + v2),

z = u2v− v3/3,

note that all the partial derivatives at the origin (0,0) are zero. Thus, the origin is a

singular point of the surface X . Indeed, one can check that the tangent lines at the

origin do not lie in a plane.

It is interesting to see how the unit normal vector Np changes under a change

of parameters. Assume that u = u(r,s) and v = v(r,s), where (r,s) 7→ (u,v) is a

diffeomorphism. By the chain rule,

Xr×Xs =

(
Xu

∂u

∂ r
+Xv

∂v

∂ r

)
×
(

Xu
∂u

∂ s
+Xv

∂v

∂ s

)

=

(
∂u

∂ r

∂v

∂ s
− ∂u

∂ s

∂v

∂ r

)
Xu×Xv

=

∣∣∣∣∣∣∣∣

∂u

∂ r

∂u

∂ s

∂v

∂ r

∂v

∂ s

∣∣∣∣∣∣∣∣
Xu×Xv

=
∂ (u,v)

∂ (r,s)
Xu×Xv,

denoting the Jacobian determinant of the map (r,s) 7→ (u,v) by ∂ (u,v)/∂ (r,s). Then,

the relationship between the unit vectors N(u,v) and N(r,s) is

N(r,s) = N(u,v) sign
∂ (u,v)

∂ (r,s)
.

We will therefore restrict our attention to changes of variables such that the Jacobian

determinant ∂ (u,v)/∂ (r,s) is positive.

One should also note that the condition Xu×Xv 6= 0 is equivalent to the fact that

the Jacobian matrix of the derivative of the map X : Ω → E3 has rank 2, i.e., that

the derivative DX(u,v) of X at (u,v) is injective. Indeed, the Jacobian matrix of the

derivative of the map
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(u,v) 7→ X(u,v) = (x(u,v),y(u,v),z(u,v))

is 


∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∂ z

∂u

∂ z

∂v



,

and Xu×Xv 6= 0 is equivalent to saying that one of the minors of order 2 is invertible.

Thus, a regular surface is an immersion of an open set of R2 into E3.

To a great extent, the properties of a surface can be studied by studying the prop-

erties of curves on this surface. One of the most important properties of a surface

is its curvature. A gentle way to introduce the curvature of a surface is to study the

curvature of a curve on a surface. For this, we will need to compute the norm of

the tangent vector to a curve on a surface. This will lead us to the first fundamental

form.

20.3 The First Fundamental Form (Riemannian Metric)

Given a curve C on a surface X , we first compute the element of arc length of the

curve C. For this, we need to compute the square norm of the tangent vector Ċ(t).
The square norm of the tangent vector Ċ(t) to the curve C at p is

‖Ċ‖2 = (Xuu̇+Xvv̇) · (Xuu̇+Xvv̇),

where · is the inner product in E3, and thus,

‖Ċ‖2 = (Xu ·Xu) u̇2 + 2(Xu ·Xv) u̇v̇+(Xv ·Xv) v̇2.

Following common usage, we let

E = Xu ·Xu, F = Xu ·Xv, G = Xv ·Xv,

and

‖Ċ‖2 = E u̇2 + 2F u̇v̇+Gv̇2.

Euler had already obtained this formula in 1760. Thus, the map (x,y) 7→ Ex2 +
2Fxy+Gy2 is a quadratic form on R2, and since it is equal to ‖Ċ‖2, using the plane

curves t 7→ (u(t),v(t)) = (xt,yt) for any x,y ∈ R, since u̇ = x and v̇ = y, we show

easily that it is positive definite (assuming that Xu×Xv 6= 0). This quadratic form

plays a major role in the theory of surfaces, and deserves an official definition.

Definition 20.2. Given a regular surface X , for any point p = X(u,v) on X , letting
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E = Xu ·Xu, F = Xu ·Xv, G = Xv ·Xv,

the positive definite quadratic form (x,y) 7→ Ex2 + 2Fxy+Gy2 is called the first

fundamental form of X at p. It is often denoted by Ip, and in matrix form, we have

Ip(x,y) = (x,y)

(
E F

F G

)(
x

y

)
.

Since the map (x,y) 7→ Ex2 + 2Fxy+Gy2 is a positive definite quadratic form, we

must have E 6= 0 and G 6= 0. Then, we can write

Ex2 + 2Fxy+Gy2 = E

(
x+

F

E
y

)2

+
EG−F2

E
y2.

Since this quantity must be positive, we must have E > 0, G> 0, and also EG−F2 >
0.

The symmetric bilinear form ϕI associated with I is an inner product on the

tangent space at p, such that

ϕI((x1,y1),(x2,y2)) = (x1,y1)

(
E F

F G

)(
x2

y2

)
.

This inner product is also denoted by 〈(x1,y1),(x2,y2)〉p. The inner product ϕI can

be used to determine the angle of two curves passing through p, i.e., the angle θ of

the tangent vectors to these two curves at p. We have

cosθ =
〈(u̇1, v̇1),(u̇2, v̇2)〉√
I(u̇1, v̇1)

√
I(u̇2, v̇2)

.

For example, the angle between the u-curve and the v-curve passing through p

(where u or v is constant) is given by

cosθ =
F√
EG

.

Thus, the u-curves and the v-curves are orthogonal iff F(u,v) = 0 on Ω .

Remarks:

(1) Since (
ds

dt

)2

= ‖Ċ‖2 = E u̇2 + 2F u̇v̇+Gv̇2

represents the square of the “element of arc length” of the curve C on X , and

since du = u̇dt and dv = v̇dt, one often writes the first fundamental form as

ds2 = E du2 + 2F dudv+Gdv2.
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Thus, the length l(pq) of an arc of curve on the surface joining the points p =
X(u(t0),v(t0)) and q = X(u(t1),v(t1)) is

l(p,q) =
∫ t1

t0

√
E u̇2 + 2F u̇v̇+Gv̇2 dt.

One also refers to ds2 = E du2 +2F dudv+Gdv2 as a Riemannian metric. The

symmetric matrix associated with the first fundamental form is also denoted by

(
g11 g12

g21 g22

)
,

where g12 = g21.

(2) As in the previous section, if X is not injective, the first fundamental form Ip

is not well-defined. What is well-defined is I(u,v). In some sense this is even

worse, since one of the main themes of differential geometry is that the metric

properties of a surface (or of a manifold) are captured by a Riemannian metric.

Again, we will not worry too much about this, or we will assume X injective.

(3) It can be shown that the element of area dA on a surface X is given by

dA = ‖Xu×Xv‖dudv =
√

EG−F2 dudv.

We have just discovered that, in contrast to a flat surface, where the inner product

is the same at every point, on a curved surface the inner product induced by the

Riemannian metric on the tangent space at every point changes as the point moves

on the surface. This fundamental idea is at the heart of the definition of an abstract

Riemannian manifold. It is also important to observe that the first fundamental form

of a surface does not characterize the surface.

Example 20.3. It is easy to see that the first fundamental form of a plane and the first

fundamental form of a cylinder of revolution defined by

X(u,v) = (cosu,sinu,v)

are identical:

(E,F,G) = (1,0,1).

Thus ds2 = du2 + dv2, which is not surprising.

A more striking example is that of the helicoid and the catenoid.

Example 20.4. The helicoid is the surface defined over R×R such that

x = u1 cosv1,

y = u1 sinv1,

z = v1.
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This is the surface generated by a line parallel to the xOy plane, touching the

z-axis, and also touching a helix of axis Oz. It is easily verified that

(E,F,G) = (1,0,u2
1 + 1).

Figure 20.2 shows a portion of helicoid corresponding to 0≤ v1 ≤ 2π .
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Fig. 20.2 A helicoid.

Example 20.5. The catenoid is the surface of revolution defined over R×R such

that

x = coshu2 cosv2,

y = coshu2 sinv2,

z = u2.
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It is the surface obtained by rotating a catenary around the z-axis. (Recall that

the hyperbolic functions cosh and sinh are defined by coshu = (eu + e−u)/2 and

sinhu = (eu− e−u)/2. The catenary is the plane curve defined by y = coshx). It is

easily verified that

(E,F,G) = (cosh2 u2,0,cosh2 u2).

Figure 20.3 shows a portion of catenoid corresponding to 0≤ v2 ≤ 2π .
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Fig. 20.3 A catenoid.

We can make the change of variables u1 = sinhu3, v1 = v3, which is bijective

and whose Jacobian determinant is coshu3, which is always positive, obtaining the

following parametrization of the helicoid:
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x = sinhu3 cosv3,

y = sinhu3 sin v3,

z = v3.

It is easily verified that

(E,F,G) = (cosh2 u3,0,cosh2 u3),

showing that the helicoid and the catenoid have the same first fundamental form.

What is happening is that the two surfaces are locally isometric (roughly, this means

that there is a smooth map between the two surfaces that preserves distances locally).

Indeed, if we consider the portions of the two surfaces corresponding to the domain

R× ]0,2π [ , it is possible to deform isometrically the portion of helicoid into the

portion of catenoid (note that by excluding 0 and 2π , we have made a “slit” in the

catenoid (a portion of meridian), and thus we can open up the catenoid and deform

it into the helicoid). For more on this, we urge our readers to consult do Carmo [12],

Chapter 4, Section 2, pages 218–227.

We will now see how the first fundamental form relates to the curvature of curves

on a surface.

20.4 Normal Curvature and the Second Fundamental Form

In this section we take a closer look at the curvature at a point of a curve C on

a surface X . Assuming that C is parametrized by arc length, we will see that the

vector X ′′(s) (which is equal to κn, where n is the principal normal to the curve C

at p, and κ is the curvature) can be written as

κn = κNN+κgng,

where N is the normal to the surface at p, and κgng is a tangential component nor-

mal to the curve. The component κN is called the normal curvature. Computing it

will lead to the second fundamental form, another very important quadratic form as-

sociated with a surface. The component κg is called the geodesic curvature. It turns

out that it depends only on the first fundamental form, but computing it is quite

complicated, and this will lead to the Christoffel symbols.

Let f : ]a,b[→E3 be a curve, where f is at least C3-continuous, and assume that

the curve is parametrized by arc length. We saw in Section 19.6 that if f ′(s) 6= 0 and

f ′′(s) 6= 0 for all s ∈ ]a,b[ (i.e., f is biregular), we can associate to the point f (s) an

orthonormal frame (t,n,b) called the Frenet frame, where
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t = f ′(s),

n =
f ′′(s)
‖ f ′′(s)‖ ,

b = t×n.

The vector t is the unit tangent vector, the vector n is called the principal normal,

and the vector b is called the binormal. Furthermore, the curvature κ at s is κ =
‖ f ′′(s)‖, and thus,

f ′′(s) = κn.

The principal normal n is contained in the osculating plane at s, which is just the

plane spanned by f ′(s) and f ′′(s). Recall that since f is parametrized by arc length,

the vector f ′(s) is a unit vector, and thus f ′(s) · f ′(s) = 1, and by taking derivatives,

we get

f ′(s) · f ′′(s) = 0,

which shows that f ′(s) and f ′′(s) are linearly independent and orthogonal, provided

that f ′(s) 6= 0 and f ′′(s) 6= 0.

Now, if C : t 7→ X(u(t),v(t)) is a curve on a surface X , assuming that C is

parametrized by arc length, which implies that

(s′)2 = E(u′)2 + 2Fu′v′+G(v′)2 = 1,

we have

X ′(s) = Xuu′+Xvv′,

X ′′(s) = κn,

and t = Xuu′+Xvv′ is indeed a unit tangent vector to the curve and to the surface,

but n is the principal normal to the curve, and thus it is not necessarily orthogonal

to the tangent plane Tp(X) at p = X(u(t),v(t)).
Thus, if we intend to study how the curvature κ varies as the curve C passing

through p changes, the Frenet frame (t,n,b) associated with the curve C is not really

adequate, since both n and b will vary with C (and n is undefined when κ = 0). Thus,

it is better to pick a frame associated with the normal to the surface at p, and we pick

the frame (t,ng,N) defined as follows.

Definition 20.3. Given a surface X , for any curve C : t 7→ X(u(t),v(t)) on X and any

point p on X , the orthonormal frame (t,ng,N) is defined such that

t = Xuu′+Xvv′,

N =
Xu×Xv

‖Xu×Xv‖
,

ng = N× t,
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where N is the normal vector to the surface X at p. The vector ng is called the

geodesic normal vector (for reasons that will become clear later).

Observe that ng is the unit normal vector to the curve C contained in the tangent

space Tp(X) at p.

If we use the frame (t,ng,N), we will see shortly that X ′′(s) = κn can be written

as

κn = κNN+κgng.

The component κNN is the orthogonal projection of κn onto the normal direction

N, and for this reason κN is called the normal curvature of C at p. The component

κgng is the orthogonal projection of κn onto the tangent space Tp(X) at p.

We now show how to compute the normal curvature. This will uncover the second

fundamental form. Using the abbreviations

Xuu =
∂ 2X

∂u2
, Xuv =

∂ 2X

∂u∂v
, Xvv =

∂ 2X

∂v2
,

since X ′ = Xuu′+Xvv′, using the chain rule we get

X ′′ = Xuu(u
′)2 + 2Xuvu′v′+Xvv(v

′)2 +Xuu′′+Xvv′′.

In order to decompose X ′′ = κn into its normal component (along N) and its

tangential component, we use a neat trick suggested by Eugenio Calabi. Recall that

(u× v)×w = (u ·w)v− (w · v)u.

Using this identity, we have

(N× (Xuu(u
′)2 + 2Xuvu

′v′+Xvv(v
′)2)×N

= (N ·N)(Xuu(u
′)2 + 2Xuvu

′v′+Xvv(v
′)2)

− (N · (Xuu(u
′)2 + 2Xuvu′v′+Xvv(v

′)2))N.

Since N is a unit vector, we have N ·N = 1, and consequently, since

κn = X ′′ = Xuu(u
′)2 + 2Xuvu′v′+Xvv(v

′)2 +Xuu′′+Xvv′′,

we can write

κn = (N · (Xuu(u
′)2 + 2Xuvu′v′+Xvv(v

′)2))N

+ (N× (Xuu(u
′)2 + 2Xuvu

′v′+Xvv(v
′)2))×N+Xuu′′+Xvv′′.

Thus, it is clear that the normal component is

κNN = (N · (Xuu(u
′)2 + 2Xuvu

′v′+Xvv(v
′)2))N,

and the normal curvature is given by
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κN = N · (Xuu(u
′)2 + 2Xuvu

′v′+Xvv(v
′)2).

Letting

L = N ·Xuu, M = N ·Xuv, N = N ·Xvv,

we have

κN = L(u′)2 + 2Mu′v′+N(v′)2.

It should be noted that some authors (such as do Carmo) use the notation

e = N ·Xuu, f = N ·Xuv, g = N ·Xvv.

Recalling that

N =
Xu×Xv

‖Xu×Xv‖
,

using the Lagrange identity

(u · v)2 + ‖u× v‖2 = ‖u‖2‖v‖2,

we see that

‖Xu×Xv‖=
√

EG−F2,

and L = N ·Xuu can be written as

L =
(Xu×Xv) ·Xuu√

EG−F2
=

(Xu,Xv,Xuu)√
EG−F2

,

where (Xu,Xv,Xuu) is the mixed product, i.e., the determinant of the three vectors

(similar expressions are obtained for M and N). Some authors (including Gauss

himself and Darboux) use the notation

D = (Xu,Xv,Xuu), D′ = (Xu,Xv,Xuv), D′′ = (Xu,Xv,Xvv),

and we also have

L =
D√

EG−F2
, M =

D′√
EG−F2

, N =
D′′√

EG−F2
.

These expressions were used by Gauss to prove his famous Theorema Egregium.

Since the quadratic form (x,y) 7→ Lx2 + 2Mxy+Ny2 plays a very important role

in the theory of surfaces, we introduce the following definition.

Definition 20.4. Given a surface X , for any point p = X(u,v) on X , letting

L = N ·Xuu, M = N ·Xuv, N = N ·Xvv,

where N is the unit normal at p, the quadratic form (x,y) 7→ Lx2 + 2Mxy +Ny2

is called the second fundamental form of X at p. It is often denoted by IIp. For a

curve C on the surface X (parametrized by arc length), the quantity κN given by the
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formula

κN = L(u′)2 + 2Mu′v′+N(v′)2

is called the normal curvature of C at p.

The second fundamental form was introduced by Gauss in 1827. Unlike the first

fundamental form, the second fundamental form is not necessarily positive or def-

inite. Properties of the surface expressible in terms of the first fundamental form

are called intrinsic properties of the surface X . Properties of the surface expressible

in terms of the second fundamental form are called extrinsic properties of the sur-

face X . They have to do with the way the surface is immersed in E3. As we shall

see later, certain notions that appear to be extrinsic turn out to be intrinsic, such as

the geodesic curvature and the Gaussian curvature. This is another testimony to the

genius of Gauss (and Bonnet, Christoffel, et al.).

Remark: As in the previous section, if X is not injective, the second fundamental

form IIp is not well-defined. Again, we will not worry too much about this, or we

assume X injective.

It should also be mentioned that the fact that the normal curvature is expressed

as

κN = L(u′)2 + 2Mu′v′+N(v′)2

has the following immediate corollary, known as Meusnier’s theorem (1776).

Lemma 20.1. All curves on a surface X and having the same tangent line at a given

point p ∈ X have the same normal curvature at p.

In particular, if we consider the curves obtained by intersecting the surface with

planes containing the normal at p, curves called normal sections, all curves tangent

to a normal section at p have the same normal curvature as the normal section.

Furthermore, the principal normal of a normal section is collinear with the normal

to the surface, and thus |κ |= |κN |, where κ is the curvature of the normal section,

and κN is the normal curvature of the normal section. We will see in a later section

how the curvature of normal sections varies.

We obtained the value of the normal curvature κN assuming that the curve C

is parametrized by arc length, but we can easily give an expression for κN for an

arbitrary parametrization. Indeed, remember that

(
ds

dt

)2

= ‖Ċ‖2 = E u̇2 + 2F u̇v̇+Gv̇2,

and by the chain rule

u′ =
du

ds
=

du

dt

dt

ds
,

and since a change of parameter is a diffeomorphism, we get

u′ =
u̇(
ds
dt

) ,



602 20 Basics of the Differential Geometry of Surfaces

and from

κN = L(u′)2 + 2Mu′v′+N(v′)2,

we get

κN =
Lu̇2 + 2Mu̇v̇+Nv̇2

Eu̇2 + 2Fu̇v̇+Gv̇2
.

It is remarkable that this expression of the normal curvature uses both the first

and the second fundamental forms!

We still need to compute the tangential part X ′′t of X ′′. We found that the tangen-

tial part of X ′′ is

X ′′t = (N× (Xuu(u
′)2 + 2Xuvu′v′+Xvv(v

′)2))×N+Xuu′′+Xvv′′.

This vector is clearly in the tangent space Tp(X) (since the first part is orthogonal to

N, which is orthogonal to the tangent space). Furthermore, X ′′ is orthogonal to X ′

(since X ′ ·X ′ = 1), and by dotting X ′′ = κNN+X ′′t with t = X ′, since the component

κNN · t is zero, we have X ′′t · t = 0, and thus X ′′t is also orthogonal to t, which means

that it is collinear with ng = N× t. Therefore, we have shown that

κn = κNN+κgng,

where

κN = L(u′)2 + 2Mu′v′+N(v′)2

and

κgng = (N× (Xuu(u
′)2 + 2Xuvu

′v′+Xvv(v
′)2))×N+Xuu′′+Xvv′′.

The term κgng is worth an official definition.

Definition 20.5. Given a surface X , for any curve C : t 7→ X(u(t),v(t)) on X and any

point p on X , the quantity κg appearing in the expression

κn = κNN+κgng

giving the acceleration vector of X at p is called the geodesic curvature of C at p.

In the next section we give an expression for κgng in terms of the basis (Xu,Xv).

20.5 Geodesic Curvature and the Christoffel Symbols

We showed that the tangential part of the curvature of a curve C on a surface is of

the form κgng. We now show that κg can be computed only in terms of the first

fundamental form of X , a result first proved by Ossian Bonnet circa 1848. The com-

putation is a bit involved, and it will lead us to the Christoffel symbols, introduced

in 1869.
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Since ng is in the tangent space Tp(X), and since (Xu,Xv) is a basis of Tp(X), we

can write

κgng = AXu +BXv,

for some A,B ∈R. However,

κn = κNN+κgng,

and since N is normal to the tangent space, N ·Xu = N ·Xv = 0, and by dotting

κgng = AXu +BXv

with Xu and Xv, since E = Xu ·Xu, F = Xu ·Xv, and G = Xv ·Xv, we get the equations

κn ·Xu = EA+FB,

κn ·Xv = FA+GB.

On the other hand,

κn = X ′′ = Xuu′′+Xvv′′+Xuu(u
′)2 + 2Xuvu′v′+Xvv(v

′)2.

Dotting with Xu and Xv, we get

κn ·Xu = Eu′′+Fv′′+(Xuu ·Xu)(u
′)2 + 2(Xuv ·Xu)u

′v′+(Xvv ·Xu)(v
′)2,

κn ·Xv = Fu′′+Gv′′+(Xuu ·Xv)(u
′)2 + 2(Xuv ·Xv)u

′v′+(Xvv ·Xv)(v
′)2.

At this point it is useful to introduce the Christoffel symbols (of the first kind)

[α β ; γ], defined such that

[α β ; γ] = Xαβ ·Xγ ,

where α,β ,γ ∈ {u,v}. It is also more convenient to let u = u1 and v = u2, and to

denote [uα vβ ; uγ ] by [α β ; γ]. Doing so, and remembering that

κn ·Xu = EA+FB,

κn ·Xv = FA+GB,

we have the following equation:

(
E F

F G

)(
A

B

)
=

(
E F

F G

)(
u′′1
u′′2

)
+ ∑

α=1,2
β=1,2

(
[α β ; 1]u′αu′β
[α β ; 2]u′αu′β

)
.

However, since the first fundamental form is positive definite, EG−F2 > 0, and we

have (
E F

F G

)−1

= (EG−F2)−1

(
G −F

−F E

)
.

Thus, we get
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(
A

B

)
=

(
u′′1
u′′2

)
+ ∑

α=1,2
β=1,2

(EG−F2)−1

(
G −F

−F E

)(
[α β ; 1]u′αu′β
[α β ; 2]u′αu′β

)
.

It is natural to introduce the Christoffel symbols (of the second kind) Γ k
i j, defined

such that (
Γ 1

i j

Γ 2
i j

)
= (EG−F2)−1

(
G −F

−F E

)(
[i j; 1]
[i j; 2]

)
.

Finally, we get

A = u′′1 + ∑
i=1,2
j=1,2

Γ 1
i j u′iu

′
j,

B = u′′2 + ∑
i=1,2
j=1,2

Γ 2
i j u′iu

′
j,

and

κgng =

(
u′′1 + ∑

i=1,2
j=1,2

Γ 1
i j u′iu

′
j

)
Xu +

(
u′′2 + ∑

i=1,2
j=1,2

Γ 2
i j u′iu

′
j

)
Xv.

We summarize all the above in the following lemma.

Lemma 20.2. Given a surface X and a curve C on X, for any point p on C, the

tangential part of the curvature at p is given by

κgng =

(
u′′1 + ∑

i=1,2
j=1,2

Γ 1
i j u′iu

′
j

)
Xu +

(
u′′2 + ∑

i=1,2
j=1,2

Γ 2
i j u′iu

′
j

)
Xv,

where the Christoffel symbols Γ k
i j are defined such that

(
Γ 1

i j

Γ 2
i j

)
=

(
E F

F G

)−1(
[i j; 1]
[i j; 2]

)
,

and the Christoffel symbols [i j; k] are defined such that

[i j; k] = Xi j ·Xk.

Looking at the formulae

[α β ; γ] = Xαβ ·Xγ

for the Christoffel symbols [α β ; γ], it does not seem that these symbols depend only

on the first fundamental form, but in fact, they do! Firstly, note that

[α β ; γ] = [β α; γ].

Next, observe that
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Xuu ·Xu =
1

2

∂ (Xu ·Xu)

∂u
=

1

2
Eu,

Xuv ·Xu =
1

2

∂ (Xu ·Xu)

∂v
=

1

2
Ev,

Xuv ·Xv =
1

2

∂ (Xv ·Xv)

∂u
=

1

2
Gu,

Xvv ·Xv =
1

2

∂ (Xv ·Xv)

∂v
=

1

2
Gv,

and since

(Xu ·Xv)v = Xuv ·Xv +Xu ·Xvv

and

Xuv ·Xv =
1

2
Gu,

we get

Fv =
1

2
Gu +Xu ·Xvv,

and thus

Xvv ·Xu = Fv−
1

2
Gu.

Similarly, we get

Xuu ·Xv = Fu−
1

2
Ev.

In summary, we have the following formulae showing that the Christoffel symbols

depend only on the first fundamental form:

[11; 1] =
1

2
Eu, [11; 2] = Fu−

1

2
Ev,

[12; 1] =
1

2
Ev, [12; 2] =

1

2
Gu,

[21; 1] =
1

2
Ev, [21; 2] =

1

2
Gu,

[22; 1] = Fv−
1

2
Gu, [22; 2] =

1

2
Gv.

Another way to compute the Christoffel symbols [α β ; γ], is to proceed as fol-

lows. For this computation it is more convenient to assume that u = u1 and v = u2,

and that the first fundamental form is expressed by the matrix

(
g11 g12

g21 g22

)
=

(
E F

F G

)
,

where gαβ = Xα ·Xβ . Let

gαβ |γ =
∂gαβ

∂uγ
.



606 20 Basics of the Differential Geometry of Surfaces

Then, we have

gαβ |γ =
∂gαβ

∂uγ
= Xαγ ·Xβ +Xα ·Xβ γ = [α γ; β ]+ [β γ; α].

From this, we also have

gβ γ |α = [α β ; γ]+ [α γ; β ]

and

gαγ |β = [α β ; γ]+ [β γ; α].

From all this we get

2[α β ; γ] = gαγ |β + gβ γ |α − gαβ |γ .

As before, the Christoffel symbols [α β ; γ] and Γ
γ

α β
are related via the Rieman-

nian metric by the equations

Γ
γ

α β
=

(
g11 g12

g21 g22

)−1

[α β ; γ].

This seemingly bizarre approach has the advantage of generalizing to Rieman-

nian manifolds. In the next section we study the variation of the normal curvature.

20.6 Principal Curvatures, Gaussian Curvature, Mean

Curvature

We will now study how the normal curvature at a point varies when a unit tangent

vector varies. In general, we will see that the normal curvature has a maximum value

κ1 and a minimum value κ2, and that the corresponding directions are orthogonal.

This was shown by Euler in 1760. The quantity K = κ1κ2, called the Gaussian

curvature, and the quantity H = (κ1 +κ2)/2, called the mean curvature, play a very

important role in the theory of surfaces. We will compute H and K in terms of

the first and the second fundamental forms. We also classify points on a surface

according to the value and sign of the Gaussian curvature.

Recall that given a surface X and some point p on X , the vectors Xu,Xv form

a basis of the tangent space Tp(X). Given a unit vector t = Xux+Xvy, the normal

curvature is given by

κN(t) = Lx2 + 2Mxy+Ny2,

since Ex2+2Fxy+Gy2 = 1. Usually, (Xu,Xv) is not an orthonormal frame, and it is

useful to replace the frame (Xu,Xv) with an orthonormal frame. One verifies easily

that the frame (e1,e2) defined such that
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e1 =
Xu√

E
, e2 =

EXv−FXu√
E(EG−F2)

is indeed an orthonormal frame. With respect to this frame, every unit vector can be

written as t = cosθe1 + sinθe2, and expressing (e1,e2) in terms of Xu and Xv, we

have

t =

(
wcosθ −F sinθ

w
√

E

)
Xu +

√
E sinθ

w
Xv,

where w =
√

EG−F2. We can now compute κN(t), and we get

κN(t) = L

(
wcosθ −F sin θ

w
√

E

)2

+ 2M

(
(wcosθ −F sinθ )sin θ

w2

)

+ N
E sin2 θ

w2
.

We leave as an exercise to show that the above expression can be written as

κN(t) = H +Acos2θ +Bsin2θ ,

where

H =
GL− 2FM+EN

2(EG−F2)
,

A =
L(EG− 2F2)+ 2EFM−E2N

2E(EG−F2)
,

B =
EM−FL

E
√

EG−F2
.

Letting C =
√

A2 +B2, unless A = B = 0, the function

f (θ ) = H +Acos2θ +Bsin2θ

has a maximum κ1 =H+C for the angles θ0 and θ0+π , and a minimum κ2 =H−C

for the angles θ0+π/2 and θ0+3π/2, where cos2θ0 =A/C and sin2θ0 =B/C. The

curvatures κ1 and κ2 play a major role in surface theory.

Definition 20.6. Given a surface X , for any point p on X , letting A,B,H be defined

as above, and C =
√

A2 +B2, unless A = B = 0, the normal curvature κN at p takes

a maximum value κ1 and and a minimum value κ2, called principal curvatures at p,

where κ1 = H+C and κ2 = H−C. The directions of the corresponding unit vectors

are called the principal directions at p. The average H = κ1 +κ2/2 of the principal

curvatures is called the mean curvature, and the product K = κ1κ2 of the principal

curvatures is called the total curvature, or Gaussian curvature.

Observe that the principal directions θ0 and θ0+π/2 corresponding to κ1 and κ2

are orthogonal. Note that



608 20 Basics of the Differential Geometry of Surfaces

K = κ1κ2 = (H−C)(H +C) = H2−C2 = H2− (A2 +B2).

We leave as an exercise to verify that

A2 +B2 =
G2L2− 4FGLM+ 4EGM2 + 4F2LN− 2EGLN− 4EFMN +E2N2

4(EG−F2)2

and

H2 =
G2L2− 4FGLM + 4F2M2 + 2EGLN− 4EFMN +E2N2

4(EG−F2)2
.

From this we get

H2−A2−B2 =
LN−M2

EG−F2
.

In summary, we have the following (famous) formulae for the mean curvature and

the Gaussian curvature:

H =
GL− 2FM+EN

2(EG−F2)
,

K =
LN−M2

EG−F2
.

We have shown that the normal curvature κN can be expressed as

κN(θ ) = H +Acos2θ +Bsin2θ

over the orthonormal frame (e1,e2). We also have shown that the angle θ0 such that

cos2θ0 = A/C and sin2θ0 = B/C plays a special role. Indeed, it determines one

of the principal directions. If we rotate the basis (e1,e2) and pick a frame ( f1, f2)
corresponding to the principal directions, we obtain a particularly nice formula for

κN . Indeed, since A =C cos 2θ0 and B =C sin 2θ0, letting ϕ = θ −θ0, we can write

κN(θ ) = H +Acos2θ +Bsin2θ

= H +C(cos2θ0 cos2θ + sin2θ0 sin2θ )

= H +C(cos2(θ −θ0))

= H +C(cos2(θ −θ0)− sin2(θ −θ0))

= H(cos2(θ −θ0)+ sin2(θ −θ0))+C(cos2(θ −θ0)− sin2(θ −θ0))

= (H +C)cos2(θ −θ0)+ (H−C)sin2(θ −θ0)

= κ1 cos2 ϕ +κ2 sin2 ϕ .

Thus, for any unit vector t expressed as

t = cosϕ f1 + sinϕ f2
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with respect to an orthonormal frame corresponding to the principal directions, the

normal curvature κN(ϕ) is given by Euler’s formula (1760)

κN(ϕ) = κ1 cos2 ϕ +κ2 sin2 ϕ .

Recalling that EG−F2 is always strictly positive, we can classify the points on

the surface depending on the value of the Gaussian curvature K and on the values of

the principal curvatures κ1 and κ2 (or H).

Definition 20.7. Given a surface X , a point p on X belongs to one of the following

categories:

(1) Elliptic if LN−M2 > 0, or equivalently K > 0.

(2) Hyperbolic if LN−M2 < 0, or equivalently K < 0.

(3) Parabolic if LN−M2 = 0 and L2 +M2 +N2 > 0, or equivalently K = κ1κ2 = 0

but either κ1 6= 0 or κ2 6= 0.

(4) Planar if L = M = N = 0, or equivalently κ1 = κ2 = 0.

Furthermore, a point p is an umbilical point (or umbilic) if K > 0 and κ1 = κ2.

Note that some authors allow a planar point to be an umbilical point, but we do

not. At an elliptic point, both principal curvatures are nonnull and have the same

sign. For example, most points on an ellipsoid are elliptic.

At a hyperbolic point, the principal curvatures have opposite signs. For example,

all points on the catenoid are hyperbolic.

At a parabolic point, one of the two principal curvatures is zero, but not both.

This is equivalent to K = 0 and H 6= 0. Points on a cylinder are parabolic.

At a planar point, κ1 = κ2 = 0. This is equivalent to K = H = 0. Points on a plane

are all planar points!

Example 20.6. On a monkey saddle, there is a planar point, as shown in Figure 20.4.

The principal directions at that point are undefined.

For an umbilical point we have κ1 = κ2 6= 0. This can happen only when H−C =
H +C, which implies that C = 0, and since C =

√
A2 +B2, we have A = B = 0.

Thus, for an umbilical point, K = H2. In this case the function κN is constant, and

the principal directions are undefined. All points on a sphere are umbilics. A general

ellipsoid (a,b,c pairwise distinct) has four umbilics.

It can be shown that a connected surface consisting only of umbilical points is

contained in a sphere (see do Carmo [12], Section 3.2, or Gray [23], Section 28.2).

It can also be shown that a connected surface consisting only of planar points is

contained in a plane. A surface can contain at the same time elliptic points, parabolic

points, and hyperbolic points. This is the case of a torus.

Example 20.7. The parabolic points are on two circles also contained in two tangent

planes to the torus (the two horizontal planes touching the top and the bottom of

the torus, as shown in Figure 20.5). The elliptic points are on the outside part of

the torus (with normal facing outward), delimited by the two circles of parabolic
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Fig. 20.4 A monkey saddle.

points. The hyperbolic points are on the inside part of the torus (with normal facing

inward).

The normal curvature κN(Xux+Xvy) = Lx2 + 2Mxy+Ny2 will vanish for some

tangent vector (x,y) 6= (0,0) iff M2−LN ≥ 0. Since

K =
LN−M2

EG−F2
,

this can happen only if K ≤ 0. If L = N = 0, then there are two directions corre-

sponding to Xu and Xv for which the normal curvature is zero. If L 6= 0 or N 6= 0, say

L 6= 0 (the other case being similar), then the equation

L

(
x

y

)2

+ 2M
x

y
+N = 0
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Fig. 20.5 Portion of torus.

has two distinct roots iff K < 0. The directions corresponding to the vectors Xux+
Xvy associated with these roots are called the asymptotic directions at p. These are

the directions for which the normal curvature is null at p.

There are surfaces of constant Gaussian curvature. For example, a cylinder or

a cone is a surface of Gaussian curvature K = 0. A sphere of radius R has positive

constant Gaussian curvature K = 1/R2. Perhaps surprisingly, there are other surfaces

of constant positive curvature besides the sphere. There are surfaces of constant

negative curvature, say K =−1.

Example 20.8. A famous surfaces of constant negative curvature is the pseudo-

sphere, also known as Beltrami’s pseudosphere. This is the surface of revolution

obtained by rotating a curve known as a tractrix around its asymptote. One possible

parametrization is given by
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x =
2cosv

eu + e−u
,

y =
2sinv

eu + e−u
,

z = u− eu− e−u

eu + e−u
,

over ]0,2π [×R. The pseudosphere has a circle of singular points (for u = 0). Figure

20.6 shows a portion of pseudosphere.

-1-0.5 0 0.5 1

x

-1
-0.5

0
0.5

1
y

-2

0

2

z

-1-0.5 0 0.5 1

-1
-0.5

0
0.5

1
y

-2

0

2

Fig. 20.6 A pseudosphere.

Again, perhaps surprisingly, there are other surfaces of constant negative curvature.

The Gaussian curvature at a point (x,y,x) of an ellipsoid of equation

x2

a2
+

y2

b2
+

z2

c2
= 1

has the beautiful expression
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K =
p4

a2b2c2
,

where p is the distance from the origin (0,0,0) to the tangent plane at the point

(x,y,z).
There are also surfaces for which H = 0. Such surfaces are called minimal sur-

faces, and they show up in physics quite a bit. It can be verified that both the helicoid

and the catenoid are minimal surfaces. The Enneper surface is also a minimal sur-

face (see Example 20.9).

We will see shortly how the classification of points on a surface can be explained

in terms of the Dupin indicatrix. The idea is to dip the surface in water, and to watch

the shorelines formed in the water by the surface in a small region around a chosen

point, as we move the surface up and down very gently. But first, we introduce the

Gauss map, i.e., we study the variations of the normal Np as the point p varies on

the surface.

20.7 The Gauss Map and Its Derivative dN

Given a surface X : Ω → E3 and any point p = X(u,v) on X , we have defined the

normal Np at p (or really N(u,v) at (u,v)) as the unit vector

Np =
Xu×Xv

‖Xu×Xv‖
.

Gauss realized that the assignment p 7→ Np of the unit normal Np to the point p on

the surface X could be viewed as a map from the trace of the surface X to the unit

sphere S2. If Np is a unit vector of coordinates (x,y,z), we have x2 +y2+z2 = 1, and

Np corresponds to the point N(p) = (x,y,z) on the unit sphere. This is the so-called

Gauss map of X , denoted by N : X → S2.

The derivative dNp of the Gauss map at p measures the variation of the normal

near p, i.e., how the surface “curves” near p. The Jacobian matrix of dNp in the basis

(Xu,Xv) can be expressed simply in terms of the matrices associated with the first

and the second fundamental forms (which are quadratic forms). Furthermore, the

eigenvalues of dNp are precisely −κ1 and −κ2, where κ1 and κ2 are the principal

curvatures at p, and the eigenvectors define the principal directions (when they are

well-defined). In view of the negative sign in−κ1 and−κ2, it is desirable to consider

the linear map Sp =−dNp, often called the shape operator. Then it is easily shown

that the second fundamental form IIp(t) can be expressed as

IIp(t) = 〈Sp(t), t〉p,

where 〈−,−〉 is the inner product associated with the first fundamental form. Thus,

the Gaussian curvature is equal to the determinant of Sp, and also to the determinant

of dNp, since (−κ1)(−κ2) = κ1κ2. We will see in a later section that the Gaussian



614 20 Basics of the Differential Geometry of Surfaces

curvature actually depends only of the first fundamental form, which is far from

obvious right now!

Actually, if X is not injective, there are problems, because the assignment p 7→Np

could be multivalued, since there could be several different normals. We can either

assume that X is injective, or consider the map from Ω to S2 defined such that

(u,v) 7→ N(u,v).

Then we have a map from Ω to S2, where (u,v) is mapped to the point N(u,v) on

S2 associated with N(u,v). This map is denoted by N : Ω → S2.

It is interesting to study the derivative dN of the Gauss map N : Ω → S2 (or

N : X → S2). As we shall see, the second fundamental form can be defined in terms

of dN. For every (u,v) ∈ Ω , the map dN(u,v) is a linear map dN(u,v) : R2 → R2. It

can be viewed as a linear map from the tangent space T(u,v)(X) at X(u,v) (which is

isomorphic to R2) to the tangent space to the sphere at N(u,v) (also isomorphic to

R2). Recall that dN(u,v) is defined as follows: For every (x,y) ∈ R2,

dN(u,v)(x,y) = Nux+Nvy.

Thus, we need to compute Nu and Nv. Since N is a unit vector, N ·N = 1, and by

taking derivatives, we have Nu ·N = 0 and Nv ·N = 0. Consequently, Nu and Nv are

in the tangent space at (u,v), and we can write

Nu = aXu + cXv,

Nv = bXu + dXv.

The lemma below shows how to compute a,b,c,d in terms of the first and the second

fundamental forms.

Lemma 20.3. Given a surface X, for any point p = X(u,v) on X, the derivative

dN(u,v) of the Gauss map expressed in the basis (Xu,Xv) is given by the equation

dN(u,v)

(
x

y

)
=

(
a b

c d

)(
x

y

)
,

where the Jacobian matrix J(dN(u,v)) of dN(u,v) is given by

(
a b

c d

)
=−

(
E F

F G

)−1(
L M

M N

)
,

that is, (
a b

c d

)
=

1

EG−F2

(
MF−LG NF−MG

LF−ME MF−NE

)
.

Proof. By dotting the equations
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Nu = aXu + cXv,

Nv = bXu + dXv,

with Xu and Xv, we get

Nu ·Xu = aE + cF,

Nu ·Xv = aF + cG,

Nv ·Xu = bE + dF,

Nv ·Xv = bF + dG.

We can compute Nu ·Xu, Nu ·Xv, Nv ·Xu, and Nv ·Xv, using the fact that N ·Xu =
N ·Xv = 0. By taking derivatives, we get

N ·Xuu +Nu ·Xu = 0,

N ·Xuv+Nv ·Xu = 0,

N ·Xvu +Nu ·Xv = 0,

N ·Xvv +Nv ·Xv = 0.

Thus, we have

Nu ·Xu =−L,

Nu ·Xv =−M,

Nv ·Xu =−M,

Nv ·Xv =−N,

and together with the previous equations, we get

−L = aE + cF,

−M = aF + cG,

−M = bE + dF,

−N = bF + dG.

This system can be written in matrix form as

−
(

L M

M N

)
=

(
a c

b d

)(
E F

F G

)
.

Therefore, we have (
a c

b d

)
=−

(
L M

M N

)(
E F

F G

)−1

,

which yields (
Nu

Nv

)
=−

(
L M

M N

)(
E F

F G

)−1(
Xu

Xv

)
.
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However, we have

(
E F

F G

)−1

=
1

EG−F2

(
G −F

−F E

)
,

and thus

(
a c

b d

)
=

−1

EG−F2

(
L M

M N

)(
G −F

−F E

)
,

that is, (
a c

b d

)
=

1

EG−F2

(
MF−LG LF−ME

NF−MG MF−NE

)
.

We shall now see that the Jacobian matrix J(dN(u,v)) of the linear map dN(u,v) ex-

pressed in the basis (Xu,Xv) is the transpose of the above matrix. Indeed, as we saw

earlier,

dN(u,v)(x,y) = Nux+Nvy,

and using the expressions for Nu and Nv, we get

dN(u,v)(x,y) = (aXu + cXv)x+(bXu + dXv)y = (ax+ by)Xu+(cx+ dy)Xv,

and thus

dN(u,v)

(
x

y

)
=

(
a b

c d

)(
x

y

)
,

and since

(
a b

c d

)
is the transpose of

(
a c

b d

)
, we get

(
a b

c d

)
=−

(
E F

F G

)−1(
L M

M N

)
,

that is, (
a b

c d

)
=

1

EG−F2

(
MF−LG NF−MG

LF−ME MF−NE

)
.

This concludes the proof. ⊓⊔

The equations

J(dN(u,v)) =

(
a b

c d

)
=

1

EG−F2

(
MF−LG NF−MG

LF−ME MF−NE

)

are known as the Weingarten equations (in matrix form). If we recall from Section

20.6 the expressions for the Gaussian curvature and for the mean curvature
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H =
GL− 2FM+EN

2(EG−F2)
,

K =
LN−M2

EG−F2
,

we note that the trace a+d of the Jacobian matrix J(dN(u,v)) of dN(u,v) is−2H, and

that its determinant is precisely K. This is recorded in the following lemma, which

also shows that the eigenvectors of J(dN(u,v)) correspond to the principal directions.

Lemma 20.4. Given a surface X, for any point p = X(u,v) on X, the eigenvalues

of the Jacobian matrix J(dN(u,v)) of the derivative dN(u,v) of the Gauss map are

−κ1,−κ2, where κ1 and κ2 are the principal curvatures at p, and the eigenvectors of

dN(u,v) correspond to the principal directions (when they are defined). The Gaussian

curvature K is the determinant of the Jacobian matrix of dN(u,v), and the mean

curvature H is equal to − 1
2
tr(J(dN(u,v))).

Proof. We have just observed that the trace a+ d of the matrix

J(dN(u,v)) =

(
a b

c d

)
=

1

EG−F2

(
MF−LG NF−MG

LF−ME MF−NE

)

is−2H, and that its determinant is precisely K. However, the characteristic equation

of the above matrix is

x2− tr(J(dN(u,v)))x+ det(J(dN(u,v))) = 0,

which is just

x2 + 2Hx+K = 0.

Since κ1κ2 = K and κ1 +κ2 = 2H, κ1 and κ2 are the roots of the equation

x2− 2Hx+K = 0.

This shows that the eigenvalues of J(dN(u,v)), which are the roots of the equation

x2 + 2Hx+K = 0,

are indeed −κ1 and −κ2.

Recall that κ1 and κ2 are the maximum and minimum values of the normal cur-

vature, which is given by the equation

κN(x,y) =
Lx2 + 2Mxy+Ny2

Ex2 + 2Fxy+Gy2
.

Thus, the partial derivatives ∂κN(u
′,v′)/∂x and ∂κN(u

′,v′)/∂y of the above function

must be zero for the principal directions (u′,v′) associated with κ1 and κ2. It is easy

to see that this yields the equations
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(L−κE)u′+(M−κF)v′ = 0,

(M−κF)u′+(N−κG)v′ = 0,

where κ is either κ1 or κ2. On the other hand, the eigenvectors of J(dN(u,v)) also

satisfy the equation

J(dN(u,v))

(
u′

v′

)
=−κ

(
u′

v′

)
,

that is

MF−LG

EG−F2
u′+

NF−MG

EG−F2
v′ =−κu′,

LF−ME

EG−F2
u′+

MF−NE

EG−F2
v′ =−κv′,

where κ = κ1 or κ = κ2. From the equations

(L−κE)u′+(M−κF)v′ = 0,

(M−κF)u′+(N−κG)v′ = 0,

we get

Lu′+Mv′ = κ(Eu′+Fv′),

Mu′+Nv′ = κ(Fu′+Gv′),

which reads in matrix form as

(
L M

M N

)(
u′

v′

)
= κ

(
E F

F G

)(
u′

v′

)
,

which yields (
E F

F G

)−1(
L M

M N

)(
u′

v′

)
= κ

(
u′

v′

)
,

that is,
1

EG−F2

(
G −F

−F E

)(
L M

M N

)(
u′

v′

)
= κ

(
u′

v′

)
,

which yields precisely

LG−MF

EG−F2
u′+

MG−NF

EG−F2
v′ = κu′,

ME−LF

EG−F2
u′+

NE−MF

EG−F2
v′ = κv′,

or equivalently
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MF−LG

EG−F2
u′+

NF−MG

EG−F2
v′ =−κu′,

LF−ME

EG−F2
u′+

MF−NE

EG−F2
v′ =−κv′.

Therefore, the eigenvectors of J(dN(u,v)) correspond to the principal directions

at p. ⊓⊔

The fact that Nu =−κXu when κ is one of the principal curvatures and when Xu

corresponds to the corresponding principal direction (and similarly Nv = −κXv for

the other principal curvature) is known as the formula of Olinde Rodrigues (1815).

The somewhat irritating negative signs arising in the eigenvalues −κ1 and −κ2

of dN(u,v) can be eliminated if we consider the linear map S(u,v) =−dN(u,v) instead

of dN(u,v). The map S(u,v) is called the shape operator at p, and the map dN(u,v)

is sometimes called the Weingarten operator. The following lemma shows that the

second fundamental form arises from the shape operator, and that the shape opera-

tor is self-adjoint with respect to the inner product 〈−,−〉 associated with the first

fundamental form.

Lemma 20.5. Given a surface X, for any point p = X(u,v) on X, the second funda-

mental form of X at p is given by the formula

II(u,v)(t) = 〈S(u,v)(t), t〉,

for every t ∈ R2. The map S(u,v) =−dN(u,v) is self-adjoint, that is,

〈S(u,v)(x), y〉= 〈x, S(u,v)(y)〉,

for all x,y ∈R2.

Proof. For any tangent vector t = Xux+Yvy, since

S(u,v)(Xux+Xvy) =−dN(u,v)(Xux+Xvy) =−Nux−Nvy,

we have

〈S(u,v)(Xux+Xvy), (Xux+Xvy)〉= 〈(−Nux−Nvy), (Xux+Xvy)〉
=−(Nu ·Xu)x

2− (Nu ·Xv +Nv ·Xu)xy

− (Nv ·Xv)y
2.

However, we already showed in the proof of Lemma 20.3 that

L = N ·Xuu =−Nu ·Xu,

M = N ·Xuv =−Nv ·Xu,

M = N ·Xvu =−Nu ·Xv

N = N ·Xvv =−Nv ·Xv,
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and thus that

〈S(u,v)(Xux+Xvy), (Xux+Xvy)〉= Lx2 + 2Mxy+Ny2,

the second fundamental form. To prove that S(u,v) is self-adjoint, it is sufficient to

prove it for the basis (Xu,Xv). This amounts to proving that

〈Nu, Xv〉= 〈Xu, Nv〉.

However, we just proved that Nv ·Xu = Nu ·Xv = −M, and the proof is complete.

⊓⊔

Thus, in some sense, the shape operator contains all the information about cur-

vature.

Remark: The fact that the first fundamental form I is positive definite and that

S(u,v) is self-adjoint with respect to I can be used to give a fancier proof of the

fact that S(u,v) has two real eigenvalues, that the eigenvectors are orthonormal, and

that the eigenvalues correspond to the maximum and the minimum of I on the unit

circle. For such a proof, see do Carmo [12]. Our proof is more basic and from first

principles.

20.8 The Dupin Indicatrix

The second fundamental form shows up again when we study the deviation of a

surface from its tangent plane in a neighborhood of the point of tangency. A way

to study this deviation is to imagine that we dip the surface in water, and watch

the shorelines formed in the water by the surface in a small region around a chosen

point, as we move the surface up and down very gently. The resulting curve is known

as the Dupin indicatrix (1813). Formally, consider the tangent plane T(u0,v0)(X) at

some point p = X(u0,v0), and consider the perpendicular distance ρ(u,v) from the

tangent plane to a point on the surface defined by (u,v). This perpendicular distance

can be expressed as

ρ(u,v) = (X(u,v)−X(u0,v0)) ·N(u0,v0).

However, since X is at least C3-continuous, by Taylor’s formula, in a neighborhood

of (u0,v0) we can write

X(u,v) = X(u0,v0)+Xu(u− u0)+Xv(v− v0)

+
1

2
(Xuu(u− u0)

2 + 2Xuv(u− u0)(v− v0)+Xvv(v− v0)
2)

+ ((u− u0)
2 +(v− v0)

2)h1(u,v),
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where lim(u,v)→(u0,v0) h1(u,v) = 0. However, recall that Xu and Xv are really evalu-

ated at (u0,v0) (and so are Xuu, Xu,v, and Xvv), and so they are orthogonal to N(u0,v0).

From this, dotting with N(u0,v0), we get

ρ(u,v) =
1

2
(L(u− u0)

2 + 2M(u− u0)(v− v0)+N(v− v0)
2)

+ ((u− u0)
2 +(v− v0)

2)h(u,v),

where lim(u,v)→(u0,v0) h(u,v) = 0. Therefore, we get another interpretation of the

second fundamental form as a way of measuring the deviation from the tangent

plane.

For ε small enough, and in a neighborhood of (u0,v0) small enough, the set of

points X(u,v) on the surface such that ρ(u,v) =± 1
2
ε2 will look like portions of the

curves of equation

1

2

(
L(u− u0)

2 + 2M(u− u0)(v− v0)+N(v− v0)
2
)
=±1

2
ε2.

Letting u− u0 = εx and v− v0 = εy, these curves are defined by the equations

Lx2 + 2Mxy+Ny2 =±1.

These curves are called the Dupin indicatrix. It is more convenient to switch to an

orthonormal basis where e1 and e2 are eigenvectors of the Gauss map dN(u0,v0). If

so, it is immediately seen that

Lx2 + 2Mxy+Ny2 = κ1x2 +κ2y2,

where κ1 and κ2 are the principal curvatures. Thus, the equation of the Dupin indi-

catrix is

κ1x2 +κ2y2 =±1.

There are several cases, depending on the sign of κ1κ2 = K, i.e., depending on

the sign of LN−M2.

(1) If LN−M2 > 0, then κ1 and κ2 have the same sign. This is the case of an elliptic

point. If κ1 6= κ2, and κ1 > 0 and κ2 > 0, we get the ellipse of equation

x2

(√
1

κ1

)2
+

y2

(√
1

κ2

)2
= 1,

and if κ1 < 0 and κ2 < 0, we get the ellipse of equation

x2

(√
− 1

κ1

)2
+

y2

(√
− 1

κ2

)2
= 1.

When κ1 = κ2, i.e., an umbilical point, the Dupin indicatrix is a circle.
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(2) If LN−M2 = 0 and L2 +M2+N2 > 0, then κ1 = 0 or κ2 = 0, but not both. This

is the case of a parabolic point. In this case, the Dupin indicatrix degenerates to

two parallel lines, since the equation is either

κ1x2 =±1

or

κ2y2 =±1.

(3) If LN−M2 < 0, then κ1 and κ2 have different signs. This is the case of a hyper-

bolic point. In this case, the Dupin indicatrix consists of the two hyperbolae of

equations

x2

(√
1

κ1

)2
− y2

(√
− 1

κ2

)2
= 1

if κ1 > 0 and κ2 < 0, or of equation

− x2

(√
− 1

κ1

)2
+

y2

(√
1

κ2

)2
= 1

if κ1 < 0 and κ2 > 0. These hyperbolae share the same asymptotes, which are the

asymptotic directions as defined in Section 20.6, and are given by the equation

Lx2 + 2Mxy+Ny2 = 0.

(4) If L = M = N, we have a planar point, and in this case, the Dupin indicatrix is

undefined.

� One should be warned that the Dupin indicatrix for the planar point on

the monkey saddle shown in Hilbert and Cohn-Vossen [25], Chapter IV,

page 192, is wrong!

Therefore, analyzing the shape of the Dupin indicatrix leads us to rediscover the

classification of points on a surface in terms of the principal curvatures. It also lends

some intuition to the meaning of the words elliptic, hyperbolic, and parabolic (the

last one being a bit misleading). The analysis of ρ(u,v) also shows that in the elliptic

case, in a small neighborhood of X(u,v), all points of X are on the same side of the

tangent plane. This is like being on the top of a round hill. In the hyperbolic case,

in a small neighborhood of X(u,v) there are points of X on both sides of the tangent

plane. This is a saddle point or a valley (or mountain pass).
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20.9 The Theorema Egregium of Gauss, the Equations of

Codazzi–Mainardi, and Bonnet’s Theorem

In Section 20.5 we expressed the geodesic curvature in terms of the Christoffel

symbols, and we also showed that these symbols depend only on E,F,G, i.e., on

the first fundamental form. In Section 20.7, we expressed Nu and Nv in terms of the

coefficients of the first and the second fundamental forms. At first glance, given any

six functions E , F , G, L, M, N that are at least C3-continuous on some open subset

U of R2, and where E,F > 0 and EG−F2 > 0, it is plausible that there is a surface

X defined on some open subset Ω of U and having Ex2 + 2Fxy+Gy2 as its first

fundamental form and Lx2 +2Mxy+Ny2 as its second fundamental form. However,

this is false. The problem is that for a surface X , the functions E,F,G,L,M,N are

not independent.

In this section we investigate the relations that exist among these functions. We

will see that there are three compatibility equations. The first one gives the Gaussian

curvature in terms of the first fundamental form only. This is the famous Theorema

Egregium of Gauss (1827). The other two equations express Mu−Lv and Nu−Mv

in terms of L,M,N and the Christoffel symbols. These equations are due to Codazzi

(1867) and Mainardi (1856). They were discovered independently by Peterson in

1852 (see Gamkrelidze [20]). Remarkably, these compatibility equations are just

what it takes to ensure the existence of a surface (at least locally) with Ex2+2Fxy+
Gy2 as its first fundamental form and Lx2 + 2Mxy+Ny2 as its second fundamental

form, an important theorem shown by Ossian Bonnet (1867).

Recall that

X ′′ = Xuu′′1 +Xvu′′2 +Xuu(u
′
1)

2 + 2Xuvu
′
1u′2 +Xvv(u

′
2)

2,

= (L(u′1)
2 + 2Mu′1u′2 +N(u′2)

2)N+κgng,

and since

κgng =

(
u′′1 + ∑

i=1,2
j=1,2

Γ 1
i j u′iu

′
j

)
Xu +

(
u′′2 + ∑

i=1,2
j=1,2

Γ 2
i j u′iu

′
j

)
Xv,

we get the equations (due to Gauss)

Xuu = Γ 1
11Xu +Γ 2

11Xv +LN,

Xuv = Γ 1
12Xu +Γ 2

12Xv +MN,

Xvu = Γ 1
21Xu +Γ 2

21Xv +MN,

Xvv = Γ 1
22Xu +Γ 2

22Xv +NN,

where the Christoffel symbols Γ k
i j are defined such that



624 20 Basics of the Differential Geometry of Surfaces

(
Γ 1

i j

Γ 2
i j

)
=

(
E F

F G

)−1(
[i j; 1]
[i j; 2]

)
,

and where

[11; 1] =
1

2
Eu, [11; 2] = Fu−

1

2
Ev,

[12; 1] =
1

2
Ev, [12; 2] =

1

2
Gu,

[21; 1] =
1

2
Ev, [21; 2] =

1

2
Gu,

[22; 1] = Fv−
1

2
Gu, [22; 2] =

1

2
Gv.

Also, recall from Section 20.7 that we have the Weingarten equations

(
Nu

Nv

)
=

(
a c

b d

)(
Xu

Xv

)
=−

(
L M

M N

)(
E F

F G

)−1(
Xu

Xv

)
.

From the Gauss equations and the Weingarten equations

Xuu = Γ 1
11Xu +Γ 2

11Xv +LN,

Xuv = Γ 1
12Xu +Γ 2

12Xv +MN,

Xvu = Γ 1
21Xu +Γ 2

21Xv +MN,

Xvv = Γ 1
22Xu +Γ 2

22Xv +NN,

Nu = aXu + cXv,

Nv = bXu + dXv,

we see that the partial derivatives of Xu, Xv and N can be expressed in terms of the

coefficients E , F , G, L, M, N and their partial derivatives. Thus, a way to obtain rela-

tions among these coefficients is to write the equations expressing the commutation

of partials, i.e.,

(Xuu)v− (Xuv)u = 0,

(Xvv)u− (Xvu)v = 0,

Nuv−Nvu = 0.

Using the Gauss equations and the Weingarten equations, we obtain relations of the

form

A1Xu +B1Xv +C1N = 0,

A2Xu +B2Xv +C2N = 0,

A3Xu +B3Xv +C3N = 0,
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where Ai,Bi, and Ci are functions of E,F,G,L,M,N and their partial derivatives, for

i = 1,2,3. However, since the vectors Xu,Xv, and N are linearly independent, we

obtain the nine equations

Ai = 0, Bi = 0, Ci = 0, for i = 1,2,3.

Although this is very tedious, it can be shown that these equations are equivalent

to just three equations. Due to its importance, we state the Theorema Egregium of

Gauss.

Theorem 20.1. Given a surface X and a point p = X(u,v) on X, the Gaussian cur-

vature K at (u,v) can be expressed as a function of E, F, G, and their partial deriva-

tives. In fact,

(EG−F2)2K =

∣∣∣∣∣∣

C Fv− 1
2

Gu
1
2

Gv
1
2

Eu E F

Fu− 1
2

Ev F G

∣∣∣∣∣∣
−

∣∣∣∣∣∣

0 1
2

Ev
1
2

Gu
1
2

Ev E F
1
2

Gu F G

∣∣∣∣∣∣
,

where

C =
1

2
(−Evv + 2Fuv−Guu).

Proof. Following Darboux [7] (Volume III, page 246), a way of proving Theorem

20.1 is to start from the formula

K =
LN−M2

EG−F2

and to go back to the expressions of L,M,N using D,D′,D′′ as determinants:

L =
D√

EG−F2
, M =

D′√
EG−F2

, N =
D′′√

EG−F2
,

where

D = (Xu,Xv,Xuu), D′ = (Xu,Xv,Xuv), D′′ = (Xu,Xv,Xvv).

Then we can write

(EG−F2)2K = (Xu,Xv,Xuu)(Xu,Xv,Xvv)− (Xu,Xv,Xuv)
2,

and compute these determinants by multiplying them out. One will eventually get

the expression given in the theorem! ⊓⊔

It can be shown that the other two equations, known as the Codazzi–Mainardi

equations, are the equations

Mu−Lv = Γ 2
11N− (Γ 2

12−Γ 1
11)M−Γ 1

12L,

Nu−Mv = Γ 2
12N− (Γ 2

22−Γ 1
12)M−Γ 1

22L.
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We conclude this section with an important theorem of Ossian Bonnet. First, we

show that the first and the second fundamental forms determine a surface up to rigid

motion. More precisely, we have the following lemma.

Lemma 20.6. Let X : Ω → E3 and Y : Ω → E3 be two surfaces over a connected

open set Ω . If X and Y have the same coefficients E,F,G, L,M,N over Ω , then there

is a rigid motion mapping X(Ω) onto Y (Ω).

The above lemma can be shown using a standard theorem about ordinary differ-

ential equations (see do Carmo, [12] Appendix to Chapter 4, pp. 309–314). Finally,

we state Bonnet’s theorem.

Theorem 20.2. Let E,F,G, L,M,N be C3-continuous functions on some open set

U ⊂R2, and such that E > 0, G > 0, and EG−F2 > 0. If these functions satisfy the

Gauss formula (of the Theorema Egregium) and the Codazzi–Mainardi equations,

then for every (u,v) ∈U there is an open set Ω ⊆ U such that (u,v) ∈ Ω , and a

surface X : Ω →E3 such that X is a diffeomorphism, and E,F,G are the coefficients

of the first fundamental form of X, and L,M,N are the coefficients of the second

fundamental form of X. Furthermore, if Ω is connected, then X(Ω) is unique up to

a rigid motion.

20.10 Lines of Curvature, Geodesic Torsion, Asymptotic Lines

Given a surface X , certain curves on the surface play a special role, for example,

the curves corresponding to the directions in which the curvature is maximum or

minimum. More precisely, we have the following definition.

Definition 20.8. Given a surface X , a line of curvature is a curve C : t 7→ X(u(t),
v(t)) on X defined on some open interval I and having the property that for every

t ∈ I, the tangent vector C′(t) is collinear with one of the principal directions at

X(u(t),v(t)).

Note that we are assuming that no point on a line of curvature is either a pla-

nar point or an umbilical point, since principal directions are undefined as such

points. The differential equation defining lines of curvature can be found as follows.

Remember from Lemma 20.4 of Section 20.7 that the principal directions are the

eigenvectors of dN(u,v). Therefore, we can find the differential equation defining the

lines of curvature by eliminating κ from the two equations from the proof of Lemma

20.4:

MF−LG

EG−F2
u′+

NF−MG

EG−F2
v′ =−κu′,

LF−ME

EG−F2
u′+

MF−NE

EG−F2
v′ =−κv′.

It is not hard to show that the resulting equation can be written as
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∣∣∣∣∣∣

(v′)2 −u′v′ (u′)2

E F G

L M N

∣∣∣∣∣∣
= 0.

From the above equation we see that the u-lines and the v-lines are the lines of

curvature iff F = M = 0. Generally, this differential equation does not have closed-

form solutions.

There is another notion that is useful in understanding lines of curvature, the

geodesic torsion. Let C : s 7→ X(u(s),v(s)) be a curve on X assumed to be parame-

trized by arc length, and let X(u(0),v(0)) be a point on the surface X , and assume

that this point is neither a planar point nor an umbilic, so that the principal directions

are defined. We can define the orthonormal frame (e1,e2,N), known as the Darboux

frame, where e1 and e2 are unit vectors corresponding to the principal directions, N

is the normal to the surface at X(u(0),v(0)), and N = e1× e2.

It is interesting to study the quantity dN(u,v)(0)/ds. If t=C′(0) is the unit tangent

vector at X(u(0),v(0)), we have another orthonormal frame considered in Section

20.4, namely (t,ng,N), where ng = N× t, and if ϕ is the angle between e1 and t, we

have

t = cosϕ e1 + sinϕ e2,

ng =−sinϕ e1 + cosϕ e2.

In the following lemma we show that

dN(u,v)

ds
(0) =−κNt+ τgng,

where κN is the normal curvature and where τg is a quantity called the geodesic

torsion.

Lemma 20.7. Given a curve C : s 7→ X(u(s),v(s)) parametrized by arc length on a

surface X, we have
dN(u,v)

ds
(0) =−κNt+ τgng,

where κN is the normal curvature, and where the geodesic torsion τg is given by

τg = (κ1−κ2)sinϕ cosϕ .

Proof. Since −κ1 and −κ2 are the eigenvalues of dN(u(0),v(0)) associated with the

eigenvectors e1 and e2 (where κ1 and κ2 are the principal curvatures), it is immediate

that
dN(u,v)

ds
(0) = dN(u(0),v(0))(t) =−κ1 cosϕe1−κ2 sin ϕe2,

which shows that this vector is a linear combination of t and ng. By projection onto

ng we get that the geodesic torsion τg given by
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τg = dN(u(0),v(0))(t) ·ng,

= (−κ1 cosϕ e1−κ2 sinϕ e2) · (−sinϕ e1 + cosϕ e2),

= (κ1−κ2)sinϕ cosϕ .

Using Euler’s formula (see Section 20.6)

κN = κ1 cos2 ϕ +κ2 sin2 ϕ ,

it is immediately verified that

dN(u(0),v(0))(t) · t =−κN ,

which proves the lemma. ⊓⊔
From the formula

τg = (κ1−κ2)sinϕ cosϕ ,

since ϕ is the angle between the tangent vector to the curve C and a principal direc-

tion, it is clear that the lines of curvature are characterized by the fact that τg = 0.

One will also observe that orthogonal curves have opposite geodesic torsions (same

absolute value and opposite signs).

If N is the principal normal, τ is the torsion of C at X(u(0),v(0)), and θ is the

angle between N and n, so that cosθ = N ·n, we claim that

τg = τ− dθ

ds
,

which is often known as Bonnet’s formula.

Lemma 20.8. Given a curve C : s 7→ X(u(s),v(s)) parametrized by arc length on a

surface X, the geodesic torsion τg is given by

τg = τ− dθ

ds
= (κ1−κ2)sin ϕ cosϕ ,

where τ is the torsion of C at X(u(0),v(0)), and θ is the angle between N and the

principal normal n to C at s = 0.

Proof. We differentiate

cosθ = N ·n.
This yields

−sinθ
dθ

ds
=

dN

ds
·n+N · dn

ds
,

and since by the Frenet–Serret formulae

dn

ds
=−κt− τb,

and by Lemma 20.7
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dN

ds
=−κNt+ τgng,

we get

−sinθ
dθ

ds
= (−κNt+ τgng) ·n+N · (−κt− τb)

= τg(ng ·n)− τ(N ·b)
= τg sinθ − τ sinθ ,

since

ng ·n = N ·b = sinθ .

Therefore, when θ 6= 0, we get

−dθ

ds
= τg− τ,

and by continuity, when θ = 0,

0 = τg− τ.

Therefore, in all cases we obtain the formula

τg = τ− dθ

ds
,

which proves the lemma. ⊓⊔

Note that the geodesic torsion depends only on the tangent of curves C. Also, for

a curve for which θ = 0, we have τg = τ . Such a curve is also characterized by the

fact that the geodesic curvature κg is null. As we will see shortly, such curves are

called geodesics, which explains the name geodesic torsion for τg.

Lemma 20.8 can be used to give a quick proof of a beautiful theorem of Dupin

(1813). Dupin’s theorem has to do with families of surfaces forming a triply or-

thogonal system. Given some open subset U of E3, three families F1, F2, F3 of

surfaces form a triply orthogonal system for U if for every point p ∈U there is a

unique surface from each family Fi passing through p, where i = 1,2,3, and any

two of these surfaces intersect orthogonally along their curve of intersection. Then

Dupin’s theorem is as follows.

Theorem 20.3. The surfaces of a triply orthogonal system intersect each other

along lines of curvature.

Proof. Here is a sketch of the proof. First, we note that if two surfaces X1 and

X2 intersect along a curve C, and if they form a constant angle along C, then the

geodesic torsion τ1
g of C on X1 is equal to the geodesic torsion τ2

g of C on X2. Indeed,

if θ1 is the angle between N1 and n, and θ2 is the angle between N2 and n, where

N1 is the normal to X1, N2 is the normal to X2, and n is the principal normal to C,

then
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θ1−θ2 = λ ,

where λ is some constant, and thus

dθ1

ds
=

dθ2

ds
,

which shows that

τ1
g = τ− dθ1

ds
= τ− dθ2

ds
= τ2

g .

Now, if the system of surfaces is triply orthogonal, letting τi j be the geodesic

curvature of the curve of intersection Ci j between Xi ∈ Fi and X j ∈ F j (where

1 ≤ i < j ≤ 3), which is well defined, since Xi and X j intersect orthogonally, from

a previous observation the geodesic torsions of orthogonal curves are opposite, and

thus

τ12 =−τ13, τ23 =−τ12, τ13 =−τ23,

from which we get that

τ12 = τ23 = τ13 = 0.

However, this means that the curves of intersection are lines of curvature. ⊓⊔

A nice application of Theorem 20.3 is that it is possible to find the lines of curva-

ture on an ellipsoid. Indeed, a system of confocal quadrics is triply orthogonal! (see

Berger and Gostiaux [4], Chapter 10, Sections 10.2.2.3, 10.4.9.5, and 10.6.8.3, and

Hilbert and Cohn-Vossen [25], Chapter 4, Section 28).

We now turn briefly to asymptotic lines. Recall that asymptotic directions are de-

fined only at points where K < 0, and at such points they correspond to the directions

for which the normal curvature κN is null.

Definition 20.9. Given a surface X , an asymptotic line is a curve C : t 7→ X(u(t),
4v(t)) on X defined on some open interval I where K < 0, and having the property

that for every t ∈ I, the tangent vector C′(t) is collinear with one of the asymptotic

directions at X(u(t),v(t)).

The differential equation defining asymptotic lines is easily found, since it ex-

presses the fact that the normal curvature is null:

L(u′)2 + 2M(u′v′)+N(v′)2 = 0.

Such an equation generally does not have closed-form solutions. Note that the

u-lines and the v-lines are asymptotic lines iff L = N = 0 (and F 6= 0).

Example 20.9. Perseverant readers are welcome to compute E,F,G, L,M,N for the

Enneper surface
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x = u− u3

3
+ uv2,

y = v− v3

3
+ u2v,

z = u2− v2.

Then they will be able to find closed-form solutions for the lines of curvature and

the asymptotic lines.

Parabolic lines are defined by the equation

LN−M2 = 0,

where L2+M2+N2 > 0. In general, the locus of parabolic points consists of several

curves and points. For fun, the reader should look at Klein’s experiment as described

in Hilbert and Cohn-Vossen [25], Chapter IV, Section 29, page 197. We now turn

briefly to geodesics.

20.11 Geodesic Lines, Local Gauss–Bonnet Theorem

Geodesics play a very important role in surface theory and in dynamics. One of

the main reasons why geodesics are so important is that they generalize to curved

surfaces the notion of “shortest path” between two points in the plane (warning: As

we shall see, this is true only locally, not globally). More precisely, given a surface X

and any two points p= X(u0,v0) and q=X(u1,v1) on X , let us look at all the regular

curves C on X defined on some open interval I such that p = C(t0) and q = C(t1)
for some t0, t1 ∈ I. It can be shown that in order for such a curve C to minimize the

length lC(pq) of the curve segment from p to q, we must have κg(t) = 0 along [t0, t1],
where κg(t) is the geodesic curvature at X(u(t),v(t)). In other words, the principal

normal n must be parallel to the normal N to the surface along the curve segment

from p to q. If C is parametrized by arc length, this means that the acceleration must

be normal to the surface.

It it then natural to define geodesics as those curves such that κg = 0 everywhere

on their domain of definition. Actually, there is another way of defining geodesics

in terms of vector fields and covariant derivatives (see do Carmo [12] or Berger and

Gostiaux [4]), but for simplicity, we stick to the definition in terms of the geodesic

curvature (however, see Section 20.12).

Definition 20.10. Given a surface X : Ω → E3, a geodesic line, or geodesic, is a

regular curve C : I→ E3 on X such that κg(t) = 0 for all t ∈ I.

Note that by regular curve we mean that Ċ(t) 6= 0 for all t ∈ I, i.e., C is really a

curve, and not a single point. Physically, a particle constrained to stay on the surface

and not acted on by any force, once set in motion with some nonnull initial velocity

(tangent to the surface), will follow a geodesic (assuming no friction).
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Since κg = 0 iff the principal normal n to C at t is parallel to the normal N to the

surface at X(u(t),v(t)), and since the principal normal n is a linear combination of

the tangent vector Ċ(t) and the acceleration vector C̈(t), the normal N to the surface

at t belongs to the osculating plane.

The differential equations for geodesics are obtained from Lemma 20.2. Since

the tangential part of the curvature at a point is given by

κgng =

(
u′′1 + ∑

i=1,2
j=1,2

Γ 1
i j u′iu

′
j

)
Xu +

(
u′′2 + ∑

i=1,2
j=1,2

Γ 2
i j u′iu

′
j

)
Xv,

the differential equations for geodesics are

u′′1 + ∑
i=1,2
j=1,2

Γ 1
i j u′iu

′
j = 0,

u′′2 + ∑
i=1,2
j=1,2

Γ 2
i j u′iu

′
j = 0,

or more explicitly (letting u = u1 and v = u2),

u′′+Γ 1
11 (u

′)2 + 2Γ 1
12 u′v′+Γ 1

22 (v
′)2 = 0,

v′′+Γ 2
11 (u

′)2 + 2Γ 2
12 u′v′+Γ 2

22 (v
′)2 = 0.

In general, it is impossible to find closed-form solutions for these equations. Nev-

ertheless, from the theory of ordinary differential equations, the following lemma

showing the local existence of geodesics can be shown (see do Carmo [12], Chapter

4, Section 4.7).

Lemma 20.9. Given a surface X, for every point p=X(u,v) on X and every nonnull

tangent vector v∈T(u,v)(X), there is some ε > 0 and a unique curve γ : ]−ε, ε[→E3

on the surface X such that γ is a geodesic, γ(0) = p, and γ ′(0) = v.

To emphasize that the geodesic γ depends on the initial direction v, we often

write γ(t,v) instead of γ(t). The geodesics on a sphere are the great circles (the

plane sections by planes containing the center of the sphere). More generally, in the

case of a surface of revolution (a surface generated by a plane curve rotating around

an axis in the plane containing the curve and not meeting the curve), the differential

equations for geodesics can be used to study the geodesics.

Example 20.10. For example, the meridians are geodesics (meridians are the plane

sections by planes through the axis of rotation: They are obtained by rotating the

original curve generating the surface). Also, the parallel circles such that at every

point p the tangent to the meridian through p is parallel to the axis of rotation is a

geodesic. In general, there are other geodesics. For more on geodesics on surfaces

of revolution, see do Carmo [12], Chapter 4, Section 4, and the problems.
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The geodesics on an ellipsoid are also fascinating; see Berger and Gostiaux [4],

Section 10.4.9.5, and Hilbert and Cohn-Vossen [25], Chapter 4, Section 32.

It should be noted that geodesics can be self-intersecting or closed. A deeper

study of geodesics requires a study of vector fields on surfaces and would lead us

too far. Technically, what is needed is the exponential map, which we now discuss

briefly.

The idea behind the exponential map is to parametrize locally the surface X in

terms of a map from the tangent space to the surface, this map being defined in terms

of short geodesics. More precisely, for every point p = X(u,v) on the surface, there

is some open disk Bε of center (0,0) in R2 (recall that the tangent plane Tp(X) at p

is isomorphic to R2) and an injective map

expp : Bε → X(Ω)

such that for every v ∈ Bε with v 6= 0,

expp(v) = γ(1,v),

where γ(t,v) is the unique geodesic segment such that γ(0,v) = p and γ ′(0,v) =
v. Furthermore, for Bε small enough, expp is a diffeomorphism. It turns out that

expp(v) is the point q obtained by “laying off” a length equal to ‖v‖ along the

unique geodesic that passes through p in the direction v. Of course, to make sure

that all this is well-defined, it is necessary to prove a number of facts. We state the

following lemmas, whose proofs can be found in do Carmo [12].

Lemma 20.10. Given a surface X : Ω → E3, for every v 6= 0 in R2, if

γ(−,v) : ]− ε, ε [→ E3

is a geodesic on the surface X, then for every λ > 0, the curve

γ(−,λ v) : ]− ε/λ , ε/λ [→ E3

is also a geodesic, and

γ(t,λ v) = γ(λ t,v).

From Lemma 20.10, for v 6= 0, if γ(1,v) is defined, then

γ

(
‖v‖, v

‖v‖

)
= γ(1,v).

This leads to the definition of the exponential map.

Definition 20.11. Given a surface X : Ω → E3 and a point p = X(u,v) on X , the

exponential map expp is the map

expp : U → X(Ω)

defined such that
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expp(v) = γ

(
‖v‖, v

‖v‖

)
= γ(1,v),

where γ(0,v) = p and U is the open subset of R2(= Tp(X)) such that for every v 6= 0,

γ (‖v‖,v/‖v‖) is defined. We let expp(0) = p.

It is immediately seen that U is star-like. One should realize that in general,

U is a proper subset of Ω . For example, in the case of a sphere, the exponential

map is defined everywhere. However, given a point p on a sphere, if we remove its

antipodal point −p, then expp(v) is undefined for points on the circle of radius π .

Nevertheless, expp is always well-defined in a small open disk.

Lemma 20.11. Given a surface X : Ω → E3, for every point p = X(u,v) on X there

is some ε > 0, some open disk Bε of center (0,0), and some open subset V of X(Ω)
with p ∈ V such that the exponential map expp : Bε → V is well-defined and is a

diffeomorphism.

A neighborhood of p on X of the form expp(Bε) is called a normal neighborhood

of p. The exponential map can be used to define special local coordinate systems on

normal neighborhoods, by picking special coordinate systems on the tangent plane.

In particular, we can use polar coordinates (ρ ,θ ) on R2. In this case, 0 < θ < 2π .

Thus, the closed half-line corresponding to θ = 0 is omitted, and so is its image

under expp. It is easily seen that in such a coordinate system E = 1 and F = 0, and

ds2 is of the form

ds2 = dr2 +Gdθ 2.

The image under expp of a line through the origin in R2 is called a geodesic line,

and the image of a circle centered at the origin is called a geodesic circle. Since

F = 0, these lines are orthogonal. It can also be shown that the Gaussian curvature

is expressed as follows:

K =− 1√
G

∂ 2(
√

G)

∂ρ2
.

Polar coordinates can be used to prove the following lemma showing that

geodesics locally minimize arc length.

� However, globally, geodesics generally do not minimize arc length. For

instance, on a sphere, given any two nonantipodal points p,q, since there

is a unique great circle passing through p and q, there are two geodesic arcs joining

p and q, but only one of them has minimal length.

Lemma 20.12. Given a surface X : Ω → E3, for every point p = X(u,v) on X there

is some ε > 0 and some open disk Bε of center (0,0) such that for every q∈ expp(Bε )

and geodesic γ : ]−η , η [→ E3 in expp(Bε) such that γ(0) = p and γ(t1) = q, and

for every regular curve α : [0, t1]→ E3 on X such that α(0) = p and α(t1) = q, we

have

lγ(pq)≤ lα(pq),
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where lα(pq) denotes the length of the curve segment α from p to q (and similarly

for γ). Furthermore, lγ (pq) = lα(pq) iff the trace of γ is equal to the trace of α
between p and q.

As we already noted, Lemma 20.12 is false globally, since a geodesic, if extended

too much, may not be the shortest path between two points (example of the sphere).

However, the following lemma shows that a shortest path must be a geodesic seg-

ment.

Lemma 20.13. Given a surface X : Ω → E3, let α : I→ E3 be a regular curve on

X parametrized by arc length. For any two points p = α(t0) and q = α(t1) on α ,

assume that the length lα(pq) of the curve segment from p to q is minimal among

all regular curves on X passing through p and q. Then α is a geodesic.

At this point, in order to go further into the theory of surfaces, in particular closed

surfaces, it is necessary to introduce differentiable manifolds and more topological

tools. However, this is beyond the scope of this book, and we simply refer the in-

terested readers to the following sources. For the foundations of differentiable man-

ifolds, see Berger and Gostiaux [4], do Carmo [12, 13, 14], Guillemin and Pollack

[24], Warner [43], Sternberg [41], Boothby [5], Lafontaine [29], Lehmann and Sacré

[31], Gray [23], Stoker [42], Gallot, Hulin, and Lafontaine [19], Milnor [36], Lang

[30], Malliavin [33], and Godbillon [21]. Abraham and Marsden [1] contains a com-

pact and yet remarkably clear and complete presentation of differentiable manifolds

and Riemannian geometry (and a lot of Lagrangian and Hamiltonian mechanics!).

For the differential topology of surfaces, see Guillemin and Pollack [24], Milnor

[36, 37], Hopf [26], Gramain [22], Lehmann and Sacré [31], and for the algebraic

topology of surfaces, see Chapter 1 of Massey [35, 34] and Chapter 1 of Ahlfors

and Sario [2], which is remarkable. A lively and remarkably clear introduction to

algebraic topology, including the classification theorem for surfaces, can be found

in Fulton [17]. For a detailed presentation of differential geometry and Riemannian

geometry, see do Carmo [14], Gallot, Hulin, and Lafontaine [19], Sternberg [41],

Gray [23], Sharpe [40], Lang [30], Lehmann and Sacré [31], and Malliavin [33].

Choquet-Bruhat [6] also covers a lot of geometric analysis, differential geometry,

and topology, and stresses applications to physics. Volume 28 of the Encyclopaedia

of Mathematical Sciences edited by Gamkrelidze [20] contains a very interesting

survey of the field of differential geometry, understood in a broad sense.

Nevertheless, we cannot resist to state one of the “gems” of the differential ge-

ometry of surfaces, the local Gauss–Bonnet theorem.

The local Gauss–Bonnet theorem deals with regions on a surface homeomorphic

to a closed disk whose boundary is a closed piecewise regular curve α without

self-intersection. Such a curve has a finite number of points where the tangent has

a discontinuity. If there are n such discontinuities p1, . . . , pn, let θi be the exterior

angle between the two tangents at pi. More precisely, if α(ti) = pi, and the two

tangents at pi are defined by the vectors

lim
t→ti ,t<ti

α ′(t) = α ′−(ti) 6= 0,
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and

lim
t→ti ,t>ti

α ′(t) = α ′+(ti) 6= 0,

the angle θi is defined as follows. Let θi be the angle between α ′−(ti) and α ′+(ti)
such that 0 < |θi| ≤ π , its sign being determined as follows. If pi is not a cusp,

which means that |θi| 6= π , we give θi the sign of the determinant

(α ′−(ti), α ′+(ti), Npi
).

If pi is a cusp, which means that |θi| = π , it is easy to see that there is some ε > 0

such that the determinant

(α ′(ti−η), α ′(ti +η), Npi
)

does not change sign for η ∈]−ε,ε[ , and we give θi the sign of this determinant. Let

us call a region defined as above a simple region. In order to state a simpler version

of the theorem, let us also assume that the curve segments between consecutive

points pi are geodesic lines. We will call such a curve a geodesic polygon. Then the

local Gauss–Bonnet theorem can be stated as follows.

Theorem 20.4. Given a surface X : Ω → E3, assuming that X is injective, F = 0,

and that Ω is an open disk, for every simple region R of X(Ω) bounded by a geodesic

polygon with n vertices p1, . . . , pn, letting θ1, . . . ,θn be the exterior angles of the

geodesic polygon, we have

∫ ∫

R
KdA+

n

∑
i=1

θi = 2π .

Remark: The assumption that F = 0 is not essential, it simply makes the proof

easier.

Some clarification regarding the meaning of the integral
∫∫

R KdA is in order.

Firstly, it can be shown that the element of area dA on a surface X is given by

dA = ‖Xu×Xv‖dudv =
√

EG−F2 dudv.

Secondly, if we recall from Lemma 20.3 that

(
Nu

Nv

)
=−

(
L M

M N

)(
E F

F G

)−1(
Xu

Xv

)
,

it is easily verified that

Nu×Nv =
LN−M2

EG−F2
Xu×Xv = K(Xu×Xv).
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Thus, ∫ ∫

R
KdA =

∫ ∫

R
K‖Xu×Xv‖dudv =

∫ ∫

R
‖Nu×Nv‖dudv,

the latter integral representing the area of the spherical image of R under the Gauss

map. This is the interpretation of the integral
∫∫

R KdA that Gauss himself gave.

If the geodesic polygon is a triangle, and if A,B,C are the interior angles, so that

A = π−θ1, B = π−θ2, C = π−θ3, the Gauss–Bonnet theorem reduces to what is

known as the Gauss formula:

∫ ∫

R
KdA = A+B+C−π .

The above formula shows that if K > 0 on R, then
∫∫

R KdA is the excess of the

sum of the angles of the geodesic triangle over π . If K < 0 on R, then
∫∫

R KdA is the

defficiency of the sum of the angles of the geodesic triangle over π . And finally, if

K = 0, then A+B+C = π , which we know from the plane!

For the global version of the Gauss–Bonnet theorem, we need the topological

notion of the Euler–Poincaré characteristic. If S is an orientable compact surface

with g holes, the Euler–Poincaré characteristic χ(S) of S is defined by

χ(S) = 2(1− g).

Then the Gauss–Bonnet theorem states that
∫ ∫

S
KdA = 2πχ(S).

What is remarkable about the above formula is that it relates the topology of the

surface (its genus g, the number of holes) and the geometry of S, i.e., how it curves.

However, all this is beyond the scope of this book. For more information the inter-

ested reader is referred to Berger and Gostiaux [4], do Carmo [12, 13, 14], Hopf

[26], Milnor [36], Lehmann and Sacré [31], Chapter 1 of Massey [35, 34], Chapter

1 of Ahlfors and Sario [2], and Fulton [17].

20.12 Covariant Derivative, Parallel Transport,

Geodesics Revisited

Another way to approach geodesics is in terms of covariant derivatives. The notion

of covariant derivative is a key concept of Riemannian geometry, and this section

provides a down-to-earth presentation of this notion in the case of a surface.

Let X : Ω →E3 be a surface. Given any open subset U of X , a vector field on U is

a function w that assigns to every point p ∈U some tangent vector w(p) ∈ TpX to X

at p. A vector field w on U is differentiable at p if when expressed as w = aXu+bXv
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in the basis (Xu,Xv) (of TpX), the functions a and b are differentiable at p. A vector

field w is differentiable on U when it is differentiable at every point p ∈U .

Definition 20.12. Let w be a differentiable vector field on some open subset U of a

surface X . For every y∈ TpX , consider a curve α : ]−ε,ε[→U on X with α(0) = p

and α ′(0) = y, and let w(t) = (w◦α)(t) be the restriction of the vector field w to the

curve α . The normal projection of dw/dt(0) onto the plane TpX , denoted by

Dw

dt
(0), or Dα ′w(p), or Dyw(p),

is called the covariant derivative of w at p relative to y.

The definition of Dw/dt(0) seems to depend on the curve α , but in fact, it de-

pends only on y and the first fundamental form of X . Indeed, if α(t) = X(u(t),v(t)),
from

w(t) = a(u(t),v(t))Xu + b(u(t),v(t))Xv,

we get
dw

dt
= a(Xuuu̇+Xuvv̇)+ b(Xvuu̇+Xvvv̇)+ ȧXu + ḃXv.

However, we obtained earlier the following formula (due to Gauss) for Xuu, Xuv, Xvu,

and Xvv:

Xuu = Γ 1
11Xu +Γ 2

11Xv +LN,

Xuv = Γ 1
12Xu +Γ 2

12Xv +MN,

Xvu = Γ 1
21Xu +Γ 2

21Xv +MN,

Xvv = Γ 1
22Xu +Γ 2

22Xv +NN.

Now Dw/dt is the tangential component of dw/dt. Thus by dropping the normal

components, we get

Dw

dt
= (ȧ+Γ 1

11au̇+Γ 1
12av̇+Γ 1

21bu̇+Γ 1
22bv̇)Xu

+ (ḃ+Γ 2
11au̇+Γ 2

12av̇+Γ 2
21bu̇+Γ 2

22bv̇)Xv.

Thus, the covariant derivative depends only on y= (u̇, v̇) and the Christoffel sym-

bols, but we know that those depend only on the first fundamental form of X .

Definition 20.13. Let α : I → X be a regular curve on a surface X . A vector field

along α is a map w that assigns to every t ∈ I a vector w(t) ∈ Tα(t)X in the tangent

plane to X at α(t). Such a vector field is differentiable if the components a,b of

w = aXu + bXv over the basis (Xu,Xv) are differentiable. The expression Dw/dt(t)
defined in the above equation is called the covariant derivative of w at t.

Definition 20.13 extends immediately to piecewise regular curves on a surface.
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Definition 20.14. Let α : I → X be a regular curve on a surface X . A vector field

along α is parallel if Dw/dt = 0 for all t ∈ I.

Thus, a vector field along a curve on a surface is parallel iff its derivative is nor-

mal to the surface. For example, if C is a great circle on the sphere S2 parametrized

by arc length, the vector field of tangent vectors C′(s) along C is a parallel vector

field. We get the following alternative definition of a geodesic.

Definition 20.15. Let α : I→X be a nonconstant regular curve on a surface X . Then

α is a geodesic if the field of its tangent vectors α̇(t) is parallel along α , that is,

Dα̇

dt
(t) = 0

for all t ∈ I.

If we let α(t) = X(u(t),v(t)), from the equation

Dw

dt
= (ȧ+Γ 1

11au̇+Γ 1
12av̇+Γ 1

21bu̇+Γ 1
22bv̇)Xu

+ (ḃ+Γ 2
11au̇+Γ 2

12av̇+Γ 2
21bu̇+Γ 2

22bv̇)Xv,

with a = u̇ and b = v̇, we get the equations

ü+Γ 1
11(u̇)

2 +Γ 1
12u̇v̇+Γ 1

21u̇v̇+Γ 1
22(v̇)

2 = 0,

v̈+Γ 2
11(u̇)

2 +Γ 2
12u̇v̇+Γ 2

21u̇v̇+Γ 2
22(v̇)

2 = 0,

which are indeed the equations of geodesics found earlier, since Γ 1
12 =Γ 1

21 and Γ 2
12 =

Γ 2
21 (except that α is not necessarily parametrized by arc length).

Lemma 20.14. Let α : I→ X be a regular curve on a surface X, and let v and w be

two parallel vector fields along α . Then the inner product 〈v(t),w(t)〉 is constant

along α (where 〈−,−〉 is the inner product associated with the first fundamental

form, i.e., the Riemannian metric). In particular, ‖v‖ and ‖w‖ are constant and the

angle between v(t) and w(t) is also constant.

Proof. The vector field v(t) is parallel iff dv/dt is normal to the tangent plane to the

surface X at α(t), and so

〈v′(t),w(t)〉= 0

for all t ∈ I. Similarly, since w(t) is parallel, we have

〈v(t),w′(t)〉= 0

for all t ∈ I. Then

〈v(t),w(t)〉′ = 〈v′(t),w(t)〉+ 〈v(t),w′(t)〉= 0

for all t ∈ I, which means that 〈v(t),w(t)〉 is constant along α . ⊓⊔
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As a consequence of Corollary 20.14, if α : I → X is a nonconstant geodesic

on X , then ‖α̇‖ = c for some constant c > 0. Thus, we may reparametrize α with

respect to the arc length s = ct, and we note that the parameter t of a geodesic is

proportional to the arc length of α .

Lemma 20.15. Let α : I→ X be a regular curve on a surface X, and for any t0 ∈ I,

let w0 ∈ Tα(t0)X. Then there is a unique parallel vector field w(t) along α such that

w(t0) = w0.

Lemma 20.15 is an immediate consequence of standard results on ODEs. This

lemma yields the notion of parallel transport.

Definition 20.16. Let α : I→ X be a regular curve on a surface X , and for any t0 ∈ I,

let w0 ∈ Tα(t0)X . Let w be the parallel vector field along α , so that w(t0) = w0, given

by Lemma 20.15. Then for any t ∈ I, the vector w(t) is called the parallel transport

of w0 along α at t.

It is easily checked that the parallel transport does not depend on the parametriza-

tion of α . If X is an open subset of the plane, then the parallel transport of w0 at t

is indeed a vector w(t) parallel to w0 (in fact, equal to w0). However, on a curved

surface, the parallel transport may be somewhat counterintuitive.

If two surfaces X and Y are tangent along a curve α : I→X , and if w0 ∈Tα(t0)X =
Tα(t0)Y is a tangent vector to both X and Y at t0, then the parallel transport of w0

along α is the same whether it is relative to X or relative to Y . This is because

Dw/dt is the same for both surfaces, and by uniqueness of the parallel transport, the

assertion follows. This property can be used to figure out the parallel transport of a

vector w0 when Y is locally isometric to the plane.

In order to generalize the notion of covariant derivative, geodesic, and curvature

to manifolds more general than surfaces, the notion of connection is needed.

If M is a manifold, we can consider the space X (M) of smooth vector fields X

on M. They are smooth maps that assign to every point p ∈M some vector X(p) in

the tangent space TpM to M at p. We can also consider the set C ∞(M) of smooth

functions f : M → R on M. Then an affine connection D on M is a differentiable

map

D : X (M)×X (M)→X (M),

denoted by DXY (or ∇XY ), satisfying the following properties:

(1) D f X+gY Z = f DX Z + gDY Z;

(2) DX (λY + µZ) = λ DXY + µDXZ;

(3) DX ( fY ) = f DXY +X( f )Y ,

for all λ ,µ ∈R, all X ,Y,Z ∈X (M), and all f ,g ∈ C ∞(M), where X( f ) denotes the

directional derivative of f in the direction X .

Thus, an affine connection is C ∞(M)-linear in X , R-linear in Y , and satisfies a

“Leibniz”-type law in Y . For any chart ϕ : U → Rm, denoting the coordinate func-

tions by x1, . . . ,xm, if X is given locally by
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X(p) =
m

∑
i=1

ai(p)
∂

∂xi
,

then

X( f )(p) =
m

∑
i=1

ai(p)
∂ ( f ◦ϕ−1)

∂xi
.

It can be checked that X( f ) does not depend on the choice of chart.

The intuition behind a connection is that DXY is the directional derivative of

Y in the direction X . The notion of covariant derivative can be introduced via the

following lemma:

Lemma 20.16. Let M be a smooth manifold and assume that D is an affine con-

nection on M. Then there is a unique map D associating with every vector field V

along a curve α : I → M on M another vector field DV/dt along c (the covariant

derivative of V along c), such that:

(1)
D

dt
(λV + µW) = λ

DV

dt
+ µ

DW

dt
,

(2)
D

dt
( fV ) =

d f

dt
V + f

DV

dt
,

(3) if V is induced by a vector field Y ∈X (M), in the sense that V (t) = Y (α(t)),
then

DV

dt
= Dα ′(t)Y.

Then in local coordinates, DV/dt can be expressed in terms of the Chistoffel

symbols, pretty much as in the case of surfaces. Parallel vector fields, parallel trans-

port, geodesics, are defined as before.

Affine connections are uniquely induced by Riemannian metrics, a fundamental

result of Levi-Civita. In fact, such connections are compatible with the metric, which

means that for any smooth curve α on M and any two parallel vector fields X ,Y
along α , the inner product 〈X ,Y 〉 is constant. Such connections are also symmetric,

which means that

DXY −DY X = [X ,Y ],

where [X ,Y ] is the Lie bracket of vector fields.

For more on all this, consult do Carmo [12, 13], Gallot, Hulin, and Lafontaine

[19], or any other text on Riemannian geometry.

20.13 Applications

We saw in Section 19.11 that many engineering problems can be reduced to find-

ing curves having some desired properties. Surfaces also play an important role in
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engineering problems where modeling 3D shapes is required. Again, this is true of

computer graphics and medical imaging, where 3D contours of shapes, for instance

organs, are modeled as surfaces. As in the case of curves, in most practical ap-

plications it is necessary to consider surfaces composed of various patches, and the

problem then arises to join these patches as smoothly as possible, without restricting

too much the number of degrees of freedom required for the design. Various kinds

of spline surfaces were invented to solve this problem. But this time, the situation

is more complex than in the case of curves, because there are two kinds of surface

patches, rectangular and triangular. Roughly speaking, since rectangular patches are

basically products of curves, their spline theory is rather well understood. This is not

the case for triangular patches, for which the theory of splines is very sparse (Loop

[32] being a noteworthy exception). Thus, we will restrict our brief discussion to

rectangular patches. As for curves, there is a notion of parametric Cn-continuity and

of B-spline. The theory of B-splines is quite extensive. Among the many references,

we recommend Farin [16, 15], Hoschek and Lasser [27], Bartels, Beatty, and Barsky

[3], Piegl and Tiller [39], or Gallier [18]. However, since parametric continuity is

sometimes too constraining, more flexible continuity conditions have been investi-

gated. There are various notions of geometric continuity, or Gn-continuity. Roughly

speaking, two surface patches join with Gn-continuity if there is a reparametriza-

tion (a diffeomorphism) after which the patches join with parametric Cn-continuity

along the common boundary curve. As a consequence, geometric continuity may be

defined using the chain rule, in terms of a certain connection matrix.

One of the most important applications of geometric continuity occurs when two

or more rectangular patches are stitched together. In such cases polygonal holes can

occur between patches. It is often impossible to fill these holes with patches that

join with parametric continuity, and a geometrically continuous solution must be

used instead. There are also variations on the theme of geometric continuity, which

seems to be a topic of current interest. Again, we refer the readers to Farin [16, 15],

Hoschek and Lasser [27], Bartels, Beatty, and Barsky [3], Piegl and Tiller [39], and

Loop [32].

As in the case of curves, traditional methods for surface design focus on achiev-

ing a specific level of interelement continuity, but the resulting shapes often possess

bulges and undulations, and thus are of poor quality. They lack fairness. Fairness

refers to the quality of regularity of the curvature of a surface. The maximum rate

of change of curvature should be minimized. This suggests several approaches.

• Minimal energy surface (which bends as little as possible): Minimize

∫

S

(
κ2

1 +κ2
2

)
dA

where κ1 and κ2 are the principal curvatures.

• Minimal variation surface (which bends as smoothly as possible): Minimize

∫

S

[
(De1

κ1)
2 +(De2

κ2)
2
]

dA
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where κ1 and κ2 are the principal curvatures and e1 and e2 are unit vectors

giving the principal directions.

As in the case of curves, these problems can be cast as constrained optimization

problems. More details on this approach, called variational surface design, can be

found in the Ph.D. theses of Henry Moreton [38] and William Welch [44].

20.14 Problems

20.1. Consider the surface X defined by

x = vcosu,

y = vsinu,

z = v.

(i) Show that F is regular at every point (u,v), except when v = 0.

(ii) Show that X is the set of points such that

x2 + y2 = z2.

What does this surface look like?

20.2. Let α : I → E3 be a regular curve whose curvature is nonzero for all t ∈ I,

where I =]a,b[ . Let X be the surface defined over I×R such that

X(u,v) = α(u)+ vα ′(u).

Show that X is regular for all (u,v) where v 6= 0.

Remark: The surface X is called the tangent surface of α . The curve α is a line of

striction on X .

20.3. Let α : I → E3 be a regular curve whose curvature is nonzero for all t ∈ I,

where I =]a,b[ , and assume that α is parametrized by arc length. For any r > 0, let

X be the surface defined over I×R such that

X(u,v) = α(u)+ r(cosvn(u)+ sinvb(u)),

where (t,n,b) is the Frenet frame of α at u.

Show that for every (u,v) such that X(u,v) is regular, the unit normal vector

N(u,v) to X at (u,v) is given by

N(u,v) =−(cosvn(u)+ sinvb(u)).

Remark: The surface X is called the tube of radius r around α .
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20.4. (i) Show that the normals to a regular surface defined by

x = f (v)cosu,

y = f (v)sin u,

z = g(v),

all pass through the z-axis.

Remark: Such a surface is called a surface of revolution.

(ii) If S is a connected regular surface and all its normals meet the z axis, show

that S has a parametrization as in (i).

20.5. Show that the first fundamental form of a plane and the first fundamental form

of a cylinder of revolution defined by

X(u,v) = (cosu,sinu,v)

are both (E,F,G) = (1,0,1).

20.6. Given a helicoid defined such that

x = u1 cosv1,

y = u1 sinv1,

z = v1,

show that (E,F,G) = (1,0,u2
1 + 1).

20.7. Given a catenoid defined such that

x = coshu2 cosv2,

y = coshu2 sinv2,

z = u2,

show that (E,F,G) =
(
cosh2 u2,0,cosh2 u2

)
.

20.8. Recall that the Enneper surface is given by

x = u− u3

3
+ uv2

y = v− v3

3
+ u2v

z = u2− v2.

(i) Show that the first fundamental form is given by

E = G = (1+ u2+ v2)2, F = 0.
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(ii) Show that the second fundamental form is given by

L = 2, M = 0, N =−2.

(iii) Show that the principal curvatures are

κ1 =
2

(1+ u2+ v2)2
, κ2 =−

2

(1+ u2+ v2)2
.

(iv) Show that the lines of curvature are the coordinate curves.

(v) Show that the asymptotic curves are the curves of the form u+v=C, u−v=C,

for some constant C.

20.9. Show that at a hyperbolic point, the principal directions bisect the asymptotic

directions.

20.10. Given a pseudosphere defined such that

x =
2cosv

eu + e−u
,

y =
2sinv

eu + e−u
,

z = u− eu− e−u

eu + e−u
,

show that K =−1.

20.11. Prove that a general ellipsoid of equation

x2

a2
+

y2

b2
+

z2

c2
= 1

(a,b,c pairwise distinct) has four umbilics.

20.12. Prove that the Gaussian curvature at a point (x,y,x) of an ellipsoid of equation

x2

a2
+

y2

b2
+

z2

c2
= 1

has the expression

K =
p4

a2b2c2
,

where p is the distance from the origin (0,0,0) to the tangent plane at the point

(x,y,z).

20.13. Show that the helicoid, the catenoid, and the Enneper surface are minimal

surfaces, i.e., H = 0.

20.14. Consider two parabolas P1 and P2 in two orthogonal planes and such that

each one passes through the focal point of the other. Given any two points q1 ∈ P1
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and q2 ∈ P2, let Hq1,q2
be the bisector plane of (q1,q2), i.e., the plane orthogonal to

(q1,q2) and passing through the midpoint of (q1,q2). Prove that the envelope of the

planes Hq1,q2
when q1 and q2 vary on the parabolas P1 and P2 is the Enneper surface

(i.e., the Enneper surface is the surface to which each Hq1,q2
is tangential).

20.15. Show that if a curve on a surface S is both a line of curvature and a geodesic,

then it is a planar curve.

20.16. Given a regular surface X , a parallel surface to X is a surface Y defined such

that

Y (u,v) = X(u,v)+ aN(u,v),

where a ∈R is a given constant.

(i) Prove that

Yu×Yv = (1− 2Ha+Ka2)(Xu×Xv),

where K is the Gaussian curvature of X and H is the mean curvature of X .

(ii) Prove that the Gaussian curvature of Y is

K

1− 2Ha+Ka2

and the mean curvature of Y is

H−Ka

1− 2Ha+Ka2
,

where K is the Gaussian curvature of X and H is the mean curvature of X .

(iii) Assume that X has constant mean curvature c 6= 0. If K 6= 0, prove that the

parallel surface Y corresponding to a = 1/(2c) has constant Gaussian curvature

equal to 4c2. Prove that the parallel surface Y corresponding to a = 1/(2c) is

regular except at points where K = 0.

(iv) Again, assume that X has constant mean curvature c 6= 0 and is not contained

in a sphere. Show that there is a unique value of a such that the parallel surface

Y has constant mean curvature−c. Furthermore, this parallel surface is regular

at (u,v) iff X(u,v) is not an umbilical point, and the Gaussian curvature of Y at

(u,v) has the opposite sign to that of X .

Remark: The above results are due to Ossian Bonnet.

20.17. Given a torus of revolution defined such that

x = (a+ bcosϕ)cosθ ,

y = (a+ bcosϕ)sin θ ,

z = bsinϕ ,

prove that the Gaussian curvature is given by
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K =
cosϕ

b(a+ bcosϕ)
.

Show that the mean curvature is given by

H =
a+ 2bcosϕ

2b(a+ bcosϕ)
.

20.18. (i) Given a surface of revolution defined such that

x = f (v)cosu,

y = f (v)sin u,

z = g(v),

show that the first fundamental form is given by

E = f (v)2, F = 0, G = f ′(v)2 + g′(v)2.

(ii) Show that the Christoffel symbols are given by

Γ 1
11 = 0, Γ 2

11 =−
f f ′

( f ′)2 +(g′)2
, Γ 1

12 =
f f ′

f 2
,

Γ 2
12 = 0, Γ 1

22 = 0, Γ 2
22 =

f ′ f ′′+ g′g′′

( f ′)2 +(g′)2
.

(iii) Show that the equations of the geodesics are

u′′+
2 f f ′

f 2
u′v′ = 0,

v′′− f f ′

( f ′)2 +(g′)2
(u′)2 +

f ′ f ′′+ g′g′′

( f ′)2 +(g′)2
(v′)2 = 0.

Show that the meridians parametrized by arc length are geodesics. Show that a

parallel is a geodesic iff it is generated by the rotation of a point of the generating

curve where the tangent is parallel to the axis of rotation.

(iv) Show that the first equation of geodesics is equivalent to

f 2u′ = c,

for some constant c. Since the angle θ , 0 ≤ θ ≤ π/2, of a geodesic with a parallel

that intersects it is given by

cosθ =
|Xu · (Xuu′+Xvv′)|

‖Xu‖
= | f u′|,

and since f = r is the radius of the parallel at the intersection, show that

r cosθ = c



648 20 Basics of the Differential Geometry of Surfaces

for some constant c > 0. The equation r cosθ = c is known as Clairaut’s relation.

20.19. (i) Given a surface of revolution defined such that

x = f (v)cosu,

y = f (v)sin u,

z = g(v),

show that the second fundamental form is given by

L =− f g′, L = 0, M = g′ f ′′− g′′ f ′.

Conclude that the parallels and the meridians are lines of curvature.

(ii) Recall from Problem 20.18 that the first fundamental form is given by

E = f (v)2, F = 0, G = f ′(v)2 + g′(v)2.

Show that the Gaussian curvature is given by

K =−g′(g′ f ′′− g′′ f ′)
f

.

Show that the parabolic points are the points where the tangent to the generating

curve is perpendicular to the axis of rotation, or the points of the generating curve

where the curvature is zero.

If we assume that G= 1, which is the case if the generating curve is parametrized

by arc length, show that

K =− f ′′

f
.

(iii) Show that the principal curvatures are given by

κ1 =
L

E
=
−g′

f
, κ2 =

N

G
= g′ f ′′− g′′ f ′.

20.20. (i) Is it true that if a principal curve is a plane curve, then it is a geodesic?

(ii) Is it true that if a geodesic is a plane curve, then it is a principal curve?

20.21. If X is a surface with negative Gaussian curvature, show that the asymptotic

curves have the property that the torsion at (u,v) is equal to ±√−K(u,v).

20.22. Show that if all the geodesics of a connected surface are planar curves, then

this surface is contained in a plane or a sphere.

20.23. A ruled surface X(t,v) is defined by a pair (α(t),w(t)), where α(t) is some

regular curve and w(t) is some nonnull C1-continuous vector in R3, both defined

over some open interval I, with

X(t,v) = α(t)+ vw(t).
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In other words, X consists of the one-parameter family of lines 〈α(t),w(t)〉, called

rulings. Without loss of generality, we can assume that ‖w(t)‖= 1. In this problem

we will also assume that w′(t) 6= 0 for all t ∈ I, in which case we say that X is

noncylindrical.

(i) Consider the ruled surface defined such that α is the unit circle in the xy-plane,

and

w(t) = α ′(t)+ e3,

where e3 = (0,0,1). Show that X can be parametrized as

X(t,v) = (cos t− vsint, sin t + vcost, v).

Show that X is the quadric of equation

x2 + y2− z2 = 1.

What happens if we choose w(t) =−α ′(t)+ e3?

(ii) Prove that there is a curve β (t) on X (called the line of striction of X) such

that

β (t) = α(t)+ u(t)w(t) and β ′(t) ·w′(t) = 0

for all t ∈ I, for some function u(t).
Hint. Show that u(t) is uniquely defined by

u =−α ′ ·w′
w′ ·w′ .

Prove that β depends only on the surface X in the following sense: If α1 and α2

are two curves such that

α2(t)+ vw(t) = α1(t)+ δ (v)w(t)

for all t ∈ I and all v ∈ R for some C3-function δ , and β1, β2 are the corresponding

lines of striction, then β1 = β2.

(iii) Writing X(t,v) as

X(t,v) = β (t)+ vw(t),

show that there is some function λ (t) such that β ′×w = λ w′ and

‖Xt ×Xv‖2 = (λ 2 + v2)‖w′‖2.

Furthermore, show that

λ =
(β ′,w,w′)
‖w′‖2

.

Show that the singular points (if any) occur along the line of striction v = 0, and

that they occur iff λ (t) = 0.

(iv) Show that
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M =
(β ′,w,w′)
‖Xt ×Xv‖

, N = 0,

and

K =− λ 2

(λ 2 + v2)2
.

Conclude that the Gaussian curvature of a ruled surface satisfies K ≤ 0, and that

K = 0 only along those rulings that meet the line of striction at a singular point.

20.24. As in Problem 20.23, let X be a ruled surface X(t,v) where

X(t,v) = α(t)+ vw(t)

and with ‖w(t)‖= 1. In this problem we will assume that

(w,w′,α ′) = 0,

and we call such a ruled surface developable.

(i) Show that

M =
(α ′,w,w′)
‖Xt×Xv‖

, N = 0.

Conclude that M = 0, and thus that K = 0.

(ii) If w(t)×w′(t) = 0 for all t ∈ I, show that w(t) is constant and that the surface

is a cylinder over a plane curve obtained by intersecting the cylinder with a plane

normal to w.

If w(t)×w′(t) 6= 0 for all t ∈ I, then w′(t) 6= 0 for all t ∈ I. Using Problem 20.23,

there is a line of striction β and a function λ (t). Check that λ = 0. If β ′(t) 6= 0 for

all t ∈ I, then show that the ruled surface is the tangent surface of β . If β ′(t) = 0 for

all t ∈ I, then show that the ruled surface is a cone.

20.25. (i) Let α : I → R3 be a curve on a regular surface S, and consider the ruled

surface X defined such that

X(u,v) = α(u)+ vN(u(t),v(t)),

where N(u(t),v(t)) is the unit normal vector to S at α(t). Prove that α is a line of

curvature on S iff X is developable.

(ii) Let X be a regular surface without parabolic, planar, or umbilical points.

Consider the two surfaces Y and Z (called focal surfaces of X , or caustics of X)

defined such that

Y (u,v) = X(u,v)+
1

κ1

N(u,v),

Z(u,v) = X(u,v)+
1

κ2

N(u,v),

where κ1 and κ2 are the principal curvatures at (u,v).
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Prove that if (κ1)u and (κ2)v are nowhere zero, then Y and Z are regular surfaces.

(iii) Show that the focal surfaces Y and Z are generated by the lines of strictions

of the developable surfaces generated by the normals to the lines of curvatures on

X . This means that if we consider the two orthogonal families F1 and F2 of lines

of curvatures on X , for any line of curvature C in F1 (or in F2), the line of striction

of the developable surface generated by the normals to the points of C lies on Y (or

Z), and when C ∈F1 varies on X , the corresponding line of striction sweeps Y (or

Z).

What are the positions of the focal surfaces with respect to X , depending on the

sign of the Gaussian curvature K? Is it possible for Y and Z to be reduced to a single

point? Is it possible for Y and Z to be reduced to a curve? If Y reduces to a curve,

show that X is the envelope of a one-parameter family of spheres.

20.26. Given a nonplanar regular curve f in E3, the surface F generated by the

tangents lines to f is called the tangent surface of f . The tangent surface F of f

may be defined by the equation

F(t,v) = f (t)+ vt,

where t = f ′(t). Assume that f is biregular. An involute of f is a curve g contained

in the tangent surface of f and such that g intersects orthogonally every tangent of

f . Assuming that f is parametrized by arc length, this means that every involute g

of f is defined by an equation of the form

g(s) = f (s)+ v(s)t(s),

where v(s) is a C1-function, t = f ′(s), and where g′(s) · t(s) = 0.

(a) Prove that

g′(s) = t+ v(s)κn+ v′(s)t,

where n is the principal normal vector to f at s. Prove that the equation

1+ v′(s) = 0

must hold. Conclude that

v(s) =C− s,

where C is some constant, and thus that every involute has an equation of the form

g(s) = f (s)+ (C− s)t(s).

Remark: There is a physical interpretation of involutes. If a thread lying on the

curve is unwound so that the unwound portion of it is always held taut in the direc-

tion of the tangent to the curve while the rest of it lies on the curve, then every point

of the thread generates an involute of the curve during this motion.

(b) Consider the twisted cubic defined by
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f (t) =

(
t,

t2

2
,
t3

6

)
.

Prove that the element of arc length is

ds =

(
1+

t2

2

)
dt.

Give the equation of any involute of the twisted cubic.

Extra Credit: Plot the twisted cubic in some suitable interval and some of its invo-

lutes.

20.27. Let Ω : X → E3 be a surface.

(a) Assume that every point of X is an umbilic. Prove that X is contained in a

sphere.

Hint. If κ1 = κ2 = κ for every (u,v)∈Ω , then dN(w) =−κw for all tangent vectors

w = Xux+Xvy, which implies that Nu = −κXu and Nv = −κXv. Prove that κ does

not depend on (u,v) ∈ Ω , i.e., it is a nonnull constant. Then prove that X +N/κ is

a constant vector.

(b) Assume that every point of X is a planar point. Prove that X is contained in a

plane.

Hint. This time, κ1 = κ2 = 0 for every (u,v) ∈Ω . Prove that N does not depend on

(u,v) ∈Ω , i.e., it is a constant vector, and compute (X ·N)u and (X ·N)v.
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Chapter 21

Appendix

21.1 Hyperplanes and Linear Forms

This appendix covers two topics. First, we prove that hyperplanes are precisely the

kernels of nonzero linear forms. Second, we review the definitions of metric spaces

and normed vector spaces.

Given a vector space E over a field K, a linear map f : E → K is called a linear

form. The set of all linear forms f : E → K is a vector space called the dual space

of E and denoted by E∗. We now prove that hyperplanes are precisely the Kernels

of nonzero linear forms.

Lemma 21.1. Let E be a vector space. The following properties hold:

(a) Given any nonzero linear form f ∈ E∗, its kernel H = Ker f is a hyperplane.

(b) For any hyperplane H in E, there is a (nonzero) linear form f ∈ E∗ such that

H = Ker f .

(c) Given any hyperplane H in E and any (nonzero) linear form f ∈ E∗ such that

H = Ker f , for every linear form g ∈ E∗, H = Kerg iff g = λ f for some λ 6= 0

in K.

Proof. (a) If f ∈ E∗ is nonzero, there is some vector v0 ∈ E such that f (v0) 6= 0. Let

H = Ker f . For every v ∈ E , we have

f

(
v− f (v)

f (v0)
v0

)
= f (v)− f (v)

f (v0)
f (v0) = f (v)− f (v) = 0.

Thus,

v− f (v)

f (v0)
v0 = h ∈ H

and v = h+( f (v)/ f (v0))v0, that is, E = H +Kv0. Also, since f (v0) 6= 0, we have

v0 /∈ H, that is, H ∩Kv0 = 0. Thus, E = H⊕Kv0, and H is a hyperplane.

(b) If H is a hyperplane, E = H⊕Kv0 for some v0 /∈ H. Then every v ∈ E can

be written in a unique way as v = h+λ v0. Thus there is a well–defined function

655
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f : E → K such that f (v) = λ for every v = h+λ v0. We leave as a simple exercise

the verification that f is a linear form. Since f (v0) = 1, the linear form f is nonzero.

Also, by definition it is clear that λ = 0 iff v ∈ H, that is, Ker f = H.

(c) Let H be a hyperplane in E , and let f ∈ E∗ be any (nonzero) linear form such

that H = Ker f . Clearly, if g = λ f for some λ 6= 0, then H = Kerg. Conversely,

assume that H = Kerg for some nonzero linear form g. From (a) we have E =
H⊕Kv0, for some v0 such that f (v0) 6= 0 and g(v0) 6= 0. Then observe that

g− g(v0)

f (v0)
f

is a linear form that vanishes on H, since both f and g vanish on H, but also vanishes

on Kv0. Thus, g = λ f , with λ = g(v0)/ f (v0). ⊓⊔

If E is a vector space of finite dimension n and (u1, . . . ,un) is a basis of E , for

any linear form f ∈ E∗ and every x = x1u1 + · · ·+ xnun ∈ E , we have

f (x) = λ1x1 + · · ·+λnxn,

where λi = f (ui) ∈ K, for every i, 1 ≤ i ≤ n. Thus, with respect to the basis

(u1, . . . ,un), f (x) is a linear combination of the coordinates of x, as expected.

21.2 Metric Spaces and Normed Vector Spaces

Thorough expositions of the material of this section can be found in Lang [2, 3] and

Dixmier [1]. We begin with metric spaces. Recall that R+ = {x ∈ R | x≥ 0}.

Definition 21.1. A metric space is a set E together with a function d : E×E→R+,

called a metric, or distance, assigning a nonnegative real number d(x, y) to any two

points x,y ∈ E and satisfying the following conditions for all x,y,z ∈ E:

(D1) d(x, y) = d(y, x). (symmetry)

(D2) d(x, y)≥ 0, and d(x, y) = 0 iff x = y. (positivity)

(D3) d(x, z)≤ d(x, y)+ d(y, z). (triangle inequality)

Geometrically, condition (D3) expresses the fact that in a triangle with vertices

x,y,z, the length of any side is bounded by the sum of the lengths of the other two

sides. From (D3), we immediately get

|d(x, y)− d(y, z)| ≤ d(x, z).

Let us give some examples of metric spaces. Recall that the absolute value |x| of

a real number x ∈R is defined such that |x|= x if x≥ 0, |x|=−x if x < 0, and for a

complex number x = a+ ib, as |x|=
√

a2 + b2.
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Example 21.1. Let E = R and d(x, y) = |x− y|, the absolute value of x− y. This is

the so-called natural metric on R.

Example 21.2. Let E = Rn (or E = Cn). We have the Euclidean metric

d2(x, y) =
(
|x1− y1|2 + · · ·+ |xn− yn|2

) 1
2 ,

the distance between the points (x1, . . . ,xn) and (y1, . . . ,yn).

Example 21.3. For every set E we can define the discrete metric, defined such that

d(x, y) = 1 iff x 6= y, and d(x, x) = 0.

Example 21.4. For any a,b ∈ R such that a < b, we define the following sets:

1. [a,b] = {x ∈ R | a≤ x≤ b}, (closed interval)

2. [a,b[= {x ∈ R | a≤ x < b}, (interval closed on the left, open on the right)

3. ]a,b] = {x ∈R | a < x≤ b}, (interval open on the left, closed on the right)

4. ]a,b[= {x ∈ R | a < x < b}, (open interval)

Let E = [a,b], and d(x, y) = |x− y|. Then ([a,b],d) is a metric space.

We now consider a very important special case of metric spaces: Normed vector

spaces.

Definition 21.2. Let E be a vector space over a field K, where K is either the field R
of reals or the field C of complex numbers. A norm on E is a function ‖ ‖ : E→R+

assigning a nonnegative real number ‖u‖ to any vector u ∈ E and satisfying the

following conditions for all x,y,z ∈ E:

(N1) ‖x‖ ≥ 0, and ‖x‖= 0 iff x = 0. (positivity)

(N2) ‖λ x‖= |λ |‖x‖. (scaling)

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (convexity inequality)

A vector space E together with a norm ‖‖ is called a normed vector space.

Condition (N3) is also called the triangle inequality, and it is illustrated in Figure

21.1. From (N3), we easily get

|‖x‖−‖y‖| ≤ ‖x− y‖.

x y

x+ y

Fig. 21.1 The triangle inequality.
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Given a normed vector space E , if we define d such that

d(x, y) = ‖x− y‖,

it is easily seen that d is a metric. Thus, every normed vector space is immediately

a metric space. Note that the metric associated with a norm is invariant under trans-

lation, that is,

d(x+ u, y+ u) = d(x, y).

Let us give some examples of normed vector spaces.

Example 21.5. Let E = R and ‖x‖ = |x|, the absolute value of x. The associated

metric is |x− y|, as in Example 21.1.

Example 21.6. Let E = Rn (or E = Cn). There are three standard norms. For every

(x1, . . . ,xn) ∈ E , we have the norm ‖x‖1, defined such that

‖x‖1 = |x1|+ · · ·+ |xn|,

we have the Euclidean norm ‖x‖2, defined such that

‖x‖2 =
(
|x1|2 + · · ·+ |xn|2

) 1
2 ,

and the sup-norm ‖x‖∞, defined such that

‖x‖∞ = max{|xi| | 1≤ i≤ n}.

For geometric applications, we will need to consider affine spaces
(
E,E

)
where

the associated space of translations E is a vector space equipped with a norm.

Definition 21.3. Given an affine space
(
E,E

)
, where the space of translations E is

a vector space over R or C, we say that
(
E,E

)
is a normed affine space if E is a

normed vector space with norm ‖ ‖.
Given a normed affine space, there is a natural metric on E itself, defined such

that

d(a, b) = ‖−→ab‖.
Observe that this metric is invariant under translation, that is,

d(a+ u, b+ u) = d(a, b).
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Symbol Index

�, positive semidefinite cone ordering, viii

N, the natural numbers, 4

Z, the integers, 4

Q, the rational numbers, 4

R, the real numbers, 4

C, the complex numbers, 4

R∗, the multiplicative field of reals, 4

C∗, the multiplicative field of complex

numbers, 4

R+, nonnegative reals, 4

Rn, 4

Cn, 4

dim(E), dimension of a vector space, 5

U ⊕V , direct sum of vector spaces, 5

E∗, dual of the vector space E, 5

Ker f , kernel of a linear map, 5

Im f , image of a linear map, 5

A⊤, transpose of a matrix, 5

id, the identity function, 5

In, identity matrix, 5

I, identity matrix, 5

D(A), determinant of A, 5

det(A), determinant of A, 5

|S|, cardinality of a set, 5

A−B, set difference, 5−→
ab, free vector, 8

E, affine space, 12

E, vector space associated with affine space E,

12

K, arbitrary field, 12

(λi)i∈I , family of scalars, 12〈
E,E,+

〉
, affine space, 12

−→
ab, free vector, 12−→
ab, free vector, 12

dim(E), dimension of an affine space E, 12

Ea, vector space with origin a, 14

(E,E), affine space, 14

An
K , affine space of dimension n on K, 14

An, real affine space of dimension n, 14

(ai)i∈I , family of points, 19

∑i∈I λiai, affine combination, 19

(a,λ ), weighted point, 19

((ai,λi))i∈I , family of weighted points, 19

a+
−→
V , 24

−→
Va , 24
−→
V , direction of the affine subspace V , 25

〈S〉, smallest affine subspace generated by S,

26

(a0, . . . ,am), 28

(a0, (u1, . . . ,um)), 28

(a0, . . . ,am), affine frame, 29

(a0, (
−−→a0a1, . . . ,

−−→a0am)), affine frame, 29
−→
f , linear map associated with an affine map

f , 35

ratio(a,b,c), ratio, 38

GA(E), affine group, 38

GL(E), general linear group, 38

R∗idE , 39

DIL(E), group of affine dilatations, 39

Ha,λ , affine dilatation, 39

SA(E), special affine group, 40

f−1(0), kernel of f , 45

Ker f , kernel of f , 45

Aut(G), group of automorphisms of G, 57

H×θ K, semidirect product of H and K relative

to θ , 58

SL(E), special linear group, 58

SO(E), special orthogonal group, 58

SE(E), special Euclidean group, 58

Fix( f ), 59

[a,b], line segment from a to b, 65

C (S), convex hull of S, 65

659
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conv(S), convex hull of S, 65

〈S〉, affine hull of S, 65

aff(S), affine hull of S, 65

H+( f ), closed half-space associated with f , 66

H−( f ), closed half-space associated with f , 66

cone(S), cone spanned by S, 70
◦
H+ ( f ), open half-spaces associated with f , 71
◦
H− ( f ), open half-spaces associated with f , 71

Ê, hat space, 86

ω : Ê→ R, 86

tu, translation induced by u, 86

〈a,λ 〉, 87

Ê, hat space, 88

+̂ , addition in the hat space, 88

ω : Ê→ R, 89

i : E→ Ê, 89

j : E→ Ê, 89

a, weighted point of weight 1, 90

−̂ , subtraction on the hat space, 91

(−−→a0a1, . . .,
−−→a0am,a0), basis in hat space, 92

F , other construction of the hat space, 95

Ω̂ : Ê→F , 95

〈E , j,ω〉, homogenization of an affine space,

98

f̂ : E → F , 98

f̂ : Ê→ F̂ , unique extension of an affine map,

99

E , generic affine space, 104

P(E), projective space induced by E, 107

∼, equivalence relation inducing a projective

space, 107

dim(P(E)), dimension of a projective space,

107

Pn
K , projective space induced by Kn+1, 108

RPn, real projective space, 108

CPn, complex projective space, 108

Sn, n-sphere, 109

Sn
+, upper half n-sphere, 110

P(E∗), projective dual space, 110

P(V ), projective subspace induced by V , 111

P(H), projective hyperplane induced by H,

111

〈U〉, projective subspace spanned by U , 111

(x1 : · · · : xn+1), homogeneous coordinates,

114

V ([P]), zero locus, 117

V (P), zero locus, 117

P( f ), projective map induced by f , 121

PGL(E), projective (linear) group, 121

P
(
Ê
)
, projective completion on E, 126

Ẽ, projective completion on E, 126

u∞, point at infinity, 127

EH , complement of a projective hyperplane,

128

〈P(E ),P(H ), i〉, projective completion, 129

[a,b,c,d], cross-ratio, 136

E∗, dual space of E, 141

E∗∗, bidual of E, 141

H (E), set of hyperplanes in P(E), 141

U0, orthogonal of U , 141

V 0, orthogonal of V , 141

EC, complexification of a vector space E, 145

fC, complexification of a linear map f , 145

P(EC), complexification of P(E), 145

PSO(2), 147

[D1,D2,DI,DJ] = ei2θ , Laguerre’s formula,

148

logU , 148

θ = 1
2
| logU ([D1,D2,DI ,DJ])|, Cayley’s

formula, 149

log, complex logarithm, 149

θ = 1
2i

log([D1,D2,DI,DJ]), other version of

Cayley’s formula, 150

ϕ(u,v), inner product, 179

Φ(u), quadratic form associated with ϕ , 179

u · v, inner product, 179

〈u,v〉, inner product, 179

(u|v), inner product, 179

‖u‖, norm of u, 179

C [a,b], continuous functions on [a,b], 179

〈 f ,g〉, inner product on C [a,b], 180

F⊥, orthogonal complement, 183

ϕu, 187

♭ : E→ E∗, map from E to its dual E∗, 187

♯ : E∗→ E, map from E∗ to E, 188

f ∗, adjoint of f , 189

Mn(R), set of real n×n matrices, 199

GL(E), general linear group, 200

O(E), orthogonal group of E, 200

O(n), orthogonal group of Rn, 200

SL(E), special linear group, 200

SO(E), special orthogonal group of E, 200

SO(n), special orthogonal group of Rn, 200

O(ϕ), 209

SO(ϕ), 209

O(p,q), 209

SO(p,q), 209

SO(3,1), Lorentz group, 209

P(P,C), power of P w.r.t. C, 210

B(a,ε), open ball of center a and radius ε , 213

B(a,ε), closed ball of center a and radius ε ,

214

A, closure of A, 214
◦
A, interior of A, 214

∂ A, frontier of A, 214
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conex(S), 216

d(a,B), distance from a to B, 220

linA, 226

core A, 226

pF , projection onto F , 232

pG, projection onto G, 232

Is(E), group of rigid motions of E, 251

Is(n), group of rigid motions of En, 251

SE(E), 251

SE(n), 251

Fix( f ), 253

Λ(E), alternating n-linear forms, 264

detB(w1, . . . ,wn), 268

λE(w1, . . . ,wn), volume form, 268

(w1, . . .,wn), mixed product, 268

w1×·· ·×wn−1, cross product, 269

u× v, cross product, 271

Gram(u1, . . .,up), Gram determinant, 277

d(a,U), distance from a to U , 277

U⊥a , 278

d(U,V ), distance of U and V , 278

U(1), complex numbers of unit length, 281

H, the quaternions, 282

a1+bi+ cj+dk, a quaternion, 282

Hp, pure quaternions, 282

N(X), reduced norm of a quaternion, 283

Tr(X), reduced trace of a quaternion, 283

LX , 284

RY , 284

ρY,Z , 286

ρZ , 286

SU(2), unitary group of dim 2, 287

ρ : SU(2)→ SO(3), 288

R = I + sinθA+(1− cosθ )A2, rotation matrix

in R3, 292

η : S3×S3→ SO(4), 294

H(a,b), closed half-plane, 302

V (pi), Voronoi region, 304

V (P), Voronoi diagram of P, 305

∂ σ , boundary of a simplex, 309

Int σ , interior of a simplex, 309

Kg, geometric realization of K, 310

D(P), Delaunay triangulation of P, 313

ℜz, real part of a complex number z, 321

ℑz, imaginary part of a complex number z, 321

z, conjugate of a complex number z, 321

|z|, absolute value of a complex number z, 321

E
∗
, semilinear maps on E, 322

l2, Hilbert space, 324

Cpiece[a,b], piecewise bounded continuous

functions, 325

C [a,b], continuous functions on [a,b], 325

ϕ l
u : E→ C, 328

ϕ r
v : E→ C, 328

♭l : E→ E
∗
, 328

♭r : E→ E∗, 328

A, conjugate of a matrix, 333

A∗, adjoint of a matrix, 333

GL(E,C), complex general linear group, 335

U(E), unitary group of E, 335

U(n), unitary group of Cn, 335

SU(E), special unitary group of E, 335

SU(n), special unitary group of Cn, 335

f ⋆g, convolution, 338

U(ϕ), 340

SU(ϕ), 340

U(p,q), 341

SU(p,q), 341

〈−,−〉C, complexification of an inner product,

346

f ∗C, 346

A = PDP⊤, 357

A = RS, polar form, 373

A =UH, polar decomposition, complex case,

373

A =V DU⊤, singular value decomposition, 375

‖Ax−b‖2, square norm of the error, 388

x+, least squares solution, 389

A⊤Ax = A⊤b, normal equations, 389

A+ =UD+V⊤, pseudo-inverse, 390

‖u‖p, p-norm of A, 396

‖A‖F , Frobenius norm of A, 397

x, mean of x, 399

x− x, centered data, 399

var(x), variance of x, 399

cov(x,y), covariance of x and y, 399

Σ , covariance matrix, 399

P(x) = 1
2

x⊤Ax− x⊤b, quadratic function, 411

�, 413

≻, 413

L(y,λ ) = Q(y)+λ⊤(A⊤y− f ), Lagrangian,

415

A−BD−1C, Schur complement, 432

D−CA−1B, Schur complement, 432

C(S,O ,k), 440

Ecut(S), external cut, 440

Icut(S,O ,k), internal cut, 440

Ce(r,θ ,θmax), 440

H(P), Hermitian part of P, 441

S(P), skew-Hermitian part of P, 441

H(e−iδ P), 442

H(δ ), 442

δF (A), defect from normality of A, 447

δ (A,‖‖), 448

f (x,δ ), 449

F(P), field of values of P, 452

r(P), numerical radius, 453

LA(λ ), 455
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λδ , 456

Lδ , 456

eA, exponential of a matrix, 460

A = PT P−1, Schur decomposition, 464

det(eA) = etr(A), 466

GL(n,R), 467

SL(n,R), 467

sl(n), matrices with null trace, 468

so(n), skew-symmetric matrices, 468

[A, B] = AB−BA, Lie bracket, 468

gl(n,R), 468

o(n) = so(n), 468

exp : so(n)→ SO(n), 469

SP(n), symmetric positive matrices, 472

SPD(n), symmetric positive definite matrices,

472

exp : S(n)→ SPD(n), bijection, 474

O(n)×Rn(n+1)/2, 474

GL(n,C), 475

SL(n,C), 475

sl(n,C), complex matrices with null trace, 475

u(n), skew-Hermitian matrices, 475

su(n), 475

gl(n,C), 475

exp : u(n)→ U(n), 476

exp : su(n)→ SU(n), 476

H(n), Hermitian matrices, 478

HP(n), Hermitian positive matrices, 478

HPD(n), Hermitian positive definite matrices,

478

exp : H(n)→HPD(n), bijection, 478

U(n)×Rn2
, 478

se(n), 479

exp : se(n)→ SE(n), 480

Du f (a), directional derivative, 483

D f (a), derivative, 484

D fa, derivative, 484

d f (a), derivative, 484

f ′(a), derivative, 484

d fa, derivative, 484

d f , derivative of f on A, 485

L(E;F), continuous linear maps from E to F ,

485

Du j
f (a), partial derivative, 485

∂ j f (a), partial derivative, 485

∂ f

∂ x j

(a), partial derivative, 485

J( f )(a), Jacobian matrix, 487

det(J( f )(a)), Jacobian, 487

GL+(n), 499

H f (p), Hessian matrix, 501

TpM, tangent space, 503

g, Lie algebra of the Lie group G, 503

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0, Jacobi

identity, 505

exp : g→ G, exponential map, 505

f ′p, derivative of f at p, 508

d fp, derivative of f at p, 508

La, left translation, 509

Ra, right translation, 509

Ada : g→ g, 509

Ad: G→GL(g), adjoint representation, 509

ad : g→ gl(g), adjoint representation, 510

SO(n,1), 520

SU(1,1), 523

Cp, 531

f : ]a,b[→ E , open curve, 532

f : [a,b]→ E , closed curve, 532

Tt , tangent line, 535

b−a, free vector, 535

L ( f ), 538

l( f ), length of a curve, 538

s(t) =
∫ t

t0
‖ f ′(u)‖du, arc length, 539

Nt , normal line, 540

C, center of curvature, 541

R, radius of curvature, 541

κ , curvature, 542

t, unit tangent vector (plane curve), 546

n, unit normal vector (plane curve), 546

ν , normal vector, 552

k, algebraic curvature, 552

R, algebraic radius of curvature, 552

t, unit tangent vector, 554

n, principal normal vector, 554

b, binormal vector, 554

τ , torsion, 557

T , radius of torsion, 557

ω , Darboux vector, 561

(t,n,b), Frenet frame, 561

κi, ith curvature, 568

cosh, hyperbolic cosine, 575

sinh, hyperbolic sine, 575

X : Ω → E3, surface patch, 587

Ċ, 588

u̇, 588

v̇, 588

C′ , 588

u′, 588

v′, 588

Ċ = Xuu̇+Xv v̇, 589

Tp(X), tangent space, 589

Np, unit normal vector, 589

Np, normal line, 589

N(u0 ,v0), unit normal vector, 590

E,F,G, coefficients of first fundamental form,

592

Ip, first fundamental form, 593
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EG−F2, 593

ds2 = E du2 +2F dudv+Gdv2, 594

dA, element of area, 594

(t,ng,N), 598

L,M,N, coefficients of the second fundamental

form, 600

IIp, second fundamental form, 600

κN , normal curvature, 601

κg, geodesic curvature, 602

[α β ; γ ], Christoffel symbols (first kind), 603

Γ k
i j, Christoffel symbols (second kind), 604

gαβ | γ , 605

κ1,κ2, principal curvatures, 607

H, mean curvature, 607

K, Gaussian curvature, 607

N : X → S2, Gauss map, 613

dNp, derivative of the Gauss map, 613

Sp, shape operator, 613

Nu =−κXu, Olinde Rodrigues’s formula, 619

τg, geodesic torsion, 627

expp : U → X(Ω), exponential map, 633∫∫
R KdA, 636

Dw
dt
(0), covariant derivative, 638

Dα ′w(p), covariant derivative, 638

Dyw(p), covariant derivative, 638

X (M), smooth vector fields on M, 640

C ∞(M), smooth functions on M, 640

DXY , affine connection, 640

∇XY , affine connection, 640

DV/dt , covariant derivative, 641

‖x‖1 , 658

‖x‖2 , 658

‖x‖∞ , 658
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(k+1)th principal component

of X , 401

C0-function, 490

C1-function, 490

ith curvature, κi, of f , 568

lp norm, 395

absolute points

definition, 147

absolute quadric, 151

use of, 151

absolute value, 656

acceleration vector f ′′(t), 537

action, 12

adhererence, 214

adjoint map, 188, 329

adjoint of f , 189, 190, 209, 330

adjoint of a matrix, 333

adjoint representation

of g, 510

of G, 509

affine

connection, 640

curvature, 573

hull, 215

normal, 573

affine bijections, 40, 104

affine combination, 17

definition, 19

of points, 8

affine constraints C⊤x = t , 423, 427

affine dependence, 29

affine dilatation, 39

affine form, 45

definition, 45

affine frame, 8, 28, 92

affine frame with origin a0, definition

first version, 29

second version, 29

affine geometry, xiii, xiv, 2, 8

a glimpse, 41

affine group, 57

definition, 38

affine Hermitian space, 331

affine hull, 65

affine hyperplane, 8, 45

definition, 25

affine independence, 8, 26

definition, 27

affine isometry, 250

definition, 251

affine map, 7, 8, 32, 132, 197

definition, 32

representation in terms of a matrix, 36

affine patch

definition, 128

affine space, 7, 12

definition, 12

example

a line, 15

a paraboloid of revolution, 16

a plane, 16

affine structure

canonical, 14

natural, 14

affine subspace, 8

definition, 21

flat, 21

affinely dependent families, 29

affinely independent families, 27

algebraic arc length, 539

algebraic curvature, 552, 579

algebraic curve, 108

algebraic geometry, 103, 108, 118, 120, 129
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algebraic plane curves, 120

algebraic radius of curvature, 552

algebraic surface, 108, 120

algebraic variety, 108

algebraically open, 226

altitude of a point, 150

angle, 144

of complex lines, 150

of lines, 146, 147

of unit vectors, 146

angle of unit vectors

definition, 266

antipodal map, 288

antipodal points, 109

apex, 77

applications

of curves, 571

of Delaunay triangulations, 317

of Euclidean geometry, 202, 297

of Lie groups, 511

of projective geometry, 151

of surfaces, 641

of Voronoi diagrams, 317

to robotics, 61

arbitrary field, 86

arc length, 538

Artin, Emil, 235

associative algebra, 283

astroid, 577

asymptotic directions, 622, 645

definition, 611

asymptotic line, 630, 631

definition, 630

attribute, 398

average, 399

average jumping angle, 441

axis

of a projectivity, 164

of rotation, 242, 275

Bézier sites, 90

Banach, 490

space, 490

Barvinok, 74, 218, 226

barycenter, 3, 8, 17, 87, 91

definition, 19

barycenter of a family of weighted points, 19

barycentric combination

definition, 19

barycentric coordinates, 309

barycentric coordinates of x w.r.t. an affine

frame

definition, 29

base points of a pencil, 172

basis, 8, 92

of E, 29

projective, 113

vector space, 28

basis associated with a projective frame, 113

Beltrami, 370

Beltrami’s pseudosphere, 611

Berger, 86

Berger and Gostiaux, 496, 529, 586

Bertrand, 582

curves, 580

best (d− k)-dimensional affine approximation,

406, 407

best affine approximation, 405

best approximation, 405

bidual space, 141

bijection between E and its dual E∗, 187

bijective affine maps, 38

bijective linear maps, 38

binormal vector, 554

birapport, 135

biregular point, 537

bisector

hyperplane, 304

line, 301

plane, 301, 303

block diagonalization

of a normal linear map, 349

of a normal matrix, 357

of a skew-self-adjoint linear map, 353

of a skew-symmetric matrix, 358

of an orthogonal linear map, 354

of an orthogonal matrix, 358

boldface notation of vectors, 15

Bolyai, 2

Bonnet, 602, 623, 646

Bonnet’s formula, 628

Bonnet’s theorem, 626

boundary, 214

boundary face of a simplex, 309

boundary generating curve of P, 457

boundary of a simplex, 309

bounded

linear map, 396

subset, 214

Boy surface, 128

Boyd and Vandenberghe, vii, 413, 431, 433,

437

Brianchon’s theorem, 168

Calabi, xv, 573, 585, 599

camera

calibration problem, 153

extrinsic parameters, 152
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intrinsic parameters, 152

position and orientation, 152

projection matrix, 153

reference frame, 152

camera calibration

and Cayley’s formula, 150

projective geometry, 151

canonical

frame of P1
K , 115

isomorphism, 187

projection, 107

Carathéodory’s theorem, 30, 67

for convex cones, 70

cardioid, 551, 578, 580

Cartan matrix, 569

Cartan, Elie, 235, 560

Cartan–Dieudonné theorem, xiv, 231, 245,

260, 279, 327

affine isometries, 262

Euclidean case, 236

sharper version, 356

catenary, 574, 595

catenoid, 595, 644

Cauchy sequence, 490

Cauchy–Schwarz inequality, 180, 325

caustics, 580, 650

Cayley, 2, 3, 144

Cayley’s formula, 149, 153

Cayley’s representation of rotations, 363, 522

center, 151

of a circle, 170

center of curvature, 541, 561

center of gravity, 399

center of mass, 19

centered data point, 399

centerpoint, vii, 79

of S, 79

central dilatation, 8

definition, 39

central projection, 104, 105

centroid, 54, 399, 406, 407

Ceva’s theorem, 52

chain rule, 486

change

of basis, 10

of frame, 10

chart, 493

Chasles, 144, 231, 256

Chasles’s identity, 16

Chevalley, 460

Chistoffel symbols, 641

Christoffel symbols, 602, 604, 638, 647

of the first kind, 603

of the second kind, 603

circle, 103, 149, 273

circle of curvature, 545

circulant matrix, 337

circular convolution rule, 338

circular embedding, 440

circular embedding score, 440

circular helix, 562, 579, 582

circular points, 119, 146

definition, 147

circular shift matrix, 337

cissoid of Diocles, 574

Clairaut’s relation, 648

classical groups, 344

classical Lie groups, 467

closed, 214

ball, 214

subset, 214

closed curve of class Cp, 533

closed half-space

associated with f , 66, 70

associated with H, 66

definition, 66

closed subgroup of GL(n,R), 492

closed under

affine combinations, 21

linear combinations, 21

closed unit ball, 110

closure, 214

clothoids, 580

cocyclic, 163

Codazzi, 623

Codazzi–Mainardi equations, 625

codimension, 525

codimension one, 25

cofactor, 270

collinear, 163

points, 26

collineation, 125

colored Tverberg theorem, 78

colorful Carathéodory’s theorem, 70

column vectors, 14

compact, 214

subset, 214

complete

normed vector space, 490

complete quadrilaterals, 139

complex, 309

logarithm, 149

complex Lie group, 475

complexification

of P(E), 145

of a linear map, definition, 145

of a vector space, 345

of a vector space, definition, 145
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of an inner product, 346

computational geometry, xiii, xiv, 202, 301

computer graphics, xiii, 4, 154, 297, 419

computer science, xiii

computer vision, vii, xiii, 4, 150, 151, 203,

297, 419, 439

concave

function, 74

condition number, 250

cone, 70

conic, 53, 103, 146, 149, 204

nondegenerate, 53

projective, 166

conjugate

of a complex number, 282, 321

of a matrix, 333

of a quaternion, 283

of a vector, 145

vectors, 207, 339

connection, 640

compatible with the metric, 641

constant affine map, 36

constrained minimization problems, 415

constrained optimization problems, 572

constraint, 415

continuous, 214

linear map, 396

continuous relaxation, 440

contour grouping, ix, 439

control points, 21, 576

convex, 453

combination, 30

cone, 69, 222

function, 74

hull, 30, 304

optimization, vii, 75

polygon, 304

polyhedron, 304

polytopes, 67

set, vii, xiv, 30, 65, 304

convex cone

definition, 69

with vertex x, 216

convex hull, 65

and Delaunay triangulation, 315

and Voronoi diagram, 316

definition, 65

convexity, 8

convolution f ⋆g, 338

coordinate curves, 588

coordinate system, 7

coordinates in affine space, 29

coordinates of x w.r.t. an affine frame

definition, 29

coplanar points, 26

core point, 226

Cornu spirals, 580

Courant–Fischer formula, 365

covariance, 399

covariance matrix, 399

covariant derivative, ix, 637, 638, 641

of w at t , 638

Coxeter, 1

critical

point, 500, 524

value, 500, 524

cross product, 273, 507

definition, 269

cross-ratio, 123, 135, 146, 147, 163

definition, 136

of hyperplanes, 143

cryptography, 154, 155

curvature, 529, 540, 554, 561

κ , 544

definition, 542

curve, 495

continuously differentiable, 531

in SO(3), 297

nowhere differentiable, 530

of class Cp, 532

curve of class n, 457

curves, 8, 529

Cp-equivalent, 534

global properties, 529

local properties, 529

on a surface, 592

parametrized, 529

curvilinear coordinate systems, 495

cusp, 549, 573

of the second kind, 574

of the third kind, 574

cuspidal cubic, 577

cut, 439

cut out, 499, 525

Darboux, 174, 560, 586, 600, 625

frame, 627

vector, 557, 561

data compression, 382, 395

de Casteljau’s algorithm, 139

QR-decomposition, xiv, 192, 200, 203, 231,

246, 249, 330, 335, 394

QR-decomposition, in terms of Householder

matrices, 246

defect from normality, 447, 448

definite

Hermitian form, 340

symmetric bilinear form, 208
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degenerate conic, 166

Delaunay triangulation, xiii, xiv, 202, 301, 307

definition, 313

Demmel, 398

dense, 214

derivative, ix, 483, 484

of an eigenvalue, 443

of an eigenvector, 443

derivative of f at p, 508

derivative of f on A, 485

Desargues’s theorem, 8, 173, 174

affine version, 43

dual, 164

improved affine version, 53

projective version, 126, 135

determinant of a linear map, 199

determining orbits of asteroids, 387

developable

ruled surface, 650

diagonalization

of a normal linear map, 350

of a normal matrix, 360

of a self-adjoint linear map, 351

of a symmetric matrix, 358

diagonalize a matrix, 202

Dieudonné, 235, 280

diffeomorphism, 491

differentiable

function, 484

vector field, 637

differential, 484

differential geometry, xiii, 3

of curves, xv, 529

of surfaces, xv, 585

dilatation, 86

affine, 39

central, 39, 86

dilatation of center a and ratio λ
definition, 39

dilation, 39

dimension

of a complex, 310

of a convex subset, 65

of a projective space, 107

of a projective subspace, 111

of a simplex, 308

of a subspace, 25

of an affine space

definition, 12

Dirac delta function, 205

direction, 8

direction of an affine subspace

definition, 25

directional derivative, 483

of f at a with respect to u, 483

Dirichlet, 304

Dirichlet–Voronoi diagram, 301

definition, 304

discrete Fourier transform, 337

discrete subgroup, 492

definition, 492

distance, 656

distance d(a,U), 277

distance d(U,V ), 278

distance between a and b, 194

distance between points, 144

do Carmo, 529, 586

DTI, 474

dual problem, 418

dual space, 141, 655

duality, 110

and conics, 168

Delaunay triangulations, Voronoi diagrams,

316

in Euclidean spaces, 187

in projective geometry, 141

in projective plane, 142

duality between subspaces, 142

Dupin, 620, 629

Dupin indicatrix, 613, 620

Dupin’s theorem, 629

dynamics, 7, 38

textbook on, 8

edge of regression, 563

edgels, 439

edges, 30

efficient communication, 154

eigenfaces, 408

eigenvalue, 236, 346, 613

eigenvector, 346, 613

eigenvector associated with λ , 236

element of arc length, 592

element of area, 594

ellipse, 548, 577

ellipsoid, 590

elliptic point, 609, 621

embedded submanifold, 492

embedding a real vector space into a complex

vector space, 145

embedding an affine space into a vector space,

85, 90

energy function, 411

engineering, xiii

Enneper surface, 613, 630, 644, 646

entanglement, 440

envelope of a conic, 168

equation of a hyperplane, 112
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equation of a projective line, 157

equation of the asymptotic lines, 630

equation of the lines of curvature, 626

equations of the geodesics, 632, 647

equilibrium equations, 415, 416

equivalence relation on pairs of lines, 146

error-correcting codes, 154, 155

Euclid, 1

Euclid’s fifth postulate, 1

Euclidean affine space, 178

definition, 194

Euclidean distance, 213

Euclidean geometry, xiii, xiv, 2, 3, 144, 177

Euclidean norm

induced by an inner product, 182

Euclidean space, 178, 301, 348, 529

definition, 178

generalization to, 150

Euclidean space En, 170

Euclidean structure, 178

Euler, 3, 592, 606

parameters, 295

rotation matrix, 293

Euler’s formula, 311, 312, 609

Euler–Poincaré characteristic, 311, 312, 637

evolute, 544, 547

of an ellipse, 544

exponential map, xv, 294, 343, 459, 633

exp: g→ G, 505

for a surface patch, 633

exponential of a matrix, 272

external cut, 440

extremal

point, 72

extreme, 72

point, 72, 75

extrinsic properties, 586, 601

face of a simplex, 308

face recognition, 408

fairness, 572, 642

families

of finite support, 12

of scalars, 12

family

of points, 19

of scalars, 19

of weighted points, 19

Farkas, 221

Farkas’s lemma, viii, 221

version I, 221

version II, 222

version III, 223

version IIIb, 224

feature, 398

vector, 398

field

K arbitrary, 12

R of real numbers, 12

characteristic of a, 12

field of values, ix, 452

finite field, 154

finite projective spaces, 154

finite support, 19, 86, 185

first fundamental form, 593, 600, 605, 623,

638

definition, 593

first principal component

of X , 401

fixed frame, 61

fixed point, 37, 59, 62

of a projective map, 164

of an affine map, 252

of an isometry, 231

flavor, 90

flip, 262

transformations, 200, 335

flip about F

definition, 232

focal length, 152

focal surfaces, 650

focus of projection, 151

force, 8, 12

formula of Olinde Rodrigues, 619

Fourier analysis, 180, 187

Fourier matrix, 335, 337

Fourier series, 184, 205

Fourier transform, 187

Fréchet derivative, 484

frame, 8

projective, 113

frame invariance, 11

frame invariant properties, 9

free vector, 8, 11, 12

definition, 12

Frenet n-frame, 564

distinguished, 565

Frenet equations, 559, 560

Frenet frame, ix, 554, 561, 564, 597

definition, 554

for nD curves, 564

Frenet matrix, 561

Frenet–Serret frame, 554

Fresnel integrals, 580

Frobenius norm, 396, 447

from polar form to SVD, 375

from SVD to polar form, 375

frontier, 214
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Fulton, 108

Cp-continuous function, 531, 587

C∞-function, 531

function of class Cp, 531

fundamental theorem of projective geometry,

125

Gâteaux derivative, 484

Gallier, xiii, 85

gauge function, 227

Gauss, 2, 3, 203, 387, 600

Gauss formula, 637

Gauss map, 613, 614

definition, 613

Gauss’s Theorema Egregium, 623, 625

Gauss–Bonnet theorem

global version, 637

local version, 635, 636

Gaussian curvature, 585, 606, 634, 646

definition, 607

general linear group, 475

genus, 637

geodesic, 631, 635, 639, 646

definition, 631

geodesic circle, 634

geodesic curvature, 597, 602, 604, 623, 631

definition, 602

geodesic line, 585, 634

definition, 631

geodesic normal vector

definition, 598

geodesic polygon, 636

geodesic torsion, 627

definition, 627

Gn-continuity, 572

geometric continuity, 572, 642

geometric curve (or arc), 534

of class Cp, 534

geometric modeling, vii, xiii

geometric realization of K, 310

geometry, 1

in the large, 585

in the small, 585

Gergonne, 141

Gershgorin’s theorem, 363

Givens–Householder, 362

global diffeomorphism, 491

global homeomorphism, 490

Golub, 425

Gram determinant, 277, 336

Gram–Schmidt, 565

orthonormalization, 200, 330

orthonormalization procedure, 191

Gramian, 277, 336

graph

of a function, 522

Grassmann, 92

Grassmann’s relation, 47, 111

Grassmannian variety, 161

group

of orientation preserving rigid motions, 177

of orthogonal transformations, 177

of rigid motions, 177

of rotations, 177

of transformations, 2

group homomorphism, 38

group of rigid motions SE(n), 479

group of rotations SO(3), 282

Hadamard, 178

Hahn–Banach theorem, viii, 213

geometric form, 217

second version, 218

half-sphere Sn
+, 110

half-spherical model of projective geometry,

110

Hamilton, 282

identities for the quaternions, 283

quaternions, 283

harmonic conjugates, 138

harmonic division, 138, 149, 163, 164

more on, 139

Harris, 108

hat construction, xiv, 85, 88

hat space Ê

definition, 88

helicoid, 594, 644

Helly’s theorem, 30, 78

Hermitian

matrix, 454

part, 441

Hermitian form

definition, 322

positive, 324

positive definite, 324

Hermitian geometry, xiv, 321

Hermitian inner product, 184

Hermitian norm, 327

Hermitian space, 321

definition, 324

Hessian matrix, 500

Hilbert, 530

Hilbert and Cohn-Vossen, 128, 586, 622, 630,

631

Hilbert curve, 530, 575

Hilbert space, xv, 188, 329, 490

Hippocrates, 1

holes in a surface, 637
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homeomorphism, 490

homogeneous coordinates, 114

definition, 114

homogeneous equation of a conic, 54

homogeneous polynomial, 117, 145

homogenization, 85

homogenization of an affine space

definition, 98

homogenizing, 104

homography, 121

homology of center O and of axis ∆ , 173

homology of center O and of plane of

homology Π , 173

homomorphism of Lie algebras, 509

homomorphism of Lie groups, 509

homothety

definition, 39

Hopf fibration, 157

Horn and Johnson, 433, 441, 447, 452

Householder matrices, 201, 231, 361

definition, 234

hyperbolic functions, 595

hyperbolic point, 609, 622, 645

hyperplane, 66, 86, 110, 146, 188, 329, 655

affine, 45, 86

hyperplane at infinity, 127, 129, 133

hyperplane model of projective geometry, 108

hyperplane symmetry

definition, 232

hypersurface, 499

hypersurface V (P), 145

image Im f of f , 368

image center, 152

image compression, 398

image plane, 152

immersion, ix, 490, 496, 497, 525, 592

improper

isometry, 200, 335

orthogonal transformation, 200

unitary transformation, 335

independence

affine, 26

linear, 26

index of f at p, 501

induced norm, 396

infinitesimal transformations, 459

inflection point, 573

injective affine map, 36

inner product, 3, 178

definition, 179

Hermitian, 282

interior, 214

interior of a simplex, 309

internal cut, 440

interpolant, 296

intersection

of affine spaces, 8

of affine subspaces, 47

of algebraic curves, 103

intrinsic manner, 11

intrinsic properties, 586, 600

invariants of a curve, 561

inverse discrete Fourier transform, 337

inverse function theorem, 491, 496

inversion, 171, 204, 211

inversion of pole a and power k, 170

involute, 547, 580, 651

involution, 164, 165

irreducible

curves, 120

polynomials, 120

isolated point, 492

isometry, 190

w.r.t. ϕ , 209

isomorphism ψ : (R3,×)→ so(3), 506

isomorphism ϕ : (R3,×)→ su(2), 507

isomorphism of Lie algebras, 509

isomorphism of Lie groups, 509

isotropic

line, 150, 151

vector, 188, 279

isotropic line

definition, 147

Jacobi identity, 505, 510, 513

Jacobian, 487

determinant, 487, 591

matrix, 487

joint screw, 511

Jordan, 370

arc, 533

curve, 534

Jordan form, 521

Kennedy, Ryan, 449

kernel

of a Hermitian form, 340

of a symmetric bilinear form, 208

of an affine form

definition, 45

of an affine map, 45

kinematics, 7, 38

Kippenhahn, Rudolph, 457

Klein, 2, 144

Klein quadric, 120, 161, 162

Knapp, 510

Krein and Milman’s theorem, 67, 73
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Lagrange identity, 271, 277, 600

Lagrange multipliers, xv, 411

definition, 415

Lagrangian, 415

Laguerre, 3, 144

Laguerre’s formula, 148, 151

Laplace formula, 270

largest empty circle, 317

Lax, 218, 227, 443

least affine subspace containing M and N, 48

least squares, xv, 382, 387

method, 203

problems, 202

recursive, 395

weighted, 395

least squares solution x+ , 389

left translation La, 509

left-invariant vector fields, 510

Legendre, 203, 387

polynomials, 193

Leibniz, 486

lemniscate of Bernoulli, 533

length of a curve, 538

length of a line segment, 177

Lie algebra, xv, 273, 274, 295, 343, 459, 468,

475, 491

definition, 505

Lie bracket, 274, 468, 475, 503, 505

[A, B] = ad(A)(B), 510

Lie group, xiii, xv, 209, 273, 274, 341, 343,

459, 468, 475, 491

definition, 503

line, 25

at infinity, 147

line conic, 168

line of curvature, 626, 629, 646

on an ellipsoid, 630

line of striction, 563, 643, 649

linear algebra, 3, 4, 8, 104

linear approximation, 483

linear combination

of points, 14

problem, 17

of vectors, 8, 10

linear constraints C⊤x = 0, 422, 425

linear form, 45, 89, 110, 655

linear independence, 8, 26

linear isometry, 178, 190, 195

definition, 195

linear Lie group, 492

definition, 503

linear map, 7, 32

associated with an affine map, 35

linear programming, 223

linear systems of hyperplanes, 141

linearization of an affine space

definition, 98

linearly accessible from A, 226

Lobachevsky, 2

local chart, 493

local coordinates of p, 493

local diffeomorphism, 490

local homeomorphism, 490

log-Euclidean framework, 474

logarithmic spiral, 550, 575, 578

Lorentz group, 209

Möbius, 158

net, 116

tetrahedra, 158

machine learning, vii

magnification, 33, 39

Mainardi, 623

manifold, 288, 460, 529, 585, 635

manifold SL(n), 520

manifold SO(n,1), 521

manifold X×Y , 522

Marsden and Ratiu, 511

Marston Morse, 501

Matousek, 70

matrix, 36

adjoint, 359

analysis, 202

bidiagonal, 382

block diagonal, 349

conjugate, 359

Hermitian, 338, 359

normal, 359

normal forms, 344

of a bilinear form, 207

of a sesquilinear form, 338

orthogonal, 357

skew-Hermitian, 359

skew-symmetric, 357

symmetric, 357

tridiagonal, 360, 382

unitary, 359

upper triangular, 200, 206, 464

weakly orthogonal, 376

matrix group, 343, 492

matrix inversion lemma, 433

matrix norm, viii, 395, 396

maximum jumping angle, 440

mean, 399

mean curvature, 585, 606, 646

definition, 607

measure

of an angle, 146, 266
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definition, 267

of the angle of two lines, 147

median, 79

medical imaging, 474

Menelaus’s theorem, 52

mesh, 301

metric, 656, 658

metric map, 195

metric notions, 177

metric space, 656

definition, 656

Meusnier’s theorem, 601

Milnor, 493

minimal surfaces, 613, 645

minimization of a quadratic function, 411

minimizing ‖Ax−b‖2, 388

minimum spanning tree, 317

Minkowski, 73, 227

Minkowski inequality, 180, 325

Minkowski sum, 83, 218

Minkowski’s proposition, 73, 227

mixed product, 269, 272

definition, 268

modified Gram–Schmidt method, 202, 206

Monge, 144

monkey saddle, 609

Morse function, 501

Morse’s lemma, 501

motion, 7

interpolation, 472, 511

planning, xiii, 4, 202, 297, 317, 511

moving frame, 61, 564

mutually skew lines, 163

natural affine space, 25

nearest neighbors problems, 317

nilpotent

matrix, 521

nondegenerate, 501

conic, 166

critical point, 501

Hermitian form, 340

symmetric bilinear form, 188, 208, 279

non-Euclidean geometries, 151

nonisotropic vector, 279

nontrivial vector space, 5

norm, 179, 180, 182, 193, 327

definition, 657

norm topology, 214

normal

matrix, 392, 443, 446

normal curvature, 597

definition, 599, 600

normal equations, 203, 388

definition, 388

normal line, 540, 589

normal linear map, 190, 344, 348, 350

definition, 344

normal neighborhood, 634

normal plane, 553

normal section, 601

normal subgroup, 57

normal vector, 540

normalization, 440

normalized cut, 439

normed affine space, 658

definition, 658

normed vector space, 327, 483, 656

definition, 657

north pole, 156

null linear map, 36

null set of an affine map, 45

numerical radius, 453

numerical range, ix, 452

objective function, 439

open, 214

ball, 213

ball of center a and radius ε , 213

cover, 214

subset, 214

open curve of class Cp, 532

open half-spaces

associated with f , 71

operator norm, 396

optical axis, 152

optimal control, 511

optimization problems, 387

order k(a), 72

ordering, 439

orientation, 264

of E, 265

orientation of a Euclidean affine space E, 265

orientation of a Euclidean space, 264

orientation of the plane, 146

origin, 7, 8, 13

orthocenter, 150

orthogonal, 389

basis, 199

circles, 205

complement, 183, 347

family, 183

line segments, 194

linear map, 344, 354

lines, 149

reflection, 232

spaces, 194

symmetry, 232
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symmetry about F , 255

transformation

definition, 195

vectors, 183, 328

orthogonal group, 198, 231, 468

definition, 200

orthogonal matrix, 199

definition, 199

orthogonal of V , 141

orthogonal projection, 391

orthogonal versus orthonormal, 199

orthogonality, 144, 177, 183

and linear independence, 185

orthonormal

basis, 198, 330

family, 183

orthonormal basis

existence, 190

existence, second proof, 191

osculating circle, 544, 545, 549, 576

definition, 544

osculating plane, 534, 537

definition, 536

osculating sphere, 563

definition, 563

overdetermined linear system, 387

pairing between E and E∗, 141

Pappus’s theorem, 8, 165, 174

affine version, 42

dual, 165

improved affine version, 53

projective version, 126, 133

parabolic point, 609, 622

paraboloid of revolution, 314

parallel

vector field, 639

parallel subspaces, 25

parallel surface, 646

parallel transport, ix, 640

parallelepiped, 30

parallelism, 7, 8

parallelogram, 30, 33

parallelotope, 30, 269, 276

parametric continuity, 571, 642

parametric rational curve, 105

parametrization of M at p

centered at p, 493

definition, 493

partial derivative, 485

partial map, 121

partial sums, 186

particle, 8

moving in 3D space, 8

Pascal’s theorem, 54, 167

path connected, 455

Pauli spin matrices, 295, 507, 513

PCA, vii, viii, 398, 401, 403

Peano, 530

pencil

of circles, 120, 172, 205

of conics, 120

of hyperplanes, 113

of lines, 112, 142, 165

of planes, 142

pencil of hyperplanes

definition, 142

pencil of lines

definition, 113

periodic, 533

perpendicular

line segments, 194

vectors, 183

perspectivities between lines, 125

perspectivity, 164

definition, 122

Peterson, 623

physical forces, 7

physics, 7

inspired by, 9

pinhole model of a camera, 151

pixel coordinates, 152

Plücker coordinates, 161, 162

planar point, 609, 622

plane, 25

plane curves, 540

point, 8, 12, 14, 90

projective, 107

point conic, 168

point location problem, 317

pointed cone, 77

points, 7

λ -heavy, 90

affinely dependent, 29

affinely independent, 27

assigned the weights λi, 19

collinear, 26

coplanar, 26

in general position, 305

points are not vectors, 30

points at infinity, 103, 108, 127, 129

polar axis, 553, 554, 561, 563

polar coordinates, 578, 634

polar decomposition, 203, 370, 378

of A, 373

polar form, xv, 367, 371

definition, 373

of a quadratic form, 180
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polar line, 116

polygon

definition, 310

polyhedral cone, 70

polyhedron

definition, 310

polynomial curve, 104, 576

polytope

definition, 310

polytyope, 81

Poncelet, 3, 141, 144, 173

points, 172

position, 8

vector, 9

positive

Hermitian matrix, 478

self-adjoint linear map, 368

symmetric matrix, 472

positive definite

bilinear form, 178

Hermitian matrix, 478

self-adjoint linear map, 368

symmetric matrix, 411, 412, 434, 472

positive hull, 70

positive linear combination, 69

positive semidefinite

self-adjoint linear map, 368

symmetric matrix, 412, 435, 472

positive semidefinite cone ordering, 413

post office problem, 302

potential energy, 418

power of P w.r.t. C, 210

pre-Hilbert space, 324

preservation of the ratio of volumes, 40

primal problem, 418

principal axes, 382

principal components, 399

principal components analysis, vii, viii, 398

principal curvatures, 585, 606, 617, 650

definition, 607

principal directions, 401, 405, 617

definition, 607

principal normal, 553, 580, 597

line, 553

principal normal vector, 554

principal point, 152

problem of Apollonius, 204

projection

central, 105

conic, 105

linear, 232

perspective, 105

projection of center c

definition, 122

projective

hyperplane, 111

line, 108, 111

plane, 108, 111

point, 108, 111

projective (linear) group, 121

projective completion, 106

definition, 129

of an affine space, 85, 126

projective frame

definition, 113

projective geometry, xiii, xiv, 2, 3, 103

projective isomorphism, 121

projective map, 104, 132

definition, 121

projective space, 107

definition, 107

of circles, 117

of conics, 119

projective subspace

definition, 111

projective transformation, 121

projectively independent points, 111

projectivity, 121

proper

face of a simplex, 308

isometry, 200

orthogonal transformations, 200

unitary transformations, 335

pseudo-inverse, vii, viii, xv, 203, 382, 420, 443

definition, 390

Penrose properties, 394

pseudosphere, 611, 645

pure quaternions, 282

Pythagoras, 1

quadrangles, 139

quadratic constrained minimization problem,

415

quadratic form, 323

associated with ϕ , 179

quadratic optimization, vii

on the ellipsoid, 424

on the unit sphere, 423

the general case, 419

the positive definite case, 411

quadric, 103, 146

surface, 159

quaternion interpolation, 296

quaternions, 281

and SO(3), 286

and SO(4), 293

definition, 282

inner product, 285
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multiplication of, 283

pure part, 284

scalar part, 284

quotient topology, 110

radical axis, 210

of two circles, 171

radius of a circle, 170

radius of curvature, 541, 544, 554

radius of torsion, 557, 561

Radon

partition, 77

point, 77

Radon’s theorem, 30, 76, 78

for cones, 78

Ramshaw, 90

rank

of a bilinear form, 207

of a linear map, 368

of a sesquilinear form, 339

ratio, 177

of three points

definition, 38

preservation by affine maps, 135

rational curves, 104, 154

rational surfaces, 104, 154

Rayleigh–Ritz

ratio, viii, 364, 403

theorem, 403

real affine space of dimension n, 15

real basis, 145

real conic, 147

real eigenvalues, 190, 202

real Euclidean plane, 146

real hypersurface, 146

real points, 145

real projective space RP3, 282

rectifiable, 538

rectifying plane, 556

definition, 554

reduced norm, 283

reduced trace of a quaternion, 283

reflection, 177, 275

about a plane, 259

with respect to F and parallel to G, 232

reflection about F

definition, 232

regular

closed curve of class Cp, 533

curve of class Cp, 532

open curve of class Cp, 532

point, 500, 524, 535

point on a curve, 532

point on a surface, 589

surface on Ω , 589

value, 500, 524

relaxation, 436

Riemann, 2

Riemannian manifold, 586, 594

Riemannian metric, 594, 606

right translation Ra, 509

rigid body, 297

rigid map, 251

rigid motion, 3, 7, 38, 177, 195, 297, 479, 515,

552

definition, 251

robotics, vii, xvii, 511

Rodrigues, 283, 619

formula, 275, 292, 471, 506

rotation, 33, 177, 259, 266, 281

angle, 288

axis, 288

definition, 200

in terms of flips, 245

matrix, 462, 467

row vectors, 14

ruled surface, 648, 650

rulings, 649

saddle point, 419

sample, 399

covariance, 399

covariance matrix, 399

mean, 399

variance, 399

Samuel, 119, 125

Sard’s theorem, 500

scalar product

definition, 179

Schmidt, 370

Schur, 431

complement, vii, ix, 431, 432

Schur norm, 396

Schur’s lemma, 465

Schur’s trick, 434

screw motion, 259

screw system, 511

second fundamental form, 601, 613, 623

and the shape operator, 619

definition, 600

Segre embedding, 159, 160

self-adjoint linear map, 344, 351, 353

definition, 190

self-intersection, 534

semidefinite programming, vii

semidirect product, 57, 505

semidirect product of H and K relative to θ , 58

semilinear map, 321
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seminorm, 327

sending objects to infinity, 133

separates, 71

separating hyperplane, viii, 71, 218

separation of disjoint convex sets, 225

sesquilinear form

definition, 322

(n, s)-set, 155

set of lines through the origin, 108

set of measure zero, 500

shape operator, 619

definition, 613

shear, 33

Shi and Malik, 439

Shi, Jianbo, 439

short exact sequence, 47

signature of a bilinear form, 208

signature of a sesquilinear form, 340

similarity, 151

similarity structure, 151

definition, 149

simple arc, 533

simple closed curve, 534

simple polygon, 311

simplex, 277, 308

n-simplex, 30

definition, 308

open, 309

n-simplex, 308, 310

simplicial complex

definition, 309

singular value decomposition, vii, 203, 367,

370, 374, 375, 380

case of a rectangular matrix, 379

definition, 375

singular values of f , 368

skew-Hermitian

matrix, 425

part, 441

skew-self-adjoint linear map, 344

skew-symmetric matrix, 425, 441, 468, 567

slope of a line, 148

smallest affine subspace generated by S, 26

smooth, 72

smooth curve, 495

on a manifold, 501

smooth diffeomorphism, 508

smooth manifold, 493

in RN , definition, 493

smooth map between manifolds, 508

smooth surface, 495

south pole, 156

space curves, 553

spanning tree, 314

SPD, vii

special affine group, 40, 58

special Euclidean group, 58

special linear group, 58, 200, 468, 475

special Lorentz group, 520

special orthogonal group, 58, 468

definition, 200

special unitary group, 475

definition, 335

spectral theorems, xv, 343

speed, 539

unit, 540

sphere, 109

3-sphere S3, 281

n-sphere Sn, 109

spherical model

of projective geometry, 109

spherical model of projective geometry, 104

spline surfaces, 642

splines, 571

B-splines, 571

square-filling curve, 530

standard frame in R3, 8

star-shaped, 82, 634

with respect to a, 82

stationary point, 531, 532

Steiner characterization of a conic, 167

Steiner’s theorem, 172

stereographic projection, 156, 171, 494

stiffness matrix, 416

Strang, 4, 270

strictly

concave function, 74

convex function, 74

separates, 71

separating hyperplane, 71, 220

subdivision, 538

submanifold, 525

submersion, ix, 490, 495, 497, 524

subordinate norm, 396

subspace

affine, 132

of a vector space, 21

of an affine space, 21

projective, 132

subspace topology, 492

supporting hyperplane, viii, 71, 227

definition, 71

of A at a, 71

supporting line, 456

surface, 495, 585

surface gallery, 128

surface of revolution, 644, 647, 648

surface patch
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definition, 589

surfaces, 8, 585

global properties, 585

local properties, 585

surjective affine map, 36

surjectivity of exp : se(n)→ SE(n), 480

surjectivity of exp : so(n)→ SO(n), 469

surjectivity of exp : su(n)→ SU(n), 476

surjectivity of exp : u(n)→ U(n), 476

SVD, vii, viii, xv, 203, 374, 375, 380, 403,

407, 420

SVD methods in computer vision, 153

Sylvester, 370

Sylvester’s inertia theorem, 208, 339

symmetric bilinear form, 178

symmetric connection, 641

symmetric matrix, 190, 202, 441

symmetry

with respect to F and parallel to G, 232

with respect to the origin, 233

tangent, 535

tangent line to a conic, 168

tangent line, definition, 535

tangent map of f at p, 508

tangent plane

definition, 589

tangent space, 459, 491, 589

tangent space TpM at p

definition, 503

tangent vector to M at p, 503

tangent vector to a curve, 501

tangential coordinates, 50

tetrahedron, 30, 48, 174

Thales, 1

Thales’ theorem, 8, 41

thickness factor, 440

Thiessen polygons, 304

Toeplitz and Hausdorff, ix, 452

theorem of, 455

topological group, 468, 475, 492

topological invariants, 312

topological space, 110

topology of the geometric realization, 310

torsion, 529, 555, 556, 561

definition, 557

torus, 609

total curvature

definition, 607

total derivative, 484

total differential, 484

trace, 243, 466

of a curve, 532, 533

of a matrix, 275

of a surface, 589

tractrix, 574, 611

trajectories, 7

translation, 8, 12, 33, 40, 86

definition, 36

translation part of an affine map, 37

transpose of a matrix, 198, 333, 357, 359

transversal, 526

triangle, 30

triangle inequality, 182, 656, 657

triangulation, 311

definition, 311

triply orthogonal system, 629

definition, 629

trivial vector space, 4

true circle, 170

tube, 643

tube size, 440

Tverberg

partition, 78

point, 78

Tverberg’s theorem, 78

twisted cubic, 50, 555, 557, 563, 651

umbilic, 609, 652

umbilical point, 609, 621

umbilics on an ellipsoid, 609, 645

uncorrelated, 399

unique global minimum, 412

unit circle, 281

unit normal vector

definition, 589

unit quaternions, 286

unit tangent (vector), 539

unitary

group, 333, 475

map, 351

matrix, 333

unitary group

definition, 335

unitary matrix

definition, 334

unitary space

definition, 324

unitary transformation, 331

definition, 332

universal property

of the homogenization, 98

of the projective completion, 129

up to a scalar, 104

using curves to determine a Lie algebra, 505

Valentine, 74, 218, 226

Vandermonde determinant, 50
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variance, 399, 409

variational problem, 414

variety, 117

Veblen and Young, 1, 104, 151

vector, 8, 14, 90

free, 8, 11, 12

vector field, 637

along α , 638

vector space, 7, 89

acting on a set, 12

associated with E, 14

obtained by taking a as the origin, 14

velocity vector f ′(t), 537

Veronese map, 157

vertex, 72, 310

of a simplex, 308

view plane, 154

viewing system, 154

volume form

definition, 268

Von Neumann and Cartan, 492

theorem, 503

von Staudt, 144

Voronoi, 304

Voronoi diagram, xiii, xiv, 202, 301, 304

Voronoi region, 304

Warner, 510

weighed point

definition, 19

weight, 90

weighted point, 90

Weingarten equations, 616

Weingarten operator, 619

Weyl, xviii, 370

world reference frame, 152

zero locus, 108, 117

Ziegler, viii


