
GPU Concurrency:  
Weak Behaviours and Programming Assumptions

03/02/2017
Jyh-Jing Hwang, Yiren(Max) Lu

Outline

1. Introduction
2. Weak behaviors examples
3. Test methodology
4. Proposed memory model
5. Folklores

2

Introduction

• Current specifications of languages and hardware
for GPU are inconclusive

• Programmers often rely on folklore assumptions

3

Contributions
• A framework for generating and running litmus

tests to question memory consistency on GPU chips
• A set of heuristics for provoking weak behaviors
• An extensive empirical evaluations across seven

GPUs
• Revealed ten correctness issues
• A formal model of Nvidia GPUs to build more

reliable chips, compilers and applications

4

Weak Behaviors
• Architectures implement weak memory models where the hardware is

allowed to re-order certain memory instructions
• Weak memory models can allow weak behaviors (executions that do

not correspond to a specified interleaving)

5

Weak Behaviors
• Architectures implement weak memory models where the hardware is

allowed to re-order certain memory instructions
• Weak memory models can allow weak behaviors (executions that do

not correspond to an interleaving)

6

Weak Behaviors
 coherence of read-read pairs (coRR)

SC is not guaranteed!

7

Weak Behaviors
PTX coRR mixing cache operators (coRR-L2-L1)

8

load from l2 cache

load from l1 cache

Weak Behaviors
message passing (viz. handshake) (mp)

data

data

flag

flag

stale
data

9

No matter how strong the fences are!

Weak Behaviors
message passing (viz. handshake) (mp)

data

data

flag

flag

stale
data

10

Weak Behaviors
PTX mp with volatiles (mp-volatile)

Same block, but different warps!

11

Enforce sequential consistency? No! sorry PTX manual!

Test Methodology

12

• Extended the litmus CPU testing tool of Alglave
and Maranget to run GPU tests

• Given a GPU litmus test, generates an executable
CUDA or OpenCL code for the test

Generate Test Code
store buffering (sb)

13

Test Methodology: Memory Stress

14

Heuristics: Stressing caching protocols might trigger weak behaviors

T0 T1 extra	thread	1 extra	thread	n.	

run T0
test
program

run T1
test
program

loop:
read or write
to scratchpad

loop:
read or write
to scratchpad

Test Methodology: General Bank Conflicts

15

Heuristics: GPUs access shared memory through banks, which can handle
only one access at a time. Bank conflicts occur when multiple threads in a
warp seek simultaneous access to locations in the same block. Hardware

might handle accesses out of order to hide the latency.

Test Methodology: Thread Randomization

16

Heuristics: Varying the thread ids of testing threads and the number of
threads per kernel might exercise different components and paths through

the hardware and hence, increase the likelihood of weak behaviors.

T0

T1

Test Methodology: Thread Synchronization

17

Heuristics: Synchronizing testing threads immediately
before running the test promotes interactions while

values are actively moving through the memory system

Test Methodology

18

Test Methodology: Checking Optimization

19

SASS code may vary (extra lines, reordering) from the PTX
code due to compile optimization. The authors developed

a tool to ensure the consistency.

Proposed Model: Candidate Executions

Memory events: write (W), read (R)
Scope relations: block (cta), grid (gl), system (sys)
Program order (po) > Dependency (dp): address (addr), data (data), control (ctrl)
Communication relations [inter-threads]: read-from relation (rf)

20

Proposed Model: Candidate Executions

21

Memory events: write (W), read (R)
with Cache operator: L1 (.ca), L2 (.cg)

Proposed Model: Candidate Executions

Fences with Scope relations: block (cta), grid (gl), system (sys)

22

Proposed Model: Candidate Executions

• Program order (po): total order within a thread
• Dependency (dp): included in po, instructions separated

by address (addr), data (data), or control (ctrl)
• Fence relations: included in po, member w.r.t. a scope

23

Proposed Model: Candidate Executions

Communication relations [inter-threads]: read-from relation (rf)

24

Proposed Model: Constraints

25

• Sparc’s Relaxed Memory Order (RMO): allows any pair of memory
accesses to be reordered, unless a dependency or a fence.

• Three Principles of RMO: 
 1. SC per Location with Load-Load Hazard

Proposed Model: Constraints

26

Proposed Model: Constraints

27

• Sparc’s Relaxed Memory Order (RMO): allows any pair of memory
accesses to be reordered, unless a dependency or a fence.

• Three Principles of RMO: 
 2. No Thin Air

dp dp

T0 T1
ld.cg r0 [x] ld.cg r1 [y]
st.cg [y] r0 st.cg [x] r1

Proposed Model: Constraints

28

• Sparc’s Relaxed Memory Order (RMO): allows any pair of memory
accesses to be reordered, unless a dependency or a fence.

• Three Principles of RMO: 
 3. The rmo Relation

dpmembar

Folklore 1: “GPUs exhibit no weak memory behaviours”

29

0.1 Wd=1

0.5 Wt=1

1.1 Lr0=1

1.4 Lr1=0

po dprfrf

Folklore 2: “Atomic operations provide synchronization”

30

0.1 Wx=1

0.3 Wm=0

1.1 Lr1=1

1.4 Lr3=0

po porfdp

Folklore 3: “Only unlocks need fences”

31

0.1 Lr0=1

0.3 Wm=0

1.1 Lr2=0

1.5 Wx=1

po porfdp

Thank you!
Any Questions? 

(We actually have got A LOT!)

32

Example Questions

33

• Q: Page 2, Weak Behaviours: Thread0 stores 1 to address x. Thread1
performs 2 loads from address x to r1 and r2. Does the Read-read
coherence violation occur because thread1 happens before
thread0 and the loads in Thread1 get reordered ? That is, first ld r2,
[x] happens, which loads 0 into r2. Then thread0 happens which
stores 1 at address x. Then thread1 loads 1 into r1 ?

• A: We’ve talked about this.

Example Questions

34

• Q: Page 2, Programming Assumptions: Could you explain how the
absence of threadfence() function makes both stale and future
values available to the critical section?

• A: We’ve talked about this.

Example Questions

35

• Q: "Fig 4 shows that on the Tesla C2075, no fence guarantees that
updated values can be read reliably from the L1 cache even when
first reading an updated value from the L2 cache. This issue does
not apply to AMD chips”. Could this be possible because the 2 loads
are not re-orderer in AMD, or could there be any other possibility?

• A: Yes, or a read from L2 cache will also update L1 cache.

Example Questions

36

• Q: Is it possible to provide an example to explain the "No Thin Air”
principle in section 5.2.2?

• A: Yes, we’ve provided one in our presentation.

Testing Methodology Questions

37

• Q: Given some tests have very small obs/100k values (e.g. 3 in Fig 3,
and 2 in Fig 4), how/why did the authors decide 100k runs was
“good enough”?

• A: It’s the “possibility” that matters, not the “probability”.

Testing Methodology Questions

38

• Q: Please give a high level explanation(maybe in context of CPU) of
the different litmus tests that the authors aim to test (coRR, mp, lb,
sb). Are there other litmus tests the authors could have tested? Why
did they choose these tests to expose inconsistencies?

• A: We believe they’ve tested a lot more experiments but only showed
those “surprising” weak behaviors. Also, we believe those 4 kinds
of operations are commonly used in practice.

Testing Methodology Questions

39

• Q: In the testing methodology mentioned in Section 4, could you
please elaborate on the function of the "scope tree”?

• A:

Testing Methodology Questions

40

• Q: If I understand correctly, the numerous "bugs" they found were
caused by either the compiler reordering instructions or the
hardware not doing what the documentation claimed it would for all
possible executions. My question is: what methods exists to verify
this type of correctness for hardware?

• A: We have no idea of methodology beyond this paper, so let’s ask
Joe! :)

Cache Questions

41

• Q: I'm a bit confused about what the caches in CUDA do exactly.
Caches are typically transparent. The paper, however, mentions
loads and stores that target particular caches. Can you explain
this?

• A: Normally we write programs and the rest (like cache accesses)
will be handled by compilers and hardwares. But here, the authors
find a way to look at assembly directly, so they can target at a
specific cache level. 
BTW the authors don’t know what caches do exactly either. This is
the reason why this paper ever exists. ;)

Cache Questions

42

• Q: Why did it seem like adding fences was the solution to all of the
consistency problems that were revealed from the litmus tests?
Was it because fences had direct access to the caches and it gave
the programmer control over when they could flush the cache
(synchronize)? Was this ability not possible through some of the
other semantics (atomics, CAS, volatile)?

• A: It’s because this paper focuses on memory access operations.

etc. Questions

43

• Q: What is the purpose of the volatile keyword if it does not ensure
sequential consistency?

• A: We don’t know. Let’s ask Joe! :)

etc. Questions

44

• Q: Do compiler optimizations affect the incidence of weak behaviors?

• A: That is possible. But in their experiments, compilers did not help
mitigate the weak behaviors.

etc. Questions

45

• Q: Why does the GTX 280 not exhibit any weak behaviors, while the
others do? Is that because it had no store buffers? Does it even
have fences? If not, how was it even tested because the litmus
tests need fences as far as I can see?

• A: We don’t know. Leet’s ask Joe! :)

etc. Questions

46

• Q: In section 4.3.2 how do bank conflicts reduce the number of inter-
CTA weak behaviors?

• A: The paper does not explain it. Let’s ask Joe or Nvidia! :)

etc. Questions

47

• Q: I’m pretty confused about the outcome of section 5… have the
authors just created a model one can use to understand possible
reorderings? Could a set of candidate executions and the author’s
model be extended to ensure a given PTX file doesn’t violate the
model?

• A: The model is proposed to predict the memory behaviors and it
succeeded to do so in many experiments.

etc. Questions

48

• Q: In the section about "Checking for Optimizations" I did not
understand how their method worked specifically the part about:
"....we first add instructions to the PTX code of a litmus test that
specify certain properties of the test, such as the order of
instructions within a thread. The compiled code thus contains both
the litmus test code and the specification... A specification (in PTX)
consists of a sequence of xor instructions, placed at the end of
each thread..."

• A: We will cover it in our presentation

