
31 March 2016

HW2: CUDA Synchronization
Primitives
CIS 601

WarpLevelLock

✤ fences go right next to the critical section

__device__ void lock() {
 while (atomicCAS((int*)&theLock, LOCK_FREE,LOCK_HELD)
 ;
 __threadfence();
}
!
__device__ void unlock() {
 __threadfence();
 atomicExch((int*)&theLock, LOCK_FREE);
}

2

WarpLevelLock

✤ always use atomic operations on the lock location

3

ThreadLevelLock

✤ beware assumptions about which threads are active

for (int w = 0; w < warpSize; w++) {
 if (w == threadIdx.x % warpSize) {
 warpLock.lock();
 fun();
 warpLock.unlock();
 }
}

4

SpinBarrier pseudocode

shared count : integer := P
shared sense : Boolean := true
processor private local_sense : Boolean := true

procedure central_barrier
 // each proc toggles its own sense
 local_sense := not local_sense
 if fetch_and_decrement(&count) = 1:
 count := P
 // last proc toggles global sense
 sense := local_sense
 else:
 repeat until sense = local_sense

How should local_sense be implemented?
5

Common SpinBarrier issues

✤ extraneous atomics, __threadfences!

✤ insufficient locking
__device__ virtual void wait() {
 warpLock.lock();
 bool localSense = !sense;
 arrived++;
 if (arrived >= m_expected) {
 arrived = 0;
 sense = localSense;
 }
 warpLock.unlock();
!
 while (sense != localSense);
 }

6

__device__ virtual void wait() {
 lock();
 bool localSense = !sense;
 arrived += 1;
!
 if (arrived == m_expected) {
 arrived = 0;
 sense = localSense;
 unlock();
 return;
 } else {
 unlock();
 while (1) {
 lock();
 if (sense == localSense) {
 unlock();
 return;
 }
 unlock();
 }
 }
}

SpinBarrier

7

2-Level Barrier (1 __syncthreads)

✤ no data races here, but doesn’t synchronize client code
as expected

__device__ virtual void wait() {
 if (threadIdx.x == 0) {
 SpinBarrier::wait();
 }
 __syncthreads();
}

8

2-Level Barrier (2 __syncthreads)

✤ works as expected

__device__ virtual void wait() {
 __syncthreads();
 if (threadIdx.x == 0) {
 SpinBarrier::wait();
 }
 __syncthreads();
}

9

Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal

GRace
A Low-Overhead Mechanism for Detecting Data Races in GPU Programs

10

GRace overview

✤ detects shared memory races between __syncthreads
calls!

✤ ignores other synchronization (atomics, fences) and
device memory!

✤ assumes consistent access granularity?

11

12

13

14

Background

✤ Where do the race detector programs that implement
mechanisms like GRace run? Do they run on CPU in
parallel with the GPU kernel being executed?!

✤ Can you go over the layout of warpTable? Is it
indexed/keyed by the address of the instruction
performing a memory operation, or by (threadId,
memoryAddress)?

15

False Positives

✤ Shouldn't they also use comparisons that show the
possible false positives in GRace?

16

Intra-warp races

✤ In the intra-warp race detection algorithm, they
completely disregard read memory accesses and are
only concerned with write-write data race. Why are
they not dealing with read-write data race? How will
intra-warp detection algorithm work if we take into
account control flow divergence?

17

Usage Model

✤ How do you create "bug-triggering inputs and parameters"
if you don't really know about data races on GPUs and
want to use GRace to help you finding them?!

✤ Why do both GRace and cuda-memcheck only consider
data races in shared memory accesses? Is it that much more
work to detect them in global accesses? These tools seem to
be targeted at already "tuned" code where the assumption
is that you're heavily using shared memory (and that the
global sync portion is relatively simple/race-free).

18

Static Analysis

✤ How does the static analyzer handle aliasing? Will aliasing cause
the static analyzer to miss races?!

✤ The static analysis component of GRace appears to be limited to
cases where memory addresses are defined in terms of tid (the
thread ID) and i (some loop index). There exist more sophisticated
data-flow analysis techniques that would enable more sophisticated
reasoning about possible values of memory addresses in the code.
(One heavy-duty example would be a framework like KLEE, which
is specific to LLVM.) Do you know why the authors didn't use these
techniques? Do you think it would be possible to implement them
without substantial refactoring of their static analysis algorithm?

19

Scalability

✤ Both the schemes GRace-stmt (device memory scope)
and GRace-addr (shared memory scope) perform well
only with a small number of statements being
instrumented and executed. Are there any other tools
that are more scalable and work well larger number of
statements?!

✤ Can this be sped up by adding any hardware features? !

✤ Are there any thread count, memory size constraints?
20

Evaluation

✤ What is EM clustering?!

✤ The paper only shows that GRace-stmt and GRace-addr for
only 3 applications out of which B-tool (the previous work)
could not be evaluated for 'scan' because of new hardware
and software. Isn't this a weak proof that GRace is better in
performance than B-tool?!

✤ Are three kernels really sufficient to test GRace? Why did
they pick these kernels in particular and shouldn't a more
comprehensive battery of smaller tests be used?

21

