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ILP & Constraints Conditional Models (CCMs)

= Making global decisions in which several local interdependent decisions play a
role.
= Informally:
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Issues to attend to:

= Forr
While we formulate the problem as an ILP problem, Inference
can be done multiple ways
Search; sampling; dynamic programming; SAT; ILP

- . . . . s
The focus is on joint global inference
Learning may or may not be joint.

. Decomposing models is often beneficial ons

= CCMs make predictions in the presence of /guided by constraints
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Constraints Driven Learning and Decision Making

Why Constraints?
The Goal: Building a good NLP systems easily
We have prior knowledge at our hand

How can we use it?
We suggest that knowledge can often be injected directly

Can use it to guide learning
Can use it to improve decision making
Can use it to simplify the models we need to learn

How useful are constraints?
Useful for supervised learning
Useful for semi-supervised & other label-lean learning paradigms
Sometimes more efficient than labeling data directly
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Inference
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This Tutorial: ILP & Constrained Conditional Models

Part 1: Introduction to Constrained Conditional Models (30min)
Examples:
NE + Relations
Information extraction — correcting models with CCMS
First summary: Why are CCM important
Problem Setting
Features and Constraints; Some hints about training issues
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A process that maintains and
updates a collection of propositions

Comprehension f
about the state of affairs.

(ENGLAND, June, 1989) - Christopher Robin is alive and well. He lives in
England. He is the same person that you read about in the book, Winnie the
Pooh. As 3 boy, Chris lived in a pretty home called Cotchfield Farm. When
Chris was three years old, his father wrote a poem about him. The poem was
printed in a magazine for others to read. Mr. Robin then wrote a book. He
made up a fairy tale land where Chris lived. His friends were animals. There
was a bear called Winnie the Pooh. There was also an owl and a young pig,
aalled a piglet. All the animals were stuffed toys that Chris owned. "Mr. Robin
made them come to life with his words. The places in the story were all near
Cotchfield Farm. Winnie the Pooh was written in 1925. Children still love to
read about Christopher Robin and his animal friends. Most people don‘t know
he is a real person who is grown now. He has written two books of his own.
They tell what it is like to be famous.

1. Christopher Robin was born in England. 2. Winnie the Pooh is a title of a book.
3. Christopher Robin’s dad was a magician. 4. Christopher Robin must be at least 65 no

> This is an Inference Problem
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This Tutorial: ILP & Constrained Conditional Models

Part 2: How to pose the inference problem (45 minutes)
Introduction to ILP
Posing NLP Problems as ILP problems
1. Sequence tagging (HMM/CRF + global constraints)
2. SRL (Independent classifiers + Global Constraints)
3. Sentence Compression (Language Model + Global Constraints)
Less detailed examples
1. Co-reference
2. A bunch more ...
Part 3: Inference Algorithms (ILP & Search) (15 minutes)
Compiling knowledge to linear inequalities
Other algorithms like search
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This Tutorial: ILP & Constrained Conditional Models (Part Il)

Part 4: Training Issues (80 min)

Learning models
Independently of constraints (L+l); Jointly with constraints (IBT)
Decomposed to simpler models

Learning constraints’ penalties
Independently of learning the model
Jointly, along with learning the model

Dealing with lack of supervision
Constraints Driven Semi-Supervised learning (CODL)
Indirect Supervision

Learning Constrained Latent Representations
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This Tutorial: ILP & Constrained Conditional Models (Part Il)

Part 5: Conclusion (& Discussion) (10 min)
Building CCMs; Features and Constraints. Mixed models vs. Joint models;
where is Knowledge coming from

THE END -
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This Tutorial: ILP & Constrained Conditional Models

Part 1: Introduction to Constrained Conditional Models (30min)
Examples:
NE + Relations
Information extraction — correcting models with CCMS
First summary: Why are CCM important
Problem Setting
Features and Constraints; Some hints about training issues
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This Tutorial: ILP & Constrained Conditional Models

Part 2: How to pose the inference problem (45 minutes)
Introduction to ILP
Posing NLP Problems as ILP problems
1. Sequence tagging (HMM/CRF + global constraints)
2. SRL (Independent classifiers + Global Constraints)
3. Sentence Compression (Language Model + Global Constraints)
Less detailed examples
1. Co-reference
2. A bunch more ...
Part 3: Inference Algorithms (ILP & Search) (15 minutes)
Compiling knowledge to linear inequalities
Other algorithms like search
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This Tutorial: ILP & Constrained Conditional Models (Part Il)

Part 4: Training Issues (80 min)

Learning models
Independently of constraints (L+l); Jointly with constraints (IBT)
Decomposed to simpler models

Learning constraints’ penalties
Independently of learning the model
Jointly, along with learning the model

Dealing with lack of supervision
Constraints Driven Semi-Supervised learning (CODL)
Indirect Supervision

Learning Constrained Latent Representations
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Learning and Inference

= Global decisions in which several local decisions play a role but
there are mutual dependencies on their outcome.
E.g. Structured Output Problems — multiple dependent output variables

= (Learned) models/classifiers for different sub-problems
In some cases, not all local models can be learned simultaneously
Key examples in NLP are Textual Entailment and QA
In these cases, constraints may appear only at evaluation time

= |ncorporate models’ information, along with prior
knowledge/constraints, in making coherent decisions

decisions that respect the local models as well as domain & context
specific knowledge/constraints.
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This Tutorial: ILP & Constrained Conditional Models (Part Il)

Part 5: Conclusion (& Discussion) (10 min)
Building CCMs; Features and Constraints. Mixed models vs. Joint models;
where is Knowledge coming from

THE END
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Training Constraints Conditional Models

Decompose Model

e
argmax X - Flax. y) — Zp,-d{y. Lea)
u

|

Learning model ‘ Decompose Model from constraints

Independently of the constraints (L+l)
Jointly, in the presence of the constraints (IBT)
Decomposed to simpler models

Learning constraints’ penalties
Independently of learning the model
Jointly, along with learning the model

Dealing with lack of supervision
Constraints Driven Semi-Supervised learning (CODL)
Indirect Supervision

... Learning Constrained Latent Representations

2 Compyracrog Grour
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This Tutorial: ILP & Constrained Conditional Models

‘Part 1: Introduction to Constrained Conditional Models (30min)
Examples:
NE + Relations
Information extraction - correcting models with CCMS
First summary: Why are CCM important
Problem Setting
Features and Constraints; Some hints about training issues
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Pipeline

Raw Data Most problems are not single classification problems

POS Tagging =—> Phrases =& Semantic Entities =—> Relations

Parsing WSD =—> Semantic Role Labeling

Conceptually, Pipelining is a crude approximation

Interactions occur across levels and down stream decisions often interact
with previous decisions.

Leads to propagation of errors

Occasionally, later stages are easier but cannot correct earlier errors.
But, there are good reasons to use pipelines

Putting everything in one basket may not be right

How about choosing some stages and think about them jointly?

Comaryracnos Grour
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Improvement over

Inference with General Constraint Structure [Roth&YiP‘ no inference: 2-5%

Recognizing Entities and Relations : :

%pther Toos | [ower Joro | [on (005 |

Y

argmax Zy score(y=v) [[y=V]] =

argmax score(E, = PER)- [[E, = PER]] + score(E, = LOC)- [[E1 =LOC]] +
score(R1 = S-of)- [[R1 = S-of]] +.....

Subject to Constraints

irrelevant 0.05 irrelevant 0.10 Note:

Non ntial
spouse_of 0.45 spouse_of 0.05 M%desleque e
born_in 0.50 born_in 0.85

Models could be learned separately; constraints may come up only at decision time.
ww Congeuranicy Guoiye Zme L By
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Task of Interests: Structured Output

For each instance, assign values to a set of variables
m Output variables depend on each other

m Common tasks in

Natural language processing
Parsing; Semantic Parsing; Summarization; Transliteration; Co-reference
resolution, Textual Entailment...

Information extraction
Entities, Relations,...

m Many pure machine learning approaches exist
Hidden Markov Models (HMMs); CRFs
Structured Perceptrons and SVMs...

m However, ...

TRNaRa- EJHIIIAIIH 1:4
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Information Extraction via Hidden Markov Models

Lars Ole Andersen . Pro?ram analysis and specialization for the
C Programming language. PhD thesis. DIKU,
University of Copenhagen, May 1994 .

Prediction result of 3 trained HMM

[AUTHOR Lars Ole Andersen . Program analysis and
TITLE] specialization for the

[EDITOR] C

[BOOKTITLE] Programming lanquage

[TECH-REPORT] . PhD thesis .

[INSTITUTION, DIKU, University of Copenhagen , May
IDATE] 1994 .

Unsatisfactory results !
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Strategies for Improving the Results

(Pure) Machine Learning Approaches
Higher Order HMM/CRF?
Increasing the window size? | INcreasing the model complexity
Adding a lot of new features
Requires a lot of labeled examples

What if we only have a few labeled examples?

Can we keep the learned model
simple and still make expressive

isions?
Any other options? decisions?

Humans can immediately detect bad outputs
The output does not make sense

7 g
@_—1 Crosawyrracnog Sroue “‘*-m/ﬁﬁ ) H
3 i HTY GF [LLIEDIE AT UEFARA-CHANFAIDE ! 16

Information extraction without Prior Knowledge

Lars Ole Andersen . Pro?ram analysis and specialization for the
C Programming language. PhD thesis. DIKU,
University of Copenhagen, May 1994 .

Prediction result of 3 trained HMM

[AUTHOR] Lars Ole Anders@rogram analysis and
TITLE specialization for the o
[EDITOR] . o

[BOOKTITLE] Programming lanquage

[TECH-REPORT] hD thesis. —
INSTITUTION, KU, University o(Copenhagm

Violates lots of natural

7 constraints!
icHghiye Comvuramon Gaoige i I
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Examples of Constraints

Each field must be a consecutive list of words and can appear
at most once in a citation

State transitions must occur on punctuation marks.

The citation can only start with AUTHOR or EDITOR

The words pp., pages correspond to PAGE.

Four digits starting with 20xx and 19xx are DATE.
Quotations can appear only in TITLE

....... Easy to express pieces of “knowledge”

Non Propositional; May use Quantifiers
gt Comeracnon Cooue e, “
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Information Extraction with Constraints

®  Adding constraints, we get correct results!
O Without changing the model

m  JAUTHOR] Lars Ole Anderser@
[TITLE] Program analysis ard specialization for the

C Programming lanquad
[TECH-REPORT] ~ PhD thes@
[INSTITUTION] ~ DIKU , Uhivrsity of Copenhag@
[DATE] May, 1994

Constrained Conditional Models Allow:
Learning a simple model
Make decisions with a more complex model
Accomplished by directly incorporating constraints to bias/re-
ranks decisions made by the simpler model
@_‘& CERAPTETION GH0E TEEMEE ]
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Problem Setting

Random Variables Y:

Conditional Distributions P (learned by models/classifiers)
Constraints C— any Boolean function
defined over partial assignments (possibly: + weights W )

Goal: Find the “best” assignment
The assignm i i performance.

Y*:argmaxY PeY (+weC) subject to constraints C
H"Iﬂ/las 1:10 H

Constrained Conditional Models (aka ILP Inference)

Penalty for violating
the constraint.

K
*U‘”'“MV A Flay) — L pid(y. Lo i) (Soft) constraints
i=1 component
Weight Vector for
| local” models | Features, classifiers; log- How far y is from
linear models (HMM, a “legal” assignment
CRF) or a combination

CCM s can be viewed as a general interface to easily combine
domain knowledge with data driven statistical models

How to solve? How to train?

Training is learning the objective

This is an Integer Linear Program

Solving using ILP packages gives an Function.
exact solution. How to exploit the structure to
Search techniques are also possible minimize supervision?

= TIT
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Features Versus Constraints

@ : X xY—=R; Ci:XxY—{0,1} d:XXY—=R;
In principle, constraints and features can encode the same propeties
In practice, they are very different

Features
Local, short distance properties — to allow tractable inference
Propositional (grounded):

E.g. True if: “the” followed by a Noun occurs in the sentence”
Constraints
Global properties Indeed, used differently

Quantified, first order logic expressions
E.g.True if: “all y;s in the sequence y are assigned different values.”

i B ]
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Encoding Prior Knowledge

Consider encoding the knowledge that:
Entities of type A and B cannot occur simultaneously in a sentence

The “Feature” Way Need more training data
Results in higher order HMM, CRF
May require designing a model tailored to knowledge/constraints
Large number of new features: might require more labeled data
Wastes parameters to learn indirectly knowledge we have.

The Constraints Way A form of supervision

Keeps the model simple; add expressive constraints directly
A small set of constraints
Allows for decision time incorporation of constraints

-T“-m/|35 1:13 ]
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Constrained Conditional Models — 15t Part

Introduced CCMs as a formalisms that allows us to
Learn simpler models than we would otherwise

Make decisions with expressive models, augmented by declarative
constraints

Focused on modeling — posing NLP problems as ILP problems

1. Sequence tagging (HMM/CRF + global constraints)

2. SRL (Independent classifiers + Global Constraints)

3. Sentence Compression (Language Model + Global Constraints)
Described Inference

From declarative constraints to ILP; solving ILP, exactly & approximately
Next half — Learning

Supervised setting, and supervision-lean settings

@{E Congeuranon) Gaoiys =i?“;m/|ii5 s B
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Constrained Conditional Models — 15t Summary

Everything that has to do with Constraints and Learning models
In both examples, we first learned models
Either for components of the problem
Classifiers for Relations and Entities
Or the whole problem
Citations
We then included constraints on the output
As a way to “correct” the output of the model
In both cases this allows us to
Learn simpler models than we would otherwise
As presented, global constraints did not take part in training

Global constraints were used only at the output.
A simple (and very effective) training paradigm (L+l); we’ll discuss others

b H‘-m/las 1:14 H
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This Tutorial: ILP & Constrained Conditional Models

Part 2: How to pose the inference problem (45 minutes)
Introduction to ILP
Posing NLP Problems as ILP problems
1. Sequence tagging (HMM/CRF + global constraints)
2.SRL (Independent classifiers + Global Constraints)
3. Sentence Compression (Language Model + Global Constraints)
Less detailed examples
1. Co-reference
2. A bunch more ...
Part 3: Inference Algorithms (ILP & Search) (15 minutes)
Compiling knowledge to linear inequalities
Other algorithms like search

cipziye Cogmprrarins Sougge
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CCMs are Optimization Problems

We pose inference as an optimization problem
Integer Linear Programming (ILP)

Advantages:
Keep model small; easy to learn
Still allowing expressive, long-range constraints
Mathematical optimization is well studied
Exact solution to the inference problem is possible
Powerful off-the-shelf solvers exist

Disadvantage:
The inference problem could be NP-hard

icupbbis Compuranon Grour

ITE DF [LLINDIF AT UNRNANA-CHAMFAIGE

Linear Programming: Example

Telfa Co. produces tables and chairs
Each table makes $8 profit, each chair makes $5 profit.

We want to maximize the profit.

Decision Variables

%1 = number of tables manufactured
¥z = number of chairs manufactured

Objective function

Profit = 8x + 5xp

@“: Copmmrramon Groge
e ITY OF ILEIRCIE AT URFASA-CEAMFALGN

Linear Programming: Example

Telfa Co. produces tables and chairs
Each table makes $8 profit, each chair makes $5 profit.
A table requires 1 hour of labor and 9 sq. feet of wood.
A chair requires 1 hour of labor and 5 sq. feet of wood.

We have only 6 hours of work and 45sq. feet of wood.

We want to maximize the profit.

Objective function

Profit = 8x; + 5x2 2=c- T

Constraints

Labour constraint X + x» = B .
Wood constraint 9x + 5w = 45 AZX<b
Variable constraints X = 0

p = 0

s v'ﬁ'g’z Copeurrarios Grouy
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Solving Linear Programming Problems

Oy 4 5u, =43 = LFs feasible region

Region that contains all the
points that satisty the LP
constraints. A polyhedral
convex set.

V5 S~ —‘
1 1 1 L >l
L 1 2 3 4 L1 L] 7

Cost (profit) vector

enebiye Copmrrramion Snonp
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Solving Linear Programming Problems

A line on which all points have
the same objective function

@“: Copmmrramon Groge
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Solving Linear Programming Problems

On 45, =45 = L5 feasible region

Isoprofit Line

A line on which all points have
the same objective function
value.

JGH e Compuranon Grour
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Solving Linear Programming Problems

= LI"s feasible region

The point within feasible region
that has maximum objective
function value.

Opaimal LP solution

S

@gz Conpurenion Grouy
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Solving Linear Programming Problems

Solving LP Models

@ Explore extreme points of a polyhedral set.
@ Move from one extreme point to an adjacent extreme point.
@ Use the simplex algorithm (Dantzig, 1963)

i szt Copaereanion Gaoye
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Integer Linear Programming has Integer Solutions

o T T T T T T

Oy s 5x,=45 * IP feasiable point
IP relaxation’s feasible regio

Not all points within feasible
region of an LP will be solutions
to ILP problem.

Opaimal LP solution
e,

enysiyE Cowruramon Sroge
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Solving Linear Programming Problems

Solving LP Models

@ Explore extreme points of a polyhedral set.
@ Move from one extreme point to an adjacent extreme point.
@ Use the simplex algorithm (Dantzig, 1963)

Solution to Telfa Problem

@ z=41.25
@ x; =375
@ X2 =225

@ We cannot build a fraction of a chair or table!

Sl bire Compuranon Grouy
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Integer Linear Programming

In NLP, we are dealing with discrete outputs, therefore we're
almost always interested in integer solutions.

ILP is NP-complete, but often efficient for large NLP problems.

In some cases, the solutions to LP are integral (e.g totally unimodular
constraint matrix).
NLP problems are sparse!

Not many constraints are active

Not many variables are involved in each constraint

L) z= Conpurenion Grouy
i
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Posing Your Problem

Penalty for violating
the constraint.

munmxA F(a 2 pid(y. 1o, (r)) | (SOf constraints
. component
i—
Weight Vector for / I
(g1 [E6E A collection of Classifiers; How far y is from
Log-linear models (HMM, a “legal” assignment
CRF) or a combination

How do we write our models in this form?
What goes in an objective function?
How to design constraints?

"'JP CRAFUTATION SRoye
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CCM Examples

Many works in NLP make use of constrained conditional
models, implicitly or explicitly.
Next we describe three examples in detail.

‘ Example 1: Sequence Tagging
Adding long range constraints to a simple model

Example 2: Semantic Role Labeling

The use of inference with constraints to improve semantic parsing
Example 3: Sentence Compression

Simple language model with constraints outperforms complex models

2:14 ]
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Example 1: Sequence Tagging

HMM / CRF: y = argn;axP(yO)P(a:O\yg) H P(yilyi—1)P(zily:)
ye iy

P(y)  P(yilyo) Plyalyr) Plysly2) Plyalys)

Here, y's are variables; x’s are fixed.

Our objective function must l l l l l

include all entries of the CPTs.
P(zolyo) Plailyr) Plaalye) Plaslys) Plaalya)

Example: the man

saw the dog
Dy Dy D
N N N N
A A A A
V! Vf \ V)

Every assignment to the y’s is a path.

Every edge is a Boolean variable
that selects a transition CPT entry.

N
They are related: if we choose
Yo = D then we must choose an edge
Yo=DAYy; =7. Y

. s
.
RETROTE AT ul"fi.—-gcli'ﬁ".lﬂl mlas 2:15 ]

Example 1: Sequence Tagging

HMM / CRF: Example:  the man saw the dog
n—1

y'= argmax P(yo)P(wolyo) [ | Pwilys—1)P(ailys)
Y€,

i=1

A A A A A
As an ILP: Y VA Y, VA Vv
maximize E Aoy l{yo= ,,} + Z Z Z A e Ao,y = log(P(y)) + log(P(zoly))
yey i=1 yeY y’ey Ay =log(P(yly')) + log(P(z:]y))
subject to

ierbiys Cosparrarion Ceoup
T ITY OF ILLINGCIN AT UNTAXA-CNAKFAICA




Example 1: Sequence Tagging

HMM / CRF: Example: dog
NN,
oL OSHIOSTIOSHIOTH
e ‘ ‘ ‘ XA
NEEEREARIA

n—1

y' = argmyaxP(yu)P(zD\yu) 11 PGty P(ily:)
Y€

i=1

As an ILP:

n—1

maximize Z Moy Liyo=y} + z Z Z iy Wyimy A yioa=y'} Ao,y = log(P(y)) + log(P(xoly))

yey i=1 yey y'ey Aiy,y = log(P(yly')) +log(P(zily))
subject to . L
Z Lyo=yy =1 Discrete predictions
vey

b I

cipzire Copprrraring Srooe
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Example 1: Sequence Tagging
HMM / CRF: Example: man d"g
’ N7 \/“\/“\/
S
A s 4‘\ A‘*eﬁ ;

N IR ERTRIR

n—1

¥ —argmaxP(yo)P(zu\yu 11 Pilyi-)P(xily:)
i=1

As an ILP:

n—1

maximize Z Aoy Liyo=y} + Z z Z Ny Yyimy A yioi=y'} Ao,y = log(P(y)) +log(P(woly))

yey i=1 yey y'ey Aigy = log(P(yly)) + log(P(xily))
subject to

D L= =1 Discrete predictions

yeY

VY, Liyo=y} = Z Liyo=y A ya=y'}

vey Feature consistency
Vy,i>1 z Yyisi=y A yi=y} = Z Lyimy A yia=y"}
yey vy

0=“NN"} =

2:18 ﬂ
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Example 1: Sequence Tagging

e dog

man saw the c
SZNANTN,

’ ¢ XS AN
SLOSEROKLOSHK
.«A% 2562 v“ o
As an ILP: NN A

n—1
maximize Z Aoy Liyo=y} + Z Z Z Ny Wyimy A yior=y'} Aoy =log(P(y)) + log(P(xoly))
vey i=1yeVy'ey Niyy = log(P(yly")) +log(P(@ily))

HMM / CRF: Brample:

n-1
y' = argr;axp(yn)P(wn\yn) 11 P@ilyi—1)P(wily:)
yE. i=1

/

subject to
D L=y =1 Discrete predictions
yey
VY, Liyo=y} = Z Liyo=y A ya=y'}
y'ey .
) Feature consistency
Vy,i>1 Z l{yk]:y/ Ayi=y} — Z 1{y‘:y Ayit1=y"'}
vey vy
n—1
Lyomvy 2 2 Ly imy nymvry = 1 There must be a verb!

i=1 yey

-“-m/las 2:19 ]
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CCM Examples: (Add Constraints; Solve as ILP)

Many works in NLP make use of constrained conditional
models, implicitly or explicitly.
Next we describe three examples in detail.

Example 1: Sequence Tagging
Adding long range constraints to a simple model
‘ Example 2: Semantic Role Labeling
The use of inference with constraints to improve semantic parsing
Example 3: Sentence Compression
Simple language model with constraints outperforms complex models

-“-m/las 2:20 ﬂ
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Example 2: Semantic Role Labeling
Who did what to whom, when, where, why, ...
Semantic Role Labeling Output

‘ Demo:http://L2R.cs.uiuc.edu/~cogcomp

Input Text:
A car bomb that exploded outside the U.S. military base in Beniji killed 11 Iragi citizens.

Result: Completal

# General Explanation of Argument Labels APPYOQCh 8
1) Reveals several relations.

bomb [A1] [ Killer (A0]

bomb

(Reference) 2) Produces 3 very good
Spiodsd . semantic parser. FI~90%
outside 3) Easy and fast: ~7 Sent/Sec
. (using Xpress-MP)

military
base

Top ranked system in CoNLL'05
shared task
11 <L Key difference is the Inference

Iragl
citizens
LY. .

cweriye Coppruramion Seooe
!
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Simple sentence:

1 left my pearls to my daughter in my will .
1 left [my pearls],, to my daughter|  [in my will],_ o -

Leaver
Al Things left
Benefactor
AM-LOC Location

1 left my pearls to my daughter in my will .

iy bire Compuranon Grouy
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I left my nice pearls to her

Algorithmic Approach =
icandidate arguments%

=) = |dentify argument candidates ——
Pruning [Xue&Palmer, EMNLP’04]

Argument Identifier
Binary classification

jmm = Classify argument candidates @

Argument Classifier
Multi-class classification

)= Inference

Use the estimated probability distribution
given by the argument classifier

—_—
Use structural and linguistic constraints @__

Infer the optimal global output -

enysiyE Cowruramon Sroge
e T ILEIECIE AT URFASA-CEAMFALGN

Semantic Role Labeling (SRL)

1 left my pearls to my daughter in my will .

0.1 = s 0:05 0.6
. 0.6 0.05 .
0.1 0.05
0.05 0.05 —
0.05 .
0.15
: 0.2
0.1
0.2

@? Conpurenion Grouy
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Semantic Role Labeling (SRL)

1 left my pearls to my daughter in my will

0.05

o -0.15 0.05 o
0.1

0.05

0.05
0.05
0.15 0.2
0.1
0.2

TP

enebiye Copmrrramion Snonp
T e Ty
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Semantic Role Labeling (SRL)

1 left my pearls to my daughter in my will .

0.05

o 0.15 0.05 o
. 0.6 .
0.1

0.05

Constraints

Any Boolean rule can be encoded as

No duplicate argument classes . . B
a set of linear inequalities.

n—1
Yy ey, Z L=y <1
=0 ‘ If there is an R-Ax phrase, there is an Ax ‘
R-Ax n—1 n—1
Yy € Vg, E Liy=y=R-Ax"} < E Liy=«ax"y
i=0 i=0
C-Ax ‘ If there is an C-x phrase, there is an Ax\ \Q it ‘

j
Vi y € Vo, Liy—y=sc-Ax} < Z Ly==Ax} Universally quantified

iz0 rlae

LBJ: allows a developer to encode
constraints in FOL; these are
compiled into linear inequalities
automatically.

m Many other possible constraints:
Unique labels

No overlapping or embedding

Relations between number of arguments; order constraints

‘ Joint inference can be used also to combine different SRL Systems. ‘

-“-«'m/las 2:27 ]

enysiyE Cowruramon Sroge
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0.05
0.0 0.15 0.2
One inference
problem for each 01
verb predicate. :
0.2
I -
fcupiils Comprrenon Caour | 0 iz
N i =] B
SRL: Posing the Problem e —

n-l bomb
maximize Z Z Axiylyi=y} S

i=0 yey | V: explode | |
where Ay =X F(x,y) = Ay - F(x) [mfg\g] .
subject to . il temporal —
vi, Z Liyi=yy = 1 base [AM-TMP] l
yeY [m:gg]
n—1
vy e, Z Liyi=yy <1
i=0
n—1 n—1 °
Yy € Vg, Z 1{yi:y:“R—AX”} < Z 1{yi:“Ax”}

i=0 i=0

J
Vi, y € Yo, ly—y=c-ax’y < Z Liy=«axy
i=0

@gz Conpurenion Grouy
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CCM Examples: (Add Constraints; Solve as ILP)

Many works in NLP make use of constrained conditional
models, implicitly or explicitly.
Next we describe three examples in detail.

Example 1: Sequence Tagging
Adding long range constraints to a simple model
Example 2: Semantic Role Labeling
The use of inference with constraints to improve semantic parsing
‘ Example 3: Sentence Compression

Simple language model with constraints outperforms complex models

cpzire Copppuranion Gooue "‘"m/|35 220 ]

Example

Trigram Objective Function

n—2 n-1 n

max > Y > ke P(Xklxi X))

i=0 j=i+1 k=j+1

Example:

o 1 12 3[4 [5 [6]7 18 |
Big  fish eat small fish in 3 small  pond
Big  fish in a pond

0y =0,=0,=0;=05=1
Yois = Vise = Vses =1

P, . 4
@‘: Coppruramicn Grogr ""m/laE 231 ;IIT
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Example 3: Sentence Compression (Clarke & Lapata)

He became a power player in Greek Politics in 1974, when he

founded the socialist Pasok Party.
He became a player in politics.

We took these troubled youth who don't have fathers, and

brought them into the room to Dads who don't have their
children.

We took these youth and brought them into the room to Dads.

Gicaypbiis Coupuranon Geour "‘"m/|35 .

ITE DF [LLINDIF AT UNRNANA-CHAMFAIGE

0

Language model-based compression

Trigram Objective Function

n—2 n-1 n

max > Y > ke P(Xklxi X))

i=0 j=i+1 k=j+1

Decision Variables

5 1 if x; is in the compression
: 0 otherwise

(1<i<n)

Auxiliary Variables

- 1 if word sequence X;. X;. X is in the compression
=1 0 otherwise

cprirs Conpuramion Group ""m/laE -
23 ITY OF [LLINGIF AT URPAXKA-CRAMFALGA T 2:32




Example: Summarization

Trigram Objective Function

n—2 n-1 n

max > Y > ke P(Xklxi X))

i=0 j=i+1 k=j+1

This formulation requires some additional constraints

Big fish eat small fish in a small pond
No selection of decision variables can make these trigrams appear
consecutively in output.

We skip these constraints here.

m7 g 1
'ge-u gpiye Comprranion Sroge ""'n‘l/las 233 ]
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Modifier Constraints

Modifier Constraints

@ Ensure the relationships between head words and their modifiers
remain grammatical.

@ |f a modifier is in the compression, its head word must be included:

‘sfiead ‘smadi!er 2> 0

@ Do not drop not if the head word is in the compression (same for
words like his, our and genitives).

Kongbiys Conpuranion Croue *-m/|a5 255 [

Trigram model in action

He became a power player in Greek Politics in 1974, when he

founded the socialist Pasok Party.
He became a player in the Pasok.

We took these troubled youth who don't have fathers, and
brought them into the room to Dads who don't have their

children.
We don't have, and don't have children.

(caghiis Compuranoy Group "‘"m/las .
X ITE DF [LLINDIF AT VNNANA-CHAMNFAIEN Tl -
Example

He became a power player in Greek Politics in 1974, when he

founded the socialist Pasok Party.
He became a player in the Pasok.

We took these troubled youth who don't have fathers, and

brought them into the room to Dads who don't have their
children.

We don't have, and don't have children.

cprirs Conpuramion Group "‘"m/las -
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Example

He became a power player in Greek Politics in 1974, when he

founded the socialist Pasok Party.
He became a player in the Pasok Party.

We took these troubled youth who don't have fathers, and

brought them into the room to Dads who don't have their
children.

We don't have them don't have their children.

Csire Cosapuririoy
!

Sentential Constraints

Sentential Constraints

@ Take the overall sentence structure into account.

@ If a verb is in the compression then so are its arguments, and
vice-versa:

‘isubjecr/abjecr dyery = 0

@ The compression must contain at least one verb.

Example

He became a power player in Greek Politics in 1974, when he

founded the socialist Pasok Party.
He became a player in the Pasok Party.

We took these troubled youth who don’t have fathers, and

brought them into the room to Dads who don't have their
children.

We don't have them don't have their children.

capbiye Compuranon Creoe ""'rﬂ/ms 220 [
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Example

He became a power player in Greek Politics in 1974, when he

founded the socialist Pasok Party.
He became a player in politics.

We took these troubled youth who don't have fathers, and

brought them into the room to Dads who don't have their
children.

We took these youth and brought them into the room to Dads.

cprirs Conpuramion Group “‘-m/lﬂs « K
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More constraints

Discourse Constraints

@ Preserve the discourse flow of the original document.
@ Focus on local discourse.
@ Retain personal pronouns.
6pronoun =1
@ Centering constraint over adjacent sentences.
l";ce.'n.’(-;nr =1
@ Lexical chains constraint on nouns in prevalent chains.
Stopical = 1

enebiye Copmrrramion Snonp
T |
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Other CCM Examples: Coref (Denis & Baldridge)

Example

Clinton o

nswers to tions abou

a
\onstrained by -'S inve

reporter Mara Liasson asked hether

- had any conversations with - about -

testimony, had any conversations at all."

Two types of entities:
== “Base entities”
== “Anaphors” (pointers)

jogsbre Cowmrranion Grony

= ITY OF ILEIKDIE AT DASANA CEAMFALGH

Sentence Compression: Posing the Problem

maximize Z Z Z MNeij YVigk

0 j=i+1k=j+1 - - -
) =0 = I if the three corresponding auxiliary variables are on,
subject to the inference variable must be on.

Vi, gk, 0<i<j<k<n, (3vik < 8 +6; + 6 )
[2+7i,j,k26i+6j+5k]

j—1 k—1
(k—i—?)’yi,j,k-l- Z 0s + Z 0s <k—1i—2

s=i+1 s=j+1

If the inference variable is on, no intermediate
auxiliary variables may be on.

@g{ Coupurranon Geour = ., N
X ITE DF [LLINDIF AT VNNANA-CHAMNFAIEN - -

Other CCM Examples: Coref (Denis & Baldridge)

EHERH o1

answers to questions

constrained by
reporter Mara Liasson asked _

- had any conversations with - about -

testimony, had any conversations at all."

7

Error analysis:
1)“Base entities” that “point” to anaphors.
2)Anaphors that don't “point” to anything.

@z Conpurenion Grouy
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Other CCM Examples: Coref (Denis & Baldridge)

New ILP problem

maximize: )" ¢f; x5 +(1—¢Fp)- (1 —x4)
{ij)eP
+Xjemef y +(1=¢f) - (1-y))

subjectto:  x;; € {0,1} V(. j)eP
yie{0.1} vyeM
resolve all anaphors: y; < 3 iy \,J\ YeM
resolve only anaphors: y; = x;;;, ¥({i.j)e P

cspiye Copprursimion Seoue ""'n‘l/las 245 ]
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Other CCM Examples: Opinion Recognition

Y. Choi, E. Breck, and C. Cardie. Joint Extraction of Entities and
Relations for Opinion Recognition EMNLP-2006

[Busi)™) mtends'™ 1o cwb the mcrease

harmful gas emissions and is counting on'!)

the sood will'® of [US industrialists]®) .

Semantic parsing variation:
Agent=entity
Relation=opinion
Constraints:
An agent can have at most two opinions.
An opinion should be linked to only one agent.
The usual non-overlap constraints.

2:46 ]

gm vE Coppuranon Grour
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Other CCM Examples: Temporal Ordering

N. Chambers and D. Jurafsky. Jointly Combining Implicit
Constraints Improves Temporal Ordering. EMNLP-2008.

Trusteorp Inc. will become(el) Society Bank & Trust
when its merger(ed) is complered(ed) with Sociery Corp.
of Cleveland, the bank said(e5). Sociery Corp., which is
also a bank, agreed(e6) in June(t15) to buy(e8) Trustcorp
Sor 124 million shares of stock with a market value of
about $450 million. The transaction(e¥) is expected(e 1)
i close(e2) around year end{t 7).

“s ysbye CopEnITATION

3 Geoge
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Other CCM Examples: Temporal Ordering

N. Chambers and D. Jurafsky. Jointly Combining Implicit
Constraints Improves Temporal Ordering. EMNLP-2008.

Trusteorp Inc. will become(el) Society Rank & Trust
when its merger(ed) is complered(ed) with
of Cleveland, the bank said(e5). Saciery €
also a bank, agreed(e6) in June(tls) 1o buy
Sor 124 million shares of stock with a m
abont $450 million. The transaction(e®) is
i close(e2) around year end{t 7).

Three types of edges:
1)Annotation relations before/after
2)Transitive closure constraints
3)Time normalization constraints

@22’ Conrpurarion Grour
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Related Work: Language generation.

Regina Barzilay and Mirella Lapata. Aggregation via Set
Partitioning for Natural Language Generation.HLT-NAACL-

2006.
Passing
PLAYER CPAT YD5 AVG TD INT [1 (Passing (Cunchff 2237 23764 1 1))
Cundaff 237 237 64 1 1 (Pass: " 750140
Carer 23147 37 50 1 4 2 (Interception (Lmdell | 52 1)}
(Kicking (Lindell 3/3 100 38 1/1 10))
3 (Passing (Bledsoe 17/34 104 3.1 0 0))
Rushing 4 (Passing (Carter 1332 116 3.6 1 0))
FLAYER REC YDS AVG LG TD 5 (R (Hambuack 1333 2510 1))
Hambrick 13 33 25 10 1 & (Fumbles (Bledsoc 2 200 0)

Constraints:
Transitivity: if (e, e;)were aggregated, and (e, g;) were too, then (e, e,)
get aggregated.
Max number of facts aggregated, max sentence length.

cpzire Copppuranion Gooue “"m/las 240 ]
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MT & Alignment

Ulrich Germann, Mike Jahr, Kevin Knight, Daniel Marcu, and
Kenji Yamada. Fast decoding and optimal decoding for
machine translation. ACL 2001.

John DeNero and Dan Klein. The Complexity of Phrase
Alignment Problems. ACL-HLT-2008.

fggﬁ s Coupuranon Geour Ws 250 J{
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Summary of Examples

We have shown several different NLP solution that make use
of CCMs.

Examples vary in the way models are learned.

In all cases, constraints can be expressed in a high level
language, and then transformed into linear inequalities.

Learning based Java (LBJ) [Rizzolo&Roth ’07, “10] describe an
automatic way to compile high level description of constraint
into linear inequalities.

g Coppmrramion Geoge
AR A {)

RS S f
T ITY OF ILEIRCIE AT URFANA-TEANFALCN
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Solvers

B All applications presented so far used ILP for inference.

B People used different solvers
[ Xpress-MP
O GLPK
O Ipsolve
OR
O Mosek
O CPLEX

é-:n_;;v:bg'g’z Conpyranion Grouy “"m/las 252 J{
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This Tutorial: ILP & Constrained Conditional Models

Part 2: How to pose the inference problem (45 minutes)
Introduction to ILP
Posing NLP Problems as ILP problems
1. Sequence tagging (HMM/CRF + global constraints)
2. SRL (Independent classifiers + Global Constraints)
3. Sentence Compression (Language Model + Global Constraints)
Less detailed examples
1. Co-reference
2. A bunch more ...
Part 3: Inference Algorithms (ILP & Search) (15 minutes)
Compiling knowledge to linear inequalities
Other algorithms like search

BREAK
@u}z Cepawyraniom Groye “-m/|a5 1
e HEBLTY OF [LLIKDLE AT WATANA-CEAMFAIGE - -

Learning Based Java: Translating to ILP

constroint References({SRLSentence sentence)

for {int 1 = 83 i < sertence.verbount(d; ++1)

PorzeTreelord werb = sentence.getVerb(i);
LinkedList forderb = sentence.getCondidates{verb);

(exists (Argument o in forVerb)) ArgumentTypeleornerio) :: "R-48")
== (exizts (Argument a in forVerb) ArgumentTypeleorner{a’ "
(exiztz (Argument a in forYerb) ArgumentTypelearner{a}) :: "R
=+ (cxizts (Argument a in forYerb) ArgumentTypeleorner{o) ::

Constraint syntax based on First Order Logic
Declarative; interspersed within pure Java
Grounded in the program’s Java objects

Automatic run-time translation to linear inequalities
Creates auxiliary variables
Resulting ILP size is linear in size of propositionalization

2 Crmpyracnon Gaour H"|ﬂ/|a5 + B

ILLINDIE AT UEFAKA-CHANFAIGE

ILP: Speed Can Be an Issue .—l-'—
Inference problems in NLP ' ’

Sometimes large problems are actually easy for ILP
E.g. Entities-Relations
Many of them are not “difficult”

When ILP isn’t fast enough, and one needs to resort
to approximate solutions.

The Problem: General Solvers vs. Specific Solvers

ILP is a very general solver

But, sometimes the structure of the problem allows for simpler
inference algorithms.

Next we give examples for both cases.

@{E Conteuranion Gaoye =P L, §
BRITY OF ILLIKOLE AT PETANA-CHAMFAION . 8

Example 1: Search based Inference for SRL
The objective function

maXZCij % Ma>§|m|ze gummgtlon of thg scores
i subject to linguistic constraints

Classification confidence ‘ Indicator variable )
assigns the j-th class for the i-th token

Constraints
Unique labels
No overlapping or embedding
If verb is of type A, no argument of type B

Intuition: check constraints’ violations on partial assignments

@z Cosavyricnos Grogy “‘-m/|a5 24 ﬂ
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Inference using Beam Search

| DA

@ |/ mp|ON/
- o/

Color: label Rank them
accordingto
classification

&~ A
ONA

D€ \
Ol A

ON A
ON A

Shape: argument

Beam size =2,
Constraint: confidence!

Only one Red

-

Rank them according to
classification confidence!

For each step, discard partial assignments that violate
constraints!

=y ) '3;"‘2 Crpprraricsl Guonyge """rn/las

TY OF [LLIKOLE AT WATANA-CHAKFAIGE
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Example 2: Exploiting Structure in Inference: Transliteration

isabel fletcher | lilic bradford

Ik

Opsadopa  jguamu  Ppaeryep

How to get a score for the pair?
Previous approaches:

Extract features for each source and target entity pair
The CCM approach:

Introduce an internal structure (characters)

Constrain character mappings to “make sense”.

@g‘z Congeurrarics) Groye
BRIFY OF LLIKOLE AT PRATANA-CHAMFAION

=

Heuristic Inference

Problems of heuristic inference
Problem 1: Possibly, sub-optimal solution
Problem 2: May not find a feasible solution
Drop some constraints, solve it again

Using search on SRL gives comparable results to using ILP,
but is much faster.

@43 Crapryranoi Grouy "“"rn/laﬁ _ ﬂ
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Transliteration Discovery with CCM

Assume the weights
are given.
More on this later.

lilic
Score = sum of the mappings’

| \—

s. t. mapping satisfies constraints
JINJINY

* Natural constraints
* Pronunciation constraints
* One-to-One
* Non-crossing

°..

\ 4
A weight is assigned to each edge.

Include it or not? A binary decision.

The problem now: inference
How to find the best mapping that satisfies the constraints?

Gizhiys Compyranos Grogy “""rn/la5 o B
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Finding The Best Character Mappings

An Integer Linear

Programming Problem max Z Cij Xij

ieS, jeT
[« o<x <lx ez
| <« v(lv J) € B’Xij =0,
le Vi, ) x; =1,

i

| Non-crossing constraint |

| Maximize the mapping score

| Pronunciation constraint

| One-to-one constraint

Vi, j,k,m,i>k,m> ],
Is this the best inference \ Xij + X < 1

algorithm?
jeaybbrz Crnapyranoy Groge """rn/laﬁ 0 T
e BITY OF [LLIED1E AT PREIANA-CHAMFAIGE Tt 3

Other Inference Options

Constraint Relaxation Strategies
Try Linear Programming
[Roth and Yih, ICML 2005]
Cutting plane algorithms €= do not use all constraints at first
Dependency Parsing: Exponential number of constraints
[Riedel and Clarke, EMNLP 2006]

Other search algorithms
A-star, Hill Climbing...
Gibbs Sampling Inference [Finkel et. al, ACL 2005]
Named Entity Recognition: enforce long distance constraints
Can be considered as : Learning + Inference
One type of constraints only

@‘E Copreuramioy Groue
BITY OF ILLIKOLE AT SANANA-CHAMEAION
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Finding The Best Character Mappings

We can
. . decompose
A Dynamic Programming 1 the inference
Algorithm 11c problem into
two parts
| Maximize the mapping score |
nJiImMm4
| Restricted mapping constraints |
|One-to-one constraint | Take Home Message:

Although ILP can solve
most problems, the
fastest inference
algorithm depends on
the constraints and can

| Non-crossing constraint |

Exact and fast!

be simpler
enpiye Comwyrrenos Grour e’
T ITY GF [CLINDIE AT UENAKA-CHANFAIGE - 3:10
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Inference Methods — Summary

Why ILP? A powerful way to formalize the problems
However, not necessarily the best algorithmic solution

Heuristic inference algorithms are useful sometimes!
Beam search

Other approaches: annealing ...

Sometimes, a specific inference algorithm can be designed
According to your constraints

@43 Cowpyranos Gaouy
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Constrained Conditional Models — 15t Part

Introduced CCMs as a formalisms that allows us to
Learn simpler models than we would otherwise
Make decisions with expressive models, augmented by declarative
constraints

Focused on modeling — posing NLP problems as ILP problems

1. Sequence tagging (HMM/CRF + global constraints)
2. SRL (Independent classifiers + Global Constraints)

3. Sentence Compression (Language Model + Global Constraints)

Described Inference
From declarative constraints to ILP; solving ILP, exactly & approximately

Next half — Learning
Supervised setting, and supervision-lean settings

@u}z Crpamyraniea Curiye “-m/|aﬁ T
e HEBLTY OF [LLIKDLE AT WATANA-CEAMFAIGE -

Extra Slides
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Learning Based Java: Translating to ILP (1/2)

Modeling language for use with Java

Classifiers use other classifiers as feature extractors

Constraints written in FOL over Java objects
Automatically translated to linear inequalities at run-time

constroint ReferencesiSRLSentence sentenc:

Convert to Conjunctive Normal Form (CT\%F) (NP-hard)
for (int 1 = @; 1 = sentence. verbCDL&t(}, ++1QR AC) = (3, g = “A0%)
- Ly =

N ISET(EEWDrd werb = szentence.get\, n
0”‘1@ M8 12t forverh - sentence.getidn M%(%Brw" \ \/ yj = “A0”
i=1
(exists (Argument a in forlerb) Arg%ma TypeLearner{a),:: "R-48")
sts (Argument a in forVerb) Afgume HIV AV
REdISEExls@?%Argument a in forWerb) Arg& @I’yﬁLEumers}’v{y R—Ai ‘)
=» (Exizts (Argument o in forverfT'ArqunentT eLaurﬁeIl(u) ALY

Create indicator variables |7 (1= Lyy—r-a0%}) + le,: a0y > 1

I:“-rﬂ/las 3:15 ]
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Learning Based Java: Translating to ILP (2/2)

constraint References(SRLSentence sentence)

for {int 1 = 83 1 = sentence.verbCount{}; ++1)

PorseTreelord werb = sentence.getVerb(i);
LinkedList forYerb = sentence.getCondidatesiverb’;

(exiztz (Argument @ in forYerb) ArgumentTypeleorner{a) :: "R-A8")

=» (exists (Argument a in forVerb) ArgumentTypelearner{o) :: "AA"Y;
(exizts (Argument o in forVerb) ArgumentTypeleorner{a) :: "R-a1")

== (exiztz (Argument a in forYerb) ArgumentTypeleorner{a) :: "al"');

Create temporary variables

(34, yi = “R-A0") = (3j, y; = “A0") Vi, 1o+ 1y, ea0ny > 1
j=1

n n
n
(/\ vi # “R'A"") vV g =0 n=3 1g,—ereaey > nly,

i=1 =1 = ‘

n n n
t1 v\ yj = a0, where t; = J\ yi # “R-AD" 1= 1gmeaoy <1y,
i=1 i=1

Every temporary variable is defined by exactly 2 inequalities

%5 3:16 ﬂ
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Where Are We ?

We hope we have already convinced you that

Using constraints is a good idea for addressing NLP problems

Constrained conditional models provide a good platform

We were talking about using expressive constraints
To improve existing models
Learning + Inference
The problem: inference

A powerful inference tool: Integer Linear Programming
SRL, co-ref, summarization, entity-and-relation...
Easy to inject domain knowledge

@_‘& Copprramcs Guoye
e BITY OF [LLIKD1E AT -llnbcil-rllﬂ-

H‘:rn/las 3:17 ] §

Advantages of ILP Solvers: Review

ILP is Expressive: We can solve many inference problems
Converting inference problems into ILP is easy

ILP is Easy to Use: Many available packages
(Open Source Packages): LPSolve, GLPK, ...
(Commercial Packages): XPressMP, Cplex
No need to write optimization code!

Why should we consider other inference options?

@w CoasuraTice) Groius
BRIFY OF LLIKOLE AT PRATANA-CHAMFAION
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Constrained Conditional Model : Inference

‘uﬂma\ A-F(

“local” models

i=|
Weight Vector for / ]

A collection of Classifiers;
Log-linear models (HMM,
CRF) or a combination

How to solve?
This is an Integer Linear Program

Solving using ILP packages gives an
exact solution.

1 Search techniques are also possibleI

wbiys Cosnrrronog Grous
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‘ Constraint violation penalty ‘

Zp,d v ley) (Soft) constraints

component

How far y is from
a “legal” assignment

How to train?

How to decompose the global
objective function?

Should we incorporate constraints in
the learning process?

Hﬁ/l&s 318 ﬂ
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This Tutorial: ILP & Constrained Conditional Models (Part Il)

Part 4: Training Issues (80 min)

Learning models
Independently of constraints (L+1); Jointly with constraints (IBT)
Decomposed to simpler models

Learning constraints’ penalties
Independently of learning the model
Jointly, along with learning the model

Dealing with lack of supervision
Constraints Driven Semi-Supervised learning (CODL)
Indirect Supervision

Learning Constrained Latent Representations

icaigpive Copvuramo Googe
e BITY DI

F [LLIEOLE AT WATANA-CEAMFAIGE

Training Constrained Conditional Models

Decompose Model
SL e

argmax A - Fa,y) — Z pid(y, e (ay)

u

i=1
|
‘ Learning model ‘ Decompose Model from constraints
Independently of the constraints (L+l)
Jointly, in the presence of the constraints (IBT)
Decomposed to simpler models
Learning constraints’ penalties
Independently of learning the model
Jointly, along with learning the model
Dealing with lack of supervision
Constraints Driven Semi-Supervised learning (CODL)
Indirect Supervision
Learning Constrained Latent Representations

4:2 H

e Cronavuraonog Coouy
HTY GF [LLIEDIE AT UEFARA-CHANFAIDE
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Where are we?

Modeling & Algorithms for Incorporating Constraints
Showed that CCMs allow for formalizing many problems
Showed several ways to incorporate global constraints in the decision.

‘ Training: Coupling vs. Decoupling Training and Inference.
Incorporating global constraints is important but
Should it be done only at evaluation time or also at training time?
How to decompose the objective function and train in parts?
Issues related to:
Modularity, efficiency and performance, availability of training data
Problem specific considerations

‘5 Cogrsng gl'{‘i‘-g:%{lru-- H‘-Iﬂ/las 4:3 ]

Training Constrained Conditional Models

u

K
argmax A - Flax. y) — Zp,-d{y. Lea)
=1

|

Learning model ‘ Decompose Model from constraints

Independently of the constraints (L+l)
Jointly, in the presence of the constraints (IBT)

First Term: Learning from data (could be further decomposed)
Second Term: Guiding the model by constraints

Can choose if constraints’ weights trained, when and how, or taken into
account only in evaluation.
At this point — the case of hard constraints

e Copmpuramon Group “"'-l-n/|35 o 1
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Comparing Training Methods

Option 1: Learning + Inference (with Constraints)
Ignore constraints during training

Option 2: Inference (with Constraints) Based Training
Consider constraints during training

In both cases: Global Decision Making with Constraints

Question: Isn’t Option 2 always better?

Not so simple...
Next, the “Local model story”

@4&2 Copwyramicy Coaoge """"‘.\r;'l'/la5
P BITT OF [LLIEDLE AT PRIANA-CHEAMFAIGE b

4:5 ]

Training with Constraints
Example: Perceptron-based Global Learning

True Global Labeling LA A 7
Apply Constraints: y -1 7 7
Ax)
X A%
X Sy o 0 Y
\ / \X5 A
XZS& Which one is better?
% When and Why?

@{ y2 Copmpirramon Gatiue ""““.'r;'l/la5
BRIFY OF LLIKOLE AT PRATANA-CHAMFAION el

or

Training Methods

Learning + Inference (L+l)
Learn models independently

Inference Based Training (IBT)
Learn all models together!

Intuition

Learning with
constraints may make
learning more difficult

6
@J: Crapryranoi Grouy "“"|-;'|/Ia5 _ H
3 i HTY GF [LLIEDIE AT UEFARA-CHANFAIDE ' 4: 6

L+l & IBT: General View — Structured Perceptron

Graphics for the case: F(x,y) = F(x)

For each iteration
For each (X, Yo, ) in the training’data
e
Yopep= ALEMAX A - (. y) — Zp,-d{y. Lea)
i,

i=]

Y
If Yoren != Yooio
A=N+F(X, Yoouo ) - F(X, Ypen)

endif

The difference between
L+l and IBT

endfor

@‘gz Comeyranon Group "'"[ﬂ/las vs B
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Claims [Punyakanok et. al , IJCAI 2005]
Theory applies to the case of local model (no Y in the features)

When the local modes are “easy” to learn, L+l outperforms IBT.
In many applications, the components are identifiable and easy to learn (e.g.,
argument, open-close, PER).
Only when the local problems become difficult to solve in isolation, IBT
outperforms L+l, but needs a larger number of training examples.

L+I: cheaper computationally; modular
IBT is better in the limit, and other extreme cases.

Other training paradigms are possible

Pipeline-like Sequential Models: [Roth, Small, Titov: Al&Stat'09]
Identify a preferred ordering among components
Learn k-th model jointly with previously learned models

icaigpive Copvuramo Googe
e BITY DI

F [LLIEOLE AT WATANA-CEAMFAIGE

= .. [l

L+I vs. IBT: the more identifiable
individual problems are, the better
overall performance is with L+

Bound Prediction

Local assopﬁ( (dlogm +log1/6) /m )72
Global e<0+( (adlogm+d+ log1/6) /m )1/

Indication for
hardness of
problem

Bounds Simulated Data

o 0.95
N 09
i =
5 3
g 5085
<. 8
o 0.8
5 — LO
il 0.75 — L+l
. — BT
e AT SN AU N B 0.7,
Numbor of Examplos o 0 2000 4000 6000 8000 10000
o — S — # Training i"lf*f
Eﬂ; Z ﬁrﬁih{iﬁ‘iﬁ%‘fﬁ?:‘%}-lnnl IT| 4:10 “

In some cases problems are hard due

Relative Merits: SRL to lack of training data.
Semi-supervised learning

Semantic Role Labeling

80
75} \
il " L+lis better.
65 When the problem
is artificially made
60 harder, the tradeoff
is clearer.
55/ — 1
—_— Ll
— BT
50 3 : 4 5 ; 6 T
10° 10 10 10 10
e Difficulty of the learning problem ™
) (# features) eaiz-/_s
CHETE DR BTN GO o S (L |

Training Constrained Conditional Models (I1)

Decompose Model
SL e

argmax A - Flax. y) — Zp,-d{y. Lea)
=1

u

|

Learning model ‘ Decompose Model from constraints

Independently of the constraints (L+l)
Jointly, in the presence of the constraints (IBT)
Decomposed to simpler models
Local Models (trained independently) vs. Structured Models
In many cases, structured models might be better due to expressivity
But, what if we use constraints?
Local Models + Constraints vs. Structured Models + Constraints
Hard to tell: Constraints are expressive

For tractability reasons, structured models have less expressivity than the use
of constraints; Local can be better, because local models are easier to learn

H‘-Iﬂ/las 4:12 ﬂ
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Recall: Example 1: Sequence Tagging (HMM/CRF)

HMM / CRF:

D
n—1
y* = argmax P(yo) P(zo|yo) HP Yilyi—1) P(xily:) D
yey
A A
As an ILP: v v

maximize Z A0y liyo=y} + Z Z Z X Yyimy A yia=y'} Aoy = log(P(y)) + log(P(zoly))

yey i=1 yeYy'ey

bject t
subject to Z Loy = 1

yey

Niyy = log(P(yly)) + log(P(xily))

Discrete predictions

Vs Liyo=yy = Z Lvo=y A ma=y}

Vy,i > 1 Z Yyioa=y' A=y} = Z Lyimy A pisi=y"}

y'ey

n—1

Lgo=evry + Z Z Yyici=y nyi=vry 2 1

i=1 yey

@u}z Croppvuranoe Groye
P HEBLTY OF ILLIEDLE AT PANANA-CHAMFAIGE

Feature consistency

There must be a verb!

WS 413 .

Example: Semantic Role Labeling Revisited

\Q

Sequential Models
Conditional Random Field
Global perceptron

Training: Sentence based

Testing: Find best global

assignment (shortest path)
+ with constraints

@
yoEgElye Conpeuramioy Groue
i BITY OF ILLIKOLE AT SANANA-CHAMEAION
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@v
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Ao

Local Models

Logistic Regression

Avg. Perceptron
Training: Token based.
Testing: Find best assighment
locally

+ with constraints (Global)

“--I.ﬂ/|a5 415 .

Example: CRFs are CCMs But, you can do better

Consider a common model for sequential inference: HMM/CRF

Inference in this model is done via
the Viterbi Algorithm. )’
B (\ ﬂ X
ﬂv, rr “9" ' ‘ " D
Viterb| isa speC|aI case of the Linear Programming based

Inference.

Itis a shortest path problem, which is a LP, with a canonical matrix that is
totally unimodular. Therefore, you get integrality constraints for free.

One can now incorporate non-sequential/expressive/declarative
constraints by modifying this canonical matrix

No value can appear twice; a specific value must appear at least once; A>B
And, run the inference as an ILP inference.

Learn a rather simple model; make decisions with a more expressive model ‘
cighids Commpyracnon Gaour P .

ITTGF (LLIKDIE AT UEBAE&-CHAMEAIGE 4:14

Which Model is Better? Semantic Role Labeling

Experiments on SRL: [Roth and Yih, ICML 2005]
Story: Inject expressive Constraints into conditional random field

‘ Sequential Models Local ‘
L+l IBT L+l
Model CRF CRF-D CRF-IBT Avg. P

Local Models are now better than Sequential Models! ||
(With constraints)

Y —
cughtre Coneyramon Group “"ﬁas .
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Summary: Training Methods — Supervised Case

Many choices for training a CCM
Learning + Inference (Training w/o constraints; add constraints later)
Inference based Learning (Training with constraints)

Based on this, what kind of models should you use?

Decomposing models can be better that structured models

Advantages of L+l
Require fewer training examples
More efficient; most of the time, better performance
Modularity; easier to incorporate already learned models.

Next: Soft Constraints; Supervision-lean models

@u}z Crpamyraniea Curiye ""-7"‘-.|1'|'/Ii15 e
e HEBLTY OF [LLIKDLE AT WATANA-CEAMFAIGE “ i

Training Constrained Conditional Models

K
argmax A - Fa,y) — Hy. L)

u

i=|

Learning model
Independently of the constraints (L+l)
Jointly, in the presence of the constraints (IBT)
Decomposed to simpler models
- Learning constraints’ penalties
Independently of learning the model
Jointly, along with learning the model
Dealing with lack of supervision
Constraints Driven Semi-Supervised learning (CODL)
Indirect Supervision
Learning Constrained Latent Representations

“=-/|35 4:18 H

2

Soft Constraints

— K prd(y, 1oy ()

Hard Versus Soft Constraints
Hard constraints: Fixed Penalty pP; = OO
Soft constraints: Need to set the penalty

Why soft constraints?
Constraints might be violated by gold data
Some constraint violations are more serious
An example can violate a constraint multiple times!
Degree of violation is only meaningful when constraints are soft!

@{E CoonguurrasT
RI¥Y OF ILLIKOLE AT

I?‘-m/las 4:19 ]
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Example: Information extraction

Lars Ole Andersen . Program analysis and specialization for the
C Programming language. PhD thesis. DIKU , University
of Copenhagen, May 1994 .

Prediction result of a trained HMM
[AUTHOR] Lars Ole Andersogram analysis and
[TITLE] specialization for the o
[EDITOR] c o

[BOOKTITLE] Programming language
[TECH-REPORT] hD thesis .
[INSTITUTION] KU, University of Copenhager@y‘
[DATE] 1994 .
Violates lots of natural
constraints!

: H‘Tﬂldj 4:20 ﬂ
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Examples of Constraints Degree of Violations

One way: Count how many times the assignment y violated the constraint

Each field must be a consecutive list of words and can appear

at most once in a citation d(y 10( )) = ZT 1 ¢C(yj)
) X 1=

. . 1 - if assigning y; to x; violates the constraint C
State transitions must occur on punctuation marks. ¢C(yj) — { with respect to assignment (X,...X, 3y Y1)
peesXi Y oY

0 - otherwise
The citation can only start with AUTHOR or EDITOR

State transition must occur on . i .
punctuations Vi, Y, # Y, = X_, IS a punctuation
The words pp., pages correspond to PAGE.
Four digits starting with 20xx and 19xx are DATE. Lars Ole Andersen
Quotations can appear only in TITLE AUTH BOOK EDITOR EDITOR SO (y) =2
cl7j
Poly)=0 Pulyr)=1 Puyz)=1 Poy)=0
Qciis Copmmanon Growe ., Ly | s Compon Baowe TP ..
Reason for using degree of violation Learning the penalty weights
An assignment might violate a constraint multiple times - F(:L‘, y) — Zi:l Pkd(y, 1Ci(w))
Allow us to chose a solution with fewer constraint violations

Strategy 1: Independently of learning the model
Handle the learning parameters A and the penalty p separately

Learn a feature model and a constraint model
Lars Ole Andersen .
Similar to L+l, but also learn the penalty weights
AUTH AUTH EDITOR EDITOR .
Keep the model simple
Poly)=0 Po(y)=0 Puys)=1 Po(y)=0

The first one is

better because of Strategy 2: Jointly, along with learning the model
Lars Ole Andersen - dly, Tep)! Handle the learning parameters A and the penalty p together
AUTH BOOK EDITOR EDITOR Treat soft constraints as high order features
@,(y,)=0 @ (y)=1 @ (ys)=1 @,(y,)=0 Similar to IBT, but also learn the penalty weights

@{E Copgsurramnon) Guoye “‘-m/|a5 . @z Crspyranon Groge “‘-m/|a5 e
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Strategy 1: Independently of learning the model

Model: (First order) Hidden Markov Model Pg(g;, y)

Constraints: long distance constraints
The i-th the constraint:
The probability that the i-th constraint is violated P(Ci = 1)

The learning problem
Given labeled data, estimate § and P(C; = 1)
For one labeled example,

SCORE(z,y) = HMM Probability x Constraint Violation Score

Training: Maximize the score of all labeled examples!

@u}z Copppyracnea Gaoige “-m/|a5 .
e HEBLTY OF [LLIKDLE AT WATANA-CEAMFAIGE - i

Strategy 2: Jointly, along with learning the model

Review: Structured learning algorithms
Structured perceptron, Structured SVM
Need to supply the inference algorithm: max, wT¢(g:7 y)
For example, Structured SVM

N s e
ming — + qu:l S(.TZ,er,’LU),

The function Lg(,y,w) measures the distance between gold label
and the inference result of this example!
Simple solution for Joint learning
Add constraints directly into the inference problem
w = [)\ p} ,¢(z,y) contains both features and constraint violations

/ 5 " i - .',“'-/5
S l(fi' %l;fl%%gf:ﬁ!nlx -.'illcl‘"ﬂ%{-ru-- S rﬂla Pagk 27 ]

Strategy 1: Independently of learning the model (cont.)

SCORE(z,y) = HMM Probability x Constraint Violation Score

The new score function is a CCM!

Setting p; = —log %(%

New score:

log SCORE(z,y) = X - F(z,y) — Zfil pid(y, 101(1)) +c

Maximize this new scoring function on labeled data

Learn a HMM separately

Estimate P(C’i = 1) separately by counting how many times the

constraint is violated by the training data!
A formal justification for optimizing the model and the
penalty weights separately!

7 .
cughive Conaeyrranonsg Gaous “‘*-m/ﬁﬁ ) H
s ITT OF (LLINDIE AT UEFANA-CHANFANGE o 4:26

Learning constraint penalty with CRF
Conditional Random Field  min,, 3|jw|? — 3, log P(y;|z;, w)

cap(w” d(z.y))
3, cop(wT o(z,9))

Testing: solve the same “max” inference problem

The probability : P(y|aj, ’LU) =

Training: Need to solve the “sum” problem

Using CRF with constraints
Easy constraints: Dynamic programming for both sum and max
problems
Difficult constraints: Dynamic programming is not feasible
The max problem can still be solved by ILP

The sum problem needs to be solved by a special-
designed/approximated solution

e e . . BT
cughie Cowpranon Geouy -.,:|‘{'I|a Pags 28 ﬂ
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Summary: learning constraints’ penalty weights

Learning the penalty for soft constraints is important
Constraints can be violated by gold data
Degree of violation
Some constraints are more important

Learning constraints’ penalty weights
Learning penalty weights is a learning problem
Independent approach: fix the model
Generative models + constraints

Joint approach
Treat constraints as long distance features
Max is generally easier than the sum problem

@u}z Crpamyraniea Curiye ""-7"‘-.|1'|'/Ii15 e
e HEBLTY OF [LLIKDLE AT WATANA-CEAMFAIGE “ i

Dealing with lack of supervision

Goal of this tutorial: learning structured models

Learning structured models requires annotating structures.
Very expensive process

IDEA1: Can we use constraints as a supervision resource?

Setting: semi-supervised learning

IDEA2: Can we use binary labeled data to learn a structured
model?
Setting: indirect supervision (will explain latter)

@{E CoonguurrasT
RI¥Y OF ILLIKOLE AT

I?‘-m/las 4:31 ]

Training Constrained Conditional Models

K
argmax A - Fa.y) — L pid(y. Le)
Y i=1
Learning model
Independently of the constraints (L+l)
Jointly, in the presence of the constraints (IBT)
Decomposed to simpler models
Learning constraints’ penalties
Independently of learning the model
Jointly, along with learning the model
- Dealing with lack of supervision
Constraints Driven Semi-Supervised learning (CODL)
Indirect Supervision
Learning Constrained Latent Representations

/
criys Craamrraenosg Guouw
i TT @F [LLIEDIE AT UEFANA-CHANFAIGN
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Constraints As a Way To Encode Prior Knowledge

Consider encoding the knowledge that:

Entities of type A and B cannot occur simultaneously in a sentence
The “Feature” Way Need more training data

Requires larger models

A effective way to inject

The Constraints Way knowledqge

Keeps the model simple; add expressive constraints directly

A small set of constraints

Allows for decision time incorporation of constraints

We can use constraints as a way to replace training data

=

WE 4:32 ﬂ
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Constraint Driven Semi/Un Supervised Learning

CODL
In traditional semi/unsupervised Learning, models
can drift away from correct model

Resource =

Better Feedback Prediction + Constraints
Learn from labeled data Label unlabeled data
Unlabeled Data
! " a “"-/5
@Yﬂ- arytanon Goowe | i O

Constraints Driven Learning (CoDL)
[Chang, Ratinov, Roth, ACL'07;ICML’08,Long’10]

Supervised learning algorithm parameterized by
(wg,pg)=learn(L) (w,p). Learning can be justified as an optimization
For N iterations do procedure for an objective function

T=¢ Inference with constraints:
augment the training set

For each x in unlabeled dataset
h < argmax, W™ ¢(x,y) - 2 py dc(x,y)
T=T U {(x, h)}

Learn from new training data

(W,p) =y (Wg,p0) + (1- 7) learn(T Weigh supervised &
unsupervised models.

Excellent Experimental Results showing the advantages of using constraints,

especially with small amounts on labeled data [Chang et. al, Others]
cuphys Comwrrenos Caous e L. ﬂ
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Value of Constraints in Semi-Supervised Learning
Obiedive function: f3.0(x.¥) z wid (%, y) Z pide, (x.¥).

Learning w/o Constraints: 300 examples.

0.95 I ‘ Constraints are used to
Learning w 10 Constraints Bootstrap a semi-
0.9 supervised learner

Poor model + constraints
used to annotate
unlabeled data, which in
turn is used to keep
training the model.

i 5 10 15 20 25 300
# of available labeled examples
o !ﬁ!ry{:rf;;;:rAI'I'L!-’lIAI:‘i‘FJcllJIEIPL(-- IT‘-‘I-Iﬂ/las 4:35 ]

Train and Test With Constraints!

0.85F N
0.8 _ B
n [l [ KEY :
- 0.75 - B
5 We do not modify the
8 oir b HMM at all!
0.65 - B Constraints can be
used to train the
0.6 H B model!

1 1 T T T
10 15 20 25 100
Number of labeled example

-

‘DDHMM JOHMM train with constraintsIDHMM train /test with constraints |

4
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Exciting Recent Research

Generalized Expectation Criteria

The idea: instead of labeling examples, label constraint features!
G. Mann and A. McCallum. JMLR, 2009

Posterior Regularization
Reshape the posterior distribution with constraints

Instead of doing the “hard-EM” way, do the soft-EM way!
K. Ganchev, J. Graga, J. Gillenwater and B. Taskar, JMLR, 2010

Different learning algorithms, the same idea;
Use constraints and unlabeled data as a form of supervision!
To train a generative/discriminative model
Word alignment, Information Extraction, document classification...

@u}z Crpamyraniea Curiye “-m/|a5 .
e HEBLTY OF [LLIKDLE AT WATANA-CEAMFAIGE - i

Word Alignment via Constraints

Posterior Regularization
K. Ganchey, J. Graga, J. Gillenwater and B. Taskar, JMLR, 2010

Goal: find the word alignment between an English sentence
and a French sentence

Learning without using constraints
Train a E-> F model (via EM), Train a F-> E model (via EM)
Enforce the constraints at the end! One-to-one mapping, consistency

Learning with constraints

Enforce the constraints during training

Use constraints to guide the learning procedure
Running (soft) EM with constraints!

o
tl;‘; " .1

% Crmpyraonon Gaour H"'|‘ﬂ/|as . J{
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Probability Interpretation of CCM
With a probabilistic model

maxy, log P(xa y) - Z;cnzl pid(y7 1Ck(f6))

Implication
New distribution o< P(z,y)exp~ Yo pidy,le, ()

Constraint Driven Learning with full distribution
Step 1: find the best distribution that satisfy the “constraints”
Step 2: update the model according to the distribution

g; 2 Conpuranion Guoye TP L. B
BRITY OF ILLIKOLE AT PETANA-CHAMFAION ) 4:39

Theoretical Support

In K. Ganchev, J. Graga, J. Gillenwater and B. Taskar, JMLR, 2010

Given any distribution P(x,y), the closest distribution that
“satisfies the constraints” is in the form of CCM!

New distribution o< P(z,y)exp~ 22 pid(ylog )

@z Comwuranos Groue "'"m/las e
§ FITT OF ILLLIEDIN AT DERAXA-CHANFAIGN - g




Training Constrained Conditional Models

K
argmax A - Fae.y) — Z pid(y, Lo ))

Y i=1
Learning model
Independently of the constraints (L+I)
Jointly, in the presence of the constraints (IBT)
Decomposed to simpler models
Learning constraints’ penalties
Independently of learning the model
Jointly, along with learning the model
Dealing with lack of supervision
Constraints Driven Semi-Supervised learning (CODL)
Indirect Supervision
Learning Constrained Latent Representations
whrz Crsmparramoy Groue
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Different types of structured learning tasks

Type 1: Structured output prediction

Dependencies between different output decisions

We can add constraints on the output variables
Examples: parsing, pos tagging, ....

Type 2: Binary output tasks with latent structures
Output: binary, but requires an intermediate representation

(structure)

The intermediate representation is hidden

Examples: paraphrase identification, TE, ... Q?/\
189

e Cosamraeniog Grouy
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Structured output learning

Structure Output Problem

Dependencies between

. _— Vr—
different outputs Y

X’/ XK\XA
v
~

X
g 7

X

@{E Congeurrarics) Groye
BRIFY OF LLIKOLE AT PRATANA-CHAMFAION

[ Use constraints

tocapture the
dependencies

)’5.

V4

“"-m/|35 4:43 ]

Standard Binary Classification problem

Single Output Problem _
constraints!?

Only one output

Vi
Y
~ XJ\’%

Xy \

\ Xs
XZ\

AN —

. X
@‘gz Cospyraros Grouw """rn/las o [
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Binary classification problem with latent representation

Binary Output Problem

Y1
with latent variables
Y
£
fem o1,
f“/ \%
X fr N/ useconstraiats )
T, “..  tocapturethe

X1 \ Ny d .
 dependencies arn
\ X5 latent

XZ\ representation

ieiippire Conpruranios) Groye il 0 d5 I
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Textual Entailment

Former military specialist Carpenter took the helm at FictitiousCom Inc.
after { ., Entailment Requires an Intermediate Representation in the
e "&Jmt’?‘ Alignment based Features

ws i 0 Given the intermediate features — learn a decision
=4 | Entail/ Does not Entail

X
X 5 T —
/ Xy / Xy
Xy / \ /
X 2
2 =1
\ X et
— (WF [vBL worked)
X5 (PP (IN foE]
1 (RP (BT the)
s ar us)
Prs (M Goversment] )))
INF_[DT ehe) i

But only positive entailments are expected to have
S a meaningful intermediate representation
Jim Carpenter worked for the US Government.

4
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Given an input x € X

Paraphrase Identification Learn a model £+ X > {1, 1}

Consider the following sentences:

S1: Druce will face murder charges, Conte said.

S2: Conte said Druce will be charged with murder .

We need latent variables that explain:
why this is a positive example.
Are S1 and S2 a paraphrase of each other?
There is a need for an intermediate representation to justify
this decision

Given an input x € X
Learnamodel f: X — H — {-1, 1}

@{E Copgsurramnon) Guoye ““Trn/las o
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Algorithms: Two Conceptual Approaches

Two stage approach (typically used for TE and paraphrase identification)

Learn hidden variables; fix it
Need supervision for the hidden layer (or heuristics)

For each example, extract features over x and (the fixed) h.
Learn a binary classier

Proposed Approach: Joint Learning
Drive the learning of h from the binary labels
Find the best h(x)
An intermediate structure representation is good to the extent is
supports better final prediction.
Algorithm?

H‘-Iﬂ/las 4:48 ﬂ
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Learning with Constrained Latent Representation (LCLR): Intuition

If x is positive
There must exist a good explanation (intermediate representation)
Jh, w" ¢(x,h) >0
or, max, W' ¢(x,h) >0
If xis negative
No explanation is good enough to support the answer
Vv h, w' ¢(x,h) <0
or, max, W' ¢(x,h) <0

Decision function: max, w' ¢(x,h) :

See if the latent structure is good enough to support the labels!
An ILP formulation: CCM on the latent structure!

@u}z Crpamyraniea Curiye “-m/|a5 e
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LCLR: The learning framework

Altogether, this can be combined into an objective function:

New feature vector for the final decision.
Chosen h selects a representation.

l
1 e
min 5 lw]* + 3 l(—yimaxw’ D hi®s())
i=1 T sel(w)

Inference: best h subject to constraints C

Inference procedure inside the minimization procedure
Why does inference help?

Similar to what we mentioned with S=¢

Focus: The binary classification task

@{E Cogeuranioy Groye =P L. W
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Learning with Constrained Latent Representation (LCLR): Framework

LCLR provides a general inference formulation that allows
that use of expressive constraints
Flexibly adapted for many tasks that require latent representations.

LCLR Model <{———3 Declarative model

Paraphrasing: Model input as graphs, V(G, ,), E(G, ,)
Four Hidden variables:

hyw— ible vertex i heper = ible edge
Y € VG, 3 humthye=1, Y eV(G), ¥ hynthag=1
wgEV (i) wEV(En)
Ver € B(G1), Y. ey thes =1 Ve E(Ga), ¥ heeythig=1
eaeE(Gs) ey eE(y)

ooy o o = heyen <1 Ry 2 by egs B 2 b e
/ 1ty TG 1,07 g 1,63 wavg 1,67 =
2 Couaryreonos Sroye H"|ﬂ/|a5 50 J{
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Iterative Objective Function Learning

Generate features

Inference Prediction
for h subj. to C with inferred h

Initial Objective

Function
Update weight
vector
Training
w/r to binary
decision label

Formalized as Structured SVM + Constrained Hidden Structure

- LCRL: Learning Constrained Latent Representation
@z Comwuranos Groue """m/las .
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Optimization

Non Convex, due to the maximization term inside the global
minimization problem

In each iteration:
Find the best feature representation h* for all positive examples (off-
the shelf ILP solver)
Having fixed the representation for the positive examples, update w
solving the convex optimization problem:
nﬂn% |w|2+C Z i1 —wr Z i b))+ C Z !ILI + ma}} w"rz ha®s(x:))

irza=1 s

Not the standard SVM/LR: need inference

Asymmetry: Only positive examples require a good
intermediate representation that justifies the positive label.
Consequently, the objective function decreases monotonically

“"m/lag 4:53 ]
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Experimental Results

Transliteration: .

Recognizing Textual Entailment: ["Entailment System

Paraphrase Identification:*

Transliteration System Acc | MRR
(Goldwasser and Roth 2008) || N/A 804 |
Alignment + Learning 80.0 | 857

LCLR 92.3| 95.4

Acc

Median of TAC 2009 systems || 61.5

Alignment + Learning 65.0

LCLR 66.8

Alignment + Learning 72.00
H 72.75

LCLR

Comaryracnos Grour
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Summary

Many important NLP problems require latent structures

LCLR:
An algorithm that applies CCM on latent structures with ILP inference
Suitable for many different NLP tasks
Easy to inject linguistic constraints on latent structures
A general learning framework that is good for many loss functions

Take home message:
It is possible to apply constraints on many important problems with
latent variables!

@{E Congeuranon) Gaoiys =i?“;m/|ii5 .
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Training Constrained Conditional Models

K
¥ i=1

Learning model
Independently of the constraints (L+l)
Jointly, in the presence of the constraints (IBT)
Decomposed to simpler models
Learning constraints’ penalties
Independently of learning the model
Jointly, along with learning the model
Dealing with lack of supervision
Constraints Driven Semi-Supervised learning (CODL)

- Indirect Supervision

... Learning Constrained Latent Representations
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Indirect Supervision for Structured Prediction

Can we use other “weaker” supervision resources?

It is possible to use binary labeled data for structured output
prediction tasks!

Invent a companion binary decision problem!

Parse Citations: Lars Ole Andersen . Program analysis and
specialization for the C Programming language. PhD thesis. DIKU,
University of Copenhagen, May 1994 .

Companion: Given a citation; does it have a legitimate parse?

POS Tagging

Companion: Given a word sequence, does it have a legitimate POS
tagging sequence?

The binary supervision is easier to get. But is it helpful?

Clenypbye Coupurano Gruge “-m/|a5 g .
e ¥ N
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Predicting phonetic alignment (For Transliteration)

Target Task Companion Task

I tal Il linois
¢ v K Yes/No
N [0S0 X "5 21
Target Task

Input: an English Named Entity and its Hebrew Transliteration
Output: Phonetic Alignment (character sequence mapping)
A structured output prediction task (many constraints), hard to label

Companion Task Why it is a companion task?

Input: an English Named Entity and an Hebrew Named Entity
Companion Output: Do they form a transliteration pair?

A binary output problem, easy to label

Negative Examples are FREE, given positive examples

e Craarurraenng Sroyy
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Companion Task Binary Label as Indirect Supervision

The two tasks are related just like the binary and structured
tasks discussed earlier

Positive transliteration pairs Negative transliteration pairs
must have “good” phonetic cannot have “good” phonetic
alignments alignments

All positive examples must have a good structure
Negative examples cannot have a good structure

We are in the same setting as before
Binary labeled examples are easier to obtain
We can take advantage of this to help learning a structured model

Here: combine binary learning and structured learning

g; r2 Copaeuraricy Guoue "“'r{'l/la5 )
o I BRIFY OF LLIKOLE AT PRATANA-CHAMFAION - 4: 59

Joint Learning with Indirect Supervision (J-LIS)

Joint learning : If available, make use of both supervision types

Target Task Companion Task

Ital) I 1 linois
wwz Yes/No
X oIS N "5 317

Loss function: L, as before; Lg, Structural learning
Key: the same parameter w for both components

min%WTW-F C Y Lo (X, yisw)

ieS
/ Loss on Target Task Loss on Companion Task
Cizke Copmrricnosg (Siouy p-: . :'nll"" . ﬁ
T ITT OF ILLINDIE AT UERAKA-CHANFAIGN 3 4:60




Experimental Result

Very little direct (structured) supervision.
(Almost free) Large amount binary indirect supervision

85

80

M Direct
{structured
70 labeled) only

75

55 - |

Phonetic Alignment POS IE
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Experimental Result

Very little direct (structured) supervision.
(Almost free) Large amount binary indirect supervision

85
8¢
M Girect
s {structured
20 - labeled) only

85 M Direct + indirect
{both structured

60 - and binary}

55 -
Phonetic Alignment POS IE

Relations to Other Frameworks

B=¢, I=(squared) hinge loss: Structural SVM

S=¢, LCLR
Related to Structural Latent SVM (Yu & Johachims) and to
Felzenszwalb.

If S=¢, Conceptually related to Contrastive Estimation
No “grouping” of good examples and bad neighbors

Max vs. Sum: we do not marginalize over the hidden structure space
Allows for complex domain specific constraints

Related to some ey g
Semi-Supervised approaches, Gl | rd

but can use negative !‘ //

examples (Sheffer et. al) g ef ‘_/

i * o Eoe 0 o0 1800 3300 W00 12800 S50 ed
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Dealing with lack of supervision

Constraint Driven Learning

Use constraints to guide semi-supervised learning!
[Chang, Ratinov, Roth, ACL’07;ICML’08,Long’10]

Use Binary Labeled data to help structure output prediction

Training Structure Predictors by Inventing (easy to supervise) binary
labels [ICML'10]

—-—) Driving supervision signal from World’s Response
Efficient Semantic Parsing = ILP base inference + world’s response

-.._Iﬂ/|35 464 ﬂ
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Connecting Language to the World

Can | get a coffee with no
sugar and just a bit of milk

\éﬁ
Semantic Parser
é ‘ MAKE(COFFEE,SUGAR=NO,MILK=LITTLE) ‘

Can we rely on this interaction to provide supervision?

JEH] bz Conavuranoe Groyge
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Real World Feedback @

Supervision = Expected Response

x NL “What is the largest state that borders NY?"
Our approach: use Query
only the responses
v P r Query Pennsylvania
Response:
Binary Check if Predicted response == Expected response

Supervision

Expected : Pennsylvania
Predicted : Pennsylvania
Positive Response

Expected : Pennsylvania
Predicted : NYC
Negative Response

Train a structured predictor with this binary supervision !

v ’ gy e -
@!ﬁﬁl;{:{:lgﬁ!lli I”ll‘i‘:ﬂ%{.!l[ll . Iﬂla 4:67 ]

Real World Feedback

x NL “What is the largest state that borders NY?"

Traditional approach: Query
learn from logical forms . Es o

Logical l
and gold alignments Query largest( state( next_to( const(NY))))

EXPENSIVE! }
Query . d E
Response: Pennsylvania -

Semantic parsing is a structured prediction problem:
identify mappings from text to a meaning representation

The inference problem: a CCM formulation, with many

constraints
ez Comvyrenos Groue """"‘-,|';'|'/Ia5 - B
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Empirical Evaluation

Key Question: Can we learn from this type of supervision?

Algorithm # training Test set
structures accuracy
No Learning: Initial Objective Fn 0 22.2%
Binary signal: Protocol | 0 69.2 %
Binary signal: Protocol Il 0 73.2%
WM*2007 (fully supervised — uses 310 75 %

gold structures)

*[WM] Y.-W. Wong and R. Mooney. 2007. Learning synchronous grammars for
semantic parsing with lambda calculus. ACL.
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Summary

Constrained Conditional Models: Computational Framework
for global inference and a vehicle for incorporating knowledge

Direct supervision for structured NLP tasks is expensive
Indirect supervision is cheap and easy to obtain

We suggested learning protocols for Indirect Supervision
Make use of simple, easy to get, binary supervision
Showed how to use it to learn structure

Done in the context of Constrained Conditional Models
i{ isan ial part of pi ing the simple supervision

Learning Structures from Real World Feedback
Obtain binary supervision from “real world” interaction
Indirect supervision replaces direct supervision

@J}z Crppwyramoy Cunige H"Iﬂ/las oo I
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Summary: Training Constrained Conditional Models

K
argmax A - Fa.y) — L pid(y. Le)
Y i=1
Learning model
Independently of the constraints (L+l)
Jointly, in the presence of the constraints (IBT)
Decomposed to simpler models
Learning constraints’ penalties
Independently of learning the model
Jointly, along with learning the model
Dealing with lack of supervision
Constraints Driven Semi-Supervised learning (CODL)
Indirect Supervision

Learning Constrained Latent Representations
cuphbys Comwrranos Caous e J{
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This Tutorial: ILP & Constrained Conditional Models (Part Il)

Part 5: Conclusion (& Discussion) (10 min)
Building CCMs; Features and Constraints. Mixed models vs. Joint models;
where is Knowledge coming from

THE END _
Ceiciypire Coppruranos Groge “-m/|a5 51 ]
s 3
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Conclusion

Constrained Conditional Models combine
Learning conditional models with using declarative expressive constraints
Within a constrained optimization framework

Our goal was to describe:

A clean way of incorporating constraints to bias and improve decisions of
learned models

A clean way to use (declarative) prior knowledge to guide semi-supervised
learning

Ways to make use of (declarative) prior knowledge when choosing
intermediate (latent) representations.

Provide examples for the diverse usage CCMs have already found

in NLP
- Significant success on several NLP and IE tasks (often, with ILP_)
@_—1 Cosaryracnos Grour """--,“'|-{'|/IaS ! H
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Technical Conclusions

Presented and discussed modeling issues
How to improve existing models using declarative information
Incorporating expressive global constraints into simpler learned models
Discussed Inference issues
Often, the formulation is via an Integer Linear Programming formulation,
but algorithmic solutions can employ a variety of algorithms.
Training issues — Training protocols matters
Training with/without constraints; soft/hard constraints;
Performance, modularity and ability to use previously learned models.
Supervision-lean models
We did not attend to the question of “how to find constraints”
Emphasis on: background knowledge is important, exists, use it.
But, it’s clearly possible to learn constraints.

i “=-m/|35 5:3 ]
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Summary: Constrained Conditional Models

Conditional Markov Random Field Ns@ﬁtwork
60 (o
W o oo TE

y* = argmax, 2 w; ¢(x; y) - 25 p dclxy)

Expressive constraints over output
variables

Soft, weighted constraints
Specified declaratively as FOL formulae

Linear objective functions

Typically ¢(x,y) will be local
functions, or ¢(x,y) = $(x)

Clearly, there is a joint probability distribution that represents

this mixed model. Key difference from MLNs which provide a concise
We would like to: | definition of a model, but the whole joint one.

Learn a simple model or several simple models
- Make decisions with respect to a complex model

H‘Tﬂ/las 5.4 ﬂ

z Copwrracnon Srouy

ATY OF ILLINDIE AT UERARA-CHANFANGR

)
‘I-.




Designing CCMs

9 Ny e
el W W o oW
y* =argmaxyzwi o0 y) - X pi de(x,y)

Expressive constraints over output
variables

Soft, weighted constraints
Specified declaratively as FOL formulae

Linear objective functions

Typically ¢(x,y) will be local
functions, or ¢(x,y) = ¢(x)

LBJ (Learning Based Java): http://L2R.cs.uiuc.edu/~cogcomp
A modeling language for Constrained Conditional Models. Supports
programming along with building learned models, high level specification of
constraints and inference with constraints

vz Crnwuranoe Groye ““'m/laﬁ «s B
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Questions?

Thank you!
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Semantic Role Labeling Phrasal verb paraphrasing
Textual Entailment | Punyakanok et. al'05,08 | | [Connor&Roth'071

Inference for Entailment | | Entity matching [Li et. al,
Braz et. 3l'05, 07 AAAI'04, NAACL'04]

Is it true that...?
t(TextuaI Entailment)

Eyeing the huge marke
potential, currently led by

i

e e

Overture is a search company

Google is a search company

Google owns Overture

@{w Conteuranion Gaoye = ., §
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Learning and Inference

= Global decisions in which several local decisions play a role but
there are mutual dependencies on their outcome.
E.g. Structured Output Problems — multiple dependent output variables

(Learned) models/classifiers for different sub-problems
In some cases, not all local models can be learned simultaneously
Key examples in NLP are Textual Entailment and QA
In these cases, constraints may appear only at evaluation time

= |ncorporate models’ information, along with prior
knowledge/constraints, in making coherent decisions

decisions that respect the local models as well as domain & context
specific knowledge/constraints.

ine s e
@IY?&?‘{E‘{E;{EJ:EII‘:’K: EHI.IAIIH 1 mla Pade 8 ﬂ




Training Constraints Conditional Models

Decompose Model
e

argmax A - Fae.y) — Z pid(y, Lo )

u

|

Learning model

‘ Decompose Model from constraints

Independently of the constraints (L+I)
Jointly, in the presence of the constraints (IBT)
Decomposed to simpler models
Learning constraints’ penalties
Independently of learning the model
Jointly, along with learning the model
Dealing with lack of supervision
Constraints Driven Semi-Supervised learning (CODL)
Indirect Supervision
Learning Constrained Latent Representations

@4&2 Conpwyrramicy Counige _7""|';'|/|a5
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Questions?

Thank you
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Bibliography on Constrained Conditional Models and Using
Integer Linear Programming in NLP
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