7.8 Orientations of a Euclidean Space, Angles

In this section we return to vector spaces. In order to deal with the notion of orientation correctly, it is important to assume that every family $\left(u_{1}, \ldots, u_{n}\right)$ of vectors is ordered (by the natural ordering on $\left.\{1,2, \ldots, n\}\right)$. Thus, we will assume that all families $\left(u_{1}, \ldots, u_{n}\right)$ of vectors, in particular bases and orthonormal bases, are ordered.

Let E be a vector space of finite dimension n over \mathbb{R}, and let $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$ be any two bases for E. Recall that the change of basis matrix from $\left(u_{1}, \ldots, u_{n}\right)$ to $\left(v_{1}, \ldots, v_{n}\right)$ is the matrix P whose columns are the coordinates of the vectors v_{j} over the basis $\left(u_{1}, \ldots, u_{n}\right)$. It is immediately verified that the set of alternating n-linear forms on E is a vector space, which we denote by $\Lambda(E)$ (see Lang [107]).

We now show that $\Lambda(E)$ has dimension 1 . For any alternating n-linear form $\varphi: E \times \cdots \times E \rightarrow K$ and any two sequences of vectors $\left(u_{1}, \ldots, u_{n}\right)$ and $\left(v_{1}, \ldots, v_{n}\right)$, if

$$
\left(v_{1}, \ldots, v_{n}\right)=\left(u_{1}, \ldots, u_{n}\right) P
$$

then

$$
\varphi\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}(P) \varphi\left(u_{1}, \ldots, u_{n}\right)
$$

In particular, if we consider nonnull alternating n-linear forms $\varphi: E \times \cdots \times$ $E \rightarrow K$, we must have $\varphi\left(u_{1}, \ldots, u_{n}\right) \neq 0$ for every basis $\left(u_{1}, \ldots, u_{n}\right)$. Since for any two alternating n-linear forms φ and ψ we have

$$
\varphi\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}(P) \varphi\left(u_{1}, \ldots, u_{n}\right)
$$

and

$$
\psi\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}(P) \psi\left(u_{1}, \ldots, u_{n}\right)
$$

we get

$$
\varphi\left(u_{1}, \ldots, u_{n}\right) \psi\left(v_{1}, \ldots, v_{n}\right)-\psi\left(u_{1}, \ldots, u_{n}\right) \varphi\left(v_{1}, \ldots, v_{n}\right)=0
$$

Fixing $\left(u_{1}, \ldots, u_{n}\right)$ and letting $\left(v_{1}, \ldots, v_{n}\right)$ vary, this shows that φ and ψ are linearly dependent, and since $\Lambda(E)$ is nontrivial, it has dimension 1 .

We now define an equivalence relation on $\Lambda(E)-\{0\}$ (where we let 0 denote the null alternating n-linear form):
φ and ψ are equivalent if $\psi=\lambda \varphi$ for some $\lambda>0$.
It is immediately verified that the above relation is an equivalence relation. Furthermore, it has exactly two equivalence classes O_{1} and O_{2}.

The first way of defining an orientation of E is to pick one of these two equivalence classes, say $O\left(O \in\left\{O_{1}, O_{2}\right\}\right)$. Given such a choice of a class O, we say that a basis $\left(w_{1}, \ldots, w_{n}\right)$ has positive orientation iff

