


data =0, flag # SET
S1: store data = NEW
S2: store flag = SET L1:load r1 = flag
B1:if (r1 # SET) goto L1
L2:1load rZ2 = data;

Will r2 always be set to NEW?



data =0, flag # SET
S1: store data = NEW
S2: store flag = SET L1:load r1 = flag
B1:if (r1 # SET) goto L1
L2:1load rZ2 = data;

Will r2 always be set to NEW?
NO



data =0, flag # SET
/" S1: store data = NEW
\, S2: store flag = SET L1:load r1 = flag
B1:if (r1 # SET) goto L1
L2: load r2 = data;

Will r2 always be set to NEW?
S1 and S2 may get reordered



Reordering

Store-Store * Non FIFO write buffer
* Examples:
e 1ststore misses cache, 219 hits
« 2ndgstore coalesces with earlier store

Load-Load e (Qut-of-order execution
 (Can have same effect as store-store

Load-Store * (Can cause incorrect behaviors, such as load
after mutex unlock

Store-Load  FIFO write buffer
e (Qut-of-order execution



What is a memory consistency model?

A memory consistency model is a specification of the allowed
behavior of multithreaded programs executing with shared
memory.




Sequential Consistency (SC)

« The most intuitive MC model is sequential consistency.

 First formalized by L. Lamport:

« How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs. IEEE
Transactions on Computers, C-28(9):690-91, Sept. 1979.

« Asingle core is sequential if “the result of an execution is the same as if the operations had
been executed in the order specified by the program.”

« A multiprocessor is sequentially consistent if “the result of any execution is the same as if
the operations of all cores were executed in some sequential order, and the operations of
each core appear in this sequence in the order specified by its program.”

« The total order of operations is called memory order

« In SC, memory order respects each core’s program order, but other consistency models
may permit memory orders that do not always respect the program orders.



SC/Non-SC Example

S1: x = NEW: /* NEW */
_______________ _’
Ll:rl=v:/*0% SI: x=NEW:/* NEW ¥/ . —_— Y
teiebunt £ - S2:y=NEW:*NEW® | |[-————————————+ - §2:y=NEW: /* NEW ¢/
- ————— — e — e —— - Ll:rl =y:/* NEW %/ - - - ———— = ===
——————————————— - -9 = x- [* NEW ¢

L2: 12 = x: /* NEW */ L22=x/"NEW Y

- — — — — — — — ————— — - — — o — e o

Outcome: (rl, r2) = (0, NEW) ‘ ' Outcome: (rl, r2) = (NEW, NEW)
(a) SC Execution 1 (c) SC Execution 3
S2:y=NEW;/* NEW* .

$2: y = NEW: /* NEW */ e — 4

- o JL2:R2=x:/*0% / l 4
L2:r2=x:/*0" S1:x=NEW; *NEW % 4 iy et bt Lo i

S1: x = NEW: /* NEW */ “+—————m—————— | |t —— — —— — = + - — / _—
o — — it —— — — — — — — — ) . / / —
Ll:rl=y:/*0% | I
Li:rl =y; /* NEW #/ __Lkrd=yP0% _ _ _ AR
———————————————— - Outcome: (rl, £2) = (NEW, 0) Outcome: (rl, r2) = (0,0)
' (b) SC Execution 2 ' (d) NOT an SC Execution



Formalism

 All cores insert their loads and stores into the memory order (<m)
respecting their program order (<p), regardless of whether they are to the
same or different addresses (i.e., a=b or a#b).
« IfL(a) <p L(b) = L(a) <m L(b) /* Load—Load */
« IfL(a) <p S(b) = L(a) <m S(b) /* Load—Store */
« IfS(a) <p S(b) = S(a) <m S(b) /* Store—>Store */
« IfS(a) <p L(b) = S(a) <m L(b) /* Store—Load */

« Every load gets its value from the last store before it (in global memory
order) to the same address:

« Value of L(a) = Value of MAX <m {S(a) | S(a) <m L(a)},
where MAX <m denotes “latest in memory order.”



SC Ordering Summary

Operation 2

Load Store Atomic RMW
Load v v v
Operation 1 Store v v v
Atomic RMW v v v

( - Order is enforced
- Order not enforced




Naive SC Implementation

« Option 1 - Just run everything on a single core

« Option 2 - memory access through a “switch” serializing memory
dCCeSSesS:
Each core Ci seeks to do its next
LA memory access in its program order
‘ <p.
SWIV The switch selects one core, allows

it to complete one memory access,
and repeats; this defines memory
order <m.

MEMORY




Total Store Order (TSO) - Motivation (1)

« Processors use write buffers to hold committed stores until the memory system can
process them.

- A store enters the write buffer when the store commits, and a store exits the write
buffer when the block to be written is in the cache in a read-write coherence state.

- A store can enter the write buffer before the cache has obtained read-write
coherence permissions

« The write buffer hides the latency of a store miss.
« Stores are common, being able to avoid stalling on most of them is an important benefit.

« For a single-core processor

- a write buffer can be made invisible by ensuring that a load returns the value of the most recent
store even if one or more stores to are in the write buffer.

. Th(iis can be done by bypassing the value of the most recent store as determined by program
order,

« Or by stalling a load if a store to the same address is in the write buffer.



Total Store Order (TSO) - Motivation (2)

« When building a multicore processor, it seems natural to use multiple
cores, each with its own bypassing write buffer

« Assume that the write buffers continue to be architecturally invisible as before.

« This assumption is wrong!

S1:x=NEW S2:y =NEW
. Example: Ll:rl=y L2:1r2 =x
« Core (/1 executes store S1, buffers the NEW value in its write buffer.
« Core (/2 executes store S2, buffer the NEW value in its write buffer.

« Both cores perform L1 and L2 =» obtain the old values!
 Finally, both cores’ write buffers update memory with NEW



TSO

 The option chosen by SPARC and x86" was to abandon SC.

 Instead, implement an MC model that allows use of a FIFO write buffer
in each core.

* The new model, TSO, allows the outcome “(r1, r2) = (0, 0)”!

« Behaves like SC for many programming idioms and is well defined in
all cases, but can be surprising.

* Not entirely TSO



TSO Formalism (1)

» All cores insert their loads and stores into the order <m respecting their
program order, regardless of whether they are to the same or different
addresses (i.e., a=b or a#b).

« IfL(a) <p L(b) = L(a) <m L(b) /* Load—Load */
« If L(a) <p S(b) = L(a) <m S(b) /* Load—Store */
« If S(a) <p S(b) = S(a) <m S(b) /* Store—Store */
- ESE)<ph{b)=S{aj<mL{b} /* Store—>Load */: Enable FIFO write buffer

« Every load gets its value from the last store before it (in global memory
order) to the same address:
« Value of L(a) = Value of MAX <m iS(a) | S(a) <m L(a) or S(a)<p L(a)}
(<m “last in memory order.”, <p “last’in program order”)

« The value of a load is the value of the last store to the same address that is either (a)
before it in memory order or (b) before it in program order (but possibly after it in
memory order)

« Option (b) taking precedence - write buffer bypassing overrides the rest of the
memory system.



TSO Formalism (2)

e Store =2 Load addressed with FENCEs

« Executing a FENCE on core (7 ensures that ¢//’s memory operations
before the FENCE, in program order, get placed in memory order
before £'/i/’s memory operations after the FENCE.

« FENCEs (memory barriers) are rarely used in TSO because TSO
usually “does the right thing”.

« FENCEs play an important role for relaxed models.



TSO Example

S1:x=NEW S2:y=NEW
Ll:rl=y L2:r2=x
_ SEkx=NEW;/* NEW*/ $2: y = NEW; /* NEW */
~ S—_—— = — — = — =
. — yr [* *
-—L—l'g:y’—/—o—/————\—\——» 7 L2i2=x: /0%
~
A 4—/—/ —————————————
y 4
Outcome: (r1, r2) = (0, 0)

(d) TSO Execution, but NOT an SC Execution



TSO Bypass Example

_ S1:x = NEW S2:y = NEW
e Canrl orr3 besettoQif r2=r4=0?
L1:rl =x L3:r3 =y
« No, must always be set to NEW. L2:r2=y L4: r4 = x
program order (<p) of Core C1 memory order (<m) program order (<p) of Core C2
_ SI:x=NEW:;/* NEW */ S2: y = NEW; /* NEW */
el — v N b s T T T T T T
o L_lil :x,_/*_NFiW_*/_ o \)’p_aS; bypaS:/ / L3:13 =y; /* NEW #/
C e — e -,
__L;z'izly’_/*_oﬂ_____l\_, Y, L4:r4d =x; /%0 */
\ - — — — — — — — — — — — = — =
4
Outcome: (r2,r4) = (0, 0)
* and (rl, r3) = (NEW, NEW) |



TSO Atomics

« ARMW is an atomic load-store.

« RMW cannot be reordered with earlier stores or loads due to TSO
rules:

« Load part cannot be executed before earlier loads

« Load part cannot be executed before earlier store, as the RMW operation is atomic
and this will reorder the store-half before the store as well, which is not allowed.

« This means the RMW cannot start until the write buffer has been
drained, e.g. effectively a fence.

« Even more: it requires exclusive RW coherence permissions on the address,
which are held for the entire duration of the RMW.

« Optimization - If the all entries in the write-buffer are already in exclusive RW, no
need to drain buffer.



TSO Ordering Summary

Operation 2

Load Store Atomic RMW FENCE
Load v v v v
Store v v v
Operation 1
Atomic RMW v v v v
FENCE v v v v

B - Requires bypassing
- Order not enforced

- Order is enforced J




TSO Naive Implementation

o

loads loads| | ] This implementation is the same
J] stores m stores A stores as for Figure3-3, except that
each core Ci has a FIFO write
m buffer that buffers stores until
/ they go to memory.

MEMORY

(a) A TSO Implementation Using a Switch

Fences can be implemented by draining the write buffer.



Analyzing MCs

« A good memory consistency model should possess 3 Ps:

« Programmability: A good model should make it easy to write MT programs. The
model should be intuitive to most users, even those who have not read the details.
It should be precise, so that experts can push the envelope of what is allowed.

« Performance: A good model should facilitate high-performance implementations at
reasonable power, cost, etc. It should give implementors broad latitude in options.

 Portability: A good model would be adopted widely or at least provide backward
compatibility or the ability to translate among models.




3 Ps for SC and TSO

« Programmability:
« SCis the most intuitive.

« TSO is close because it acts like SC for common programming idioms.
Subtle non-SC executions can bite programmers and tool authors.

 Performance: For simple cores, TSO can offer better performance than
SC, but speculation can help SC.

« Portability: SC is widely understood, while TSO is widely adopted.




What’s Next

DEC Alpha
+ Thursday - Relaxed
Consistency models p=&x, x=1,y = 0
y=1
MemoryBarrier() I=*p
p=&y
i can be 0!

http://www.cs.umd.edu/~pugh/java/memoryModel /AlphaReordering.html



Type

Loads reordered after loads

Loads reordered after stores

Stores reordered after stores

Stores reordered after loads

Atomic reordered with loads

Atomic reordered with stores

Dependent loads reordered

Incoherent instruction cache
pipeline

Alpha | ARMv7

SPARC | SPARC

[A-64 7zSeries




Q&A




Bugs?

« Beyond the need for preserving program semantics, is there any other
benefit/reason related to memory consistency models?

 Are there any major software errors/accidents known that were
caused by TSO because the intuitively model for programmers is SO?

 Islam, Mohammad Majharul, and Abdullah Muzahid. "Characterizing
Real World Bugs Causing Sequential Consistency Violations." HotPar.
2013.

« Found lots of bugs in Apache, GCC, Mozilla, MySQL, JVM, Cilk.



Cost

« Considering that experimental tests show TSO is the memory consistency model implemented
by x86 processors. Why do Intel/AMD not reveal their x86 MC? Are they unable to satisfy it in
every case? Do they not know for sure if it will hold in every case? Do they not want to give
this advantage to their competitor?

« Is there any general consensus on which model is adequate/ideal for current workloads?

« What is the actual performance cost in implementing SC over TSO, amortized with fence costs,
especially with regards to SC languages such as Java volatiles?

« What are the implications on GPU chip area if a TSO-like implementation is done? (Because
GPUs have 100s of "CUDA cores")

« Naeem, Abdul, Axel Jantsch, and Zhonghai Lu. "Architecture support and comparison of three
memory consistency models in NoC based systems."Digital System Design (DSD), 2012 15th
Euromicro Conference on. IEEE, 2012.

« The average speedup for the RC, PSO and TSO models in the 8x8 network under
different application workloads is increased by 34.3%, 10.6% and 8.9%, respectively,
over the SC model. The area cost for the TSO, PSO and RC models is increased by less
than 2% over the SC model at the interface to the processor.



GPU

« Do common GPU architectures implement FENCE instructions and if so, is
there a significant associated bottleneck?

« void __threadfence();
void __threadfence_block();
void __threadfence_system();

« Slow - not quantified anywhere formally

« Considering GPGPU programs that we have used relied heavily on memory
being accessed, GPGPUs surely need to have a consistency and coherence
model in place. So, how does the GPGPU memory consistency work?



x36 TSO

 [sx86 TSO?

« Intel streaming SMID ISA extension supports write-combining and weakly ordered
MC, with no-ordering whatsoever with regard to other WC and non-WC

instructions.

 In Implementing x86 TSO, they state that a shared write buffer with
thread tags is more common than individual per-core write buffers.
Why is this method more common? How is a centralized write buffer
with TSO ordering better than both an individual buffer per-core and a
centralized buffer that provides store bypassing across cores?



Other

« Can you explain in more detail how program order and memory order work when considering out-
of-order execution / branch predication / cache memory latencies?

« In 3.9, they describe how you can achieve SC in atomic operations by denying consistency requests
before the completion of the final store, and describe this as an improvement over the "naive"
method of blocking memory accesses. I don't see how these cases are different; if other threads
don't get their requests to that block until the store finishes, how is this an improvement?

« Could you explain the two checks presented by Gharachorloo et al. under Dynamically Scheduled
Cores in detail?

« "Importantly, the eviction of a cache block—due to a coherence invalidation or to make room for
another block—that contains a load's address in the address queue squashes the load and all
subsequent instructions, which then re-execute.” Could you explain this point?

* Is there any case in which a FENCE instruction would make sense in an SC implementation, or are
they always effectively no-ops?

* Yes?



