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Uses of Race Detection

multithreaded 
record+replay

simplifying 
consistency 

models

atomicity 
checking

atomicity 
enforcement

determinism 
checking

determinism 
enforcement

concurrency 
bug detection
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testing & 
verification

many uses require
sound+complete detection
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slow
polling-based

sound+complete
static analysis

$ coherence
event-based

unsound/incomplete
$ evictions

descheduled threads
$-line granularity

software hardware

complementary strengths

$ coherence
event-based

sound+complete
static analysis

Flanagan and Freund, PLDI 2009 Min and Choi, ASPLOS 1991
Muzahid et al., ISCA 2009

Prvulovic, HPCA 2006



RADISH overview
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sound+complete race detection in sw+hw

byte-granularity 
tracking

unsound/incomplete
$ evictions

descheduled threads
$-line granularity

use sw to virtualize hw 
resources via “revision control”

hw mechanisms to 
reduce expensive 

broadcasts, sw lookups



outline
image from pachd.com

5

happens-before
data race detection

in-$ RADISH
full RADISH

results

conclusions



data races

2 concurrent accesses to the same memory location,
≥1 of which is a write

unordered wrt the happens-before relation

transitive closure of
program order + synchronization order
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Lamport, CACM 1978

http://en.wikipedia.org/wiki/Greater_than_or_equal_to
http://en.wikipedia.org/wiki/Greater_than_or_equal_to


data races

t0 t1

read X

read X

release L

acquire L

write X

write X

synchronization

program 
order

data race

po + sync
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Lamport, CACM 1978



happens-before race detection

location
last 

write
last 

reads

X t2@T
t0@U, 
t1@-, 
t2@W

per-thread metadata

per-location metadata

thread last synchronized with

t0 t1@T, t2@U
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canonical sound+complete approach

write ordered with last write 
and all last reads

read ordered with last write

Fidge, Computer 1991  Mattern, IWPDA 1989



location
last 

write
last 

reads

X t2@T
t0@U, 
t1@–, 
t2@W

thread last synchronized with

t0 t1@T, t2@U

mapping to hardware

p0 p1 p2

unbounded # threads

unbounded # locations
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happens-before
data race detection

in-$ RADISH
full RADISH

results
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strawman
all metadata is in hw,

so broadcast on every access?
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local permissions cache what can 
be done without communication

p0

write X

write X

p0 p1 p2



local permissions

READ, WRITE or NONE permissions 
to each byte in a $ line

updated only on permissions violations 
and coherence events
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p0

write X

write X

p0 p1 p2

w
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happens-before
data race detection

in-$ RADISH
full RADISH

results
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strawman
metadata can be in hw or sw, 
so check sw on every access?
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in-hardware status summarizes 
what metadata resides in hw

p0 p1 p2
sw p0 p1 p2

R R W



in-hardware status

“checkout”

“checkin”

set IHS on checkout, 
degrade on $ evictions

Everything

Last 
Write

All Last
Reads

In 
Software

evict 
read

evict 
write

evict 
write

evict 
read

evict 
read

what can we figure out without going to sw?
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also in the paper
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leveraging type-safe languages to 
reduce metadata space overheads

asynchronous software lookups to 
reduce overheads
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happens-before
data race detection

in-$ RADISH
full RADISH

results

conclusions



simulation methodology

• Pin-based simulator

• 8 cores, MESI coherence

• 8-way 64KB L1, 8-way 256KB private L2, 16-way 16MB L3

• PARSEC 2.1

• compare with FastTrack [Flanagan and Freund, PLDI 2009]
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runtime compared to native
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runtime compared to FastTrack
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conclusions

sound+complete race detection in hw+sw

much faster than software-only race detection

unmodified cache design
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thanks!
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