GPU Concurrency:
Weak Behaviours and Programming Assumptions

Jade Alglave'* Mark Batty? Alastair F. Donaldson® Ganesh Gopalakrishnan®
Jeroen Ketema® Daniel Poetzl® Tyler Sorensen® John Wickerson*

! University College London 2 Microsoft Research ~ # University of Cambridge
* Imperial College London ® University of Utah % University of Oxford

Jyh-Jing Hwang, Yiren(Max) Lu
03/02/2017
&Penn

Outline

1. Introduction
2. Weak behaviors examples

J. Test methodology
4. Proposed memory model

5. Folklores

& Penn
2

Introduction

 Current specifications of languages and hardware
for GPU are inconclusive
 Programmers often rely on folklore assumptions

& Penn

Contributions

A framework for generating and running litmus
tests to question memory consistency on GPU chips
A set of heuristics for provoking weak behaviors

An extensive empirical evaluations across seven
GPUs

Revealed ten correctness issues

A formal model of Nvidia GPUs to build more
reliable chips, compilers and applications

& Penn

4

Weak Behaviors

o Architectures implement weak memory models where the hardware is
allowed to re-order certain memory instructions

» Weak memory models can allow weak behaviors (executions that do
not correspond to a specified interleaving)

& Penn

Weak Behaviors

o Architectures implement weak memory models where the hardware is
allowed to re-order certain memory instructions

» Weak memory models can allow weak behaviors (executions that do
not correspond to an interleaving)

name description figures

coRR coherence of read-read pairs 1,4
mp message passing (viz. handshake) | 3,5,7,9
b load buffering 8,11
sb store buffering 12

Table 3: Glossary of idioms

& Penn

6

Weak Behaviors

coherence of read-read pairs (coRR)

init: global x=0 final: r1=1 A r2=0 threads: intra-CT.Al

0.1 st.cg [x],1 1.1 1ld.cg ri, [x]
1.2 1ld.cg r2,[x]

obs/100k GTXS5 TesC GTX6 Titan GTX7 HD6570 HD7970
11642 8879 9599 9787 0 0 0

Figure 1: PTX test for coherent reads (CORR)

SC Is not guaranteed!

& Penn

v

Weak Behaviors
PTX coRR mixing cache operators (coRR-L2-L1)

load from (2 cache

init: global x=0 final: r1=1 A r2=0 threads: intra-CTA

01 st.cg [x],1 1.1 1ld.cg th, [x]
1.2 fence
13 1d.ca 12,01 |oad from |1 cache
obs/100k fence GTX5 TesC GTX6 Titan GTX7
no-op 2556 2982 2 141 0
membar.cta 1934 2180 0 0 0
membar.gl 0 1496 0 0 0
membar.sys 0 1428 0 0 0

Figure 4: PTX coRR mixing cache operators (CcORR-L2-L1)

& Penn

data

flag

Weak Behaviors

message passing (viz. handshake) (mp)

stale
1obal 0 data
init: (S°°°%" *77) final: 11=1 Ax2=0 threads: inter CTA
global y=0
0.1 st.cg [x],1 1.1 1ld.ca ri, [y]
02 fence 12 fence
0.3 st.cg [y]l,1 1.3 ld.ca r2, [x]
obs/100k fence GTXS TesC GTX6 Titan GTX7
no-op 4979 10581 3635 6011 3
membar.cta 0 308 14 1696 0
membar.gl 0 187 0 0 0
membar.sys 0 162 0 0 0

Figure 3: PTX mp w/ L1 cache operators (mp-L1)

No matter how strong the fences are!
#Penn

9

flag

data

data

flag

Weak Behaviors

message passing (viz. handshake) (mp)

chit. global x=0
"\ global y=0

stale
data

) final: r1=1 Ar2=0 threads: inter-CTA

0.1 st.cg [x],1

02 fence

03 st.cg [y]l,1

Interleaving 1

a: x « 1;

b: y « 1;

c: rl « y;

d: r2 < x;

Final: rl=1A112=1

1.1 1ld.ca ri, [y]

12 fence

1.3 ld.ca r2, [x]

Interleaving 2

a: x «+— 1;

c: rl <« y;

b: y+ 1;

d: rz + x;

Final: rl=0A12=1

Interleaving 3

a: x +— 1;

c: rl + y;

d: r2 « x;

b: y + 1;

Final: rl=0A12=10

Interleaving 4
c: rl < vy;
a: x < 1;

Interleaving 5
c: rl < y;
a: x < 1;

Interleaving 6
c: rl «+—y;
d: r2 <« x;

b: y ¢ 1; d: re2 < X; a: x ¢ 1;
d: r2 < x; b: y < 1; b: y ¢ 1;
Final: r1=0A1I2=1 Final: r1=0A12=1 Finak r1=0AT12=10

10

flag

data

Weak Behaviors
PTX mp with volatiles (mp-volatile)

Enforce sequential consistency? No! sorry PTX manual!

init: shared x=0 final: r1=1 Ar2=0 threads: intra-CTA
shared y=0

01 stlvolatile|[x],1 11 1ld.volatile ri, [y]
0.2 st.volatile [y],1 1.2 ld.volatile r2, [x]

obs/100k GTXS TesC GTX6 Titan GTX7
6301 4977 2753 2188 0

Figure 5: PTX mp with volatiles (mp-volatile)

Same block, but different warps!

& Penn

11

Test Methodology

* Extended the 1 i tmus CPU testing tool of Alglave
and Maranget to run GPU tests
o Given a GPU litmus test, generates an executable

CUDA or OpenCL code for the test

& Penn

12

O 00 ~1 QN W B W N e

— = =
Do = O

Generate Test Code

store huffering (sh)

GPU_PTX SB

{0:.reg .s32 r0; O:.reg .s32 r2;
O:.reg .b64 rl = x; O:.reg .b64 r3 = y;
1:.reg .832 r0; 1:.reg .s832 r2;
1:.reg .b64 rl = y; 1:.reg .b64 r3 = x;}

TO | T1 :

mov.s32 r0,1 | mov.s32 r0,1 ;

st.cg.s32 [r1],r0 | st.cg.s32 [r1],x0 ;
ld.cg.s32 r2,[r3] | 1d.cg.s32 r2,[r3] ;

ScopeTree(grid(cta(warp TO) (warp T1)))
x: shared, y: global
exists (0:x2=0 /\ 1:r2=0)

Figure 12: GPU PTX litmus test sh

& Penn

13

Test Methodology: Memory Stress

Heuristics: Stressing caching protocols might trigger weak behaviors

TO0 T1 extra thread 1
run TO run T1 loop:
test test read or write
program program to scratchpad
-
#&Penn

14

extra thread n

loop:
read or write
to scratchpad

Test Methodology: General Bank Conflicts

Heuristics: GPUs access shared memory through banks, which can handle

only one access at a time. Bank conflicts occur when multiple threads in a

warp seek simultaneous access to locations in the same block. Hardware
might handle accesses out of order to hide the latency.

& Penn

15

Test Methodology: Thread Randomization

Heuristics: Varying the thread ids of testing threads and the number of
threads per kernel might exercise different components and paths through
the hardware and hence, increase the likelihood of weak behaviors.

T1
CTAO CTA1 CTAn
|
TO NEEE | -
] [] [[
] [[I L)
L] L
Shared Memory Shared Memory Shared Memory
r CTA For CTA 1 For CTA n
Global Memory

& Penn

16

Test Methodology: Thread Synchronization

Heuristics: Synchronizing testing threads immediately
before running the test promotes interactions while
values are actively moving through the memory system

& Penn

17

Test Methodology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
memory stress e o ® e © ® ® ®
general bank conflicts @ ® ® ® ® ® @ ®
thread synchronisation | ® ® ® ® ® ® ®
thread randomisation ® ® ® ® ® ® ® ®

Nvidia coRR (intra-CTA) 0 0 0 0 0 1235 0 9774 161 118 847 362 632 3384 3003 9985
GTX Ib (inter-CTA) 0 0 0 0 0 0 0 0 181 1067 1555 2247 4 37 83 486
Tian TP (inter-CTA) 0 0 0 0 0 621 0 2921 315 1128 2372 4347 7 94 442 2888
sb (inter-CTA) 0 0 0 0 0 0 0 0 462 1403 3308 6673 3 50 88 749

AMD coRR (intra-CTA) 0 0 0 0 0 0 0 0 0 0 0 0 (0 0 (0 0
Radeon Ib (inter-CTA) 109359 8979 31895 29092 13510 12729 29779 26737 5094 9360 37624 38664 5321 10054 32796 34196
HD 7970 ™P (inter-CTA) 212 31 243 IS8 277 46 318 247 473 217 1289 563 611 339 2542 1628
sb (inter-CTA) 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0

Table 6: Observations out of 100k exccutions for combinations of incantations (all tests target global memory)

& Penn

18

Test Methodology: Checking Optimization

SASS code may vary (extra lines, reordering) from the PTX
code due to compile optimization. The authors developed
a tool to ensure the consistency.

& Penn

19

Proposed Model: Candidate Executions

init: (global x=0) final: rO=1 A r2=0 threads: intra-CTA

global y=0
0.1 st.cg [x],1 1.1 1ld.cg rO0, [yl
0.2 membar.cta 1.2 membar.gl
03 st.cg [yl,1 1.3 1ld.cg r2, [x]
a: W.cg x 1] c: R.cgyl
membar.cta, po l / lmembar.gl, po
b: W.cgyl ‘?ﬁ': R.cg x 0

Memory events: write (W), read (R)

Scope relations: block (cta), grid (gl), system (sys)

Program order (po) > Dependency (dp): address (addr), data (data), control (ctrl)
Communication relations [inter-threads): read-from relation (rf)

& Penn

20

Proposed Model: Candidate Executions

init: (global x=0) final: rO=1 A r2=0 threads: intra-CTA

global y=0
0.1 st.cg [x],1 1.1 1ld.cg rO0, [yl
0.2 membar.cta 1.2 membar.gl
03 st.cg [yl,1 1.3 1ld.cg r2, [x]

R.cgix 0

Memory events: write (W), read (R)
with Cache operator: L1 (.ca), L2 (.cg)

& Penn

21

Proposed Model: Candidate Executions

init: (global x=0) final: rO=1 A r2=0 threads: intra-CTA

global y=0
0.1 st.cg [x],1 1.1 1ld.cg rO0, [yl
0.2 membar.cta 1.2 membar.gl
03 st.cg [yl,1 1.3 1ld.cg r2, [x]
| a: W.cg x 1 cchyl
) po l / Jpo
b: W.cgyl chxO

Fences with Scope relations: block (cta), grid (gl), system (sys)

& Penn

22

Proposed Model: Candidate Executions

init: (global x=0) final: rO=1 A r2=0 threads: intra-CTA

global y=0
0.1 st.cg [x],1 1.1 1ld.cg rO0, [yl
02 membar.cta 12 membar.gl
03 st.cg [yl,1 1.3 1ld.cg r2, [x]

_a: W. .Cg X 1

membar gl po b

 Program order (po): total order within a thread
 Dependency (dp): included in po, instructions separated
by address (addr), data (data), or control (ctrl)
* Fence relations: included in po, member w.r.t. a scope

membar cta, po

b : y 1

& Penn

23

Proposed Model: Candidate Executions

init: (global x=0) final: rO=1 A r2=0 threads: intra-CTA

global y=0
0.1 st.cg [x],1 1.1 1ld.cg r0, [y]
0.2 membar.cta 1.2 membar.gl
03 st.cg [yl,1 1.3 1ld.cg r2, [x]
a: W.cg x 1 o c: R.cgyl
membar.cta, po l }/v lmembar.gl, o
b: W.cg y 1 ~rfg: R.cg x 0

Communication relations [inter-threads]: read-from relation (rf)

& Penn

24

Proposed Model: Constraints

let com = rf | co | fr
let po-loc-1llh =

WW(po-loc) | WR(po-loc) | RW(po-loc)
acyclic (po-loc-11lh | com) as sc-per-loc-1llh

let dp = addr | data | ctrl
acyclic (dp | rf) as no-thin-air

Nl O ON D BAWN e

let rmo(fence) = dp | fence | rfe | co | fr

o Sparc’s Relaxed Memory Order (RMO): allows any pair of memory
accesses to be reordered, unless a dependency or a fence.
o Three Principles of RMO:

1. SC per Location with Load-Load Hazard

& Penn

25

Proposed Model: Constraints

let com = rf | co | fr
let po-loc-1lh =

1
2
3 WW(po-loc) | WR(po-loc) | RW(po-1loc)
4

acyclic (po-loc-11h | com) as sc-per-loc-11lh

Proposed Model: Constraints

1
2
3
4
S5
6

let com = rf | co | fr
let po-loc-1lh =

WW(po-loc) | WR(po-loc) | RW(po-1loc)
acyclic (po-loc-11lh | com) as sc-per-loc-1llh

let dp = addr | data | ctrl
acyclic (dp | rf) as no-thin-air

o Sparc’s Relaxed Memory Order (RMO): allows any pair of memory
accesses to be reordered, unless a dependency or a fence.

o Three Principles of RMO:
2.NoThimAir .

T
dogrofd Id 1[]a:Rx=1 c: Ry=1
.cg ro [x cgrilly h¢ v
st.cg [y]rO stcg[x]r1 dp l >rfrf< l dp
b: Wy=1 d: Wx=1

27

Proposed Model: Constraints

8
9
10

11
12
13

14

16

let
let
let
let

let
let
1et

rmo(fence) = dp | fence | rfe | co | fr
sys-fence = membar.sys

gl-fence = membar.gl | sys-fence
cta-fence = membar.cta | gl-fence

rmo-cta = rmo(cta-fence) & cta
rmo-gl = rmo(gl-fence) & gl
rmo-sys = rmo(sys-fence) & sys

| acycllc rmo-cta as cta-constraint |
15 §

acyclic rmo-gl as gl-constraint

1 acycllc Imo-Sys as Sys- constralnt ,

o Sparc’s Relaxed Memory Order (RMO): allows any pair of memory
accesses to be reordered, unless a dependency or a fence.

o Three Principles of RMO:

" To T To

3. The rmo Relation a: Wx=1_—-b:Rx=1 d:Ry=1

ZPe ”‘embar} 7/ i

c: Wy=1 e: Rx=0

28

Folklore 1: “GPUs exhibit no weak memory behaviours”

|~ volatile int head, tall; init: (ghbal t=°) final: T0=1 Ar1=0 threads: inter-CTA
2 void push(task){ global d=0

3 tasks[taill = task; 0.1 st.cg [dl,1 S L1 1d.volatile x0, [t] s
A __Phrea_dfenc»e()ﬁ; 0.2(+) membar.gl 1 1.2 setp.eq p4,1r0,0 3
5 tallts; 03 1d.volatile r2,[t] s 1.3(+) @lp4 membar.gl o
6 Task steal(){ 04 add r2,r2,1 s 14 Q!pd 1ld.cg r1,[d]
7 int oldHead = head; 05 st.volatile [t],r2 s

8 if (tail <= oldHead.index) return EMPTY; *original line in Iig. 6
9(+) __dfe); obs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970
10 task = tasks[oldHead.index]; 0O 4 36 65 0 0 0
11¢+) __threadfence();

12 newHead = oldHead; newHead.index++;

13 if (CAS(&head,oldHead,newHead)) return task;

14 return FAILED; }

15 Task popQ{

16 -

7 tail--;

18 e

19 if(01dTail == oldHead.index)

20 if (CAS(&head, oldHead, newHead)) {

21(+) __threadfence();

22 return task; }

23(+) atomicExch(head, newHead);
24(-) head = newHead; g
25 return FAILED; } ‘111

29

Folklore 2: “Atomic operations provide synchronization™

init: (g1°ba1 ’FO) final: T1=0 Ar3=0 threads: inter-CTA

global m=1
*
0.1 st.cg [x],1 1.1 atom.cas r1,[m],0,1:;
0.2(+) membar.gl s 1.2 setp.eq r2,r1,0 2
03 atom.exch r0,[m],0 ¢ 13(+) @rl membar.gl 3

1.4 @rl ld.cg r3, [x]

*original line in Fig. 2

obs/100k GTXS5 TesC GTX6 Titan GTX7 HD6570 HD7970
0 47 43 512 0 508 748

Folklore 3: “Only unlocks need fences”

1 bool leaveloop = false,;

2 while(!leaveLoop) {

3 int lockValue = atomicCAS (lockAddr,0,1);
4 if (LockValue == 0) {

5 leavelLoop = true;

6(+) __threadfence();

7 // critical section

8(+) __threadfence();

9(+) atomicExch(lockAddr, 0);

10(-) *lockAddr = 0;}

11(-) __threadfence();}

init: (gi:ﬁ:i :1)) final: rO=1 Ar2=0 threads: intcr-CTA
00 1d.cg r0, [x] ; 1.1 atom.cas r2,[m],0,1 *
0.2(+) membar.gl g 1.2 setp.eq p,r2,0 4
0.3(+) atom.exch rl, [m],0 ¢ 1.3 @p mov r3,1 5
04(-) st.cg [m],0 0 1.4(+) @p membar.gl 2

=1
—

0.5(-) membar.gl 1.5 Qp st.cg [x],1

*original line in Fig. 10

obs/100k GTXS5 TesC GTX6 Titan GTX7 HD6570 IHHD7970
0 99 41 58 0 n/a n/a
31

Thank you!

Any Questions?
(We actually have got A LOT!)

& Penn

32

Example Questions

o (: Page 2, Weak Behaviours: Thread0 stores 1 to address x. Thread1
performs 2 loads from address x to r1 and r2. Does the Read-read
coherence violation occur because thread1 happens before
thread0 and the loads in Thread1 get reordered ? That is, first ld r2,
[x] happens, which loads 0 into r2. Then thread0 happens which
stores 1 at address x. Then thread1 loads 1 into r1 ?

o A: We've talked about this.

& Penn

33

Example Questions

* (: Page 2, Programming Assumptions: Could you explain how the
ahsence of threadfence() function makes hoth stale and future
values available to the critical section?

o A: We've talked about this.

& Penn

34

Example Questions

o (: "Fig 4 shows that on the Tesla C2075, no fence guarantees that
updated values can be read reliably from the L1 cache even when
first reading an updated value from the L2 cache. This issue does
not apply to AMD chips™. Could this be possible because the 2 loads
are not re-orderer in AMD, or could there be any other possibility?

* A:Yes, oraread from L2 cache will also update L1 cache.

& Penn

35

Example Questions

o (:Is it possible to provide an example to explain the "No Thin Air"
principle in section 3.2.2?

e A:Yes, we've provided one in our presentation.

& Penn

36

Testing Methodology Questions

e (1: Given some tests have very small obs/100k values (e.g. 3 in Fig 3.
and 2 in Fig 4), how/why did the authors decide 100k runs was
“good enough™?

o A:lt's the “possibility” that matters, not the “probability”.

& Penn

37

Testing Methodology Questions

o (I: Please give a high level explanation(maybe in context of CPU) of
the different itmus tests that the authors aim to test (coRR, mp, lb,
sh). Are there other litmus tests the authors could have tested? Why
did they choose these tests to expose inconsistencies?

 A: We believe they've tested a lot more experiments but only showed
those “surprising” weak behaviors. Also, we believe those 4 kinds
of operations are commonly used in practice.

& Penn

38

Testing Methodology Questions

e (I In the testing methodology mentioned in Section 4, could you
please elaborate on the function of the “scope tree™?

o) Execution hierarchy A test specifies the location of its
threads in the concurrency hierarchy (see Sec. 2.1) through
a scope tree (borrowing the term scope from [24, 25]).
In Fig. 12, we declare the scope tree on line 10: 7y and
17 are in the same CTA but different warps.

& Penn

39

Testing Methodology Questions

o (: If | understand correctly, the numerous "bugs” they found were
caused by either the compiler reordering instructions or the
hardware not doing what the documentation claimed it would for all
possible executions. My question is: what methods exists to verify
this type of correctness for hardware?

o A: We have no idea of methodology beyond this paper, so let's ask

Joe! ;)

& Penn

40

Cache Questions

 (: I'm a bit confused about what the caches in CUDA do exactly.

Caches are typically transparent. The paper, however, mentions

loads and stores that target particular caches. Can you explain
this?

e A: Normally we write programs and the rest (like cache accesses)
will be handled by compilers and hardwares. But here, the authors
find a way to look at assembly directly, so they can target at a
specific cache level.

BTW the authors don't know what caches do exactly either. This is
the reason why this paper ever exists. ;)

& Penn

41

Cache Questions

o (: Why did it seem like adding fences was the solution to all of the
consistency problems that were revealed from the litmus tests?
Was it because fences had direct access to the caches and it gave
the programmer control over when they could flush the cache
(synchronize)? Was this ability not possible through some of the
other semantics (atomics, CAS, volatile)?

o A:lt's because this paper focuses on memory access operations.

& Penn

42

etc. Questions

o (: What is the purpose of the volatile keyword if it does not ensure
sequential consistency?

e A: We don't know. Let's ask Joe! :)

& Penn

43

etc. Questions

o (: Do compiler optimizations affect the incidence of weak behaviors?

o A:Thatis possible. But in their experiments, compilers did not help
mitigate the weak hehaviors.

& Penn

44

etc. Questions

o (: Why does the GTX 280 not exhibit any weak behaviors, while the
others do? Is that because It had no store buffers? Does it even
have fences? If not, how was it even tested hecause the litmus
tests need fences as far as | can see?

e A: We don't know. Leet's ask Joe! :)

& Penn

45

etc. Questions

e (: In section 4.3.2 how do hank conflicts reduce the number of inter-
CTA weak hehaviors?

o A: The paper does not explain it. Let's ask Joe or Nvidia! :)

& Penn

46

etc. Questions

e (: I'm pretty confused about the outcome of section 3... have the
authors just created a model one can use to understand possible
reorderings? Could a set of candidate executions and the author’s
model be extended to ensure a given PTX file doesn't violate the
model?

e A: The model s proposed to predict the memory behaviors and it
succeeded to do so in many experiments.

& Penn

47

etc. Questions

e (: In the section about "Checking for Optimizations™ | did not
understand how their method worked specifically the part about:
"....we first add instructions to the PTX code of a litmus test that
specify certain properties of the test, such as the order of
Instructions within a thread. The compiled code thus contains both
the litmus test code and the specification... A specification (in PTX)
consists of a sequence of xor instructions, placed at the end of
each thread...”

o A: We will cover it in our presentation

& Penn

48

