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Introduction

• Current specifications of languages and hardware 
for GPU are inconclusive 

• Programmers often rely on folklore assumptions
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Contributions
• A framework for generating and running litmus 

tests to question memory consistency on GPU chips 
• A set of heuristics for provoking weak behaviors 
• An extensive empirical evaluations across seven 

GPUs 
• Revealed ten correctness issues 
• A formal model of Nvidia GPUs to build more 

reliable chips, compilers and applications
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Weak Behaviors
•  Architectures implement weak memory models where the hardware is 

allowed to re-order certain memory instructions 
•  Weak memory models can allow weak behaviors (executions that do 

not correspond to a specified interleaving)
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Weak Behaviors
 coherence of read-read pairs (coRR)

SC is not guaranteed!
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Weak Behaviors
PTX coRR mixing cache operators (coRR-L2-L1)
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load from l2 cache

load from l1 cache



Weak Behaviors
message passing (viz. handshake) (mp)
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No matter how strong the fences are!



Weak Behaviors
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Weak Behaviors
PTX mp with volatiles (mp-volatile)

Same block, but different warps!
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Enforce sequential consistency? No! sorry PTX manual!



Test Methodology
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• Extended the litmus CPU testing tool of Alglave 
and Maranget to run GPU tests 

• Given a GPU litmus test, generates an executable 
CUDA or OpenCL code for the test



Generate Test Code
store buffering (sb)
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Test Methodology: Memory Stress
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Heuristics: Stressing caching protocols might trigger weak behaviors

T0 T1 extra	thread	1 extra	thread	n.	.	.	.	.	

run T0 
test 
program

run T1 
test 
program

loop:
read or write 
to scratchpad

loop:
read or write 
to scratchpad



Test Methodology: General Bank Conflicts
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Heuristics: GPUs access shared memory through banks, which can handle 
only one access at a time. Bank conflicts occur when multiple threads in a 
warp seek simultaneous access to locations in the same block. Hardware 

might handle accesses out of order to hide the latency.



Test Methodology: Thread Randomization
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Heuristics: Varying the thread ids of testing threads and the number of 
threads per kernel might exercise different components and paths through 

the hardware and hence, increase the likelihood of weak behaviors.

T0

T1



Test Methodology: Thread Synchronization
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Heuristics: Synchronizing testing threads immediately 
before running the test promotes interactions while 

values are actively moving through the memory system



Test Methodology
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Test Methodology: Checking Optimization
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SASS code may vary (extra lines, reordering) from the PTX 
code due to compile optimization. The authors developed 

a tool to ensure the consistency.



Proposed Model: Candidate Executions

Memory events: write (W), read (R) 
Scope relations: block (cta), grid (gl), system (sys) 
Program order (po) > Dependency (dp): address (addr), data (data), control (ctrl) 
Communication relations [inter-threads]: read-from relation (rf) 
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Proposed Model: Candidate Executions
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Memory events: write (W), read (R) 
with Cache operator: L1 (.ca), L2 (.cg)



Proposed Model: Candidate Executions

Fences with Scope relations: block (cta), grid (gl), system (sys)
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Proposed Model: Candidate Executions

• Program order (po): total order within a thread 
• Dependency (dp): included in po, instructions separated 

by address (addr), data (data), or control (ctrl) 
• Fence relations: included in po, member w.r.t. a scope
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Proposed Model: Candidate Executions

Communication relations [inter-threads]: read-from relation (rf)
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Proposed Model: Constraints
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• Sparc’s Relaxed Memory Order (RMO): allows any pair of memory 
accesses to be reordered, unless a dependency or a fence. 

• Three Principles of RMO: 
  1. SC per Location with Load-Load Hazard



Proposed Model: Constraints
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Proposed Model: Constraints
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• Sparc’s Relaxed Memory Order (RMO): allows any pair of memory 
accesses to be reordered, unless a dependency or a fence. 

• Three Principles of RMO: 
  2. No Thin Air

dp dp

T0                 T1 
ld.cg r0 [x]   ld.cg r1 [y] 
st.cg [y] r0   st.cg [x] r1 



Proposed Model: Constraints
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• Sparc’s Relaxed Memory Order (RMO): allows any pair of memory 
accesses to be reordered, unless a dependency or a fence. 

• Three Principles of RMO: 
  3. The rmo Relation

dpmembar



Folklore 1: “GPUs exhibit no weak memory behaviours”
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0.1 Wd=1

0.5 Wt=1

1.1 Lr0=1

1.4 Lr1=0

po dprfrf



Folklore 2: “Atomic operations provide synchronization”
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0.1 Wx=1

0.3 Wm=0

1.1 Lr1=1

1.4 Lr3=0

po porfdp



Folklore 3: “Only unlocks need fences”
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0.1 Lr0=1

0.3 Wm=0

1.1 Lr2=0

1.5 Wx=1

po porfdp



Thank you!
Any Questions? 

(We actually have got A LOT!)
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Example Questions
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• Q: Page 2, Weak Behaviours: Thread0 stores 1 to address x. Thread1 
performs 2 loads from address x to r1 and r2. Does the Read-read 
coherence violation occur because thread1 happens before 
thread0 and the loads in Thread1 get reordered ? That is, first ld r2,
[x] happens, which loads 0 into r2. Then thread0 happens which 
stores 1 at address x. Then thread1 loads 1 into r1 ? 

• A: We’ve talked about this.



Example Questions
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• Q: Page 2, Programming Assumptions: Could you explain how the 
absence of threadfence() function makes both stale and future 
values available to the critical section? 

• A: We’ve talked about this.



Example Questions
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• Q: "Fig 4 shows that on the Tesla C2075, no fence guarantees that 
updated values can be read reliably from the L1 cache even when 
first reading an updated value from the L2 cache. This issue does 
not apply to AMD chips”. Could this be possible because the 2 loads 
are not re-orderer in AMD, or could there be any other possibility? 

• A: Yes, or a read from L2 cache will also update L1 cache.



Example Questions
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• Q: Is it possible to provide an example to explain the "No Thin Air” 
principle in section 5.2.2? 

• A: Yes, we’ve provided one in our presentation.



Testing Methodology Questions
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• Q: Given some tests have very small obs/100k values (e.g. 3 in Fig 3, 
and 2 in Fig 4), how/why did the authors decide 100k runs was 
“good enough”? 

• A: It’s the “possibility” that matters, not the “probability”.



Testing Methodology Questions
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• Q: Please give a high level explanation(maybe in context of CPU) of 
the different litmus tests that the authors aim to test (coRR, mp, lb, 
sb). Are there other litmus tests the authors could have tested? Why 
did they choose these tests to expose inconsistencies? 

• A: We believe they’ve tested a lot more experiments but only showed 
those “surprising” weak behaviors. Also, we believe those 4 kinds 
of operations are commonly used in practice.



Testing Methodology Questions
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• Q: In the testing methodology mentioned in Section 4, could you 
please elaborate on the function of the "scope tree”? 

• A:



Testing Methodology Questions
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• Q: If I understand correctly, the numerous "bugs" they found were 
caused by either the compiler reordering instructions or the 
hardware not doing what the documentation claimed it would for all 
possible executions. My question is: what methods exists to verify 
this type of correctness for hardware? 

• A: We have no idea of methodology beyond this paper, so let’s ask 
Joe! :)



Cache Questions
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• Q: I'm a bit confused about what the caches in CUDA do exactly. 
Caches are typically transparent. The paper, however, mentions 
loads and stores that target particular caches. Can you explain 
this? 

• A: Normally we write programs and the rest (like cache accesses) 
will be handled by compilers and hardwares. But here, the authors 
find a way to look at assembly directly, so they can target at a 
specific cache level. 
BTW the authors don’t know what caches do exactly either. This is 
the reason why this paper ever exists. ;) 



Cache Questions
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• Q: Why did it seem like adding fences was the solution to all of the 
consistency problems that were revealed from the litmus tests? 
Was it because fences had direct access to the caches and it gave 
the programmer control over when they could flush the cache 
(synchronize)? Was this ability not possible through some of the 
other semantics (atomics, CAS, volatile)? 

• A: It’s because this paper focuses on memory access operations.



etc. Questions
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• Q: What is the purpose of the volatile keyword if it does not ensure 
sequential consistency? 

• A: We don’t know. Let’s ask Joe! :)



etc. Questions
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• Q: Do compiler optimizations affect the incidence of weak behaviors? 

• A: That is possible. But in their experiments, compilers did not help 
mitigate the weak behaviors.



etc. Questions
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• Q: Why does the GTX 280 not exhibit any weak behaviors, while the 
others do? Is that because it had no store buffers? Does it even 
have fences? If not, how was it even tested because the litmus 
tests need fences as far as I can see? 

• A: We don’t know. Leet’s ask Joe! :)



etc. Questions
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• Q: In section 4.3.2 how do bank conflicts reduce the number of inter-
CTA weak behaviors? 

• A: The paper does not explain it. Let’s ask Joe or Nvidia! :)



etc. Questions
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• Q: I’m pretty confused about the outcome of section 5…  have the 
authors just created a model one can use to understand possible 
reorderings? Could a set of candidate executions and the author’s 
model be extended to ensure a given PTX file doesn’t violate the 
model? 

• A: The model is proposed to predict the memory behaviors and it 
succeeded to do so in many experiments.



etc. Questions
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• Q: In the section about "Checking for Optimizations" I did not 
understand how their method worked specifically the part about: 
"....we first add instructions to the PTX code of a litmus test that 
specify certain properties of the test, such as the order of 
instructions within a thread. The compiled code thus contains both 
the litmus test code and the specification... A specification (in PTX) 
consists of a sequence of xor instructions, placed at the end of 
each thread..." 

• A: We will cover it in our presentation


