
Relaxed
Consistency
Deterministic
Computer

Joseph Devietti, Jacob Nelson, Tom Bergan
Luis Ceze, Dan Grossman

“deterministic deeds, done dirt cheap”

Debug
reverse debugging is possible

Deploy
more robust production code

Test
no need to
 stress test testing results

are reproducible

production bugs
can be reproduced

in-house

tested inputs behave
identically in production

3

determinism improves the software
development cycle

Debug
Deploy

Test

4

determinism improves the software
development cycle

History of Deterministic Execution

5

Kendo [ASPLOS ‘09]

Grace [OOPSLA ‘09]

Deterministic Execution
for Restricted Programs

DMP [ASPLOS ‘09]

 CoreDet [ASPLOS ‘10]

dOS [OSDI ‘10]

Determinator [OSDI ‘10]

Calvin [HPCA ‘11]

[ASPLOS ‘11]

Deterministic Execution
for Arbitrary Programs

History of Deterministic Execution

6

DMP [ASPLOS ‘09]

seq. consistency total store order DRF0 [ISCA ‘90]

CoreDet [ASPLOS ‘10]

"Piled Higher and Deeper" by Jorge Cham
www.phdcomics.com

Jorge Cham © 2008

[ASPLOS ‘11]

http://www.phdcomics.com/

2
3

4 1

7

DMP-HB
a new deterministic

consistency model based on
DRF0 with improved

performance

a low-complexity hw/sw
deterministic execution

system

hw: store buffers and
instruction counting

sw: everything else

C/C++ compiler
based on LLVM,

runs on commodity
multicore

hardware
simulation using Pin

Contributions Outline

starting simple: serialization

quantum

8

deterministic
quantum size
+
deterministic
scheduling

determinism

quantum round

th
re

ad
s

time →

T1

T2

T3

recovering parallelism
with DMP-TSO

9

parallel mode: buffer all
stores (no communication)

commit mode:
deterministically publish
buffers

serial mode: for atomic ops

time →

T1

T2

T3

commit
parallel

serial
lock A

lock B

wr A

rd A

rd A

Why is DMP-TSO slow?

10

time →

commit
parallel

serial

serialization

imbalance

T3

T1

T2

Kendo [ASPLOS ‘09]

Why is DMP-TSO slow?

11

time →

commit
parallel

T3

T1

T2

serialization

imbalance

Kendo [ASPLOS ‘09]

DMP-HB

parallel-mode synchronization
complements
relaxed consistency

synchronization in
parallel mode with Kendo

12

instruction count →

T1

T2

T3

[Olszewski et al., ASPLOS ‘09]

lock A

thread with globally min insn
count can do atomic op

T2 not globally min insn count T2 is globally min insn count

Why is DMP-TSO slow?

13

time →

commit
parallel

serial

serialization

imbalance

T3

T1

T2

Kendo [ASPLOS ‘09]

Why is DMP-TSO slow?

14

time →

commit
parallel

T3

T1

T2

serialization

imbalance
DMP-HB

Kendo [ASPLOS ‘09]

DRF0: happens-before consistency

• happens-before edges defined by
synchronization operations

• remote updates visible via cross-thread
happens-before edges

• SC for DRF programs

• upholds C++/Java memory models

• programmer-visible model doesn’t change

15

[Adve and Hill, ISCA ‘90]

16

relaxed consistency (DRF0)

sync in parallel mode (Kendo)

DMP-HB

deterministic scheduling (DMP)

DMP-HB : happens-before determinism

17

time →

T1

T2

T3

commit
parallel

lock A unlock A

lock A

TSO RC

no serial mode
less imbalance

DRF0
explicit fence iff
inter-thread HB

edge doesn’t
cross commit

explicit fences
rarely necessary

2
3

4 1

Outline

18

DMP-HB
a new deterministic

consistency model with
improved performance

a low-complexity hw/sw
deterministic execution

system

hw: store buffers and
instruction counting

sw: everything else

C/C++ compiler
based on LLVM,

runs on commodity
multicore

hardware
simulation using Pin

Architecture

19

L2$

Core

L1$

Store Buffers in Private $
StoreToSB
CommitSB

SaveSB
RestoreSB

Precise Insn Counting
StartInsnCount
StopInsnCount
ReadInsnCount

Core

L1$

Traps
SBFull
QuantumReached

application/OS can
choose nondeterminism

align context switches
with quantum boundaries

runtime system

2
3

4 1

Outline

20

DMP-HB
a new deterministic

consistency model with
improved performance

a low-complexity hw/sw
deterministic execution

system

hw: store buffers and
instruction counting

sw: everything else

C/C++ compiler
based on LLVM,

runs on commodity
multicore

hardware
simulation using Pin

Experimental Setup

21

structure size access latency

private L1 8-way, 32KB 1 cycle

private L2 8-way, 256KB 10 cycles

shared L3 16-way, 8MB 35 cycles

memory - 120 cycles

Pin-based simulator
1 IPC, except for memory ops
PARSEC v2.1 with simsmall inputs

extended CoreDet C/C++ compiler [ASPLOS ‘10]

8-core Intel Harpertown @ 2.8GHz, 10GB RAM
PARSEC v2.1 with simlarge inputs

0%

10%

20%

30%

40%

50%

60%

70%

blacksch dedup ferret fluid streamcl swaptions vips x264

%
 o

ve
rh

e
ad

 c
o

m
p

ar
e

d
 t

o
 n

o
n

d
et

 2p

4p

8p

16p

Simulation: Overheads

22

overhead < 60% in worst case

50k 50k 25k 1k 1k 50k 50k 50k
quantum size

(insns)

Compiler: DMP-HB vs. DMP-TSO

23

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

2 4 8 2 4 8 2 4 8 2 4 8

%
 o

ve
rh

e
ad

 c
o

m
p

ar
e

d
 t

o
 n

o
n

d
e

t

hb

tso

blackscholes fluidanimate fmm swaptions

threads

200k 200k 50k 50k
quantum size

(insns)

Conclusions

• DMP-HB: a new deterministic
consistency model

• : a new deterministic
multiprocessor design
– no speculation

– lightweight hardware support

• Relaxed consistency is a natural
optimization for determinism

24

source code and data available at
http://sampa.cs.washington.edu

http://sampa.cs.washington.edu/

Thanks!

Questions?

source code and data available at
http://sampa.cs.washington.edu

25

http://sampa.cs.washington.edu/
http://sampa.cs.washington.edu/
http://sampa.cs.washington.edu/

DRF0 hardware requirements [ISCA ‘90]

1. Intra-processor dependencies are preserved.
2. All writes to the same location can be totally ordered based on their

commit times, and this is the order in which they are observed by all
processors.

3. All synchronization operations to the same location can be totally
ordered based on their commit times, and this is also the order in which
they are globally performed. Further, if S1 and S2 are synchronization
operations and S1 is committed and globally performed before S2, then
all components of S1 are committed and globally performed before any
in S2.

4. A new access is not generated by a processor until all its previous
synchronization operations (in program order) are committed.

5. Once a synchronization operation S by processor Pi is committed, no
other synchronization operations on the same location by another
processor can commit until after all reads of Pi before S (in program
order) are committed and all writes of Pi before S are globally
performed.

26

