
Heterogeneous-Race-Free Memory Models

02/28/2017
Jyh-Jing (JJ) Hwang, Yiren (Max) Lu

1

Outline

1. Background
2. HRF-direct
3. HRF-indirect
4. Experiments

2

Data Race Condition

op1 op2

write read

3

Sequential Consistency for Data Race Free (1990/C++)

4

Why SC for DRF cannot be adopted for
 heterogeneous systems?

• Synchronization is only among a subset of threads (scope)
• The latency of global communication is too high

5

Contributions of the Paper

1. Definition of Scoped Synchronization
2. Sequential Consistency for Heterogeneous-

race-free (SC for HRF) memory model
3. HRF-direct
4. HRF-indirect

6

Scopes

7

Scopes

OpenCL CUDA Memory Process Units

work-item thread local memory stream processors
(SPs)

sub-group
(wavefront)

warp

work-group block (cooperating
thread array“CTA”)

shared memory multiprocessor
(MP)

device (NDRange) grid global memory GPU

8

HRF-direct: Basic Scope Synchronization

• Requires communicating work-items to
synchronize using the exact same scope

• Choose the minimal scope for synchronization

9

An Example of HRF-direct Algorithm

“Stencil codes are a class of iterative kernels which
update array elements according to some fixed

pattern, called stencil.” -wikipedia

10

Definition of HRF-direct

11

Definition of HRF-direct

12

Difference between HRF-direct and DRF

• HRF-direct considers synchronization operations
performed at different scopes to be conflicting

• HRF-direct creates a separate happens-before
order relative to each scope

13

Subtleties of synchronization order

14

Hardware Implementation for HRF-direct

15

Limitations of HRF-direct

• Difficult to optimize applications with irregular
parallelism in which the producer and consumer
may not be known a priori.

• HRF-direct is overly conservative for current GPU
memory systems

16

HRF-indirect: Adding Transitivity

• Build on HRF-direct model by permitting  
transitive chain of synchronization in different scopes

17

HRF-indirect: An Example

• In HRF-direct, 11 and 32 form a race,
because X=1 might not propagate from
cache (work group) to memory (device)

18

HRF-indirect: Note & Advantages

• Each synchronization pair may use the same scope

1. Producers and consumers aren’t aware of each other, which
may accelerate

2. Programmers have more flexible choice of scope

• HRF-direct is compatible with HRF-indirect
• Race-free in HRF-direct is also race-free in HRF-indirect

19

HRF-indirect: Formal Definition

20

HRF-indirect: System Optimizations

• Build a cache between the stages that con be controlled
with an HRF scope.

21

Memory Model Comparisons
• DRF: Both HRF-direct and HRF-indirect are compatible

• DRF with system scope sync -> adjusting scope -> HRF-direct

• OpenCL 2.0: More restrictive than HRF-direct
• SC for HRF when (memory_order_seq_cst) is used
• Use either device scope or system scope
• Intermix of different scoped atomics is disallowed

• CUDA: Compatible with HRF-direct
• __threadfence acts in block, device, or system scope.
• Not sure about scope transitivity for HRF-indirect

22

Future HRF Models: Scope Inclusion
Sync when the scope of one includes the scope of the other

23

Experiments

24

• Unbalanced Tree Search (uts) Tasks
• Each tree contains 125K Nodes
• gem5 simulator
• 3%-10% speed-ups

Conclusion

25

• Introduced SC for HRF, a class of memory models to define behavior
of scoped sync in heterogeneous systems

• Explained why DRF is insufficient for heterogeneous systems

• Proposed two initial SC for HRF models

• HRF-direct requires sync in the same scope. (present)

• HRF-indirect can sync transitively using different scopes and
achieve higher performance. (future)

Thank you!
Any Questions? 

(We actually have got A LOT!)

26

Semantic Questions

27

• Q: In the context of the paper, since scope is mentioned as either
being device or work-group, does the term "scope" imply global/
shared memory of the data?

• A: Please see our slide #8.

Semantic Questions

28

• Q: Even though I understand the intuition of hrf-direct vs. hrf-
indirect the formalized definitions don't really make sense to me,
can we go over these?

• A: We’ve gone over them in our presentation. :)

Semantic Questions

29

• Q: Are programmers expected to add in transitivity in HRF-indirect?

• A: No, it should be supported by hardware and/or compiler.  
Please refer to slide #21.

Semantic Questions

30

• Q: In Section 5.2 (Scope Inclusion) the paper talks about one scope
being a subset of another. What is the difference between this and
overlapping scopes? Related to this, how does scope inclusion
actually work based on the example in Figure 7.

• A: They are the same (subset = overlapping). We’ve talked about
Figure 7 in our presentation.

Semantic Questions

31

• Q: Figure (7) in the paper describes a scheme of scope inclusion that
is almost identical to Figure (5), which is when programming with
atomics leads to racey execution. I understand how Figure 5
causes a race but I don't fully understand the scope inclusion
method that is proposed to fix this problem. Could you please
elaborate on that?

• A: We’ve talked about Figure 7 in our presentation.

Semantic Questions

32

• Q: Considering the case put forth by this paper that a program
composed entirely of atomics can have data races, what does
"atomics" really mean in this context?

• A: Atomics means the operations that occupy the resource
exclusively, so that data race will not happen (in traditional multi-
thread CPU programs).

Semantic Questions

33

• Q: The paper talks about data races even using only atomics; Is this
because of store/load caching?

• A: Partially yes. We could put it in another way that in GPU/
heterogeneous systems, threads/wi’s in different blocks/wg’s do
not communicate with each other and have their own cache.
Therefore, the atomic operation is not across blocks.

Semantic Questions

34

• Q: Page 6, section 3.3 Subtleties of Synchronization. As per the
example in Fig 5, we are given 2 atomic synchronization operations
A and B. B's scope is device and A's scope is work group. Since B's
scope is device, how is B going to have a race ? A's scope is work
group. Shouldn't only A have possibility of a race if wi1 and wi2
belong to different work groups ?

• A: B is not going to have a race; A is. If wi1 and wi2 are not in the
same work-group, their memory scopes are different. That being
said, A.load in wi2 may not load what is written from A.store in wi1
for their communication has to go through device scope first.

Semantic Questions

35

• Q: Page 6, section 3.3 Subtleties of Synchronization. As per the
example in Fig 5, we are given 2 atomic synchronization operations
A and B. B's scope is device and A's scope is work group. Since B's
scope is device, how is B going to have a race ? A's scope is work
group. Shouldn't only A have possibility of a race if wi1 and wi2
belong to different work groups ?

• A: B is not going to have a race; A is. If wi1 and wi2 are not in the
same work-group, their memory scopes are different. That being
said, A.load in wi2 may not load what is written from A.store in wi1
for their communication has to go through device scope first.

Cache Questions

36

• Q: How would one make potentially shared data uncachable, and
along the same lines, how does one determine something is
“potentially” shared? (pg 430, paragraph 2)

• A: Let’s say two work items from different work-groups synchronize.
They have their own cache and share the same memory. In this
way, the shared data cannot be cached; otherwise, it will form data
race. It’s very hard to tell if some data is “potentially” shared. One
way is to let programmers specify it; the other is to let compiler
figure it out. This is why we need HRF memory models.

Cache Questions

37

• Q: What in the architecture of a GPU allows us to synchronize across
separate scopes? Is it based on the fact that when we load a new
scope, we flush the cache, effectively synchronizing across
scopes?

• A: Yes.

Cache Questions

38

• Q: Could you please provide an example for the 3 step
implementation of HRF-direct from section 3.2 paragraph 2. I can't
clearly visualise the invalidation of "stale data from caches/
memory that are not visible to all threads in the scope of
synchronization".

• A: Please see slide #15.

Cache Questions

39

• Q: As per Section 6 of the paper, HRF-direct optimization can
selectively flush to cache while consistency scope prevents HRF-
indirect from doing so. Why is it not possible to use directory based
coherence like CPUs with HRF-indirect? i.e line-wise or block-
wise flushing as compared to flushing whole cache?

• A: We don’t know. Let’s ask Joe! :)

Optimization Questions

40

• Q: Are there programs that are race-free in HRF-direct, for which
HRF-indirect cannot exploit as much parallelism as HRF-direct?

• A: Yes, HRF-indirect does not benefit those programs with regular
parallel. For example, the matrix transpose program in class.

Optimization Questions

41

• Q: The HRF- indirect version is said to provide better performance
than the direct method. Is it possible that as the complexities of
system increases, HRF-direct may lead to better performance as it
is a more simplified version?

• A: Yes, I believe it’s possible.

Optimization Questions

42

• Q: Other than the flush optimization mentioned, what other hardware
optimizations could be limited by the HRF-indirect model?

• A: We haven’t come out one yet… Let’s ask Joe! :)

Optimization Questions

43

• Q: If my understanding is correct, currently HRF-direct has higher
possibilities for optimization, but in the future this will flip and HRF-
indirect will optimize better? Can we talk about why?

• A: In the authors’ viewpoint, HRF-indirect is superior to HRF-direct
since it doesn’t require synchronize in the same scope. The
example given in the HRF-indirect section explains this situation.

Optimization Questions

44

• Q: HRF-direct is mentioned to be a popular choice in existing GPU
architectures. The paper also describes synchronization using
polling. Can HRF-direct be optimized further by the use of event
driven synchronization? Will the additional time taken by a kernel
level interrupt be preferable to the current power wastage by a
blocking, polling loop over multiple work items in numerous
computational units?

• A: The paper does not mention pooling, so let’s ask Joe. :)

Optimization Questions

45

• Q: Compare the overhead of synchronization on the GPU at a a
system-scope level in HRF - direct versus the synchronization
overhead on the CPU at a process level in SC DRF models. Would it
be more beneficial to tailor our work loads toward the CPU or GPU if
synchronization is required? What about when compared to HRF -
indirect?

• A: There’s no clear answer to this question. It all depends on the
program you’re writing and how parallel it is. But keeping the HRF-
direct in mind (HRF-indirect is not supported by hardware yet)
would help you judge whether you should run your program
entirely on GPUs or partially on CPUs and on GPUs.

CUDA Questions

46

• Q: How does this work relate to the CUDA and GPU that we are using
in this class? I suspect that it does not have SC for HRF. Is that
right? How do we get rid of unexpected behavior then?

• A: We’ve talked about this. And unexpected behavior is the topic of
the next paper (and we’ll present it too!)

etc. Questions

47

• Q: What is a stencil calculation? (Figure 3)

• A: Wiki is your second best friend! ;) 
https://en.wikipedia.org/wiki/Stencil_code

https://en.wikipedia.org/wiki/Stencil_code

etc. Questions

48

• Q: What exactly do the authors mean by the terms irregular and
regular parallelism that are used throughout the paper?

• A: Irregular parallelism means the threads in a program have very
different workloads. That is, their memory access and execution
time may vary a lot. On the other hand, regular parallelism means
every thread in a program has balanced workload. For example,
matrix multiplication has regular parallelism.

