
RADISH:
Sound and Complete Race

Detection in
Software and Hardware

Joseph Devietti*

Benjamin P. Wood*

Karin Strauss*^

Luis Ceze*

Dan Grossman*

Shaz Qadeer^

*University of Washington
^Microsoft Research

image from pachd.com

Uses of Race Detection

multithreaded
record+replay

simplifying
consistency

models

atomicity
checking

atomicity
enforcement

determinism
checking

determinism
enforcement

concurrency
bug detection

2

testing &
verification

many uses require
sound+complete detection

3

slow
polling-based

sound+complete
static analysis

$ coherence
event-based

unsound/incomplete
$ evictions

descheduled threads
$-line granularity

software hardware

complementary strengths

$ coherence
event-based

sound+complete
static analysis

Flanagan and Freund, PLDI 2009 Min and Choi, ASPLOS 1991
Muzahid et al., ISCA 2009

Prvulovic, HPCA 2006

RADISH overview

4

sound+complete race detection in sw+hw

byte-granularity
tracking

unsound/incomplete
$ evictions

descheduled threads
$-line granularity

use sw to virtualize hw
resources via “revision control”

hw mechanisms to
reduce expensive

broadcasts, sw lookups

outline
image from pachd.com

5

happens-before
data race detection

in-$ RADISH
full RADISH

results

conclusions

data races

2 concurrent accesses to the same memory location,
≥1 of which is a write

unordered wrt the happens-before relation

transitive closure of
program order + synchronization order

6

Lamport, CACM 1978

http://en.wikipedia.org/wiki/Greater_than_or_equal_to
http://en.wikipedia.org/wiki/Greater_than_or_equal_to

data races

t0 t1

read X

read X

release L

acquire L

write X

write X

synchronization

program
order

data race

po + sync

7

Lamport, CACM 1978

happens-before race detection

location
last

write
last

reads

X t2@T
t0@U,
t1@-,
t2@W

per-thread metadata

per-location metadata

thread last synchronized with

t0 t1@T, t2@U

8

canonical sound+complete approach

write ordered with last write
and all last reads

read ordered with last write

Fidge, Computer 1991 Mattern, IWPDA 1989

location
last

write
last

reads

X t2@T
t0@U,
t1@–,
t2@W

thread last synchronized with

t0 t1@T, t2@U

mapping to hardware

p0 p1 p2

unbounded # threads

unbounded # locations
9

outline
image from pachd.com

10

happens-before
data race detection

in-$ RADISH
full RADISH

results

conclusions

strawman
all metadata is in hw,

so broadcast on every access?

11

local permissions cache what can
be done without communication

p0

write X

write X

p0 p1 p2

local permissions

READ, WRITE or NONE permissions
to each byte in a $ line

updated only on permissions violations
and coherence events

12

p0

write X

write X

p0 p1 p2

w

outline
image from pachd.com

13

happens-before
data race detection

in-$ RADISH
full RADISH

results

conclusions

strawman
metadata can be in hw or sw,
so check sw on every access?

14

in-hardware status summarizes
what metadata resides in hw

p0 p1 p2
sw p0 p1 p2

R R W

in-hardware status

“checkout”

“checkin”

set IHS on checkout,
degrade on $ evictions

Everything

Last
Write

All Last
Reads

In
Software

evict
read

evict
write

evict
write

evict
read

evict
read

what can we figure out without going to sw?

15

also in the paper

16

leveraging type-safe languages to
reduce metadata space overheads

asynchronous software lookups to
reduce overheads

outline
image from pachd.com

17

happens-before
data race detection

in-$ RADISH
full RADISH

results

conclusions

simulation methodology

• Pin-based simulator

• 8 cores, MESI coherence

• 8-way 64KB L1, 8-way 256KB private L2, 16-way 16MB L3

• PARSEC 2.1

• compare with FastTrack [Flanagan and Freund, PLDI 2009]

18

runtime compared to native

1

2

3

4

5

6

blacksch fluid streamcl swaptions vips x264

ru
nt

im
e

w
rt

 n
at

iv
e

FastTrack RADISH

19

runtime compared to FastTrack

0

0.2

0.4

0.6

0.8

1.0

blacksch fluid streamcl swaptions vips x264

ru
nt

im
e

w
rt

 F
as

tT
ra

ck

FastTrack RADISH

20

conclusions

sound+complete race detection in hw+sw

much faster than software-only race detection

unmodified cache design

21

thanks!

image from pachd.com

22

