
HW2: CUDA
Synchronization

Take 2

OMG does locking
work in CUDA??!!??!

2

What to do for
variables inside the

critical section?
3

volatile PTX

• ld.volatile, st.volatile do not permit cache operations

• all operations go straight to global memory

• critical section will operate correctly

4

non-volatile PTX

• ld caches at all levels (L1, L2) by default

• st invalidates L1 copy and updates L2 by default

• so d_counter is cached in the L1 only briefly

• not safe in general!
5

Release PTX

acquire

non-volatile

volatile

unlock

6

what about __threadfence?
• “You can force the L1 cache to flush back up the

memory hierarchy using the appropriate
__threadfence_*() function. __threadfence_block()
requires that all previous writes have been flushed to
shared memory and/or the L1. __threadfence()
additionally forces global memory writes to be visible
to all blocks, and so must flush writes up to the L2.
Finally, __threadfence_system() flushes up to the host
level for mapped memory.” 
 — siebert, https://devtalk.nvidia.com/default/topic/
489987/l1-cache-l2-cache-and-shared-memory-in-fermi/

7

https://devtalk.nvidia.com/default/topic/489987/l1-cache-l2-cache-and-shared-memory-in-fermi/

and the placement of threads in the execution hierarchy
(threads), and we report the number of times the final con-
dition (final) is observed (obs) on our chips during 100k
executions of the test using the most effective incantations
(Sec. 4.3). The complete histogram of results for each test
can be found in the online material [1]. We conducted our
Nvidia experiments on four machines running Ubuntu 12.04,
and our AMD experiments on a single machine running Win-
dows 7 SP1. In the Nvidia case, Tab. 4 lists the CUDA SDK
and driver versions we used, and gives the PTX architecture
specification, i.e. the argument of the -arch compiler option.
In the AMD case, Tab. 4 lists the AMD Accelerated Paral-
lel Processing SDK and Catalyst driver versions. The SDKs
include the compilation tools for the respective platforms.

Nvidia AMD
GTX5 TesC GTX6 Titan GTX7

SDK 5.5 5.5 5.0 6.0 6.0 2.9
driver 331.20 334.16 331.67 331.62 331.62 14.4

options sm_21 sm_20 sm_30 sm_35 sm_50 default

Table 4: Compilers and drivers used

3.1 Weak behaviours

3.1.1 Sequential Consistency (SC) per location

This principle ensures that the values taken by a memory
location are the same as if on SC [28]. Nearly all CPU mod-
els guarantee this [7], except SPARC RMO [43, Chap. D.4],
which allows the weak behaviour of coRR (Fig. 1). As dis-
cussed in Sec. 1, this behaviour seems to spark debate for
CPUs: indeed, it has been deemed a bug on some ARM
chips [12]. Fig. 1 shows that we observed coRR on Nvidia
Fermi and Kepler. We did not observe coRR on AMD TeraS-
cale 2 or GCN 1.0 chips.

3.1.2 Cache operators

Message passing mp On Nvidia we test mp with the loads
bearing the cache operator which targets the L1 cache, i.e.
.ca, (mp-L1, see Fig. 3) and all threads in different CTAs.
The stores bear the cache operator .cg because our reading
of the PTX manual implies that there is no cache operator for
stores that target the L1 cache [36, p. 122]. We instantiate the
fence at different PTX levels [36, p. 169]: cta, gl, and sys,
and also report our observations when the fence is removed.

We observe the weak behaviour on the Tesla C2075, no
matter how strong the fences are. Note that .ca is the default
cache operator for loads in the CUDA compiler. [36, p. 121].
Thus no fence (i.e. membar or CUDA equivalent in Tab. 5)
is sufficient under default CUDA compilation schemes (i.e.

loads targeting the L1 with the .ca cache operator) to com-

pile mp correctly for Nvidia Tesla C2075 (e.g. the example
in the CUDA manual [34, p. 95]).

We experimentally fix this issue by setting cache op-
erators to .cg (using the CUDA compiler flags -Xptxas
-dlcm=cg -Xptxas -dscm=cg) and using membar.gl fen-
ces (see test mp+membar.gls online [1]).

init:

(

global x=0
global y=0

)

final: r1=1∧ r2=0 threads: inter-CTA

0.1 st.cg [x],1

0.2 fence

0.3 st.cg [y],1

1.1 ld.ca r1,[y]

1.2 fence

1.3 ld.ca r2,[x]

obs/100k fence GTX5 TesC GTX6 Titan GTX7
no-op 4979 10581 3635 6011 3
membar.cta 0 308 14 1696 0
membar.gl 0 187 0 0 0
membar.sys 0 162 0 0 0

Figure 3: PTX mp w/ L1 cache operators (mp-L1)

On AMD we cannot directly test mp-L1, because we
do not have direct access to the caches when working with
OpenCL (as explained in Sec. 2.3). Instead, we revert to
the classic mp test, with threads in distinct OpenCL work-
groups, all variables in global memory, and OpenCL global
fences (mem_fence(CLK_GLOBAL_MEM_FENCE)) between
the loads and between the stores. Without the fences, we
observe mp on AMD GCN 1.0 (obs: 2956) and TeraScale 2
(obs: 9327). With the fences we do not observe mp on TeraS-
cale 2. On GCN 1.0 we still observe mp when fences are in-
serted; inspection of the Southern Islands ISA generated by
the compiler shows that the fence between load instructions
is removed. It is not clear from the OpenCL specification
whether this is a legitimate compiler transformation. On the
one hand the specification states that “loads and stores pre-
ceding the mem_fence will be committed to memory before
any loads and stores following the mem_fence” [27, p. 277];
on the other hand it states that “There is no mechanism for
synchronization between work-groups” [27, p. 30]. We have
reported this issue to AMD.

Coherent reads coRR We tested whether using different
cache operators within the coRR test can restore SC. The
PTX manual states that after an L2 load (i.e. .cg) “existing
cache lines that match the requested address in L1 will be
evicted” [36, p. 121]. This seems to suggest that a read from
the L2 cache can affect the L1 cache.

Let us revisit coRR (see Fig. 1). We run a variant that we
call coRR-L2-L1 (see Fig. 4), where we first read from the
L2 cache via the .cg operator and then from the L1 cache
via the .ca operator. Thus the load 1.3 in Fig. 1 now holds
the .ca operator, all the others being the same.

Fig. 4 shows that on the Tesla C2075, no fence guarantees

that updated values can be read reliably from the L1 cache
even when first reading an updated value from the L2 cache.

This issue does not apply to AMD chips for which, as
discussed in Sec. 3.1.1, we did not observe coRR.

Volatile accesses PTX accesses can be marked .volatile,
which supposedly [36, p. 131 for loads; p. 136 for stores]
“may be used [. . .] to enforce sequential consistency be-
tween threads accessing shared memory”. We test whether
.volatile restores SC with shared memory with the test mp-

from “GPU Concurrency:
Weak behaviours” paper8

what is __threadfence (aka membar.gl)  
doing on Tesla C2075??!!??

Message passing The first bug arises when executing two
threads T0 and T1 in different CTAs. T0 pushes to its deque,
writes the tasks array (Fig. 6, line 3) and then increments
tail (line 5). Assume that T1 steals from T0, sees the incre-
ment made by T0 (line 8), and reads the tasks array at index
head (line 10). Without fences, T1 can see a stale value of
the tasks array, rather than the write of T0.

init:

(

global t=0

global d=0

)

final:r0=1∧ r1=0 threads: inter-CTA

*
0.1 st.cg [d],1 3

0.2(+) membar.gl 4

0.3 ld.volatile r2,[t] 5

0.4 add r2,r2,1 5

0.5 st.volatile [t],r2 5

*
1.1 ld.volatile r0,[t] 8

1.2 setp.eq p4,r0,0 8

1.3(+) @!p4 membar.gl 9

1.4 @!p4 ld.cg r1,[d] 10

*original line in Fig. 6

obs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970
0 4 36 65 0 0 0

Figure 7: PTX mp from load-balancing (dlb-mp)

We distilled this execution into the dynamic-load-bal-
ancing test dlb-mp (Fig. 7) by applying the mapping of
Tab. 5 to Cederman and Tsigas’ implementation [16]. Each
instruction in Fig. 7 is cross-referenced to the corresponding
line in Fig. 6. Without fences, the load 1.1 can read 1 and
the load 1.4 can read 0, as observed on Fermi (Tesla C2075)
and Kepler (GTX 660, GTX Titan). This means reading a

stale value from the task array, and results in the deque

losing a task. Adding the lines prefixed with (+) forbids
this behaviour. We did not observe the weak behaviour on
Maxwell or AMD.

Load buffering The second bug arises again when execut-
ing T0 and T1 in different CTAs. T0 pushes to its deque, T1

steals, reads the tasks array (Fig. 6, line 10) and increments
head (line 13). T0 pops, reads the incremented head with
a compare-and-swap (CAS) instruction, resets tail and re-
turns empty. Then T0 pushes a new task t, writing to tasks
at the original index (line 3). The implementation allows
T1’s steal to read t, the second value pushed to the deque.

init:

(

global t=0
global h=0

)

final:r0=1∧ r1=1 threads: inter-CTA

*
0.1 atom.cas r0,[h],0,1 20

0.2(+) membar.gl 21

0.3 mov r2,1 3

0.4 st.cg [t],r2 3

*
1.1 ld.cg r1,[t] 10

1.2(+) membar.gl 11

1.3 atom.cas r3,[h],0,1 13

*original line in Fig. 6

obs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970
0 750 399 2292 0 n/a 13591

Figure 8: PTX lb from load-balancing (dlb-lb)

We distilled this execution into the dynamic-load-bal-
ancing test (dlb-lb, Fig. 8), again following Tab. 5 and Ce-
derman and Tsigas’ code [16]. Without fences, the load 1.1

can read from the store 0.4, and the CAS 0.1 can read from
the CAS 1.3, as observed on Fermi (Tesla C2075) and Kepler
(GTX 660, GTX Titan). This corresponds to the steal read-
ing from the later pop, and hence the deque losing a task.

Adding the lines prefixed with (+) forbids this behaviour.
On AMD TeraScale 2 we find that the OpenCL compiler

reorders T1’s load and CAS. We regard this as a miscom-
pilation: it invalidates code that uses a CAS to synchronise
between threads, even if the threads are in the same work-
group. Therefore we do not present the number of weak be-
haviours for HD6570 in Fig. 8 and write “n/a” instead. We
reported this issue to AMD. On AMD GCN 1.0, we observe
the weak behaviour of an OpenCL version of dlb-lb.

Adding fences (see lines prefixed with (+) in Fig. 6)
forbids the behaviours of Fig. 7 and 8 in our experiments,
on all Nvidia chips and on AMD GCN 1.0. As we explain in
Sec. 3.2.3, pop’s store to head requires an atomic exchange.

3.2.2 “Atomic operations provide synchronisation”

Several sources assume that read-modify-writes (RMW) pro-
vide synchronisation across CTAs (e.g. [30, 38, 42]). For ex-
ample, Stuart and Owens “use atomicExch() instead of a
volatile store and threadfence()because the atomic queue
has predictable behavior, threadfence() does not (i.e. it
can vary greatly in execution time if other memory opera-
tions are pending)” [42, p. 3]. Communication with the au-
thors confirms that the weak behaviour is unintentional.

Nvidia’s CUDA by Example [38, App. 1] makes similar
assumptions. Fig. 2 shows the lock and unlock from [38,
App. 1]. For now we ignore the lines prefixed with a (+),
which we added. Stuart and Owens’ implementation [42,
p. 3] is similar, but uses atomic exchange (an unconditional
RMW) instead of CAS. The lock and unlock of Fig. 2
are used in a dot product [38, App. 1.2] (a linear algebra
routine), where each CTA adds a local sum to a global sum,
using locks to provide mutual exclusion. The absence of
synchronisation in the lock permits stale values of the local
sums to be read, leading to a wrong dot product calculation.

init:

(

global x=0
global m=1

)

final: r1=0∧ r3=0 threads: inter-CTA

*
0.1 st.cg [x],1

0.2(+) membar.gl 5

0.3 atom.exch r0,[m],0 6

*
1.1 atom.cas r1,[m],0,1 2

1.2 setp.eq r2,r1,0 2

1.3(+) @r1 membar.gl 3

1.4 @r1 ld.cg r3,[x]

*original line in Fig. 2

obs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970
0 47 43 512 0 508 748

Figure 9: PTX compare-and-swap spin lock (cas-sl)

In Fig. 9, we show the lock and unlock functions of
Fig. 2, distilled into a variant of the mp test called cas-sl

(“spin lock using compare-and-swap”), using the mapping in
Tab. 5. We ignore the additional fences (lines 0.2 and 1.3) for

__threadfence still necessary even if L1 isn’t used

9
from “GPU Concurrency:
Weak behaviours” paper

what gets cached where?
CUDA compute

capability
default caching

policy
opt-in to L1
caching?

2.x ca (L1 & L2) n/a

3.x cg (L2 only) no

3.5, 3.7 cg (L2 only) yes

5.x cg (L2 only) yes

10

Conclusions
• volatile seems safe but unnecessarily expensive as it avoids

L1 and L2 caching

• NVCC by default caches only at L2 these days (CC ≥ 3.x)

• HW2 locks therefore seem ok (for CC ≥ 3.x)

• “-Xptxas -dlcm=ca” opts-in to L1 caching

• no difference in code on AWS instance :-/

• __threadfence() still necessary to prevent other reorderings

11

What is the L1 good for?
• the L1 by default is used only for local memory

and read-only globals

• probably due to lack of coherence

• need to opt-in to get more utility out of L1

• shared memory is the easiest, fastest writable
memory level

12

GMRace
Mai Zheng, Vignesh T. Ravi, Feng Qin and Gagan Agrawal

How is GMRace
different from GRace?

14

15

Algorithm 3 Inter-warp Race Detection by GRace-stmt
1: for stmtIdx1 = 0 tomaxStmtNum− 1 do
2: for stmtIdx2 = stmtIdx1 + 1 tomaxStmtNum do
3: if BlkStmtTbl[stmtIdx1].warpID =

BlkStmtTbl[stmtIdx2].warpID then
4: Jump to line 15
5: end if
6: if BlkStmtTbl[stmtIdx1].accessType is read and

BlkStmtTbl[stmtIdx2].accessType is read then
7: Jump to line 15
8: end if
9: for targetIdx = 0 to warpSize− 1 do
10: sourceIdx← tid % warpSize
11: if BlkStmtTbl[stmtIdx1][sourceIdx] =

BlkStmtTbl[stmtIdx2][targetIdx] then
12: Report a Data Race
13: end if
14: end for
15: end for
16: end for

quentially (SIMD) by all threads within a warp. This is important
because inserted synchronization may lead to deadlock if the state-
ment is a conditional branch executed by a subset of threads within
a warp.
After performing intra-warp race detection, GRace transfers

memory access information from the warpTable, fully or partially,
to device memory for future inter-warp race detection, which is
discussed in Section 3.3.2. As a result, GRace can recycle the
warpTable for next memory access and race detection for the same
warp of threads. This design choice keeps the memory footprint of
intra-warp race detection minimal. Our experimental results have
shown that typically 1 KB can hold the warpTables for all the
warps on Tesla C1060 (More details in Section 5). Thus, GRace
only incurs 6% space overhead for 16 KB shared memory in Tesla
cards. With the trend of increasing size of shared memory, the
relative space overhead will become even smaller. For example,
the latest release of GPU chip, Fermi, gives the option of having
48 KB shared memory, which reduce the relative space overhead
of our approach to 2%. If running legacy GPU kernel functions
that assume 16 KB shared memory, GRace can enjoy plenty of
shared memory. The extreme case is that a kernel function uses
up shared memory for its own benefits. In such case, GRace can
store the warpTables in device memory and performs intra-warp
race detection there.

3.3.2 Inter-warp Race Detection
GRace periodically detects inter-warp races after each synchroniza-
tion call. More specifically, GRace transfers the memory access
information from a warpTable to device memory after each intra-
warp race detection. After each synchronization call, GRace identi-
fies inter-warp races by examining memory accesses from multiple
threads that are across different warps. After detecting inter-warp
races at one synchronization call, GRace reuses the device memory
for next synchronization block.
By exploring the design space along two dimensions, i.e., ac-

curacy of bug reports and efficiency of bug detection, we propose
two inter-warp detection schemes. One scheme organizes mem-
ory access information by the executed program statements. This
scheme reports data races with more accurate diagnostic informa-
tion while incurring time and space overheads that are quadratic
and linear with regard to the number of executed statements, re-
spectively. The other scheme organizes memory access information
by shared memory addresses. This scheme incurs constant time and

Shared Memory

rWarpShmMap 0

one-to-one mapping

Address 0
Address 1

......
Address 31

Access Type

warpTable 0

wWarpShmMap 0 for
Read

 for
Write

counter counter

Figure 4. Data structures of a rWarpShmMap and a wWarpShmMap. Each Warp-
ShmMap or BlockShmMap entry is corresponding to one shared memory address in
one-to-one mapping. Each address stored in a warpTable is used as the index to increase
the corresponding counter in the rWarpShmMap and rBlockShmMap, or wWarpSh-
mMap and wBlockShmMap, depending on the access type. Note that rBlockShmMap
and wBlockShmMap are not shown here due to space limit.

space overhead while reporting aggregated diagnostic information
on data races. We present both schemes in the rest of this section.
The statement-based scheme (GRace-stmt). This scheme of
GRace (referred to as GRace-stmt) literally stores all the mem-
ory addresses that have been accessed from all the threads in device
memory and identifies two threads from different warps for ac-
cessing the same memory address. More specifically, GRace-stmt
maintains a BlockStmtTable in device memory for the threads from
all the warps that can access the same shared memory. Each en-
try of the BlockStmtTable stores all the content of a warpTable (all
memory addresses accessed from one statement executed by a warp
of threads) and the corresponding warp ID. Essentially, GRace-stmt
organizes a BlockStmtTable by memory access statements from all
the threads.
At each synchronization call, GRace-stmt scans the entire

BlockStmtTable and identifies inter-warp data races as described
in Algorithm 3. More specifically, GRace-stmt checks two Block-
StmtTable entries at a time throughout the entire table (line 1-2).
For each pair of the entries, GRace-stmt checks both the warp IDs
and access types (line 3-8). If the warp IDs are the same or both
access types are read, GRace-stmt skips this pair since any pair of
memory accesses from both entries cannot cause inter-warp data
races. Otherwise, GRace-stmt utilizes a warp of threads in parallel
to check whether there are two addresses, one from each entry, are
the same (line 9-14). Once the same addresses are found, GRace-
stmt reports a data race (line 12).
On the one hand, GRace-stmt provides accurate diagnostic in-

formation about a detected race, including the pair of racing state-
ments (i.e., the indexes of the BlockStmtTable entries), the pair of
racing threads (i.e., the indexes of both memory addresses in the
BlockStmtTable entries), and racing memory address. This is very
helpful for developers to quickly locate the root cause and fix the
data race. On the other hand, the algorithm complexity of GRace-
stmt is quadratic with regard to the number of BlockStmtTable en-
tries, i.e., the number of instrumented statements that are executed.
Furthermore, the space overhead incurred by GRace-stmt is linear
to the number of BlockStmtTable entries. Although this indicates
that GRace-stmt may not be scalable, it is expected to perform well
with a small number of statements being instrumented and executed
(See our experimental results in Section 5).
The address-based scheme (GRace-addr). This scheme of GRace
(referred to as GRace-addr) stores summarized information of the
memory addresses that have been accessed from all the threads
and detects data races based on the summarized information. More
specifically, GRace-addr maintains two tables for each warp, one

16

incurring time and space overheads that are quadratic and
linear with regard to the number of executed statements,
respectively. The other scheme, called GMRace-flag, records
memory access information using 0/1 flags based on shared
memory addresses. This scheme incurs constant time and
space overhead while reporting aggregated diagnostic
information on data races. We present both schemes in
the rest of this section.

The statement-based scheme (GMRace-stmt). This scheme
of GMRace (referred to as GMRace-stmt) literally stores all
the memory addresses that have been accessed from all
the threads in device memory and identifies two threads
from different warps for accessing the same memory
address. More specifically, GMRace-stmt maintains a
BlockStmtTable in device memory for the threads from
all the warps that can access the same shared memory. As
shown in Fig. 2, each entry (i.e., row) of the BlockStmt-
Table stores all the content of a warpTable (all memory
addresses accessed from one statement executed by a
warp of threads) and the corresponding warp ID and
statement number. Essentially, GMRace-stmt organizes a
BlockStmtTable by memory access statements from all the
threads. Note that in this scheme the BlockStmtTable is
shared among all warps of threads. However, different
warps can write to different rows of the BlockStmtTable
concurrently. As a result, we only need to use atomic
operations when updating the row index, which is not a
significant source of overhead (see Section 4).

At each synchronization call, GMRace-stmt scans the
entire BlockStmtTable for identifying interwarp data races
as described in Algorithm 1. Specifically, it checks two
BlockStmtTable entries at a time throughout the entire table
(lines 1 and 2). Note that each thread starts from a different
entry to check the table in parallel. For each pair of the
entries, GMRace-stmt checks both the warp IDs and access
types (line 3-8). If the warp IDs are the same or both
accesses are read, GMRace-stmt skips this pair since any
pair of memory accesses from both entries cannot cause
interwarp races. Otherwise, GMRace-stmt checks whether
there are two addresses, one from each entry, are the
same (line 9-15). Once the same addresses are found,
GMRace-stmt reports a data race (line 12).

Algorithm 1. Interwarp Race Detection by GMRace-stmt.
1: for stmtIdx1 ¼ tid to maxStmtNum" 1 do
2: for stmtIdx2 ¼ stmtIdx1þ 1 to maxStmtNum do
3: if BlkStmtTbl½stmtIdx1%:warpID ¼

BlkStmtTbl½stmtIdx2%:warpID then
4: Jump to line 17
5: end if
6: if BlkStmtTbl½stmtIdx1%:accessType is read and

BlkStmtTbl½stmtIdx2%:accessType is read
then

7: Jump to line 17
8: end if
9: for targetIdx ¼ 0 to warpSize" 1 do

10: for sourceIdx ¼ 0 to warpSize" 1 do
11: if BlkStmtTbl½stmtIdx1%½sourceIdx% ¼

BlkStmtTbl½stmtIdx2%½targetIdx% then
12: Report a Data Race

13: end if
14: end for
15: end for
16: end for
17: stmtIdx1þ ¼ threadNum
18: end for

On the one hand, GMRace-stmt provides accurate
diagnostic information for each detected race, including
the pair of racing statements (i.e., the statement numbers),
the pair of racing threads (i.e., the indexes of both memory
addresses in the BlockStmtTable entries), and racing
memory address. This is very helpful for developers to
quickly locate the root cause and fix the data race. On the
other hand, the time complexity of Algorithm 1 (i.e., the
detection part of GMRace-stmt scheme) is quadratic with
regard to the number of BlockStmtTable entries, i.e., the
number of instrumented statements that are executed.
Furthermore, the space overhead incurred by GMRace-stmt
is linear to the number of BlockStmtTable entries. Although
this indicates that GMRace-stmt may not be scalable, it is
expected to perform well with a small number of statements
being instrumented and executed (see our experimental
results in Section 4).

The flag-based scheme (GMRace-flag). This scheme of
GMRace (referred to as GMRace-flag) stores summarized
(i.e., using 0/1 flags) information of the memory addresses
that have been accessed from all the threads and detects
data races based on the summarized information. More
specifically, GMRace-flag maintains two tables for each
warp, one for read accesses from threads within the warp
(referred to as rWarpShmMap) and the other for write
accesses (referred to as wWarpShmMap). Each entry in any
of these tables maps to one shared memory address
linearly. Specifically, each entry stores a 0/1 flag that
records whether the corresponding shared memory address
has been accessed by the warp or not. Fig. 3 shows the data
structures of rWarpShmMap and wWarpShmMap.

After each monitored memory read access, GMRace-
flag set the flag in the corresponding rWarpShmMap to 1.
Similarly, for each write access, the flag in the correspond-
ing wWarpShmMap is set to 1. Essentially, the
rWarpShmMaps and the wWarpShmMaps keep the
memory footprints of different warps. Note that we do
not count the number of accesses here. The flag will be set
to 1 as long as the corresponding shared memory address

108 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

Fig. 2. Data structure of a BlockStmtTable. Each entry in the
BlockStmtTable stores all the content of a warpTable, in addition to
the warp ID and the statement number.

incurring time and space overheads that are quadratic and
linear with regard to the number of executed statements,
respectively. The other scheme, called GMRace-flag, records
memory access information using 0/1 flags based on shared
memory addresses. This scheme incurs constant time and
space overhead while reporting aggregated diagnostic
information on data races. We present both schemes in
the rest of this section.

The statement-based scheme (GMRace-stmt). This scheme
of GMRace (referred to as GMRace-stmt) literally stores all
the memory addresses that have been accessed from all
the threads in device memory and identifies two threads
from different warps for accessing the same memory
address. More specifically, GMRace-stmt maintains a
BlockStmtTable in device memory for the threads from
all the warps that can access the same shared memory. As
shown in Fig. 2, each entry (i.e., row) of the BlockStmt-
Table stores all the content of a warpTable (all memory
addresses accessed from one statement executed by a
warp of threads) and the corresponding warp ID and
statement number. Essentially, GMRace-stmt organizes a
BlockStmtTable by memory access statements from all the
threads. Note that in this scheme the BlockStmtTable is
shared among all warps of threads. However, different
warps can write to different rows of the BlockStmtTable
concurrently. As a result, we only need to use atomic
operations when updating the row index, which is not a
significant source of overhead (see Section 4).

At each synchronization call, GMRace-stmt scans the
entire BlockStmtTable for identifying interwarp data races
as described in Algorithm 1. Specifically, it checks two
BlockStmtTable entries at a time throughout the entire table
(lines 1 and 2). Note that each thread starts from a different
entry to check the table in parallel. For each pair of the
entries, GMRace-stmt checks both the warp IDs and access
types (line 3-8). If the warp IDs are the same or both
accesses are read, GMRace-stmt skips this pair since any
pair of memory accesses from both entries cannot cause
interwarp races. Otherwise, GMRace-stmt checks whether
there are two addresses, one from each entry, are the
same (line 9-15). Once the same addresses are found,
GMRace-stmt reports a data race (line 12).

Algorithm 1. Interwarp Race Detection by GMRace-stmt.
1: for stmtIdx1 ¼ tid to maxStmtNum" 1 do
2: for stmtIdx2 ¼ stmtIdx1þ 1 to maxStmtNum do
3: if BlkStmtTbl½stmtIdx1%:warpID ¼

BlkStmtTbl½stmtIdx2%:warpID then
4: Jump to line 17
5: end if
6: if BlkStmtTbl½stmtIdx1%:accessType is read and

BlkStmtTbl½stmtIdx2%:accessType is read
then

7: Jump to line 17
8: end if
9: for targetIdx ¼ 0 to warpSize" 1 do

10: for sourceIdx ¼ 0 to warpSize" 1 do
11: if BlkStmtTbl½stmtIdx1%½sourceIdx% ¼

BlkStmtTbl½stmtIdx2%½targetIdx% then
12: Report a Data Race

13: end if
14: end for
15: end for
16: end for
17: stmtIdx1þ ¼ threadNum
18: end for

On the one hand, GMRace-stmt provides accurate
diagnostic information for each detected race, including
the pair of racing statements (i.e., the statement numbers),
the pair of racing threads (i.e., the indexes of both memory
addresses in the BlockStmtTable entries), and racing
memory address. This is very helpful for developers to
quickly locate the root cause and fix the data race. On the
other hand, the time complexity of Algorithm 1 (i.e., the
detection part of GMRace-stmt scheme) is quadratic with
regard to the number of BlockStmtTable entries, i.e., the
number of instrumented statements that are executed.
Furthermore, the space overhead incurred by GMRace-stmt
is linear to the number of BlockStmtTable entries. Although
this indicates that GMRace-stmt may not be scalable, it is
expected to perform well with a small number of statements
being instrumented and executed (see our experimental
results in Section 4).

The flag-based scheme (GMRace-flag). This scheme of
GMRace (referred to as GMRace-flag) stores summarized
(i.e., using 0/1 flags) information of the memory addresses
that have been accessed from all the threads and detects
data races based on the summarized information. More
specifically, GMRace-flag maintains two tables for each
warp, one for read accesses from threads within the warp
(referred to as rWarpShmMap) and the other for write
accesses (referred to as wWarpShmMap). Each entry in any
of these tables maps to one shared memory address
linearly. Specifically, each entry stores a 0/1 flag that
records whether the corresponding shared memory address
has been accessed by the warp or not. Fig. 3 shows the data
structures of rWarpShmMap and wWarpShmMap.

After each monitored memory read access, GMRace-
flag set the flag in the corresponding rWarpShmMap to 1.
Similarly, for each write access, the flag in the correspond-
ing wWarpShmMap is set to 1. Essentially, the
rWarpShmMaps and the wWarpShmMaps keep the
memory footprints of different warps. Note that we do
not count the number of accesses here. The flag will be set
to 1 as long as the corresponding shared memory address

108 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

Fig. 2. Data structure of a BlockStmtTable. Each entry in the
BlockStmtTable stores all the content of a warpTable, in addition to
the warp ID and the statement number.

17

Algorithm 4 Inter-warp Race Detection by GRace-addr
1: for idx = 0 to shmSize− 1 do
2: if wBlockShmMap[idx] = 0 then
3: Jump to line 15
4: end if
5: if rWarpShmMap[idx] = 0 and

wWarpShmMap[idx] = 0 then
6: Jump to line 15
7: end if
8: if wWarpShmMap[idx] ≤ wBlockShmMap[idx] and

wWarpShmMap[idx] > 0 then
9: Report a Data Race
10: else if wWarpShmMap[idx] = 0 then
11: Report a Data Race
12: else if rWarpShmMap[idx] ≤

rBlockShmMap[idx] then
13: Report a Data Race
14: end if
15: end for

for read access from threads within the warp (referred to as rWarp-
ShmMap) and the other for write access (referred to as wWarpSh-
mMap). Additionally, for all the warps that can access the same
shared memory, GRace-addr maintains two tables, one for read
access from all such warps of threads (referred to as rBlockSh-
mMap) and the other for write access (referred to as wBlockSh-
mMap). Each entry in any of these tables maps to one shared mem-
ory address linearly. Specifically, each entry stores a counter that
records the number of accesses to the corresponding shared mem-
ory address from all the threads within a warp (for rWarpShmMap
or wWarpShmMap) or across all warps (for rBlockShmMap or
wBlockShmMap). Figure 4 shows the data structures of rWarpSh-
mMap and wWarpShmMap, which are the same as rBlockShmMap
and wBlockShmMap.
After performing each intra-warp race detection, GRace-addr

transfers memory access information in the warpTable to the corre-
sponding rWarpShmMap and rBlockShmMap for read, or to the
corresponding wWarpShmMap and wBlockShmMap for write.
More specifically, GRace-addr scans through the warpTable and,
for each warpTable entry, adds one to the value of the correspond-
ing counter in the rWarpShmMap and rBlockShmMap, or wWarp-
ShmMap and wBlockShmMap. Essentially, these tables keep the
number of accesses to each shared memory address for different
warps, individually and aggregately.
At each synchronization call, GRace-addr detects inter-warp

races as described in Algorithm 4. More specifically, GRace-addr
scans through all the counters stored in the rWarpShmMap and
the wWarpShmMap for each warp in parallel (line 1). For each
shared memory address, GRace-addr first rules out the cases of all
read accesses (line 2-4) and no accesses from the local (or current)
warp (line 5-7). Then GRace-addr detects data races of write-write
conflict, i.e., writes from both local and remote warps (line 8-9),
followed by read-write conflict, i.e. read from local warp and write
from remote warp (line 10-11). Lastly, GRace-addr detects data
races of write-read conflict, i.e., write from local warp and read
from remote warp (line 12-13).
On the one hand, the time and space complexities of the GRace-

addr algorithm are linear to the size of shared memory, which
is constant for a given GPU. Therefore, GRace-addr is scalable
in terms of the number of instrumented statements, although it
may not be a better choice for a kernel with a small number of
instrumented statements. On the other hand, GRace-addr provides
aggregated information about a data race, which is less accurate
than GRace-stmt. For example, GRace-addr reports racing memory

address and the pairs of racing warps instead of racing statements or
racing threads. However, the bug information provided by GRace-
addr is still useful. For example, programmers can narrow down the
set of possibly racing statements based on a racing memory address
reported by GRace-addr. Similarly, programmers can derive racing
threads based on the ranges of reported racing warps.

4. Evaluation Methodology
Our experiments were conducted using a NVIDIA Tesla C1060
GPU with 240 processor cores (30 × 8), a clock frequency of
1.296 GHz, and 4 GB device memory. This GPU was connected
to a machine with two AMD 2.6 GHz dual-core Opteron CPUs
and 8 GB main memory. We have implemented the prototype of
GRace. Static Analyzer utilizes the linear constraint solver [16],
and Dynamic Checker is built on CUDA SDK 3.0. Note that we
do not see any particular difficulty to port GRace to other GPU
environments such as stream SDK or OpenCL.
We have evaluated GRace with three applications, including Co-

clustering [8] (referred to as co-cluster), EM clustering [10]
(referred to as em), and scan code [7] (referred to as scan). Among
these applications, co-cluster and em are both clustering (data
mining) algorithms. We have used GPU implementations of these
applications that were aggressively optimized for shared memory
use in a recent study [32]. scan is the simple code used in previous
work on GPU race detection [7].
In developing GPU kernels for co-cluster and em, i.e. in

creating GPU implementations of the main computation steps, cer-
tain implicit assumptions were made. For example, co-cluster
assumes that the initialization values of a particular matrix should
be within a certain range, whereas em assumes that the maximum
thread number within a block is 256. If these kernels are used by
another application developer, these assumptions may be violated,
and data races can occur. We create invocations of these kernels in
ways such that race conditions were manifested. Additionally, to
trigger data races in scan, we remove the first synchronization call
as was done in the previous work on GPU race detection [7].
We have designed four sets of experiments to evaluate the key

aspects of GRace:
• The first set evaluates the functionality of GRace in detecting
data races of GPU kernel functions. We compare GRace with
the previous approach [7], referred to as B-tool in this paper,
in terms of reported number of races and false positives. In this
set, we use bug-triggering inputs and parameters to trigger data
races.

• The second set evaluates the runtime overhead incurred by
GRace in terms of execution time of kernel functions. We
also compare GRace with B-tool. Additionally, we evaluate the
space overhead caused by GRace and compare it with B-tool.
In this set, we use normal inputs and parameters to launch the
kernel functions so that data races do not occur.

• The third set evaluates the benefit of Static Analyzer. We mea-
sure the instrumented statements and memory accesses stati-
cally and dynamically in two configurations, i.e., with Static
Analyzer and without Static Analyzer. Furthermore, we com-
pare the runtime overhead of GRace with and without Static
Analyzer.

• The fourth set evaluates the benefit of shared memory. We
measure the runtime overhead of GRace in two configurations,
i.e., warpTables stored in shared memory and warpTables stored
in device memory.
Note that all the above experiments evaluate two inter-warp

detection schemes GRace-stmt and GRace-addr, both with the same
intra-warp detection scheme and the same Static Analyzer.

18

is accessed, regardless how many times it is accessed. This
design choice simplifies the recording operations while
keeping enough information for race detection. The flags
for all these tables are reset to 0s after race detection at
each synchronization call.

At each synchronization call, GMRace-flag detects
interwarp races as shown in Algorithm 2. Specifically,
GMRace-flag scans through all the flags stored in the
wWarpShmMaps and the rWarpShmMaps in parallel. For
each shared memory address, GMRace-flag sums up the
corresponding flags in the wWarpShmMaps and the
rWarpShmMaps, respectively (line 4-7). The first sum
(writeSum) denotes the number of warps that have written
to the shared memory address before the synchronization
call. If the writeSum is zero, which means no warp has
written to the address, then no race could have happened
within this synchronization block (line 8-9). If the value is
equal to or greater than 2, which means at least two
different warps have accessed the address, then GMRace-
flag reports races (line 10-11). If the writeSum equals to 1,
GMRace-flag further checks the second sum (readSum),
which indicates the number of warps that have read from
the address. Given that the writeSum equals to 1 (i.e., only
one warp have written to this address), a zero value of
readSum indicates no race (line 13-14), while a value equal to
or greater than 2 guarantees races (line 15-16). If the readSum
also equal to 1, GMRace-flag further locates the
wWarpShmMap and the rWarpShmMap that containing
the nonzero flag and checks whether they are set by the
same warp. If yes, which means the write and read are
performed by the same warp, there is no race condition.
Otherwise, GMRace-flag reports a race (line 17-23). Note
that Algorithm 2 is described in sequential for simplicity,
while the detection in GMRace-flag is performed in parallel,
i.e., multiple threads check different idx simultaneously.

Algorithm 2. Interwarp Race Detection by GMRace-flag.
1: for idx ¼ 0 to shmSize" 1 do
2: writeSum 0
3: readSum 0
4: for warpID ¼ 0 to warpID ¼ warpNum" 1 do
5: writeSumþ ¼ wWarpShmMaps½warpID%½idx%
6: readSumþ ¼ rWarpShmMaps½warpID%½idx%
7: end for

8: if writeSum ¼ 0 then
9: Jump to line 25

10: else if writeSum >¼ 2 then
11: Report Data Races
12: else if writeSum ¼ 1 then
13: if readSum ¼ 0 then
14: Jump to line 25
15: else if readSum >¼ 2 then
16: Report Data Races
17: else if readSum ¼ 1 then
18: wWarpID ¼ getWarpIDofNonZeroFlag

(wWarpShmMaps; idx)
19: rWarpID ¼ getWarpIDofNonZeroFlag

(rWarpShmMaps; idx)
20: if wWarpID! ¼ rWarpID then
21: Report a Data Race
22: end if
23: end if
24: end if
25: end for

On the one hand, the time and space complexities of the
Algorithm 2 (i.e., the detection part of GMRace-flag scheme)
are linear to the size of shared memory, which is constant
for a given GPU. Therefore, GMRace-flag is scalable in
terms of the number of instrumented statements, although
it may not be a better choice for a kernel with a small
number of instrumented statements. On the other hand,
GMRace-flag provides aggregated information about a data
race, which is less accurate than GMRace-stmt. For
example, GMRace-flag reports racing memory address
and the pairs of racing warps instead of racing statements
or racing threads. However, the bug information provided
by GMRace-flag is still useful. For example, programmers
can narrow down the set of possibly racing statements
based on a racing memory address reported by GMRace-
flag. Similarly, programmers can derive racing threads
based on the ranges of reported racing warps.

3 EVALUATION METHODOLOGY

Our experiments were conducted using a NVIDIA Tesla
C1060 GPU with 240 processor cores (30& 8), a clock
frequency of 1.296 GHz, and 4-GB device memory. The
GPU was connected to a machine with two AMD 2.6-GHz
dual-core Opteron CPUs and 8-GB main memory. We have
implemented a prototype of GMRace based on ROSE
compiler infrastructure [22]. Static Analyzer utilizes the
linear constraint solver [23], and Dynamic Checker is built
on CUDA Toolkit 3.0. We do not see any particular
difficulty to port GMRace to other GPU environments such
as stream SDK or OpenCL.

We have evaluated GMRace’s functionality and effi-
ciency with five applications, including coclustering [24]
(referred to as co-cluster), EM clustering [25] (referred
to as em), Scan Algorithm [10] (referred to as scan), Sparse
Matrix-Vector Multiplication (referred to as spmv), and
Binomial Options (referred to as bo). Among these
applications, co-cluster and em are both clustering
algorithms. We have used GPU implementations of these

ZHENG ET AL.: GMRACE: DETECTING DATA RACES IN GPU PROGRAMS VIA A LOW-OVERHEAD SCHEME 109

Fig. 3. Data structures of a rWarpShmMap and a wWarpShmMap. Each
WarpShmMap entry is corresponding to one shared memory address in
one-to-one mapping. Each address stored in a warpTable is used as the
index to update the corresponding flag in the rWarpShmMap or
wWarpShmMap, depending on the access type.

is accessed, regardless how many times it is accessed. This
design choice simplifies the recording operations while
keeping enough information for race detection. The flags
for all these tables are reset to 0s after race detection at
each synchronization call.

At each synchronization call, GMRace-flag detects
interwarp races as shown in Algorithm 2. Specifically,
GMRace-flag scans through all the flags stored in the
wWarpShmMaps and the rWarpShmMaps in parallel. For
each shared memory address, GMRace-flag sums up the
corresponding flags in the wWarpShmMaps and the
rWarpShmMaps, respectively (line 4-7). The first sum
(writeSum) denotes the number of warps that have written
to the shared memory address before the synchronization
call. If the writeSum is zero, which means no warp has
written to the address, then no race could have happened
within this synchronization block (line 8-9). If the value is
equal to or greater than 2, which means at least two
different warps have accessed the address, then GMRace-
flag reports races (line 10-11). If the writeSum equals to 1,
GMRace-flag further checks the second sum (readSum),
which indicates the number of warps that have read from
the address. Given that the writeSum equals to 1 (i.e., only
one warp have written to this address), a zero value of
readSum indicates no race (line 13-14), while a value equal to
or greater than 2 guarantees races (line 15-16). If the readSum
also equal to 1, GMRace-flag further locates the
wWarpShmMap and the rWarpShmMap that containing
the nonzero flag and checks whether they are set by the
same warp. If yes, which means the write and read are
performed by the same warp, there is no race condition.
Otherwise, GMRace-flag reports a race (line 17-23). Note
that Algorithm 2 is described in sequential for simplicity,
while the detection in GMRace-flag is performed in parallel,
i.e., multiple threads check different idx simultaneously.

Algorithm 2. Interwarp Race Detection by GMRace-flag.
1: for idx ¼ 0 to shmSize" 1 do
2: writeSum 0
3: readSum 0
4: for warpID ¼ 0 to warpID ¼ warpNum" 1 do
5: writeSumþ ¼ wWarpShmMaps½warpID%½idx%
6: readSumþ ¼ rWarpShmMaps½warpID%½idx%
7: end for

8: if writeSum ¼ 0 then
9: Jump to line 25

10: else if writeSum >¼ 2 then
11: Report Data Races
12: else if writeSum ¼ 1 then
13: if readSum ¼ 0 then
14: Jump to line 25
15: else if readSum >¼ 2 then
16: Report Data Races
17: else if readSum ¼ 1 then
18: wWarpID ¼ getWarpIDofNonZeroFlag

(wWarpShmMaps; idx)
19: rWarpID ¼ getWarpIDofNonZeroFlag

(rWarpShmMaps; idx)
20: if wWarpID! ¼ rWarpID then
21: Report a Data Race
22: end if
23: end if
24: end if
25: end for

On the one hand, the time and space complexities of the
Algorithm 2 (i.e., the detection part of GMRace-flag scheme)
are linear to the size of shared memory, which is constant
for a given GPU. Therefore, GMRace-flag is scalable in
terms of the number of instrumented statements, although
it may not be a better choice for a kernel with a small
number of instrumented statements. On the other hand,
GMRace-flag provides aggregated information about a data
race, which is less accurate than GMRace-stmt. For
example, GMRace-flag reports racing memory address
and the pairs of racing warps instead of racing statements
or racing threads. However, the bug information provided
by GMRace-flag is still useful. For example, programmers
can narrow down the set of possibly racing statements
based on a racing memory address reported by GMRace-
flag. Similarly, programmers can derive racing threads
based on the ranges of reported racing warps.

3 EVALUATION METHODOLOGY

Our experiments were conducted using a NVIDIA Tesla
C1060 GPU with 240 processor cores (30& 8), a clock
frequency of 1.296 GHz, and 4-GB device memory. The
GPU was connected to a machine with two AMD 2.6-GHz
dual-core Opteron CPUs and 8-GB main memory. We have
implemented a prototype of GMRace based on ROSE
compiler infrastructure [22]. Static Analyzer utilizes the
linear constraint solver [23], and Dynamic Checker is built
on CUDA Toolkit 3.0. We do not see any particular
difficulty to port GMRace to other GPU environments such
as stream SDK or OpenCL.

We have evaluated GMRace’s functionality and effi-
ciency with five applications, including coclustering [24]
(referred to as co-cluster), EM clustering [25] (referred
to as em), Scan Algorithm [10] (referred to as scan), Sparse
Matrix-Vector Multiplication (referred to as spmv), and
Binomial Options (referred to as bo). Among these
applications, co-cluster and em are both clustering
algorithms. We have used GPU implementations of these

ZHENG ET AL.: GMRACE: DETECTING DATA RACES IN GPU PROGRAMS VIA A LOW-OVERHEAD SCHEME 109

Fig. 3. Data structures of a rWarpShmMap and a wWarpShmMap. Each
WarpShmMap entry is corresponding to one shared memory address in
one-to-one mapping. Each address stored in a warpTable is used as the
index to update the corresponding flag in the rWarpShmMap or
wWarpShmMap, depending on the access type.

19

Apps GRace-stmt GRace-addr B-tool
R-Stmt# R-Mem# R-Thd# FP# R-Stmt# R-Mem# R-Wp# FP# R-Stmt# RP# FP#

co-cluster 1 10 1,310,720 0 - 10 8 0 - 1 0
em 14 384 22,023 0 - 384 3 0 - 200,445 45,870
scan 3 pairs of racing statements are detected and all addresses are resolved by Static Analyzer - Err* Err*

Table 1. Overall effectiveness of GRace for data race detection. We compare the detection capability of GRace-stmt and GRace-addr with that of B-tool, the tool proposed by
previous work [7]. R-Stmt is pairs of conflicting accesses, R-Mem is memory address invoked in data races, R-Thd is pairs of threads in race conditions, R-Wp is pairs of racing
warps, FP means false positives, and RP means the race number reported by B-tool. ‘-’ means the data is not reported by the scheme. * B-tool leads to an error when running with
scan on the latest versions of CUDA and Tesla GPUs, because of hardware and software changes.

Figure 5. Runtime overhead of GRace. Note that the y-axis is on a logarithmic
scale.

5. Experimental Results
5.1 Overall Effectiveness
Table 1 demonstrates the overall effectiveness of GRace. Specif-
ically, we evaluate three schemes, including GRace-stmt, GRace-
addr, and the previous work B-tool [7]. For GRace-stmt and GRace-
addr, we measure four metrics, including the number of pairs of
racing statements, the number of memory addresses involved in
data races, the number of pairs of threads or warps in race con-
ditions, and the number of false positives within the reported pairs
of threads or warps. For B-tool, we present the number of data races
reported by the tool. Unlike GRace-stmt or GRace-addr, B-tool re-
ports a data race whenever the current thread accesses a memory
address where other threads have conflicting accesses before. It
does not report pairs of statements, threads, or warps involved in
race conditions. For the kernel functions, we use bug-triggering pa-
rameters or inputs to trigger the data races. For co-cluster, we
launch 8 blocks with 256 threads per block. For em, we launch 8
blocks with 320 threads per block. For scan, we do not execute it
since Static Analyzer detects the races and does not annotate any
statement for runtime checking.
As shown in Table 1, both GRace-stmt and GRace-addr can

effectively detect data races. For example, among the reported
data races, there are no false positives for both GRace-stmt and
GRace-addr. On the contrary, B-tool generates 45,870 false posi-
tives, among the reported 200,445 data races for em. GRace-stmt
and GRace-addr are accurate because both schemes leverage the
knowledge of GPU’s thread scheduling and SIMD execution model.
As a result, GRace does not check memory accesses issued from
different instructions that are executed by different threads within
a warp, which are the sources of false positives reported by B-tool.
Due to B-tool’s incorrect use of inserted synchronization calls for
the instrumentation code, it could not be run for scan on the new
hardware and software.
Table 1 indicates that GRace-stmt provides more accurate in-

formation about data races than GRace-addr and B-tool do. Since
GRace-stmt logs memory accesses at the program statement level,
it can report the pair of racing statements once a bug is found.
On the contrary, GRace-addr and B-tool cannot report the pair of
statements involved in a race, since they do not keep information
of the statements that have accessed the conflicting memory ad-

Apps GRace-stmt GRace-addr B-tool
ShM DM ShM DM Mem*

co-cluster 1.1 KB 43 MB 1.1 KB 9 MB 257 MB
em 1.1 KB 0.8 MB 1.1 KB 18 MB 514 MB

Table 2. Space overhead of GRace. ShM means shared memory, DM is device
memory, and Mem is (host) memory. * B-tool is running in emulation mode, which
does not require shared memory or device memory.

dresses before. Furthermore, GRace-addr reports only the pairs of
racing warps, which are coarser-grained than what is available from
GRace-stmt and B-tool. However, diagnostic information provided
by GRace-addr is still useful to locate the root causes. For example,
based on memory addresses involved in a race and the correspond-
ing pair of racing warps, programmers can narrow down the search
range of possible statements and threads responsible for the data
race and further identify the root causes.
Table 1 further shows that Static Analyzer not only reduces

runtime overhead of dynamic checking, can it also detect data races.
For example, Static Analyzer detects the data races in scan and
resolves all memory addresses. Therefore, it totally eliminates the
overhead of running Dynamic Checker for this application.

5.2 Runtime Overhead
We measure the execution time for co-cluster and em in four
configurations: executing the kernels on GPU natively without any
instrumentation, executing the kernels with GRace-stmt on GPU,
executing the kernels with GRace-addr on GPU, and executing the
kernels with B-tool in the device emulation mode provided by the
CUDA SDK. We run B-tool in emulation mode as it is not designed
to run on an actual GPU [7]. For both kernels, we use normal inputs,
i.e. those that do not trigger data races, for these experiments. Note
that GRace does not have runtime overhead for scan since the
Static Analyzer did not annotate any statements.
Figure 5 shows that GRace-addr and GRace-stmt incur lower

runtime overhead than the B-tool. For example, GRace-addr and
GRace-stmt slow down em by 22% and 19 times, respectively.
On the contrary, B-tool incurs several orders of magnitude higher
runtime overhead, i.e. slowing down em by 103,850 times. There
are several reasons for the big performance gap between GRace
and B-tool. First, GRace-addr and GRace-stmt utilize static analysis
to significantly reduce the number of memory accesses that need
to be checked dynamically. Second, both GRace-addr and GRace-
stmt delay inter-warp race detection to synchronization calls, while
B-tool checks data races for each memory access, which requires
scanning of four bookkeeping tables after each memory access.
Third, emulation mode further adds to the slow-down.
Figure 5 also indicates that GRace-addr is significantly more ef-

ficient than GRace-stmt. For example, GRace-addr slows down em
and co-cluster by 22% and 116%, respectively, while GRace-
stmt slows down em and co-cluster by 19 times and 9,862
times, respectively. This is mainly because GRace-addr’s inter-warp
race detection algorithm runs in a constant amount of time, i.e. it
does not depend on the execution number of instrumented state-
ments. Whereas, the complexity of GRace-stmt’s inter-warp race

Overall, we can see that GMRace-flag’s runtime over-
heads are very modest, making it suitable for invocation by
an end-user, who is testing a full application. If a race
condition is detected in a specific kernel, the user can
trigger GMRace-stmt, and collect more detailed information
to help debugging.

4.3 GMRace versus GRace
This section compares GMRace with GRace [21], the first
version of our tool. By combining static analysis and
dynamic analysis, both GMRace and GRace are accurate
in detecting data races. However, in terms of efficiency,
GMRace improves GRace drastically.

As shown in Fig. 5, GRace-stmt incurs more than
9,872 times overhead on em, while GMRace-stmt only incurs
about 97 times overhead, which is a 100-fold reduction. This is
becauseGMRace-stmtmakesuseofawholeGPUthreadblock
to perform the interwarp race detection in parallel (Algorithm
1), which solves the performance bottleneck of GRace-stmt.
Similarly, GMRace-flag also improves GRace-addr signifi-
cantly. For example, the overhead of GRace-addr on spmv is
1.1 times, while the overhead of GMRace-flag onspmv is only
22.9percent.This is becauseGMRace-flagusesimple 1/0flags
to mark the memory accesses, while GRace-addr must keep
counting the accesses.

On average, GMRace-stmt reduces the overhead of
GRace-stmt by a factor of 100.9, while GMRace-flag
reduces the overhead of GRace-addr by a factor of 2.6. In
addition, GMRace-flag scheme reduces the space overhead
of GRace-addr by a factor of 4.5.

5 ISSUES AND DISCUSSION

We discuss three additional issues related to the usage of
GMRace in this section.

5.1 Static Analysis
Our static analysis is currently simple and conservative. It
only reports invariants or races if it can guarantee that
these properties or conditions exist. Any invariants or
memory access addresses that it cannot determine is
annotated to be monitored at runtime. In the presence of
more complex language features, it cannot determine
properties like loop-invariance or thread-invariance. Thus,
we will have to track more references at runtime if such
features are used. Based on our experience, most numerical
kernels involve loops on arrays, which can be analyzed by
our static analysis methods.

5.2 False Negatives
Similar to other dynamic tools, the Dynamic Checker of
GMRace detects bugs that manifest themselves in the

exercised paths during program execution. In other words,
the control flow paths that are never executed are not
checked by the Dynamic Checker. Therefore, GMRace may
miss some data races in GPU programs, which is a common
problem for all dynamic tools for software bug detection.
How to improve the path coverage by generating different
test inputs is an interesting research topic garnering much
research attention [27], [28], [29], [30]. Research advances
along this direction can help improve GMRace.

5.3 Application of GMRace
The current implementation of GMRace focuses on data
race detection on GPU programs. While this is an important
topic for GPU programs, other issues such as buffer
overflow, warp divergence, and shared memory usage
may affect the correctness and/or the performance of GPU
programs. Although GMRace cannot directly address these
problems other than data races, some of the underlying
ideas in GMRace are still applicable. For example, the idea
of combining static and dynamic analysis can offer
significant help to dynamic profiler that collects shared
memory usage of GPU programs by reducing runtime/
space overheads.

6 RELATED WORK

GMRace is related to previous studies on data race
detection, detection for other types of concurrency bugs,
bug detection for parallel and distributed programs, tool
development for GPU programming, and optimizations of
GPU programs.

6.1 Data Race Detection
As discussed before, many dynamic race detectors [8], [12],
[13], [14], [15], [16], [17], [18], [19], [20], which are designed
for CPU programs, are not suitable for GPU programs. For
example, the lockset-based race prediction [13] cannot
handle GPU’s barrier-based synchronization, and the
thread rescheduling [13] does not apply to GPU’s SIMD
execution model. Besides, researchers proposed static
methods for race detection, including static lockset algo-
rithm [31] and race type-safe systems [32], [33]. Without
runtime information, static methods may generate many
false positives. Additionally, researchers also proposed to
detect races using model checking [34], which has the
limitation of state explosion problem in general. Further-
more, happens-before relation has also be applied to detect
races in OpenMP programs [35]. Unlike these approaches,
our work focuses on detecting races in GPU programs,
which have different characteristics to deal with. To manage
contention of shared resources, new OS schedulers have
been proposed [36].

6.2 Detection for Other Types of Concurrency Bugs

In addition to data races, researchers have conducted
studies on other types of concurrency bugs such as
atomicity violation, deadlock, and typestate violation [37].
Atomizer [38], SVD [39], AVIO [40], and Kivati [41] are
proposed to detect or prevent atomicity violation bugs.
Moreover, tools using static analysis [31], [42], [43], model
checking [44], and dynamic checking [45], [46], [47] can
detect or prevent deadlocks. Unlike these approaches, our
work focuses on data race detection.

112 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 1, JANUARY 2014

Fig. 5. Runtime overhead of different schemes of GMRace and GRace.
Note that the y-axis is on a logarithmic scale.

20

kinds of races
• Is it possible for GMRace to have false positives?

• Can indirect memory accesses cause data races on
GPUs?

• The LDetector paper says that intra-warp races are
"trivial" and mostly decidable at compile-time, so they
leave it out. However, GMrace treats intra-warp
detection explicitly and reuses the warp tables for
inter-warp detection. What is the real importance of
intra-warp detection?

21

fixing races

• We have read a few papers on data race
detection but none of them talk about correcting
these data races. In general, at the point where
a data race is detected, does the system take a
checkpoint and rollback/replay to modify the
thread scheduling to avoid occurrence of the
data-race in the re-execution or does it just
abort?

22

performance

• How is it that inserted code by the dynamic
checker affects register assignment and,
although it doesn’t affect the detection
capabilities, does it affect performance?

• What is the overhead of the static analysis?

23

benchmarks
• Co-clustering and EM-clustering keep showing

up as benchmarks in these race detector
papers. Why are these algorithms particularly
important benchmarks?

• I noticed that most of the race detectors seem to
have very few benchmarks compared to the
other papers we looked at, is there a reason for
this?

24

