
MISC. CUDA TOPICS
2D arrays, performance profiling

2D ARRAYS IN CUDA
// host code

int A[10][20] = …;

A[5][6] = 17;

cudaMemcpy(d_A, A, …);

// device code

__device__ kernel(d_A) {

 d_A[5][6] = 17;

}

2

2D ARRAYS IN CUDA

• 2 problems

• don’t know array bounds: d_A is an int*

• rows beyond the first may not be optimally
aligned

3

pitch

2D ARRAYS IN CUDA

row 1 row 2 row 3

Conventional C memory layout

CUDA pitched memory

row 1 row 2 row 3
pitch

misalignment can harm global memory coalescing

4

CUDA PITCHED MEMORY
• 2D array indexing involves row, column and pitch

• How do we index a pitched 2D array?
int* i = (int*)((char*)BaseAddr + Row * Pitch) + Col;

cudaError_t cudaMalloc3D(cudaPitchedPtr* pitchedDevPtr,  
 cudaExtent extent)

cudaExtent make_cudaExtent( 
 size_t w, // bytes  
 size_t h, size_t d) // elements

5

CUDA PITCHED MEMORY

• Must use pitch-aware memcpy/memset
cudaError_t cudaMemcpy2D( 
 void* dst,  
 size_t dpitch, // bytes  
 const void* src,  
 size_t spitch, size_t width, // bytes  
 size_t height, // rows  
 cudaMemcpyKind kind)

6

CUDA PITCHED MEMORY
GOTCHAS

• pitch is always specified in bytes

• height/depth are specified in elements

• in terms of rows/2D slices, respectively

• cudaMallocArray and friends use the Texture Cache

• optimized layout for graphics textures that uses a space-filling
curve for memory layout

• https://en.wikipedia.org/wiki/Z-order_curve
7

https://en.wikipedia.org/wiki/Z-order_curve

WHEN CAN I STOP
OPTIMIZING?

• Our GPUs: Nvidia GK104 (~GeForce 600)

• (global) memory bandwidth: 160 GB/s

• compute bandwidth: 1536 “CUDA cores” x
800MHz = 1.2 TFlops (~2.4TFlops with FMA)

• are we memory or compute limited?
8

ARITHMETIC INTENSITY
• GK104 ideal flop-to-byte ratio = 1200/160 = 7.5

• what is blurGlobal’s behavior?

• 5600 fliop per thread

• 450 mop per thread (4B each!)

• ~3.1 fliop-to-byte ratio
9

ROOFLINE ANALYSIS44 3. FROM PRINCIPLES TO PRACTICE: ANALYSIS AND TUNING

Intensity (flop:byte)

G
flo

p/
s

16

32

64

128

256

512

●

● ●

1 2 4 8 16 32 64 128 256 512

Platform

● Fermi

C1060

Nehalem x 2

Nehalem

(a) Roofline analysis helps to bound performance and
distinguish between memory bandwidth vs. compute-
boundedness.

Threads per multiprocessor

G
flo

p/
s

25

50

75

100

125

150

175

200

225

250

275

300

325

350

�

�

�

�

�

�

�

�
� � �

32 64 128 256 512

Code
� Baseline

Rsqrtf

(b) An empirical test on an NVIDIA C1060 to estimate
compute-bound performance for the specific instruction
mix of interest.

Figure 3.4: Setting an optimization goal. As discussed in Section 3.5, we expect that by tuning q, we
can make Algorithm 1 compute-bound with a flop:byte ratio of at least 10.

3.5 SETTING AN OPTIMIZATION GOAL
Our first-order task is to use our concurrency and I/O analysis to set an optimization goal.

For instance, consider that a typical GPU today is capable of about 1 Tflop/s with a bandwidth
of about 100 GB/s, or an “ideal” flop-to-byte balance ratio of about 10 flops per byte. For something
like a gravitational or electrostatic potential, κ ≈ 11 flops as shown in Listing 3.1.Thus, if the data is
single-precision (4 bytes per word), then to match 10 flops per byte we need q ≥ (10 flops / byte) ×
(464 bytes)/(11 flops) ≈ 422 points, or about 1.6 KB in order to be compute-limited rather than
bandwidth limited. This capacity is well within the typical local store size on a GPU multiprocessor,
therefore we should expect it may be possible to be compute-limited, although we will need to tune
q empirically to ensure such a large value does not put us too far away from the true overall time
minimizer (recall Figure 3.3).

We begin by considering a pure CPU baseline implementation, running on a dual-socket Intel
x86 platform based on Nehalem processors, parallelized using OpenMP and explicit SIMD (SSE)
vectorization.For this code,we observe performance between 60–90 billion floating-point operations
per second (Gflop/s) in single-precision. As it happens, this is very close to single-precision peak for
our platform, as Figure 3.4(a) confirms.

For our GPU implementation, which we said previously should be compute-limited, we can
construct a microbenchmark that contains only the compute operations of lines 12–15 of Listing 3.1.
That is, this microbenchmark omits any memory references, in order to estimate the maximum

Kim et al., Performance Analysis
and Tuning for General Purpose

Graphics Processing Units

Williams et al., Roofline: An
insightful visual performance

model for multicore architectures.
Communications of the ACM,

52(4):65, April 2009

10

HOW FAST IS blurShared?

• 4096 x 3072 pixels = 12.6M pixels * 5600 fliop/
pixel = 70 Gfliop

• blurShared runs in 50ms = 0.05s

• 70 Gfliop / 0.05s = 1.4 Tfliops

• not too shabby!
11

WHEN CAN I STOP
OPTIMIZING?

• max Flops/Fliops depends on what
instructions you/compiler use

• memory bandwidth depends on
which memory you use

12

CUDA PROFILING LINKS
• Nvidia’s Nsight profiler (integrated into Visual Studio) is pretty slick

• Video tutorial: https://www.youtube.com/watch?
v=vt7Hvj4oviQ&feature=player_detailpage

• memory coalescing discussion starts at 41:40

• http://docs.nvidia.com/gameworks/index.html#developertools/desktop/
nsight/analysis_tools_overview.htm%3FTocPath%3DDeveloper%2520Tools
%7CDesktop%2520Developer%2520Tools%7CNVIDIA%2520Nsight
%2520Visual%2520Studio%2520Edition%7CNVIDIA%2520Nsight
%2520Visual%2520Studio%2520Edition%25205.2%7CAnalysis%2520Tools
%7C_____0

13

https://www.youtube.com/watch?v=vt7Hvj4oviQ&feature=player_detailpage
http://docs.nvidia.com/gameworks/index.html#developertools/desktop/nsight/analysis_tools_overview.htm%3FTocPath%3DDeveloper%2520Tools%7CDesktop%2520Developer%2520Tools%7CNVIDIA%2520Nsight%2520Visual%2520Studio%2520Edition%7CNVIDIA%2520Nsight%2520Visual%2520Studio%2520Edition%25205.2%7CAnalysis%2520Tools%7C_____0

