
How do we specify correctness
for concurrent objects?

1

Linearizability

Execution history has equivalent behavior to
some sequential execution

Each method call takes effect instantaneously
at some point between call/return

Linearizability does not require blocking
(or non-blocking!) behavior

Linearizability: A Correctness Condition for Concurrent Objects l 469

Axiom E:

WeI
EnqW / Ok0
(4’ = Wq, e))

Fig. 3. Axioms for queue operations.
Axiom D:

(9 f Ill
DeqO /Ok(e)

(q’ = rest(q) A e = first(q))

(Where appropriate, subscripts on partial orders are omitted). Informally, <n
captures the “real-time” precedence ordering of operations in H. Operations
unrelated by <n are said to be concurrent. If H is sequential, <n is a total order.

A history H is linearizable if it can be extended (by appending zero or more
response events) to some history H’ such that:

Ll: complete(H’) is equivalent to some legal sequential history S, and
L2: <H 2 CS.

Informally, extending H to H’ captures the notion that some pending invoca-
tions may have taken effect even though their responses have not yet been
returned to the caller (as in the pending Enq in history H, in Figure 1). Restricting
attention to complete(H’) captures the notion that the remaining pending
invocations have not yet had an effect. Ll states that processes act as if they
were interleaved at the granularity of complete operations. L2 states that this
apparent sequential interleaving respects the real-time precedence ordering of
operations.

We call S a linearization of H. Nondeterminism is inherent in the notion of
linearizability: (1) For each H, there may be more than one extension H’
satisfying the two conditions, Ll and L2, and (2) for each extension H’, there
may be more than one linearization S. A linearizable object is one whose concur-
rent histories are linearizable with respect to some sequential specification.

2.3 Queue Examples Revisited
Let “ . ” denote concatenation of events. The history H1 shown in Figure 1 is
linearizable, because H, . (q Ok() A) is equivalent to the following sequential
history:

q h(x) A (History Hi)
q ON) A
q End B
q Ok(1 B
q Ded) B
q Ok(x) B
q De4 1 A
q Ok(y) A
q End4 A
q W 1 A

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 3, July 1990.

2

Linearizable FIFO history?

Enq(x)

Enq(y)

Deq(y)

3

Linearizable FIFO history?

Enq(x)

Enq(y)

Deq(y)

Deq(y)

4

Linearizable FIFO history?

Enq(x)

Enq(y)

Deq(y)

Deq(x)

5

Linearizable FIFO history?

Enq(x)

Enq(y)

Deq(y)

Deq(x)

5

linearization point

SC is not local

a.Enq(x)

a.Enq(y)

a.Deq(y)

b.Enq(y)

b.Enq(x)

b.Deq(x)

6

SC is not local

a.Enq(x)

a.Enq(y)

a.Deq(y)

b.Enq(y)

b.Enq(x)

b.Deq(x)

6

SC is not local

a.Enq(x)

a.Enq(y)

a.Deq(y)

b.Enq(y)

b.Enq(x)

b.Deq(x)

6

SC is not local

a.Enq(x)

a.Enq(y)

a.Deq(y)

b.Enq(y)

b.Enq(x)

b.Deq(x)

6

SC is not local

a.Enq(x)

a.Enq(y)

a.Deq(y)

b.Enq(y)

b.Enq(x)

b.Deq(x)

6

SC is not local

a.Enq(x)

a.Enq(y)

a.Deq(y)

b.Enq(y)

b.Enq(x)

b.Deq(x)

6

SC is not local

a.Enq(x)

a.Enq(y)

a.Deq(y)

b.Enq(y)

b.Enq(x)

b.Deq(x)

6

SC is not local

a.Enq(x)

a.Enq(y)

a.Deq(y)

b.Enq(y)

b.Enq(x)

b.Deq(x)

6

Serializability is not local

a.Enq(x); b.Enq(x) a.Deq(y)

b.Enq(y); a.Enq(y) b.Deq(x)

7

Serializability is not local

a.Enq(x); b.Enq(x) a.Deq(y)

b.Enq(y); a.Enq(y) b.Deq(x)

7

Serializability is not local

a.Enq(x); b.Enq(x) a.Deq(y)

b.Enq(y); a.Enq(y) b.Deq(x)

7

Serializability is not local

a.Enq(x); b.Enq(x) a.Deq(y)

b.Enq(y); a.Enq(y) b.Deq(x)

7

Serializability is not local

a.Enq(x); b.Enq(x) a.Deq(y)

b.Enq(y); a.Enq(y) b.Deq(x)

7

Different granularities

• SC: single memory location

• Linearizability: single object

• Serializability: arbitrary set of memory locations

• Unifying theme: reduce concurrency to (nondeterministic) sequential behavior

