Spring 2023 CIS 610

Advanced Geometric Methods in Computer Science Jean Gallier
 Homework 1

January 20; Due February 9, 2023

Problem B1 (50). (a) Find two symmetric matrices, A and B, such that $A B$ is not symmetric.
(b) Find two matrices A and B such that

$$
e^{A} e^{B} \neq e^{A+B}
$$

Hint. Try

$$
A=\pi\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad B=\pi\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)
$$

and use the Rodrigues formula.
(c) Find some square matrices A, B such that $A B \neq B A$, yet

$$
e^{A} e^{B}=e^{A+B}
$$

Hint. Look for 2×2 matrices with zero trace.
Problem B2 (80 pts). Let $\mathrm{M}_{n}(\mathbb{C})$ denote the vector space of $n \times n$ matrices with complex coefficients (and $\mathrm{M}_{n}(\mathbb{R})$ denote the vector space of $n \times n$ matrices with real coefficients). For any matrix $A \in \mathrm{M}_{n}(\mathbb{C})$, let R_{A} and L_{A} be the maps from $\mathrm{M}_{n}(\mathbb{C})$ to itself defined so that

$$
L_{A}(B)=A B, \quad R_{A}(B)=B A, \quad \text { for all } B \in \mathrm{M}_{n}(\mathbb{C})
$$

Check that L_{A} and R_{A} are linear, and that L_{A} and R_{B} commute for all A, B.
Let $\mathrm{ad}_{\mathrm{A}}: \mathrm{M}_{n}(\mathbb{C}) \rightarrow \mathrm{M}_{n}(\mathbb{C})$ be the linear map given by

$$
\operatorname{ad}_{A}(B)=L_{A}(B)-R_{A}(B)=A B-B A=[A, B], \quad \text { for all } B \in \mathrm{M}_{n}(\mathbb{C}) .
$$

Note that $[A, B]$ is the Lie bracket.
(1) Prove that if A is invertible, then L_{A} and R_{A} are invertible; in fact, $\left(L_{A}\right)^{-1}=L_{A^{-1}}$ and $\left(R_{A}\right)^{-1}=R_{A^{-1}}$. Prove that if $A=P B P^{-1}$ for some invertible matrix P, then

$$
L_{A}=L_{P} \circ L_{B} \circ L_{P}^{-1}, \quad R_{A}=R_{P}^{-1} \circ R_{B} \circ R_{P}
$$

(2) Recall that the n^{2} matrices $E_{i j}$ defined such that all entries in $E_{i j}$ are zero except the (i, j) th entry, which is equal to 1 , form a basis of the vector space $\mathrm{M}_{n}(\mathbb{C})$. Consider the partial ordering of the $E_{i j}$ defined such that for $i=1, \ldots, n$, if $n \geq j>k \geq 1$, then then $E_{i j}$ precedes $E_{i k}$, and for $j=1, \ldots, n$, if $1 \leq i<h \leq n$, then $E_{i j}$ precedes $E_{h j}$.

Draw the Hasse diagam of the partial order defined above when $n=3$.
There are total orderings extending this partial ordering. How would you find them algorithmically? Check that the following is such a total order:

$$
(1,3),(1,2),(1,1),(2,3),(2,2),(2,1),(3,3),(3,2),(3,1) .
$$

(3) Let the total order of the basis $\left(E_{i j}\right)$ extending the partial ordering defined in (2) be given by

$$
(i, j)<(h, k) \quad \text { iff } \quad\left\{\begin{array}{l}
i=h \text { and } j>k \\
\text { or } i<h .
\end{array}\right.
$$

Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A (not necessarily distinct). Using Schur's theorem, A is similar to an upper triangular matrix B, that is, $A=P B P^{-1}$ with B upper triangular, and we may assume that the diagonal entries of B in descending order are $\lambda_{1}, \ldots, \lambda_{n}$. If the $E_{i j}$ are listed according to the above total order, prove that R_{B} is an upper triangular matrix whose diagonal entries are

$$
(\underbrace{\lambda_{n}, \ldots, \lambda_{1}, \ldots, \lambda_{n}, \ldots, \lambda_{1}}_{n^{2}}),
$$

and that L_{B} is an upper triangular matrix whose diagonal entries are

$$
(\underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{n} \cdots, \underbrace{\lambda_{n}, \ldots, \lambda_{n}}_{n}) .
$$

Hint. Figure out what are $R_{B}\left(E_{i j}\right)=E_{i j} B$ and $L_{B}\left(E_{i j}\right)=B E_{i j}$.
Use the fact that

$$
L_{A}=L_{P} \circ L_{B} \circ L_{P}^{-1}, \quad R_{A}=R_{P}^{-1} \circ R_{B} \circ R_{P},
$$

to express $\operatorname{ad}_{A}=L_{A}-R_{A}$ in terms of $L_{B}-R_{B}$, and conclude tha t the eigenvalues of ad_{A} are $\lambda_{i}-\lambda_{j}$, for $i=1, \ldots, n$, and for $j=n, \ldots, 1$.
(4) (Extra Credit) Let R be the $n \times n$ permutation matrix given by

$$
R=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \ldots & 0 & 0 \\
1 & 0 & \ldots & 0 & 0
\end{array}\right)
$$

Observe that $R^{-1}=R$. I checked for $n=3$ that in the basis $\left(E_{i j}\right)$ ordered as above, the matrix of L_{A} is given by $A \otimes I_{3}$, and the matrix of R_{A} is given by $I_{3} \otimes R A^{\top} R$. Here, \otimes the Kronecker product (also called tensor product) of matrices.

Given an $m \times n$ matrix $A=\left(a_{i j}\right)$ and a $p \times q$ matrix $B=\left(b_{i j}\right)$, the Kronecker product (or tensor product) $A \otimes B$ of A and B is the $m p \times n q$ matrix

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 n} B \\
a_{21} B & a_{22} B & \cdots & a_{2 n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} B & a_{m 2} B & \cdots & a_{m n} B
\end{array}\right) .
$$

It can be shown (and you may use these facts without proof) that \otimes is associative and that

$$
\begin{aligned}
(A \otimes B)(C \otimes D) & =A C \otimes B D \\
(A \otimes B)^{\top} & =A^{\top} \otimes B^{\top},
\end{aligned}
$$

whenever $A C$ and $B D$ are well defined.
Prove that for any $n \geq 1$, the matrix of L_{A} is given by $A \otimes I_{n}$, and the matrix of R_{A} is given by $I_{n} \otimes R A^{\top} R$. Use this result to give another proof of the fact that the eigenvalues of ad_{A} are $\lambda_{i}-\lambda_{j}$, for $i=1, \ldots, n$, and for $j=n, \ldots, 1$.

Note that if instead of the ordering

$$
E_{1 n}, E_{1 n-1}, \ldots, E_{11}, E_{2, n}, \ldots, E_{21}, \ldots, E_{n n}, \ldots, E_{n 1}
$$

that I proposed you use the standard lexicographic ordering

$$
E_{11}, E_{12}, \ldots, E_{1 n}, E_{21}, \ldots, E_{2 n}, \ldots, E_{n 1}, \ldots, E_{n n}
$$

then the matrix representing L_{A} is still $A \otimes I_{n}$, but the matrix representing R_{A} is $I_{n} \otimes A^{\top}$. In this case, if A is upper-triangular, then the matrix of R_{A} is lower triangular. This is the motivation for using the first basis (avoid upper becoming lower).

Problem B3 (80 pts). Given any two matrices $A, X \in \mathrm{M}_{n}(\mathbb{C})$, define the function $f_{A}: \mathrm{M}_{n}(\mathbb{C}) \rightarrow \mathrm{M}_{n}(\mathbb{C})$ by

$$
f_{A}(X)=\sum_{p, q \geq 0} \frac{A^{p} X A^{q}}{(p+q+1)!}
$$

(1) Prove that

$$
f_{A}=\sum_{p, q \geq 0} \frac{L_{A}^{p} \circ R_{A}^{q}}{(p+q+1)!} .
$$

(2) Prove that

$$
\operatorname{ad}_{A} \circ f_{A}=\sum_{k \geq 1} \frac{1}{k!}\left(L_{A}^{k}-R_{A}^{k}\right) .
$$

(3) Prove that

$$
\operatorname{ad}_{A} \circ f_{A}=e^{L_{A}} \circ\left(\mathrm{id}-e^{-\mathrm{ad}_{A}}\right)
$$

Check that

$$
e^{L_{A}}(B)=e^{A} B
$$

Conclude that

$$
\operatorname{ad}_{A} \circ f_{A}=e^{A}\left(\mathrm{id}-e^{-\operatorname{ad}_{A}}\right) .
$$

Observe that

$$
\mathrm{id}-e^{-\mathrm{ad}_{A}}=\sum_{k=0}^{\infty} \frac{(-1)^{k} \mathrm{ad}_{A}^{k+1}}{(k+1)!}
$$

so it would be tempting to say that

$$
f_{A}=e^{A} \sum_{k=0}^{\infty} \frac{(-1)^{k} \mathrm{ad}_{A}^{k}}{(k+1)!}
$$

but I don't know a simple way of justifying this fact!
(4) Prove that

$$
d(\exp)_{A}(X)=\sum_{p, q \geq 0} \frac{A^{p} X A^{q}}{(p+q+1)!}=f_{A}(X)
$$

Remark: It is known that

$$
d(\exp)_{A}=e^{A} \sum_{k=0}^{\infty} \frac{(-1)^{k} \mathrm{ad}_{A}^{k}}{(k+1)!}
$$

so the bold unsubstantiated conclusion in (3) is actually correct. In fact, it is customary to use the notation

$$
\frac{\mathrm{id}-e^{-\mathrm{ad}_{A}}}{\operatorname{ad}_{A}}
$$

for the power series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} \mathrm{ad}_{A}^{k}}{(k+1)!}
$$

and the formula for the derivative of exp is usually stated as

$$
d(\exp)_{A}=e^{A}\left(\frac{\mathrm{id}-e^{-\mathrm{ad}_{A}}}{\operatorname{ad}_{A}}\right) .
$$

Problem B4 (20 pts). Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function given by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Compute the directional derivative $\mathrm{D}_{u} f(0,0)$ of f at $(0,0)$ for every vector $u=$ $\left(u_{1}, u_{2}\right) \neq 0$.
(b) Prove that the derivative $\mathrm{D} f(0,0)$ does not exist. What is the behavior of the function f on the parabola $y=x^{2}$ near the origin $(0,0)$?

Problem B5 (40 pts). (a) Let $f: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be the function defined on $n \times n$ matrices by

$$
f(A)=A^{2}
$$

Prove that

$$
\mathrm{D} f_{A}(H)=A H+H A
$$

for all $A, H \in \mathrm{M}_{n}(\mathbb{R})$.
(b) Let $f: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be the function defined on $n \times n$ matrices by

$$
f(A)=A^{3}
$$

Prove that

$$
\mathrm{D} f_{A}(H)=A^{2} H+A H A+H A^{2}
$$

for all $A, H \in \mathrm{M}_{n}(\mathbb{R})$.
TOTAL: 350 points.

