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What	is	a	GPU?	
•  GPU	=	Graphics	Processing	Unit	

– Accelerator	for	raster	based	graphics	(OpenGL,	DirectX)	
– Highly	programmable	(Turing	complete)		
–  Commodity	hardware		
–  100’s	of	ALUs;		10’s	of	1000s	of	concurrent	threads	
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The GPU is Ubiquitous 

3 [APU13	keynote]	
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“Early”	GPU	History	

– 1981:		IBM	PC	Monochrome	Display	Adapter	(2D)	
– 1996:		3D	graphics	(e.g.,	3dfx	Voodoo)	
– 1999:		register	combiner	(NVIDIA	GeForce	256)	
– 2001:		programmable	shaders	(NVIDIA	GeForce	3)	
– 2002:		floaFng-point	(ATI	Radeon	9700)	
– 2005:		unified	shaders	(ATI	R520	in	Xbox	360)	
– 2006:		compute	(NVIDIA	GeForce	8800)	
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GPU: The Life of a Triangle 
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Primitive Assembly ,  Setup  

Rasterize  &  Zcull 

Pixel Shader 

Pixel Engines  ( ROP ) 

process commands 

transform vertices  
to screen - space 

generate per - 
triangle equations 

generate pixels ,  delete pixels  
that cannot be seen 

determine the colors ,  transparencies  
and depth of the pixel 

do final hidden surface test, blend  
and write out color and new depth 

[David	Kirk	/	Wen-mei	Hwu]	
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pixel color result of running “shader” program +	



Why	use	a	GPU	for	compuFng?	
•  GPU	uses	larger	fracFon	of	silicon	for	computaFon	than	CPU.			
•  At	peak	performance	GPU	uses	order	of	magnitude	less	

energy	per	operaFon	than	CPU.	
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CPU	
2nJ/op	

GPU	
200pJ/op	

Rewrite	ApplicaFon	

Order	of	Magnitude	More	
Energy	Efficient	

However….	
Applica6on	must	perform	well	



GPU	uses	larger	fracFon	of	silicon	for	
computaFon	than	CPU?	
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Growing	Interest	in	GPGPU	

•  SupercompuFng	–	Green500.org	Nov	2014		
“the	top	three	slots	of	the	Green500	were	powered	by	three	
different	accelerators	with	number	one,	L-CSC,	being	powered	by	
AMD	FirePro™	S9150	GPUs;	number	two,	Suiren,	powered	by	
PEZY-SC	many-core	accelerators;	and	number	three,	TSUBAME-
KFC,	powered	by	NVIDIA	K20x	GPUs.	Beyond	these	top	three,	the	
next	20	supercomputers	were	also	accelerator-based.”	

•  Deep	Belief	Networks	map	very	well	to	GPUs	
(e.g.,	Google	keynote	at	2015	GPU	Tech	Conf.) 		

							htp://blogs.nvidia.com/blog/2015/03/18/google-gpu/	
	htp://www.ustream.tv/recorded/60071572	
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GPGPUs	vs.	Vector	Processors	

•  SimilariFes	at	hardware	level	between	GPU	
and	vector	processors.	

•  (I	like	to	argue)	SIMT	programming	model	
moves	hardest	parallelism	detecFon	problem	
from	compiler	to	programmer.			
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Course	Learning	ObjecFves	
Aver	course	you	should	be	able	to:	
1.  Explain	moFvaFon	for	invesFgaFng	novel	GPU-like	

compuFng		architectures	
2.  Understand	basic	CUDA	/	PTX	programs	
3.  Describe	features	of	a	generic	GPU	architecture	

representaFve	of	contemporary	GPGPUs	
4.  Describe	selected	research	on	improving	GPU	

compuFng	programming	models	and	hardware	
efficiency	
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Further	Reading?	

The	following	Ftle	is	under	development:	
	
Tor	M.	Aamodt,	Wilson	W.	L.	Fung,	Tim	G.	Rogers,	
General	Purpose	Graphics	Processor	Architectures	,	
Morgan	and	Claypool	(late	2015	or	early	2016)		
	
Other	resources	(primarily	research	papers)	will	be	
menFoned	throughout	the	lectures.	
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Course	Outline	
•  Part	1:	IntroducFon	to	GPGPU	Programming	
Model	

•  Part	2:	Generic	GPGPU	Architecture	
•  Part	3:	Research	DirecFons	

– MiFgaFng	SIMT	Control	Divergence	
– MiFgaFng	High	GPGPU	Memory	Bandwidth	
Demands	

– Coherent	Memory	for	Accelerators	
– Easier	Programming	with	SynchronizaFon	
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Part	1:	IntroducFon	to	GPGPU	
Programming	Model	
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GPGPU	Programming	Resources	

•  9	week	MOOC	covering	CUDA,	OpenCL,	C+
+AMP	and	OpenACC
htps://www.coursera.org/course/hetero		

•  Kirk	and	Hwu,	Programming	Massively	Parallel	
Processors,	Morgan	Kaufmann,	2nd	ediFon,	
2014		(NOTE:	2nd	ediFon	includes	coverage	of	
OpenCL,	C++AMP,	and	OpenACC)	
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GPU	Compute	Programming	Model	

CPU																																													GPU		
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How	is	this	system	programmed	(today)?	



GPGPU Programming Model 

CPU 
spawn 

done 

GPU 

CPU 

Time 

CPU 
spawn 

GPU 
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•  CPU “Off-load” parallel kernels to GPU 

– Transfer data to GPU memory 
– GPU HW spawns threads  
– Need to transfer result data back to CPU main 

memory 

+	



CUDA/OpenCL	Threading	Model	

•  Spawns	more	threads	than	GPU	can	run	(some	may	wait)	
•  Organize	threads	into	“blocks”	(up	to	1024	threads	per	block)	
•  Threads	can	communicate/synchronize	with	other	threads	in	block	
•  Threads/Blocks	have	an	idenFfier	(can	be	1,	2	or	3	dimensional)	
•  Each	kernel	spawns	a	“grid”	containing	1	or	more	thread	blocks.	
•  MoFvaFon:	Write	parallel	sovware	once	and	run	on	future	hardware	

kernel()	

thread	block	0	 thread	block	1	 thread	block	N	

CPU	spawns	fork-join	style	“grid”	of	parallel	threads	

thread	grid	

18	



SIMT	ExecuFon	Model	
•  Programmers	sees	MIMD	threads	(scalar)	
•  GPU	bundles	threads	into	warps	(wavefronts)	and	runs	them	

in	lockstep	on	SIMD	hardware	
•  An	NVIDIA	warp	groups	32	consecuFve	threads	together	

(AMD	wavefronts	group	64	threads	together)	

1.19	

•  Aside:	Why	“Warp”?		In	the	texFle	
industry,	the	term	“warp”	refers	to	
“the	threads	stretched	lengthwise	
in	a	loom	to	be	crossed	by	the	
wev”	[Oxford	DicFonary].			

•  Jacquard	Loom	=>	Babbage’s	
AnalyFcal	Engine	=>	…	=>	GPU.	

[htps://en.wikipedia.org/wiki/Warp_and_woof]	



SIMT	ExecuFon	Model	
•  Challenge:		How	to	handle	branch	operaFons	when	
different	threads	in	a	warp	follow	a	different	path	
through	program?	

•  SoluFon:	Serialize	different	paths.	

A: v = foo[threadIdx.x]; 

B: if (v < 10)  

C:    v = 0; 

   else 

D:    v = 10; 

E: w = bar[threadIdx.x]+v; 

Tim
e	

A T1	T2	T3	T4	

B T1	T2	T3	T4	

C T1	T2	

D T3	T4	

E T1	T2	T3	T4	

foo[] = {4,8,12,16}; 

1.20	



CUDA Syntax Extensions 

•  Declaration specifiers 
__global__ void foo(...);  // kernel entry point (runs on GPU) 
__device__ void bar(...); // function callable from a GPU thread 

•  Syntax for kernel launch 
foo<<<500, 128>>>(...); // 500 thread blocks, 128 threads each 

•  Built in variables for thread identification 
dim3 threadIdx; dim3 blockIdx; dim3 blockDim; 

1.21	



Example: Original C Code 
void saxpy_serial(int n, float a, float *x, float *y)   
{  
 for (int i = 0; i < n; ++i) 

     y[i] = a*x[i] + y[i];  
}  
 
int main() { 
  // omitted: allocate and initialize memory 
  saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY kernel 
  // omitted: using result 
} 	
	



CUDA Code 
	
__global__ void saxpy(int n, float a, float *x, float *y) { 
   int i = blockIdx.x*blockDim.x + threadIdx.x; 
   if(i<n) y[i]=a*x[i]+y[i]; 
}  
 
int main() { 
  // omitted: allocate and initialize memory 
  int nblocks = (n + 255) / 256; 
 
  cudaMalloc((void**) &d_x, n); 
  cudaMalloc((void**) &d_y, n); 
  cudaMemcpy(d_x,h_x,n*sizeof(float),cudaMemcpyHostToDevice); 
  cudaMemcpy(d_y,h_y,n*sizeof(float),cudaMemcpyHostToDevice); 
  saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y); 
  cudaMemcpy(h_y,d_y,n*sizeof(float),cudaMemcpyDeviceToHost); 
  // omitted: using result 
} 

Runs	on	GPU	



OpenCL	Code	
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__kernel void saxpy(int n, float a, __global float *x, __global float *y) { 
   int i = get_global_id(0); 
   if(i<n) y[i]=a*x[i]+y[i]; 
} 
 
int main() { 
  // omitted: allocate and initialize memory on host, variable declarations 
 
  int nblocks = (n + 255) / 256; 
  int blocksize = 256; 
 
  clGetPlatformIDs(1, &cpPlatform, NULL); 
  clGetDeviceIDs(cpPlatform, CL_DEVICE_TYPE_GPU, 1, &cdDevice, NULL); 
  cxGPUContext = clCreateContext(0, 1, &cdDevice, NULL, NULL, &ciErr1); 
  cqCommandQueue = clCreateCommandQueue(cxGPUContext, cdDevice, 0, &ciErr1); 
  dx = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, sizeof(cl_float) * n, NULL, &ciErr1); 
  dy = clCreateBuffer(cxGPUContext, CL_MEM_READ_WRITE, sizeof(cl_float) * n, NULL, &ciErr1); 
 
  // omitted: loading program into char string cSourceCL 
  cpProgram = clCreateProgramWithSource(cxGPUContext, 1, (const char **)&cSourceCL, &szKernelLength, 

&ciErr1); 
  clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL); 
  ckKernel = clCreateKernel(cpProgram, “saxpy_serial”, &ciErr1); 
   
  clSetKernelArg(ckKernel, 0, sizeof(cl_int), (void*)&n); 
  clSetKernelArg(ckKernel, 1, sizeof(cl_float), (void*)&a); 
  clSetKernelArg(ckKernel, 2, sizeof(cl_mem), (void*)&dx); 
  clSetKernelArg(ckKernel, 3, sizeof(cl_mem), (void*)&dy); 
 
  clEnqueueWriteBuffer(cqCommandQueue, dx, CL_FALSE, 0, sizeof(cl_float) * n, x, 0, NULL, NULL); 
  clEnqueueWriteBuffer(cqCommandQueue, dy, CL_FALSE, 0, sizeof(cl_float) * n, y, 0, NULL, NULL); 
  clEnqueueNDRangeKernel(cqCommandQueue, ckKernel, 1, NULL, &nblocks, & blocksize, 0, NULL, NULL); 
  clEnqueueReadBuffer(cqCommandQueue, dy, CL_TRUE, 0, sizeof(cl_float) * n, y, 0, NULL, NULL); 
 
  // omitted: using result 
} 

Runs	on	GPU	



C++AMP Example Code 
#include <amp.h> 
using namespace concurrency; 
 
int main() { 
  // omitted: allocation and initialization of y and x 
  array_view<int> xv(n, x);  
  array_view<int> yv(n, y);  
  parallel_for_each(yv.get_extent(), [=](index<1> i) restrict(amp) { 
    yv[i] = a * xv[i] + yv[i]; 
  }); 
  yv.synchronize(); 
  // omitted: using result 
} 

Runs	on	GPU	



OpenACC Example Code 
void saxpy_serial(int n, float a, float *x, float *y)   
{  
   #pragma acc kernels 
   for (int i = 0; i < n; ++i)  
      y[i] = a*x[i] + y[i];  
}  

Runs	on	GPU	



Review:	Memory	
•  E.g.,	use	to	save	state	between	steps	in	a	
computaFon.	

•  Each	memory	locaFon	has	an	associated	address	
which	idenFfies	the	locaFon.			The	locaFon	contains	
a	value:			

27	

address	 value	
0	 0xFF	
1	 0x42	
2	 0x00	
3	 0x01	

Example:		Memory	with	4	
one	byte	locaFons.		
LocaFon	with	address	1	
contains	value	0x42.	



GPU	Memory	Address	Spaces	

•  GPU	has	three	address	spaces	to	support	increasing	
visibility	of	data	between	threads:	local,	shared,	
global		

•  In	addiFon	two	more	(read-only)	address	spaces:	
Constant	and	texture.	

28	



Local	(Private)	Address	Space	

29	

Each	thread	has	own	“local	memory”	(CUDA)	“private	
memory”	(OpenCL).			

0x42	

Note:	LocaFon	at	address	100	for	thread	0	is	different	from	
locaFon	at	address	100	for	thread	1.	
	
Contains	local	variables	private	to	a	thread.	



Global	Address	Spaces	

30	

thread	
block	X	

thread	
block	Y	

Each	thread	in	the	different	
thread	blocks	(even	from	
different	kernels)	can	access	
a	region	called	“global	
memory”	(CUDA/OpenCL).		
	
Commonly	in	GPGPU	
workloads	threads	write	their	
own	porFon	of	global	
memory.		Avoids	need	for	
synchronizaFon—slow;	also	
unpredictable	thread	block	
scheduling.	

0x42	



History	of	“global	memory”	

•  Prior	to	NVIDIA	GeForce	8800	and	CUDA	1.0,	
access	to	memory	was	through	texture	reads	
and	raster	operaFons	for	wriFng.	

•  Problem:	Address	of	memory	access	was	
highly	constrained	funcFon	of	thread	ID.	

•  CUDA	1.0	enabled	access	to	arbitrary	memory	
locaFon	in	a	flat	memory	space	called	“global”	

31	



Example:	Transpose	(CUDA	SDK)		

__global__	void	transposeNaive(float	*odata,	float*	idata,	int	width,	int	height)	
{	
		int	xIndex	=	(blockIdx.x	*	TILE_DIM)	+	threadIdx.x;		//	TILE_DIM	=	16	
		int	yIndex	=	(blockIdx.y	*	TILE_DIM)	+	threadIdx.y;	
	
		int	index_in		=	xIndex	+	(width	*	yIndex);	
		int	index_out	=	yIndex	+	(height	*	xIndex);	
		for	(int	i=0;	i<TILE_DIM;	i+=BLOCK_ROWS)	{	//	BLOCK_ROWS	=	16	
				odata[index_out+i]	=	idata[index_in+(i*width)];	
		}	
}	

32	

NOTE:	“xIndex”,	“yIndex”,	“index_in”,	“index_out”,	and	“i”	are	in	local	memory		
													(local	variables	are	register	allocated	but	stack	lives	in	local	memory)	
	

	“odata”	and	“idata”	are	pointers	to	global	memory	
	(both	allocated	using	calls	to	cudaMalloc	--	not	shown	above)	

1	 2	

3	 4	

1	 3	

2	 4	



“Coalescing”	global	accesses	
•  Not	same	as	CPU	write	combining/buffering:	
•  Aligned	accesses	request	single	128B	cache	blk	

	
	
•  Memory	Divergence:	
	

ld.global r1,0(r2) 

128	 255	

128	 256	 1024	 1152	

ld.global r1,0(r2) 

33	



Example:	Transpose	(CUDA	SDK)		

__global__	void	transposeNaive(float	*odata,	float*	idata,	int	width,	int	height)	
{	
		int	xIndex	=	blockIdx.x	*	TILE_DIM	+	threadIdx.x;	
		int	yIndex	=	blockIdx.y	*	TILE_DIM	+	threadIdx.y;	
	
		int	index_in		=	xIndex	+	width	*	yIndex;	
		int	index_out	=	yIndex	+	height	*	xIndex;	
		for	(int	i=0;	i<TILE_DIM;	i+=BLOCK_ROWS)	{	
				odata[index_out+i]	=	idata[index_in+i*width];	
		}	
}	

34	

Assume	height=16	and	consider	i=0:	
	
Thread	x=0,y=0	has	xIndex=0,	yIndex=0	so	accesses	odata[0]	
Thread	x=1,y=0	has	xIndex=1,	yIndex=0	so	accesses	odata[16]	
	
Write	to	global	memory	highlighted	above	is	not	“coalesced”.	



Redundant	Global	Memory	Accesses	

35	

__global__	void	matrixMul	(float	*C,	float	*A,	float	*B,	int	N)	
{	
		int	xIndex	=	blockIdx.x	*	BLOCK_SIZE	+	threadIdx.x;	
		int	yIndex	=	blockIdx.y	*	BLOCK_SIZE	+	threadIdx.y;			
	
		float	sum	=	0;	
	
		for	(int	k=0;	k<N;	i++)		
				sum	+=	A[yIndex][k]	*	B[k][xIndex];	
	
		C[yIndex][xIndex]	=	sum;			
}	

E.g.,	both	thread	x=0,y=0	and	thread	x=32,	y=0	access	A[0][0]	
potenFally	causing	two	accesses	to	off-chip	DRAM.		In	general,	
each	element	of	A	and	B	is	redundantly	fetched	O(N)	Fmes.	



Tiled Multiply Using Thread Blocks 
[David Kirk & Wen-mei Hwu / UIUC ECE 498AL]  

•  One block computes one square sub-matrix 
Psub of size BLOCK_SIZE 

•  One thread computes one element of Psub 

•  Assume that the dimensions of M and N are 
multiples of BLOCK_SIZE and square shape 
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History	of	“shared	memory”	

•  Prior	to	NVIDIA	GeForce	8800	and	CUDA	1.0,	
threads	could	not	communicate	with	each	
other	through	on-chip	memory.	

•  “SoluFon”:	small	(16-48KB)	programmer	
managed	scratchpad	memory	shared	between	
threads	within	a	thread	block.	

37	



Shared	(Local)	Address	Space	

38	

Each	thread	in	the	same	thread	block	
(work	group)	can	access	a	memory	
region	called	“shared	memory”	(CUDA)	
“local	memory”	(OpenCL).				
	
Shared	memory	address	space	is	
limited	in	size	(16	to	48	KB).	
	
Used	as	a	sovware	managed	“cache”	
to	avoid	off-chip	memory	accesses.	
	
Synchronize	threads	in	a	thread	block	
using	__syncthreads();	

thread	
block	

0x42	



OpFmizing	Transpose	for	Coalescing	

39	

1	 2	

3	 4	

idata	

odata	

1	 2	

3	 4	

1	 2	

3	 4	

Step	1:			Read	block	of	data	into	shared	memory	

Step	2:			Copy	from	shared	memory	into	global	memory	using	coalesce	write	

1	 3	

2	 4	



OpFmizing	Transpose	for	Coalescing	
__global__	void	transposeCoalesced(float	*odata,	float	*idata,	int	width,	int	height)	
{	
		__shared__	float	tile[TILE_DIM][TILE_DIM];	
	
		int	xIndex	=	(blockIdx.x	*	TILE_DIM)	+	threadIdx.x;	
		int	yIndex	=	(blockIdx.y	*	TILE_DIM)	+	threadIdx.y;			
		int	index_in	=	xIndex	+	(width	*	yIndex);	
	
		xIndex	=	(blockIdx.y	*	TILE_DIM)	+	threadIdx.x;	
		yIndex	=	(blockIdx.x	*	TILE_DIM)	+	threadIdx.y;	
		int	index_out	=	xIndex	+	(yIndex*height);	
	
		for	(int	i=0;	i<TILE_DIM;	i+=BLOCK_ROWS)	{	
				tile[threadIdx.y+i][threadIdx.x]	=	idata[index_in+(i*width)];	
		}	
			
		__syncthreads();		//	wait	for	all	threads	in	block	to	finish	above	for	loop	
			
		for	(int	i=0;	i<TILE_DIM;	i+=BLOCK_ROWS)	{	
				odata[index_out+i*height]	=	tile[threadIdx.x][threadIdx.y+i];	
		}	
}	

40	GOOD:	Coalesced	write	 BAD:	Shared	memory	bank	conflicts	



Review:	Bank	Conflicts	
•  To	increase	bandwidth	common	to	organize	memory	
into	mulFple	banks.	

•  Independent	accesses	to	different	banks	can	proceed	
in	parallel	

41	

Bank	0		 Bank	1		

0	

2	

4	

6	

1	

3	

5	

7	

Example	1:		Read	0,	Read	1	
(can	proceed	in	parallel)	

Example	2:		Read	0,	Read	3	
(can	proceed	in	parallel)	

Bank	0		 Bank	1		
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1	

3	

5	

7	

Example	3:		Read	0,	Read	2	
(bank	conflict)	

Bank	0		 Bank	1		
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7	



Shared	Memory	Bank	Conflicts	

__shared__	int	A[BSIZE];	
…	
A[threadIdx.x]	=	…	//	no	conflicts	
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Shared	Memory	Bank	Conflicts	

__shared__	int	A[BSIZE];	
…	
A[2*threadIdx.x]	=	//	2-way	conflict	
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OpFmizing	Transpose	for	Coalescing	

44	

1	 2	

3	 4	

idata	

odata	

1	 2	

3	 4	

1	 2	

3	 4	

Step	1:			Read	block	of	data	into	shared	memory	

Step	2:			Copy	from	shared	memory	into	global	memory	using	coalesce	write	

1	 3	

2	 4	

Problem:	Access	two	locaFons	in	same	
shared	memory	bank.	



+	Eliminate	Bank	Conflicts	
__global__	void	transposeNoBankConflicts	(float	*odata,	float	*idata,	int	width,	int	height)	
{	
		__shared__	float	tile[TILE_DIM][TILE_DIM+1];	
	
		int	xIndex	=	blockIdx.x	*	TILE_DIM	+	threadIdx.x;	
		int	yIndex	=	blockIdx.y	*	TILE_DIM	+	threadIdx.y;			
		int	index_in	=	xIndex	+	(yIndex)*width;	
	
		xIndex	=	blockIdx.y	*	TILE_DIM	+	threadIdx.x;	
		yIndex	=	blockIdx.x	*	TILE_DIM	+	threadIdx.y;	
		int	index_out	=	xIndex	+	(yIndex)*height;	
	
		for	(int	i=0;	i<TILE_DIM;	i+=BLOCK_ROWS)	{	
				tile[threadIdx.y+i][threadIdx.x]	=	idata[index_in+i*width];	
		}	
			
		__syncthreads();	
			
		for	(int	i=0;	i<TILE_DIM;	i+=BLOCK_ROWS)	{	
				odata[index_out+i*height]	=	tile[threadIdx.x][threadIdx.y+i];	
		}	
}	
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OpFmizing	Transpose	for	Coalescing	
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1	 2	

3	 4	

idata	

odata	

1	 2	

3	

4	

Step	1:			Read	block	of	data	into	shared	memory	

Step	2:			Copy	from	shared	memory	into	global	memory	using	coalesce	write	

1	 3	

2	 4	

1	 2	

3	

4	

Bank	0		 Bank	1		

Bank	0		 Bank	1		



CUDA	Streams	

•  CUDA	(and	OpenCL)	provide	the	capability	to	
overlap	computaFon	on	GPU	with	memory	
transfers	using	“Streams”	(Command	Queues)	

•  A	Stream	orders	a	sequence	of	kernels	and	
memory	copy	“operaFons”.				

•  OperaFons	in	one	stream	can	overlap	with	
operaFons	in	a	different	stream.	
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How	Can	Streams	Help?	

Serial:	
	
Streams:	

48	

cudaMemcpy(H2D)	 kernel<<<>>>	 cudaMemcpy(D2H)	

htp://on-demand.gputechconf.com/gtc-express/2011/presentaFons/StreamsAndConcurrencyWebinar.pdf	

cudaMemcpy(H2D)	 K0	 DH0	

K1	 DH1	

K2	 DH2	

Time	

Savings	

GPU	idle		 GPU	idle		GPU	busy	



CUDA	Streams	

cudaStream_t	streams[3];	
for(i=0;	i<3;	i++)	
		cudaStreamCreate(&streams[i]);		//	initialize	streams	
	
for(i=0;	i<3;	i++)	{	
		cudaMemcpyAsync(pD+i*size,pH+i*size,size,	
				cudaMemcpyHostToDevice,stream[i]); 	 	 	 	//	H2D	
		MyKernel<<<grid,block,0,stream[i]>>>(pD+i,size);	//	compute	
		cudaMemcpyAsync(pD+i*size,pH+i*size,size,	
				cudaMemcpyDeviceToHost,stream[i]);		 	 	 	//	D2H	
}		
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Recent	Features	in	CUDA	
•  Dynamic	Parallelism	(CUDA	5):	Launch	kernels	from	within	a	

kernel.			Reduce	work	for	e.g.,	adapFve	mesh	refinement.	
•  Unified	Memory	(CUDA	6):	Avoid	need	for	explicit	memory	

copies	between	CPU	and	GPU	

50	

htp://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/	

See	also,	Gelado,	et	al.	ASPLOS	2010.		



GPU	InstrucFon	Set	Architecture	(ISA)	

•  NVIDIA	defines	a	virtual	ISA,	called	“PTX”	(Parallel	
Thread	eXecuFon)	

•  More	recently,	Heterogeneous	System	Architecture	
(HSA)	FoundaFon	(AMD,	ARM,	ImaginaFon,	Mediatek,	
Samsung,	Qualcomm,	TI)	defined	the	HSAIL	virtual	ISA.	

•  PTX	is	Reduced	InstrucFon	Set	Architecture	(e.g.,	load/
store	architecture)	

•  Virtual:	infinite	set	of	registers	(much	like	a	compiler	
intermediate	representaFon)	

•  PTX	translated	to	hardware	ISA	by	backend	compiler	
(“ptxas”).		Either	at	compile	Fme	(nvcc)	or	at	runFme	
(GPU	driver).	

51	



Some	Example	PTX	Syntax	
•  Registers	declared	with	a	type:	
			.reg	.pred		p,	q,	r;	
			.reg	.u16			r1,	r2;	
			.reg	.f64			f1,	f2;	
•  ALU	operaFons		
			add.u32	x,	y,	z;							//	x	=	y	+	z	
			mad.lo.s32	d,	a,	b,	c;	//	d	=	a*b	+	c	
•  Memory	operaFons:	
			ld.global.f32	f,	[a];		
			ld.shared.u32	g,	[b];	
			st.local.f64		[c],	h	
•  Compare	and	branch	operaFons:	
						setp.eq.f32	p,	y,	0;		//	is	y	equal	to	zero?		
			@p	bra	L1		//	branch	to	L1	if	y	equal	to	zero	
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Part	2:	Generic	GPGPU	Architecture	
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Extra	resources	

GPGPU-Sim	3.x	Manual
htp://gpgpu-sim.org/manual/index.php/
GPGPU-Sim_3.x_Manual		
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GPU	Microarchitecture	Overview	
Single-InstrucFon,	MulFple-Threads	

GPU	

Interconnec6on	Network	

SIMT Core Cluster 

SIMT	
Core	

SIMT	
Core	

Memory	
Par66on	

GDDR5	

Memory	
Par66on	

GDDR5	

Memory	
Par66on	

GDDR5	 Off-chip	DRAM	

SIMT Core Cluster 

SIMT	
Core	

SIMT	
Core	

SIMT Core Cluster 

SIMT	
Core	

SIMT	
Core	



GPU	Microarchitecture	
•  Companies	Fght	lipped	about	details	of	GPU	
microarchitecture.	

•  Several	reasons:	
–  CompeFFve	advantage	
–  Fear	of	being	sued	by	“non-pracFcing	enFFes”	
–  The	people	that	know	the	details	too	busy	building	
the	next	chip	

•  Model	described	next,	embodied	in	GPGPU-Sim,	
developed	from:	white	papers,	programming	
manuals,	IEEE	Micro	arFcles,	patents.	
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GPGPU-Sim v3.x w/ SASS 

CorrelaFon	
~0.976	
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GPU	Microarchitecture	Overview	

GPU	

Interconnec6on	Network	

SIMT	Core	Cluster	

SIMT	
Core	

SIMT	
Core	

Memory	
Par66on	

GDDR3/GDDR5	

Memory	
Par66on	

GDDR3/GDDR5	

Memory	
Par66on	

GDDR3/GDDR5	 Off-chip	DRAM	

SIMT	Core	Cluster	

SIMT	
Core	

SIMT	
Core	

SIMT	Core	Cluster	

SIMT	
Core	

SIMT	
Core	
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Inside	a	SIMT	Core	

•  SIMT	front	end	/	SIMD	backend	
•  Fine-grained	mulFthreading	

–  Interleave	warp	execuFon	to	hide	latency	
– Register	values	of	all	threads	stays	in	core	

SIMT	
Front	End	 SIMD	Datapath	

Fetch	
Decode	
Schedule	
Branch	

Memory	Subsystem	 Icnt.	
Network	SMem	 L1	D$	 Tex	$	 Const$	

Reg	
File	
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SIMT	Front	End	

Inside	an	“NVIDIA-style”	SIMT	Core	
SIMD	Datapath	

ALU	ALU	ALU	

I-Cache	 Decode	
I-Buffer	

Score	
Board	

Issue	 Operand	
Collector	

MEM	

ALU	
Fetch	 SIMT-Stack	

Done	(WID)	

Valid[1:N]	

Branch	Target	PC	

Pred.	AcFve	
Mask	

•  Three	decoupled	warp	schedulers	
•  Scoreboard	
•  Large	register	file	
•  MulFple	SIMD	funcFonal	units	

Scheduler	1	

Scheduler	2	

Scheduler	3	
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Fetch	+	Decode	
•  Arbitrate	the	I-cache	
among	warps	
–  Cache	miss	handled	by	
fetching	again	later	

•  Fetched	instrucFon	is	
decoded	and	then	stored	
in	the	I-Buffer	
–  1	or	more	entries	/	warp	
–  Only	warp	with	vacant	
entries	are	considered	in	
fetch	

Inst.	W1	 r	
Inst.	W2	
Inst.	W3	

v	
r	v	
r	v	

To	
Fetch	

Issue	

Decode	
Score-	
Board	

Issue	
ARB	

PC	1	
PC	2	
PC	3	

A	
R	
B	

SelecFon	T	o
			I	-
	C	 a
	c	 h
	e	

Valid[1:N]	

I-Cache	 Decode	
I-Buffer	

Fetch	
Valid[1:N]	
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InstrucFon	Issue	
•  Select	a	warp	and	issue	an	instrucFon	from	its		
I-Buffer	for	execuFon	
–  Scheduling:	Greedy-Then-Oldest	(GTO)	

•  run	a	warp	unFl	it	stalls	(greedy),	then	pick	
the	oldest	warp	to	run	next	

–  GT200/later	Fermi/Kepler:		
Allow	dual	issue	(superscalar)	

–  To	avoid	stalling	pipeline	might	
				keep	instrucFon	in	I-buffer	unFl	
				know	it	can	complete	(replay)	

Inst. W1 r
Inst. W2
Inst. W3

v
rv
rv

To
Fetch

Issue

Decode
Score-
Board

Issue
ARB

62	



Review: In-order Scoreboard 
 

•  Scoreboard: a bit-array, 1-bit for each register 
–  If the bit is not set: the register has valid data 
–  If the bit is set: the register has stale data 

i.e., some outstanding instruction is going to change it 

•  Issue in-order: RD ß Fn (RS, RT) 
–  If SB[RS] or SB[RT] is set à RAW, stall 
–  If SB[RD] is set à WAW, stall 
–  Else, dispatch to FU (Fn) and set SB[RD] 

•  Complete out-of-order 
–  Update GPR[RD], clear SB[RD] 

63

Regs[R1]	
Regs[R2]	
Regs[R3]	

Regs[R31]	

1	
0	

0	

0	

Register	File	Scoreboard	

[Gabriel	Loh]	
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In-Order	Scoreboard	for	GPUs?	
•  Problem 1:  32 warps, each with up to 128 (vector) 

registers per warp means scoreboard is 4096 bits.  
•  Problem 2: Warps waiting in I-buffer needs to have 

dependency updated every cycle. 
•  SoluFon?	

–  Flag	instrucFons	with	hazards	as	not	ready	in	I-Buffer	
so	not	considered	by	scheduler	

–  Track	up	to	6	registers	per	warp	(out	of	128)	
–  I-buffer	6-entry	bitvector:	1b	per	register	dependency	
–  Lookup	source	operands,	set	bitvector	in	I-buffer.	As	
results	writen	per	warp,	clear	corresponding	bit	

64	
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Example 

-	 -	 -	 -	

-	 -	 -	 -	
Warp 0
Warp 1

ld		r7	<-	[r0]	
mul	r6	<-	r2,	r5	
add	r8	<-	r6,	r7	

Index	0	 Index	1	

Scoreboard	
Index	2	

Warp 0

Warp 1

InstrucFon	Buffer	
i0		i1		i2		i3	Index	3	

r7	 -	 -	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0ld	r7,	[r0]	 0 0 0 0

mul	r6,	r2,	r5	 0 0 0 0

r7	 r6	 -	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0

mul	r6,	r2,	r5	 0 0 0 0

add	r8,	r6,	r7	 1 1 0 0

ld	r7,	[r0]	 0 0 0 0

mul	r6,	r2,	r5	 0 0 0 0

add	r8,	r6,	r7	 1 1 0 0

r7	 r6	 r8	 -	

-	 -	 -	 -	

r7	 r6	 r8	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0

add	r8,	r6,	r7	 1 0 0 0

r7	 -	 r8	 -	

-	 -	 -	 -	
ld	r7,	[r0]	 0 0 0 0

add	r8,	r6,	r7	 1 0 0 0

r7	 -	 r8	 -	

-	 -	 -	 -	

add	r8,	r6,	r7	 0 0 0 0

-	 -	 r8	 -	

-	 -	 -	 -	

Code	
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SIMT Using a Hardware Stack 

Thread	Warp	 Common	PC	

Thread	
2	

Thread	
3	

Thread	
4	

Thread	
1	

B/1111	

C/1001	 D/0110	

E/1111	

A/1111	

G/1111	

-	 A	 1111	TOS	
E	 D	 0110	
E	 C	 1001	TOS	

-	 E	 1111	
E	 D	 0110	TOS	
-	 E	 1111	

A	 D	 G	 A	

Time	

C	B	 E	

-	 B	 1111	TOS	 -	 E	 1111	TOS	
Reconv.	PC	 Next	PC	 AcFve	Mask	

Stack	

E	 D	 0110	
E	 E	 1001	TOS	

-	 E	 1111	

Stack	approach	invented	at	Lucasfilm,	Ltd	in	early	1980’s	

SIMT = SIMD Execution of Scalar Threads	

Version	here	from	[Fung	et	al.,	MICRO	2007]	



SIMT	Notes	

•  ExecuFon	mask	stack	implemented	with	
special	instrucFons	to	push/pop.		DescripFons	
can	be	found	in	AMD	ISA	manual	and	NVIDIA	
patents.	

•  In	pracFce	augment	stack	with	predicaFon	
(lower	overhead).	
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SIMT	outside	of	GPUs?	

•  ARM	Research	looking	at	SIMT-ized	ARM	ISA.		
	
•  Intel	MIC	implements	SIMT	on	top	of	vector	
hardware	via	compiler	(ISPC)	

•  Possibly	other	industry	players	in	future	
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Register File 

69

•  32 warps, 32 threads per 
warp, 16 x 32-bit registers 
per thread = 64KB register 
file. 

•  Need “4 ports” (e.g., FMA) 
greatly increase area. 

•  Alternative: banked single 
ported register file.  How to 
avoid bank conflicts?   



Banked Register File 
Strawman microarchitecture: 

70

Register	layout:	



Register Bank Conflicts 

•  warp 0, instruction 2 has two source operands in bank 
1: takes two cycles to read. 

•  Also, warp 1 instruction 2 is same and is also stalled. 
•  Can use warp ID as part of register layout to help.  
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Operand	Collector	

•  Term	“Operand	Collector”	appears	in	figure	in	NVIDIA	Fermi	Whitepaper	
•  Operand	Collector	Architecture	(US	Patent:	7834881)	

–  Interleave	operand	fetch	from	different	threads	to	achieve	full	uFlizaFon	

Bank	0	 Bank	1	 Bank	2	 Bank	3	

R0	 R1	 R2	 R3	
R4	 R5	 R6	 R7	
R8	 R9	 R10	 R11	
…	 …	 …	 …	

add.s32		R3,	R1,	R2;	 No	Conflict	

mul.s32		R3,	R0,	R4;	 Conflict	at	bank	0	

4a.72	



Operand Collector (1) 

•  Issue instruction to collector unit.   
•  Collector unit similar to reservation station in tomasulo’s algorithm. 
•  Stores source register identifiers.   
•  Arbiter selects operand accesses that do not conflict on a given cycle. 
•  Arbiter needs to also consider writeback (or need read+write port) 
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Operand Collector (2) 
•  Combining swizzling and 

access scheduling can give 
up to ~ 2x improvement in 
throughput 
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AMD	Southern	Islands	

•  SIMT	processing	oven	includes	redundant	
computaFon	across	threads.		

	thread	0…31:	
	for(	i=0;	i	<	runFme_constant_N;	i++	{	
		 	/*	do	something	with	“i”	*/	
	}	
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AMD	Southern	Islands	SIMT-Core	
	ISA	visible	scalar	unit	executes	computaFon	
idenFcal	across	SIMT	threads	in		a	wavefront	
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Example	

[Southern	Islands	Series	InstrucFon	Set	Architecture,	Aug.	2012]	

float fn0(float a,float b) 
{ 
   if(a>b)   
      return (a * a – b); 
   else 
      return (b * b – a); 
} 

// Registers r0 contains “a”, r1 contains “b” 
// Value is returned in r2 
    v_cmp_gt_f32 r0, r1 // a>b 
    s_mov_b64 s0, exec  // Save current exec mask 
    s_and_b64 exec, vcc, exec // Do “if” 
    s_cbranch_vccz label0 // Branch if all lanes fail 
    v_mul_f32 r2, r0, r0 // result = a * a 
    v_sub_f32 r2, r2, r1 // result = result - b 
label0: 
    s_not_b64 exec, exec // Do “else” 
    s_and_b64 exec, s0, exec // Do “else” 
    s_cbranch_execz label1 // Branch if all lanes fail 
    v_mul_f32 r2, r1, r1 // result = b * b 
    v_sub_f32 r2, r2, r0 // result = result - a 
label1: 
    s_mov_b64 exec, s0   // Restore exec mask 
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Southern	Islands	SIMT	Stack?		

•  InstrucFons:	S_CBRANCH_*_FORK;	S_CBRANCH_JOIN	
•  Use	for	arbitrary	(e.g.,	irreducible)	control	flow	
•  3-bit	control	stack	pointer	
•  Six	128-bit	stack	entries;	stored	in	scalar	general	
purpose	registers	holding	{exec[63:0],	PC[47:2]}	

•  S_CBRANCH_*_FORK	executes	path	with	fewer	acFve	
threads	first	
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A	Modern	GPU:	Nvidia	GTX	1080	
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Part	3:	Research	DirecFons	
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Advancing	Computer	Systems	without	Technology	Progress	
DARPA/ISAT	Workshop,	March	26-27,	2012	
Mark	Hill	&	Christos	Kozyrakis	

Decreasing	cost	per	unit	computaFon	

1971:		Intel	4004	

2012:																	Datacenter		

1981:	IBM	5150	

2007:	iPhone	



87 

Ease	of		
Programming	

Hardware	Efficiency	

Single	Core	OoO	Superscalar	CPU	

Brawny	(OoO)	MulFcore	

ASIC	

BeWer	

16K	thread,	SIMT	Accelerator	

Wimpy	(In-order)	MulFcore	

(how	to	get	here?)	
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Ease	of		
Programming	

Hardware	Efficiency	

Start	by	using	right	tool	for	each	job…	



Amdahl’s	Law	Limits	this	Approach	
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Easy	to	accelerate	Hard	to	accelerate	

€ 

Improvementoverall =  
1

Fractionhard +  1- Fractionhard

Improvementeasy



QuesFon:		Can	dividing	line	be	moved?	
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easy	to	accelerate	(Acc.	Arch1)	

easy	to	accelerate	(Acc.	Arch2)	
	



Forward-Looking	GPU	Sovware	
•  SFll	Massively	Parallel	
•  Less	Structured	

– Memory	access	and	control	flow	paterns	are	less	
predictable	

91	

Execute	efficiently	
on	a	GPU	today	

Graphics	
Shaders	

Matrix	
Mul6ply	

…	

Less	efficient	on	
today’s	GPU	

Raytracing	
Molecular	
Dynamics	

Object	
Classifica6on	

…	

[Tim	Rogers]	
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Ease	of		
Programming	

Energy	Efficiency	

BeWer	

Two	Routes	to	“Beter”	



Research	Direc8on	1:	
MiFgaFng	SIMT	Control	Divergence	
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Recall: SIMT Hardware Stack 

Thread	Warp	 Common	PC	

Thread	
2	

Thread	
3	

Thread	
4	

Thread	
1	

B/1111	

C/1001	 D/0110	

E/1111	

A/1111	

G/1111	

-	 A	 1111	TOS	
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-	 E	 1111	
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-	 E	 1111	

A	 D	 G	 A	

Time	

C	B	 E	

-	 B	 1111	TOS	 -	 E	 1111	TOS	
Reconv.	PC	 Next	PC	 AcFve	Mask	

Stack	

E	 D	 0110	
E	 E	 1001	TOS	

-	 E	 1111	

Potential for significant loss of throughput when control flow diverged!	



Performance	vs.	Warp	Size	

95	Rogers	et	al.,	A	Variable	Warp-Size	
Architecture,	ISCA	2015	
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Dynamic	Warp	FormaFon		
(Fung	MICRO’07)	

Tim
e	
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Warp	2	

Reissue/Memory	
Latency	

SIMD	Efficiency	à	88%	
1		2		7		8	C 
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Pack	

How to pick threads to pack into warps? 



Wilson	Fung,	Ivan	Sham,	
George	Yuan,	Tor	Aamodt	

Dynamic	Warp	FormaFon	and	Scheduling	
for	Efficient	GPU	Control	Flow	 97	
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9		6		3		4	D 
--	10	--	--	D 
1		2		3		4	E 
5		6		7		8	E 
9	10	11	12	E 

DWF	Pathologies:		StarvaFon	

•  Majority	Scheduling	
– Best	Performing		
– PrioriFze	largest	group	of	threads	
with	same	PC	

•  Starva&on	
– LOWER	SIMD	Efficiency!	

•  Other	Warp	Scheduler?	
– Tricky:	Variable	Memory	Latency	

Tim
e	

1		2		7		8	C 
	5	--	11	12	C 

9		6		3		4	D 
--	10	--	--	D 

1		2		7		8	E 
	5	--	11	12	E 

9		6		3		4	E 
--	10	--	--	E 

B: if (K > 10)  
C:    K = 10; 
   else 
D:    K = 0; 
E: B = C[tid.x] + K; 

1000s	cycles	
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DWF	Pathologies:		
Extra	Uncoalesced	Accesses	

•  Coalesced	Memory	Access	=	Memory	SIMD		
– 1st	Order	CUDA	Programmer	OpFmizaFon		

•  Not	preserved	by	DWF	
E: B = C[tid.x] + K; 

1		2		3		4	E 
5		6		7		8	E 
9	10	11	12	E 

Memory	

0x100 
0x140 
0x180 

1		2		7	12	E 
9		6		3		8	E 
5	10	11	4	E 

Memory	

0x100 
0x140 
0x180 

#Acc	=	3	

#Acc	=	9	

No	DWF	

With	DWF	

L1	Cache	Absorbs	
Redundant	

Memory	Traffic	

L1$	Port	Conflict	
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DWF	Pathologies:	Implicit	Warp	Sync.	

•  Some	CUDA	applicaFons	depend	on	the	
lockstep	execuFon	of	“staFc	warps”	

– E.g.	Task	Queue	in	Ray	Tracing	

Thread			0	...	31	
Thread	32	...	63	
Thread	64	...	95	

Warp	0	
Warp	1	
Warp	2	

int wid = tid.x / 32;  
if (tid.x % 32 == 0) { 
  sharedTaskID[wid] = atomicAdd(g_TaskID, 32); 
} 
my_TaskID = sharedTaskID[wid] + tid.x % 32;  
ProcessTask(my_TaskID); 

Implicit	
Warp	
Sync.	
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StaFc	
Warp	

Dynamic	
Warp	

StaFc	
Warp	

ObservaFon	

•  Compute	kernels	usually	contain	
divergent	and	non-divergent	
(coherent)	code	segments	

•  Coalesced	memory	access	usually	
in	coherent	code	segments	
–  DWF	no	benefit	there	

Coherent	

Divergent	

Coherent	

Reset	Warps	

Divergence	

Recvg	
Pt.	

Coales.	LD/ST	
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Thread	Block	CompacFon	
•  Run	a	thread	block	like	a	warp	

– Whole	block	move	between	coherent/divergent	code	
– Block-wide	stack	to	track	exec.	paths	reconvg.	

•  Barrier	@	Branch/reconverge	pt.	
– All	avail.	threads	arrive	at	branch	
–  InsensiFve	to	warp	scheduling	

•  Warp	compacFon		
– Regrouping	with	all	avail.	threads	
–  If	no	divergence,	gives	staFc	warp	arrangement	

Starva6on	

Implicit		
Warp	Sync.	

Extra	Uncoalesced		
Memory	Access	
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Thread	Block	CompacFon	
PC	 RPC	 Ac6ve	Threads	
A	 -	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	
D	 E	 --	 --	 3	 4	 --	 6	 --	 --	 9	 10	 --	 --	
C	 E	 1	 2	 --	 --	 5	 --	 7	 8	 --	 --	 11	12	

E	 -	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	

Time	

1		2		7		8	C 
	5	--	11	12	C 

9		6		3		4	D 
--	10	--	--	D 

5		6		7		8	A 
	9	10	11	12	A 

1		2		3		4	A 

5		6		7		8	E 
	9	10	11	12	E 

1		2		3		4	E 

A: K = A[tid.x]; 

B: if (K > 10)  

C:    K = 10; 

   else 

D:    K = 0; 

E: B = C[tid.x] + K; 

5		6		7		8	A 
	9	10	11	12	A 

1		2		3		4	A 

5		--		7		8	C 
	--	--	11	12	C 

1		2		--	--	C 

--		6		--	--	D 
9	10	--	--	D 

--		--		3		4	D 

5		6		7		8	E 
	9	10	11	12	E 

1		2		7		8	E 

--	 --	 --	 --	
--	 --	 --	 --	

--	 --	 --	 --	
--	 --	 --	 --	

--	 --	 --	 --	
--	 --	 --	 --	
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Thread	Compactor	
•  Convert	ac8vemask	from	block-wide	stack	to	
thread	IDs	in	warp	buffer	

•  Array	of	Priority-Encoder	

P-Enc	 P-Enc	 P-Enc	 P-Enc	

1	 2	 7	 8	5	 --	 11	 12	

1	 2	 --	 --	 5	 --	 7	 8	 --	 --	 11	12	C	 E	

1	 2	 --	 --	5	 --	 7	 8	--	 --	 11	 12	

1		2		7		8	C 
	5	--	11	12	C 

Warp	Buffer	
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0.6	 0.7	 0.8	 0.9	 1	 1.1	 1.2	 1.3	

TBC	

DWF	

IPC	Rela6ve	to	Baseline	

COHE	
DIVG	

Experimental	Results	
•  2	Benchmark	Groups:		

– COHE	=	Non-Divergent	CUDA	applicaFons	
– DIVG	=	Divergent	CUDA	applicaFons	

Serious	Slowdown	from		
pathologies	
No	Penalty	for	COHE	
22%	Speedup	on	DIVG	

Per-Warp	Stack	



Recent	work	on	warp	divergence	
•  Intel	[MICRO	2011]:	Thread	FronFers	–	early	reconvergence	for	

unstructured	control	flow.	

•  UT-AusFn/NVIDIA	[MICRO	2011]:	Large	Warps	–	similar	to	TBC	except	
decouple	size	of	thread	stack	from	thread	block	size.	

•  NVIDIA	[ISCA	2012]:	Simultaneous	branch	and	warp	interweaving.			Enable	
SIMD	to	execute	two	paths	at	once.	

•  Intel	[ISCA	2013]:	Intra-warp	compacFon	–	extends	Xeon	Phi	uarch	to	
enable	compacFon.	

•  NVIDIA:	Temporal	SIMT	[described	briefly	in	IEEE	Micro	arFcle	and	in	more	
detail	in	CGO	2013	paper]		

•  NVIDIA	[ISCA	2015]:	Variable	Warp-Size	Architecture	–	merge	small	warps	
(4	threads)	into	“gangs”.	
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Thread	FronFers		
[Diamos	et	al.,	MICRO	2011]	
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Temporal	SIMT	

32-wide datapath 

time 

1 
cy

c 

1 warp instruction = 32 threads 

thread 
0 

 thread 
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Spatial SIMT (current GPUs) 

1-wide 

time 

1 
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ld		
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ld		
ld		
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ld		
ld		

  0 
(threads) 

  1 
  2 
  3 
  4 
  5 
  6 
  7 ld		

ld		
ld		

  8 
  9 

ld		 10 

Pure Temporal SIMT 

[slide	courtesy	of	Bill	Dally]	



Temporal	SIMT	OpFmizaFons	
Control	divergence	—	hybrid	MIMD/SIMT	

	
ScalarizaFon	

Factor	common	instrucFons	from	mulFple	threads	
Execute	once	–	place	results	in	common	registers	
[See:	SIMT	Affine	Value	Structure	(ISCA	2013)]	

	

32-wide 
(41%) 

4-wide 
(65%) 

1-wide 
(100%) 

[slide	courtesy	of	Bill	Dally]	



Scalar	InstrucFons	in	SIMT	Lanes	
Scalar 

instruction 
spanning warp 

Scalar register 
visible to all 

threads 

Temporal 
execution of 

Warp 
Multiple 

lanes/warps 
Y. Lee, CGO 2013 [slide	courtesy	of	Bill	Dally]	



Variable	Warp-Size	Architecture	

111	

•  Most	recent	work	by	NVIDIA	[ISCA	2015]	
•  Split	the	SM	datapath	into	narrow	slices.	

–  Extensively	studied	4-thread	slices	
•  Gang	slice	execuFon	to	gain	efficiencies	of	wider	warp.	

Tim	Rogers	 A	Variable	Warp-Size	Architecture	

Frontend

Warp	Datapath

L1	I-Cache

Memory	Unit

Warp
Control	Logic 32-wide

Slice

Frontend

Slice	Datapath

L1	I-Cache

Memory	Unit

Slice
Front	
End 4-wide

...
Slice
Slice	DatapathSlice

Front	
End 4-wide

Slices	can	
execute	

independently	

Slices	share	an	L1	
I-Cache	and	Memory	Unit	

Ganging
Unit
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Divergent	ApplicaFon	Performance	
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Warp	Size	4	I-VWS:	Break	on	
CF	Only	

E-VWS:	Break	+	
Reform	
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Convergent	ApplicaFon	Performance	
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Warp	Size	4	
I-VWS:	Break	on	

CF	Only	

Warp-Size	Insensi6ve	
Applica6ons	Unaffected	

E-VWS:	Break	+	
Reform	



Research	Direc8on	2:	
MiFgaFng	High	GPGPU	Memory	

Bandwidth	Demands	
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Reducing	Off-Chip	Access	/	Divergence	

•  Re-wriFng	sovware	to	use	“shared	memory”	
and	avoid	uncoalesced	global	accesses	is	bane	
of	GPU	programmer	existence.	

•  Recent	GPUs	introduce	caches,	but	large	
number	of	warps/wavefronts	lead	to	
thrashing.			
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•  NVIDIA:	Register	file	cache	(ISCA	2011,	MICRO)	
–  Register	file	burns	significant	energy	
– Many	values	read	once	soon	aver	writen	
–  Small	register	file	cache	captures	locality	and	saves	
energy	but	does	not	help	performance	

–  Recent	follow	on	work	from	academia	

•  Prefetching	(Kim,	MICRO	2010)	
•  Interconnect	(Bakhoda,	MICRO	2010)	
•  Lee	&	Kim	(HPCA	2012)	CPU/GPU	cache	sharing	
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Thread	Scheduling	Analogy	
[MICRO	2012]	

•  Human	MulFtasking	
–  Humans	have	limited	aWen6on	capacity	

	
–  GPUs	have	limited	cache	capacity	
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Use	Memory	System	Feedback	
[MICRO	2012]	
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Programmability	case	study	[MICRO	2013]	
Sparse	Vector-Matrix	Mul6ply	

Simple	Version	
GPU-OpFmized	Version	
SHOC	Benchmark	Suite	
(Oakridge	NaFonal	Labs)	
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Added	
Complica6on	

Dependent	on	
Warp	Size	

Parallel	Reduc6on	

Explicit	Scratchpad	Use	 Divergence	

Each	thread	
has	locality	

Using	DAWS	scheduling	
within	4%	of	op6mized	

with	no	programmer	input	



Data Cache Data Cache 

Sources	of	Locality	

Intra-wavefront	locality	 Inter-wavefront	locality	

LD	$line	(X)	

LD	$line	(X)	

LD	$line	(X)	

LD	$line	(X)	

Wave0	

Hit 

Wave0	 Wave1	

Hit 
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Scheduler	affects	access	patern	

Memory 
System 

Wavefront 
Scheduler 

Wavefront 
Scheduler 

Round	Robin	Scheduler	

Memory 
System 

Greedy	then	Oldest	Scheduler		

ld	A	,B,C,D…	

D
C	
B	
A	

ld	Z,Y,X,W	ld	A,B,C,D	

W
X	
Y	
Z	

...	
	 ...	
	

ld	Z,Y,X,W	

D
C	
B	
A	

D
C	
B	
A	

ld	A,B,C,D…	
...	
	

Wave0	 Wave1	 Wave0	 Wave1	

ld	A,B,C,D…	
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	Use	scheduler	to	shape	access	patern		
	
	

Memory 
System 

Wavefront 
Scheduler 

Wavefront 
Scheduler 

Greedy	then	Oldest	Scheduler		
	

Memory 
System 

Cache-Conscious	Wavefront	Scheduling	
[MICRO	2012	best	paper	runner	up,		

Top	Picks	2013,	CACM	Research	Highlight]	

ld	A,B,C,D	

D
C	
B	
A	

ld	A,B,C,D	

W
X	
Y	
Z	

...	
	

ld	Z,Y,X,W	

D
C	
B	
A	

D
C	
B	
A	

ld	A,B,C,D…	
...	
	

ld	Z,Y,X,W…	

Wave0	 Wave1	 Wave0	 Wave1	

ld	A,B,C,D…	
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Memory Unit 

Cache 

Victim Tags 

Locality Scoring 
System 

Wave 
Scheduler 

W0 

W1 

W2 

Tag WID Data 

Tag 

Tag 

Tag 

Tag 

Tag 

Tag 

W0	

W1	

W2	

Time	

Score	

Tag WID Data 

…
	

W0 

W1 

The 
image 
part 
with 
relatio
nship 
ID 
rId2 

W2 
No	W2	
loads	

W0 

W1 

W2 

…	
W0:	ld	X	

X 0 

W0,X	 X 

W0	
detected	
lost	locality	

W2:	ld	Y	W0:	ld	X	

Probe
W0,X	

Y 2 
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StaFc	Wavefront	LimiFng	
[Rogers	et	al.,	MICRO	2012]	

•  Profiling	an	applicaFon	we	can	find	an	opFmal	
number	of	wavefronts	to	execute	

•  Does	a	litle	beter	than	CCWS.	
•  LimitaFons:	Requires	profiling,	input	
dependent,	does	not	exploit	phase	behavior.	
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Improve	upon	CCWS?	

•  CCWS	detects	bad	scheduling	decisions	and	
avoids	them	in	future.	

•  Would	be	beter	if	we	could	“think	ahead”	/	
“be	proacFve”	instead	of	“being	reacFve”	
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ObservaFons	
[Rogers	et	al.,	MICRO	2013]	

•  Memory divergence in static instructions is predictable 

 
 
 
 
•  Data touched by divergent loads dependent on active mask 

 

Warp	0	Warp	1	
…	
load	
…	

Divergence	

Divergence	Warp	

Main	Memory	

Main	Memory	Main	Memory	

Divergence	

Both	Used	To	
Create	Cache	
Footprint	
Predic6on	

4	accesses	
2	accesses	

1 0 10
Warp	

1 1 11
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Footprint	PredicFon	
1.   Detect loops with locality 

2.   Classify loads in the loop 

3.   Compute footprint from active mask 

Some	loops	have	locality	 Some	don’t	

Limit	mul6threading	
here	

while(…)	{	
	load	1	
	…	
	load	2	

}	

Diverged	

Not	Diverged	

while(…)	{	
	load	1	
	…	
	load	2	

}	

Warp	0	 1	1	1	1	1	1	

Loop	with	locality	

Loop	with	locality	

Diverged	

Not	Diverged	

4	accesses	

1	access	
+ Warp	0’s	

Footprint	
=	5	cache	lines	
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int	C[]={0,64,96,128,160,160,192,224,256};	
void	sum_row_csr(float*	A,	…)		{	
				float	sum	=	0;	
				int	i	=C[Fd];	
	
	
	
				while(i	<	C[6d+1])	{	
	
								sum		+=	A[	i	];		
	
	
								++i;	
	
						}	
…	

Example	Compressed	Sparse	Row	Kernel	

Time1	Time0	 Time2	

Cache		
A[0]	

A[64]	

A[96]	

A[128]	

Cache		
A[0]	

A[64]	

A[96]	

A[128]	

Cache		
A[32]	

A[160]	

A[192]	

A[224]	

Warp0	 1	 1	 1	 1	
2nd	Iter.	

Warp0	 1	 0	 0	 0	
33rd	Iter.	

Warp1	 0	 1	 1	 1	

1st	Iter.	

Memory	Divergence	

Divergent	Branch	

Go	 Go	

Warp1	

Warp0	
Warp1	

Warp0	

No	
Footprint	

DAWS	Opera6on	Example	

Cache	Footprint	

4	 4	 4	 Want	to	capture	
spa6al	locality	

Hit	

Hit	
Hit	

Hit	

Go	

Hit	x30	

Hit	x30	

Hit	x30	

Hit	x30	

Loop	
Stop	
Go	

No	locality	
detected	=	no	
footprint	

Locality	Detected	
1	Diverged	Load	

Detected	

Footprint	=	4X1	

Footprint	=	3X1	
Early	warps	profile	

loop	for	later	
warps	

Warp	0	has	branch	divergence	

Both	warps	capture	
spa6al	locality	together	4	Ac6ve	threads	

Stop	

Footprint	decreased	 130	



Sparse MM Case Study Results 

Within	4%	of	op6mized	
with	no	programmer	input	
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•  Performance	(normalized	to	opFmized	version)	
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Memory	Request	PrioriFzaFon	Buffer	
[Jia	et	al.,	HPCA	2014]	

•  Reorder	requests	by	sorFng	by	Warp	ID.	
•  Bypass	when	too	many	accesses	to	same	cache	set.	
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W3	 W2	 W1	 W3	 W2	 W1	

W3	 W3	

W2	 W2	 W1	 W1	

Bypass	accesses	to	hot	set	

Reorder	requests	by	warp	ID		



Priority-Based	Cache	AllocaFon	in	Throughput	
Processors	[Li	et	al.,	HPCA	2015]	

•  CCWS	leaves	L2	and	DRAM	underuFlized.	
•  Allow	some	addiFonal	warps	to	execute	but	do	not	allow	

them	to	allocate	space	in	cache:	
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Warp	0	
Warp	1	Normal	Warps	

Warp	2	
Warp	3	Non-PolluFng	

Warps	
Warp	4	

Schedule	and	allocate	in	L1	

Schedule	and	bypass	L1	

Warp	5	
Throtled	Warps	

Warp	n-1	
Not	scheduled	



		Coordinated	criFcality-Aware	Warp	
AcceleraFon	(CAWA)	[Lee	et	al.,	ISCA	2015]	

•  Some	warps	execute	longer	than	others	due	to	lack	
of	uniformity	in	underlying	workload.	

•  Give	these	warps	more	space	in	cache	and	more	
scheduling	slots.	

•  EsFmate	criFcal	path	by	observing	amount	of	branch	
divergence	and	memory	stalls.	

•  Also,	predict	if	line	inserted	in	line	will	be	used	by	a	
warp	that	is	criFcal	using	modified	version	of	SHiP	
cache	replacement	algorithm.		
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Other	Memory	System	Performance		
ConsideraFons	

•  TLB	Design	for	GPUs.	
– Current	GPUs	have	translaFon	look	aside	buffers	
(makes	managing	mulFple	graphics	applicaFon	
surfaces	easier;	does	not	support	paging)	

– How	does	large	number	of	threads	impact	TLB	
design?		

– E.g.,	Power	et	al.,	Suppor8ng	x86-64	Address	
Transla8on	for	100s	of	GPU	Lanes,	HPCA	2014.		
Importance	of	mulFthreaded	page	table	walker	+	
page	walk	cache.	
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Research	Direc8on	3:	
Coherent	Memory	for	Accelerators	
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Why	GPU	Coding	Difficult?	

•  Manual	data	movement	CPU	ó	GPU	
•  Lack	of	generic	I/O	,	system	support	on	GPU	
•  Need	for	performance	tuning	to	reduce	

–  off-chip	accesses		
– memory	divergence	
–  control	divergence	

•  For	complex	algorithms,	synchronizaFon	
•  Non-determinisFc	behavior	for	buggy	code		
•  Lack	of	good	performance	analysis	tools	

	
137	



Manual	CPU	ó	GPU	Data	Movement	
•  Problem	#1:	Programmer	needs	to	idenFfy	data	
needed	in	a	kernel	and	insert	calls	to	move	it	to	GPU	

•  Problem	#2:	Pointer	on	CPU	does	not	work	on	GPU	
since	different	address	spaces	

•  Problem	#3:	Bandwidth	connecFng	CPU	and	GPU	is	
order	of	magnitude	smaller	than	GPU	off-chip	

•  Problem	#4:	Latency	to	transfer	data	from	CPU	to	
GPU	is	order	of	magnitude	higher	than	GPU	off-chip	

•  Problem	#5:	Size	of	GPU	DRAM	memory	much	
smaller	than	size	of	CPU	main	memory	
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IdenFfying	data	to	move	CPU	ó	GPU	

•  CUDA/OpenCL:		Job	of	programmer	L	

•  C++AMP	passes	job	to	compiler.			

•  OpenACC	uses	pragmas	to	indicate	loops	that	
should	be	offloaded	to	GPU.	
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Memory	Model	

Rapid	change	(making	programming	easier)	
•  Late	1990’s:	fixed	funcFon	graphics	only	
•  2003:	programmable	graphics	shaders	
•  2006:	+	global/local/shared		(GeForce	8)	
•  2009:	+	caching	of	global/local		
•  2011:	+	unified	virtual	addressing	
•  2014:	+	unified	memory	/	coherence	
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Caching	

•  Scratchpad	uses	explicit	data	movement.	Extra	
work.	Beneficial	when	reuse	patern	staFcally	
predictable.	

•  NVIDIA	Fermi	/	AMD	Southern	Island	add	
caches	for	accesses	to	global	memory	space.				
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CPU	memory	vs.	GPU	global	memory	

•  Prior	to	CUDA:	input	data	is	texture	map.	
•  CUDA	1.0	introduces	cudaMemcpy	

– Allows	copy	of	data	between	CPU	memory	space	to	
global	memory	on	GPU	

•  SFll	has	problems:	
–  #1:	Programmer	sFll	has	to	think	about	it!	
–  #2:	Communicate	only	at	kernel	grid	boundaries	
–  #3:	Different	virtual	address	space		

•  pointer	on	CPU	not	a	pointer	on	GPU	=>	cannot	easily	share	
complex	data	structures	between	CPU	and	GPU	
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Fusion	/	Integrated	GPUs	

•  Why	integrate?	
– One	chip	versus	two	(cf.	Moore’s	Law,	VLSI)	
– Latency	and	bandwidth	of	communicaFon:	shared	
physical	address	space,	even	if	off-chip,	eliminates	
copy:	AMD	Fusion.	1st	iteraFon	2011.		Same	
DRAM	

– Shared	virtual	address	space?	(AMD	Kavari	2014)	
– Reduce	latency	to	spawn	kernel	means	kernel	
needs	to	do	less	to	jusFfy	cost	of	launching	
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CPU	Pointer	not	a	GPU	Pointer	

•  NVIDIA	Unified	Virtual	Memory	parFally	
solves	the	problem	but	in	a	bad	way:			
– GPU	kernel	reads	from	CPU	memory	space	

•  NVIDIA	Uniform	Memory	(CUDA	6)	improves	
by	enabling	automaFc	migraFon	of	data	

•  Limited	academic	work.	Gelado	et	al.	ASPLOS	
2010.	
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CPU	ó	GPU	Bandwidth	

•  Shared	DRAM	as	found	in	AMD	Fusion	(recent	
Core	i7)	enables	the	eliminaFon	of	copies	from	
CPU	to	GPU.		Painful	coding	as	of	2013.	

•  One	quesFon	how	much	benefit	versus	good	
coding.		Our	limit	study	(WDDD	2008)	found	only	
~50%	gain.		LusFg	&	Martonosi	HPCA	2013.	

•  Algorithm	design—MummerGPU++	
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CPU	ó	GPU	Latency	

•  NVIDIA’s	soluFon:	CUDA	Streams.		Overlap	
GPU	kernel	computaFon	with	memory	
transfer.	Stream	=	ordered	sequence	of	data	
movement	commands	and	kernels.		Streams	
scheduled	independently.		Very	painful	
programming.	

•  Academic	work:		Limit	Study	(WDDD	2008),	
LusFg	&	Martonosi	HPCA	2013,	Compiler	data	
movement	(August,	PLDI	2011).	
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GPU	Memory	Size	

•  CUDA	Streams	

•  Academic	work:	Treat	GPU	memory	as	cache	
on	CPU	memory	(Kim	et	al.,	ScaleGPU,	IEEE	
CAL	early	access).	
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SoluFon	to	all	these	sub-issues?	

•  Heterogeneous	System	Architecture:	
Integrated	CPU	and	GPU	with	coherence	
memory	address	space.	

•  Need	to	figure	out	how	to	provide	coherence	
between	CPU	and	GPU.			

•  Really	two	problems:	Coherence	within	GPU	
and	then	between	CPU	and	GPU.	
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Review: Cache Coherence Problem 

–  Processors see different values for u after event 3 
–  With write back caches, value written back to memory depends on order of 

which cache  writes back value first 
–  Unacceptable situation for programmers 

I/O	devices	

Memory	

P	1	

$	 $	 $	

P	2	 P	3	

5	
u		=	?	

4	
u		=	?	

u		:5	
1	

u		:5	

2	

u		:5	

3	

u		=	7	
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Coherence Invariants 
1.  Single-Writer, Multiple-Reader (SWMR) Invariant   

2.  Data-Value Invariant.  The value of the memory 
location at the start of an epoch is the same as the 
value of the memory location at the end of its last 
read-write epoch. 
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read-write 
Core 0 

read-only 
Core 0,2 

C0: store A C2: load A C3: store A 

read-write 
Core 3 

read-only 
Core 0,3 

read-only 
Core 0,1,3 

C0: load A C1: load A 



Coherence States 
•  How to design system satisfying invariants? 

•  Track “state” of memory block copies and  
ensure states changes satisfy invariants.    

•  Typical states: “modified”, “shared”, 
“invalid”. 

•  Mechanism for updating block state called a 
coherence protocol. 
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Intra-GPU	Coherence	

Coherent	memory	space	
•  Efficient	criFcal	secFons	
•  Load	balancing	

Stencil	computaFon	

Workgroups	

lock	shared	structure	
	…	
	computaFon	
	…	

unlock	

[Singh	et	al.,	HPCA	2013,	IEEE	Micro	Top	Picks	2014]	
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C4	

L1D	
A	 B	

C3	

L1D	
A	 B	

C2	

L1D	
A	 B	

GPU	Coherence	Challenges	

•  Challenge	1:	Coherence	traffic	

Do not require 
coherence 

No coherence MESI 

GPU-VI 

0.5 

1.0 

1.5 

  

2.2 

In
te

rc
on

ne
ct

 tr
af

fic
 

1.3 Recalls	
C1	

L1D	
A	 B	

Load	C	

gets	C	

rcl	A	 rcl	A	 rcl	A	

rcl	A	
ack	

ack	 ack	
ack	

Load	C	
Load	D	
Load	E	
Load	F	
…	

Load	G	
Load	H	
Load	I	
Load	J	
…	

Load	K	
Load	L	
Load	M	
Load	N	
…	

Load	O	
Load	P	
Load	Q	
Load	R	
…	

A	 B	

L2/Directory	
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L2	/	Directory	

MSHR	

GPU	Coherence	Challenges	
	

•  Challenge	2:	Tracking	in-flight	requests	
•  Significant	%	of	L2	

	

S	
Shared	

M	
Modified	

S_M	
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GPU	Coherence	Challenges	
•  Challenge	3:	Complexity	

Non-coherent	L1	

Non-coherent	L2	

MESI	L1	States	

MESI	L2	States	

States	

Events	
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Coherence	Challenges	

•  Challenges	of	introducing	coherence	messages	on	a	GPU	
1.  Traffic:	transferring	messages	
2.  Storage:	tracking	message	
3.  Complexity:	managing	races	between	messages	

•  GPU	cache	coherence	without	coherence	messages?	
•  YES	–	using	global	Fme	

156	



Core	1	

L1D	 ▪▪▪	

Temporal	Coherence	
	

Global	Fme	

Interconnect	

▪▪▪	
L2	Bank	

A=0	0	

A=0	0	

Core	2	

L1D	

Local	Timestamp	
	

>	Global	Time	à	VALID	

Global	Timestamp	
	
<	Global	Time	à	

											NO	L1	COPIES	

Related:	Library	Cache	Coherence	
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T=0	T=11	T=15	

Core	1	

L1D	

Interconnect	

L2	Bank	

Core	2	

L1D	

Temporal	Coherence	Example	

▪▪▪	
A=0	0	 A=0	10	 A=0	10	

A=0	10	

A=1	

A=0	10	No	coherence	
messages	
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Performance	

•  TC-Weak	with	simple	
predictor	performs	85%	
beter	than	disabling	L1	
caches	

MESI	 GPU-VI	 TC-Weak	

0.0	

0.5	

1.0	

1.5	

2.0	

Require	
coherence	

NO-L1	

Sp
ee
du

p	

+	



CPU-GPU	Coherence?	
•  Many	vendors	have	introduced	chips	with	both	CPU	
and	GPU	(e.g.,	AMD	Fusion,	Intel	Core	i7,	NVIDIA	
Tegra,	etc…)	

•  What	are	the	challenges	with	maintaining	coherence	
across	CPU	and	GPU?	

•  One	important	one:	GPU	has	higher	cache	miss	rate	
than	CPU.			Can	place	pressure	on	directory	
impacFng	performance.	

•  Power	et	al.,	Heterogeneous	System	Coherence	for	
Integrated	CPU-GPU	Systems,	ISCA	2013:			Use	
“region	coherence”	to	reduce	number	of	GPU	
requests	that	need	to	access	directory.	
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Review:	Consistency	Model	
•  Memory	consistency	model	specifies	
allowable	orderings	of	loads	and	stores	to	
different	loca6ons	

•  The	number	of	allowable	execuFon	orderings	
generally	far	greater	than	one.	

•  Ordering	of	operaFons	from	different	
processors	is	non-determinisFc.		Sovware	
must	use	synchronizaFon	(mutexes,	
semaphores,	etc…)	to	provide	determinism.		
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SequenFal	Consistency	

162		

P1 P2 Pn

Memory

sequential p rocessors
iss uing mem ory references
as per  p rogram o rder

switch is rand omly
set after each m em ory
reference

•  SequenFal	consistency	is	basically	a	“naïve”	
programmer’s	intuiFon	of	allowable	orderings:	



Total	Store	Order	(TSO/x86)	
Memory	Model	

	Use	of	write	(store)	buffer	considered	very	
important	by	Intel	and	AMD	for	x86.			

	
	Leads	to	total	store	order	memory	model	
supported	by	x86.	

	
	In	general,	memory	model	on	mulFcore	
processors	is	not	sequenFal	consistency.	
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Example,	TSO/x86	ordering	

164		

Program	order	of	core	C1	 Memory	order	 Program	order	of	core	C2	

S2:	y=NEW		/*	NEW	*/	S1:	x=NEW	/*	NEW	*/	

L2:	r2=x	/*	0	*/	L1:	r1=y	/*	0	*/	

(r1,	r2)	=	(0,	0)	is	legal	outcome	under	TSO/x86	(!)	



Current	GPU	Memory	Consistency	Models?	

•  NVIDIA	Fermi:	No	coherence.		Can	have	stale	data	in	
first	level	data	cache	(e.g.,	Barnes	Hut	example	from	
GPU	Gems).	“Consistency”:	Write	from	kernel	N	
guaranteed	to	be	visible	to	load	from	kernel	N+1.	

•  NVIDIA	Kepler	restricts	caching	in	L1D	to	global	data	
compiler	can	prove	is	read	only.		

•  See	also:	Alglave	et	al.,	“GPU	Concurrency:	Weak	
Behaviours	and	Programming	AssumpFons”,	ASPLOS	
2015.	
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Impact	of	Consistency	Model	on	
Performance	of	GPU	Coherence?	

•  [Singh	HPCA	2013]	Assumes	release	consistency	
as	do	more	recent	AMD/Wisconsin	papers	on	
CPU-GPU	coherence	

•  Hechtman	and	Sorin	[ISCA	2013]:	large	number	of	
threads	on	GPU	may	enable	one	to	implement	
sequenFal	consistency	with	same	performance	as	
more	relaxed	consistency	models.	

•  One	caveat:		Write	back	caches	in	their	study	
versus	write	through	in	exisFng	GPUs.	
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Research	Direc8on	4:	
Easier	Programming	with	

SynchronizaFon	
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SynchronizaFon		
•  Locks	are	not	encouraged	in	current	GPGPU	
programming	manuals.			

•  InteracFon	with	SIMT	stack	can	easily	cause	deadlocks:	

		while(	atomicCAS(&lock[a[tid]],0,1)	!=	0	)	
				;		//	deadlock	here	if	a[i]	=	a[j]	for	any	i,j	=	tid	in	warp	
			
		//	critical	section	goes	here	
	
		atomicExch	(&lock[a[tid]],	0)	;	
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Correct	way	to	write	criFcal	secFon	for	GPGPU:	

	done	=	false;	
	while(	!done	)	{	
			if(	atomicCAS	(&lock[a[tid]],	0	,	1	)==0	)	{	
	
					//	critical	section	goes	here	
	
					atomicExch(&lock[a[tid]],	0	)	;	
			}	
	}	

			
Most	current	GPGPU	programs	use	barriers	within	
thread	blocks	and/or	lock-free	data	structures.	
	
This	leads	to	the	following	picture…	
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•  LifeFme	of	GPU	ApplicaFon	Development	

Time	

Func6onality		
Performance		

Wilson	Fung,	Inderpeet	Singh,	Andrew	
Brownsword,	Tor	Aamodt	

?	

Time	

Fine-Grained	Locking/Lock-Free	

Time	

TransacFonal	Memory	

E.g.	N-Body	with	5M	bodies		
CUDA	SDK:	O(n2)	–	1640	s	(barrier)	
Barnes	Hut:	O(nLogn)	–	5.2	s	(locks)	
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TransacFonal	Memory	
•  Programmer	specifies	atomic	code	blocks	
called	transacFons	[Herlihy’93]	

TM Version: 
atomic { 
  X[c] = X[a]+X[b]; 
} 

Lock Version: 
Lock(X[a]); 
Lock(X[b]); 
Lock(X[c]); 
  X[c] = X[a]+X[b]; 
Unlock(X[c]); 
Unlock(X[b]); 
Unlock(X[a]); 

PotenFal	Deadlock!	
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TransacFonal	Memory	

Commit	 Commit	

TX1	

Non-conflicFng	transacFons	
may	run	in	parallel	

TX2	
A	
B	
C	
D	

Memory	

ConflicFng	transacFons	
automaFcally	serialized	

TX1	
A	
B	
C	
D	

Memory	

TX2	

Commit	 Abort	

Commit	

TX2	

Programmers’	View:		

TX1	

TX2	 TX1	

TX2	
OR	

Tim
e	

Tim
e	



173 Hardware	TM	for	GPU	Architectures	 173	

Are	TM	and	GPUs	IncompaFble?	
GPU	uarch	very	different	from	mulFcore	CPU…	

KILO	TM	[MICRO’11,	IEEE	Micro	Top	Picks]	

•  Hardware	TM	for	GPUs	
•  Half	performance	of	fine	grained	locking	

n  Chip	area	overhead	of	0.5%	
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T0	 T1	 T2	 T3	

Hardware	TM	for	GPU	Architectures	 174	

Hardware	TM	for	GPUs		
Challenge	#1:	SIMD	Hardware	

•  On	GPUs,	scalar	threads	in	a	warp/wavefront	
execute	in	lockstep	

... 
TxBegin 
LD r2,[B] 
ADD r2,r2,2 
ST r2,[A] 
TxCommit 
... CommiWed	

A	Warp	with	4	Scalar	Threads	

Aborted	

Branch	Divergence!	
	

T0	 T1	 T2	 T3	

T0	 T1	 T2	 T3	



... 
TxBegin 
LD r2,[B] 
ADD r2,r2,2 
ST r2,[A] 
TxCommit 
... 

Hardware	TM	for	GPU	Architectures	 175	
Wilson	Fung,	Inderpeet	Singh,	Andrew	
Brownsword,	Tor	Aamodt	 Hardware	TM	for	GPU	Architectures	 175	

KILO	TM	–	SoluFon	to		
Challenge	#1:	SIMD	Hardware	

•  TransacFon	Abort	
– Like	a	Loop	
– Extend	SIMT	Stack		

Abort	
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176 Hardware	TM	for	GPU	Architectures	 176	

Register	File	

CPU	Core	
10s	of		

Registers	

Hardware	TM	for	GPUs		
Challenge	#2:	TransacFon	Rollback	

Checkpoint		
Register	File	

@	TX		
Entry	

@	TX		
Abort	

Register		
File	

GPU	Core	(SM)	

32k	Registers	Warp	Warp	Warp	Warp	Warp	Warp	Warp	Warp	

2MB	Total	
On-Chip	Storage	Checkpoint?	
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KILO	TM	–	SoluFon	to	
Challenge	#2:	TransacFon	Rollback	

•  SW	Register	Checkpoint	
– Most	TX:	Reg	overwriten	first	appearance	
(idempotent)	

– TX	in	Barnes	Hut:	Checkpoint	2	registers	

TxBegin 
LD r2,[B] 
ADD r2,r2,2 
ST r2,[A] 
TxCommit 

Abort	

OverwriWen	
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Hardware	TM	for	GPUs		
Challenge	#3:	Conflict	DetecFon	

ExisFng	HTMs	use	Cache	Coherence	Protocol	
n  Not	Available	on	(current)	GPUs	
n  No	Private	Data	Cache	per	Thread	
Signatures?	
n  1024-bit	/	Thread	
n  3.8MB	/	30k	Threads	
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GPU	Core	(SM)	

L1	Data	Cache	Warp	Warp	Warp	Warp	Warp	Warp	Warp	

Hardware	TM	for	GPU	Architectures	 179	

Hardware	TM	for	GPUs		
Challenge	#4:	Write	Buffer	

1024-1536	Threads	 Fermi’s	L1	Data	Cache		
(48kB)	
=	384	X	128B	Lines	

Problem:	384	lines	/	1536	threads	<	1	line	per	thread!	
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TX2	
atomic	
{A=B+2}	

Private	Memory	
Read-Log	

Write-Log	

KILO	TM:		
Value-Based	Conflict	DetecFon	

TX1	

atomic	
{B=A+1}	

Private	Memory	
Read-Log	

Write-Log	

Global	
Memory	

A=1	

B=2	

TxBegin 
LD r1,[A] 
ADD r1,r1,1 
ST r1,[B] 
TxCommit 

A=1	

B=0	

A=1	

B=0	

A=2	

B=2	

B=2	

•  Self-ValidaFon	+	Abort:	
– Only	detects	existence	of	conflict	(not	idenFty)	

TxBegin 
LD r2,[B] 
ADD r2,r2,2 
ST r2,[A] 
TxCommit 



TX1	

atomic	
{B=A+1}	

TX2	
atomic	
{A=B+2}	

Private	Memory	
Read-Log	

Write-Log	
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Parallel	ValidaFon?	

Private	Memory	
Read-Log	

Write-Log	

Global	
Memory	

A=1	

B=2	

A=1	

B=0	

A=1	

B=0	

A=2	

B=0	

B=2	

A=2	

	
	

Tx1	then	Tx2:	
A=4,B=2	

Tx2	then	Tx1:	
A=2,B=3	

OR	

Data	Race!?!	
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Serialize	ValidaFon?	

Global	
Memory	

Commit	
Unit	

•  Benefit	#1:	No	Data	Race	
•  Benefit	#2:	No	Live	Lock	
•  Drawback:	Serializes	Non-Conflic6ng	TransacFons		
	(“collateral	damage”)	

TX1	 TX2	
V	+	C	 Stall	Tim

e	

V	+	C	

V	=	Valida6on	
C	=	Commit	
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SoluFon:	SpeculaFve	ValidaFon	

Hardware	TM	for	GPU	Architectures	 183	

Global	
Memory	

Commit	
Unit	

TX3	TX1	
V+C	 Stall	Tim

e	

V+C	
TX2	
V+C	

Key	Idea:	Split	Conflict	DetecFon	into	two	parts	
1.  Recently	Commited	TX	in	Parallel	
2.  Concurrently	Commi�ng	TX	in	Commit	Order	

q  Approximate		

RS	
RS	
RS	

Conflict	Rare	à	Good	Commit	Parallelism	

V	=	Valida6on	
C	=	Commit	



Efficiency	Concerns?	

•  Scalar	TransacFon	Management		
– Scalar	TransacFon	fits	SIMT	Model	
– Simple	Design	
– Poor	Use	of	SIMD	Memory	Subsystem	

•  Rereading	every	memory	locaFon	
– Memory	access	takes	energy	
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2X		
Energy	
Usage	

128X		
Speedup		
over		

CG-Locks	

40%		
FG-Locks	
Performance	



Inefficiency	from		
Scalar	TransacFon	Management	

185	

•  Kilo	TM	ignores	GPU	thread	hierarchy	
– Excessive	Control	Message	Traffic	

– Scalar	ValidaFon	and	Commit		
à	Poor	L2	Bandwidth	UFlizaFon	

•  Simplify	HW	Design,	but	Cost	Energy	

SIMT	
Core	

CU	

CU	

Send-Log	

SIMT	
Core	

CU	

CU	

CU-Pass/Fail	

SIMT	
Core	

CU	

CU	

TX-Outcome	

SIMT	
Core	

CU	

CU	

Commit	Done	

Commit	
Unit	

Last	
Level		
Cache	32
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Intra-Warp	Conflict	

•  PotenFal	existence	of	intra-warp	conflict	
introduces	complex	corner	cases:		
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Intra-Warp	Conflict	ResoluFon	

•  Kilo	TM	stores	read-set	and	write-set	in	logs	
– Compact,	fits	in	caches	
–  Inefficient	for	search	

•  Naive,	pair-wise	resoluFon	too	slow		
– T	threads/warp,	R+W	words/thread	
– O(T2	x	(R+W)2),	T	≥	32	
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Fung,	MICRO	2013	
Intra-Warp	Conflict	ResoluFon:	

2-Phase	Parallel	Conflict	ResoluFon	

•  Insight:	Fixed	priority	for	conflict	resoluFon	
enables	parallel	resoluFon	

•  O(R+W)	
•  Two	Phases	

– Ownership	Table	ConstrucFon	
– Parallel	Match	
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Results	

189	

0	 1	 2	 3	

WarpTM+TCD	
WarpTM	

TCD	
KiloTM-Base	

Execu6on	Time	Normalized	to	FGLock	

0	 1	 2	 3	

WarpTM+TCD	
WarpTM	

TCD	
KiloTM-Base	

Energy	Usage	Normalized	to	FGLock	

2Xà1.3X	
Energy	
Usage	

40%à66%	
FG-Lock	

Performance	

Low	Conten6on	Workload:		
Kilo	TM	w/	SW	Op6miza6ons	on	par	with	FG	Lock		



Other	Research	DirecFons….	
•  Non-determinisFc	behavior	for	buggy	code		

– GPUDet	ASPLOS	2013	
	
	
	
	

•  Lack	of	good	performance	analysis	tools	
– NVIDIA	Profiler/Parallel	NSight	
– AerialVision	[ISPASS	2010]	
– GPU	analyFcal	perf/power	models	(Hyesoon	Kim)	 190	
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Lack	of	I/O	and	System	Support…	
•  Support	for	prin�,	malloc	from	kernel	in	CUDA	
•  File	system	I/O?	
•  GPUfs	(ASPLOS	2013):	

– POSIX-like	file	system	API	
– One	file	per	warp	to	avoid	control	divergence	
– Weak	file	system	consistency	model	(close->open)	
– Performance	API:	O_GWRONCE,	O_GWRONCE	
– Eliminate	seek	pointer	

•  GPUnet	(OSDI	2014):	Posix	like	API	for	sockets	
programming	on	GPGPU.	
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Conclusions	

•  GPU	CompuFng	is	growing	in	importance	due	
to	energy	efficiency	concerns		

•  GPU	architecture	has	evolved	quickly	and	
likely	to	conFnue	to	do	so	

•  We	discussed	some	of	the	important	
microarchitecture	botlenecks	and	recent	
research.	

•  Also	discussed	some	direcFons	for	improving	
programming	model	
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