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of a finite set of points

in two and higher dimensions is a generalisation of

the concept of the median of a (finite) set of points

on the real line. In this paper, we present an algo-

rithm for computing a centerpoint of a set of n points

in the plane. The algorithm has complexity O(n)

which significantly improves the O(rz log3 n) complex-

ity of the previously best known algorithm. We use

suitable modifications of the ham-sandwich-cut algo-

rithm and the prune-and-search technique to achieve

this improvement.

1 Introduction.

We all have an intuitive idea as to what phrases like

“the very center of the square” or “the very center of

the city” mean. The notion of the center of a set of

points is an attempt to capture this intuition in a quan-

titative way [YB6 1]. The center of a set S of n points

in a d-dimensional Euclidean space is the set of poi:nts c

such that, for any hyperplane cent aining c there are at

least [n/(d + 1)] of the points of S in each closed half-

space determined by the hyperplane. A centerpoint of

S is a member of this set. We can alternatively view

this definition of a centerpoint as a generalisation of the

familiar concept of the median of a set of real numbers.

As shown in [Ede87], a centerpoint always exists.

Just as the computation of the median is an impor-

tant subproblem in many algorithms involving a finite

set of real numbers, the computation of a centerpoint

of a finite set of points in higher dimensions will be of
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fundamental importance for geometric algorithms that

require a balanced partitioning of the given point set.

The concept of center is also closely related to the
concept of the k-hull of a set of points, S, which gen-

eralises the notion of the convex hull of S, The k-hull

of S is the set of points p such that for any hyper-

plane containing p there are at least k points of S in

each closed half-space determined by the hyperplane.

The center of S is its [n/(d + 1)1-hull. This connection

was exploited by Cole et al to construct an O(n log5 n)

algorithm for computing a centerpoint [CSY87]. In a

subsequent paper, by using a refinement of Megiddo’s

parametric searching technique, Cole improved this to

O(n log3 n) [Meg83a, C0187].

If we are prepared to settle for less, viz. an ap-

proximate centerpoint, then several fast algorithms ex-

ist. Megiddo showed that we can find an approximate

centerpoint for a planar set of points in linear time

[Meg85]. Any line containing this approximate center-

point has at least [n/41 points in each closed half-plane

determined by it. Indeed we can generalise his method

to obtain a linear time algorithm in higher dimensions

also. Matouiiek showed how an approximate center-

point, as close to the exact one as we want, can be

found in linear time [Mat91].

In this paper we propose an optimal algorithm for

computing a centerpoint of a planar set of points. We

use an interesting modification of Megiddo’s prune-

and-search technique [Meg83b], The modification con-

sists of adding a few extra points in each pruning step

so that we retain a subspace of the original solution

space, while ensuring a net deletion of points. In ad-

dition to this we use the linear time ham-sandwich-cut

algorithm of Lo and Steiger [LS91] aa an oracle.

The paper is organised as follows. In Section 2 we

introduce a few pertinent definitions and discuss the

existence of a centerpoint. Section 3 contains a discus-

sion on what points to prune. In the next section we

describe the method used to find these points. The al-

gorithm is presented in Section 5. Section 6 contains an

analysis of the time complexity of the algorithm. Con-

clusions and directions to further research are given in

83



w
●

●

●

●

●

4
●

●

● m* A

●

●

●

●

●

●

●

●

●

Figure 1: An Extreme Configuration of 30 Points

Section 7. In an appendix we modify our algorithm
to show that it suffices to use ham-sandwich-cuts for

separable sets only [Meg85]. This gives a more efficient

algorithm than when we use the ham-sandwich-cut al-

gorithm of Lo and Steiger.

2 Preliminaries.

Let S be a set of n points in a d-dimensional Euclidean

space. The center A of S is a subset Ed such that

any closed half-space intersecting A contains at least

[n/(d + 1)] points of S. From this definition of A we
can alternatively characterise the center as the intersec-

tion of all open half-spaces such that their complements

contain less than [n/(d + 1)1 points.

A centerpoint of S is a member of A.

From the definition of the center above, it follows

that any hyperplane which contains a centerpoint has

at least [n/(d+ 1)1 points of S in each closed half-space

determined by it.

A centerpoint exists for every configuration of points.

We have the following theorem which can be proved
using Helly’s theorem.

Theorem 2.1 [Ede87] Every finite set of points in

d-dimensional Euclidean space admits a centerpoint.

The bound [n/(d + 1)1 in the definition of the cen-

terpoint above is tight. We can always find a configu-

ration of n points in Ed such that the center is empty

if [n/(d + 1)1 is replaced by a larger number.

We show a configuration of 30 points in the plane for
which all points in Ez admit a line which contains no

more than 10 points on one of its sides (Fig. 1).

We will use the notation SH to denote the set of

points of S contained in the half-plane H i.e. the set

SnH, and SGH to denote the set of points of S common

to the half-planes G and H i.e. the set S n G n H.

3 What to Prune.

We would attempt to compute a centerpoint by ap-

plying prune-and-search. An application of Megiddo’s
prune-and-search paradigm to a given problem consists

of constructing a reduced search space, which contains

the solution(s) to the problem, and then throwing away

a constant fraction of the input set with respect to this

reduced search space.

We cannot attempt to compute the center of a set of

points by this technique because we cannot guarantee
that a pruned set has the same center as the original

set. However, it might be possible to do something less.

We can try to prune away a fraction of points of the

original set, ensuring that the center of the pruned set

is contained in the center of the original set. Then the

relevant question is, which points to prune. To answer

this, let us try to understand how we can instead add

points so that the center of the enlarged set is a superset

of the center of the original set.

A triangle has the well-known property that any line

which intersects it has at least one of the vertices of

the triangle in each closed half-plane determined by

it. Suppose that the center of S is contained inside a
triangle. If we enlarge S by adding to it the vertices

of this triangle then the center of S is contained in the

center of this bigger set. We prove this in the theorem

below.

Theorem 3.1 If P is the set of vertices of a triangle

T, which contains the center A of S, then A is a subset

of the center of S U P.

Proof: By the definition of the center every closed

half-plane H intersecting A contains at least (n/31

points of S.

Since the triangle T contains the center A, the half-

plane H intersects T. Therefore H contains at least

one of the vertices of P, and the number of points of

84



Figure 2: Deletion of Triplets of Points From Set S

S U P in H is at lesst [n/31 + 1. Thus A is contained

in the center of S U P. ~

The next theorem tells us how we can find such a

triangle. We first note that if a closed half-plane con-

tains a centerpoint of Sthen it necessarily containsat

least [1S1/31 points.

Let lSUPl=n in the rest of this section.

Theorem 3.2 Let HI, H2, H3 be three closed half-

planes, each containing less than [n/31 points of SUP

and situated so that the intersection of their conaple-

ments is a bounded open triangle A; P = {xl, X2, z3},

wherezl eH1n H2, x2 CH2n H3 andx3EHsrllf1.

Then any centerpoint of S is also a centerpoint of SUP.

Proof: Clearly, the triangle formed by the set of

points in P encloses the triangle A formed by the

boundaries of the half-planes, and hence also the cen-
ter of S. The result follows from the previous theorem

(Fig. 2). R

For the purpose of our algorithm we need to be able

to use the above theorem in a “subtractive” way, that

is, start with the set S and get to the set S – P. We

would also like to do it many times, so that a fraction

of the points of the set we start with can be discarded.

This however may not always be possible. There are

configurations of points for which we cannot determine

P for any choice of half-planes satisfying the conditions

of our theorem. An example of such a configuration is

n points evenly arranged on a circle.

To get around this difficulty we enlarge the scope of

the above theorem, allowing for the choice of four half-

planes instead of three. The details are provided in the

theorem below.

Theorem 3.3 Let HI, Hz, H3, Hd be four closed half-

planes, each containing less than [n/3] points of S U P

and situated so that the intersection of their com-

plements is a bounded open quadrilateral or triangle

A; P = {~l,x2,~3,Z4}j where xl E H1 11 H2,xz E

Hz n H3,x3 E H3 n HQ and 246 HA n HI. Then any
centerpoint of S U {p} is also a centerpoint of S U P

where p is either the intersection of the diagonals of

the quadrilateral P if P dejines a quadrilateral or it is

the interior point among the points of P if P defines a

non-convex quadrdateral.

Proofi Let c be a center-point of S U {p}. Any

closed half-plane H containing c contains at least

[n/3 -11 points of S u {p} (IS u {p}l = n - 3).

Our first observation is that c lies inside A. To see

how, suppose this is not the case. Then c lies in at

least one of the half-planes HI, H2, H3 and H4. Let Hi

be that half-plane, Also, let HC be that closed half-

plane which is a proper subset of Hi and contains c in

its boundary. Since Hi contains less than [n/31 points

of S U P, therefore HC n (S U {p}) contains less than

[n/31 – 2 + 1 points i.e. when two points of P are

dropped and the point p is added to H.. This leads to

a contradiction as every closed half-plane containing c

contains at least [n/3 – 11 points of S U {p}.

We have to show that a hyperplane H which contains

c contains at least [n/31 points of SU P. Depending on

whether the points in P form a convex or a non-convex

quadrilateral, three different cases arise.

Case 1 The four points in P form a non-convex

quadrilateral.

This csse is a trivial application of Theorem 3.1.

The three convex vertices form a triangle that en-

closes the center of S U {p}. Thus by Theorem 9.1

any centerpoint of S U {p} is also a centerpoint of

SUP.

Case 2 The four points of P form a convex quadrilat-

eral but the intersection point p of the diagonals

does not belong to H (Fig. 3).

Since the quadrilateral contains the center of S U

{P} the half-plane H intersects it. Thus H con-
tains at lea3t [n/31 points of SUP since it contains
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Figure 3: Substitution of Quadruples of Points by Point p in S

at least one of the four vertices of the quadrilat-

eral.

Case 3 The four points of P form a convex quadri-

lateral and the intersection point of the diagonals

belongs to H (Fig. 3).

In this case H contains at least two points of P.

We can therefore delete p from H and still claim

that H contains at least (n/31 points of S U P.

Thus in all the cases H contains at least [n/31 points

of S U P. Since the total number Qf points in S U P is

n, c is a center-point of S U P as well. ~

The last theorem is the cornerstone of our pruning

mechanism. In the next section we will show how to

use ham-sandwich-cuts to make a clever choice of four

half-planes so that we can prune a fraction of of the

input set by applying this theorem repeatedly.

At this point it would be pertinent to point out a

salient and novel feature of the last theorem. Un-

like any previous application of the prune-and-search

paradigm, in this case, we will have to add new points

to the input set, ensuring at the same time a net dele-

tion of points in each iteration.

4 How to Prune.

To live up to the claim we made in the last section, we

will find a set of four closed half-planes L, R, U and D

that satisfy the conditions of the last theorem so that

a fraction of the input set can be pruned.

We fix L as follows. We determine the ( [Tz/31 – 1)

smallest of the orthogonal projections of all the points
of S onto an arbitrary reference line. The closed half-

plane, determined by the perpendicular line passing

through this point, that contains [n/31 – 1 points on

the left is chosen to be L. This takes O(n) time.

The half-planes U and D are determined by using a

slightly generalised form of the ham-sandwich-cut algo-

rithm for separable point sets. We show how to deter-

mine U only. The half-plane D is computed in a similar

manner. Let A be the set of points in L and B the rest
of the points of S. We use the ham-sandwich-cut algo-

rithm to partition set A in the ratio 1:3 and set B in

the ratio 3:5 so that one oft he closed half-planes deter-

mined by the portioning line contains exactly [n/31 – 1

points of S. This again takes O(n) time. We ensure at

the same time that each of the sets L n U and L n D

contains [n/12] – 1 points.

Determining the half-plane R is somewhat tricky.

We must make sure that each of the sets RnD and RfW

cent ains at least [n/12] — 1 points and R contains less

than [n/31 points. Let T be the set (~ n ~) U (U n D).

Add the points in U – D and D – U twice respectively

to T to form the multisets A and B. Both of these

multisets contain n points.

To see this, suppose that U – D contains z points of

S. Then the sets UUD and ~fl~ contain [n/31 -z – 1

and ~2n/3j – z + 1 points of S respectively. Since the

points in U – D are counted twice the total number of

points in A is 2x + [n/31 – x – 1 + [2n/3J – z+ 1 (= n).

The points in T are included both in A and B so

these are also counted twice. Using the algorithm of

Lo and Steiger [LS91] we now make a ham-sandwich-

cut of the sets A and B, and choose R as that closed

half-plane which contains [n/31 – 1 points of A and

[n/31 -1 points of B. Since each point is counted

twice the total number of points of S in R is [n/31 – 1.

We prove in a subsequent section that both the sets

R n U and R n D contain at least in/12] – 1 points.

Remark: In an appendix to this paper we sketch a

modification of the above procedure which uses the

ham-sandwich-cut algorithm for separable sets only.
Moreover, for non-separable sets, a ham-sandwich-

cut with an arbitrary ratio may not always exist. How-

ever, in the case mentioned above, the R-cut always

exist. We give a proof of this in another appendix.

Assuming that each of the sets L n U, L n D, R fl U

and R n D contains at least in/ 12j – 1 points of S,

it is clear what we must do. We select any quadruple
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Figure 4: Partitioning of Set S by Half-Planes U,

of points, one each from these sets. If these form a

convex quadrilateral we delete them from S and add

to it the intersection of the diagonals. Otherwise we

delete the convex vertices but retain the concave one.

We can repeat this procedure on the reduced set of

points thus obtained until one of the sets SLU, SRU,

SRD and SLD is empty, since the half-planes L, U, D

and R continue to satisfy the conditions of the theorems
of the previous section. We call it REPLACE-POINTS (P:

Points ), where P is the set of all such points. We note

that this reduces the size of S by at least one fourth.

5 The Center-Point Algorithm.

After the discussion in the previous sections, the pro-

cedure for finding a cent erpoint is now quite clear.

In each iteration we compute the points that are

to be discarded or replaced. By throwing away these

points we reduce the size of the set by a non-zero frac-

tion,

When the size of the set becomes so small that no

more points can be discarded we call a halt to the

pruning procedure and compute a centerpoint by any

straightforward algorithm.

The formal algorithm is given below.

Algorithm CENTERPOIITT(S: Points)

begi,n

repeat

Compute the half -planes L, U, D and R

compute the sets SL, SW, SD and SR
P + SLU U SLD U SRU U SRD
REPLACE-POINTS(P)

until P = @

Find a centerpoint by any strai.ghtforwa.rd
method

R, D, and L

end.

6 Analysis of the Center-Point

Algorithm.

We first show that each of the sets SRU and SRD

contains at least [n/12j — 1 points. By construction
we know that the each set, SLU and SLD, contains

in/12] – 1 points.

Let Sk and S~ denote the sets Su – SLU and SD –

SLD respectively. Let S’ denote the set S – {SL U Su U

SD}.

Theorem 6.1 Each of the sets SLU, SRIJ, SRD and

SLD contains at least w points of S, where O < c <1.

Proof: We have already seen that each of the sets

SLU and SLD contains [n/12] – 1 points of S.

Each of the sets S~ and S~ (inclusive of SRU and

S~D respectively) contains [n/31 – [n/12j points.

The sets SL, S& U S~ and S’ are disjoint. Therefore

lSLl+lS&US~l+lS’1 = n

If SC denotes the set S& n S~, from the above equa-

tion we have

IS’1 - ISCI = n- (3[n/31 -11- 2Ln/12j)

Now there are two cases to consider. When SRU U

SRD contains SR, both SRU and SRD contain at least

[n/6J -1 points. In the second case the set SC includes
the set SR and we have

Is’{ + ISRU usl?~l ~ [n/31 -1

Therefore,

ISRUI + ISRDI

> IS=I + ISRU USRDI

> 4[n/31 – n – 2[n/12J – 2
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of points, so

IsmJ\= Is’ml ~ [n/12J -1

Thus all the sets in question contain at least [n/12j –

1 points. We have also shown that c is approximately

1/12. #

Combining the earlier theorems we get the result

Theorem 6.2 A point in the center of a set can be

computed in linear time.

Proof: In each iteration at least 3n/12 (= n/4)

points are deleted.

If T(n) is the running time of the algorithm for an

input of size n, then it satisfies the following recurrence.

T(n) = T(n – 3n/12) + O(n)

+ T(n) = T’(3n/4) + o(n)

Since T(n) = O(n) from the above recurrence, the

claim of the theorem follows. g

7 Conclusions.

We have presented an optimal algorithm for computing

a centerpoint of a finite set of points in the plane, thus

providing one more example of the power and versatil-

ity of the Prune-And-Search paradigm.

It would be worth exploring how this speeds up al-

gorithms which uses the centerpoint computation as a

basic subroutine.
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Proof of Existence of an R-
Cut.

In this section we prove the existence of a ham-

sandwich-cut for a ratio other than 1:1. We give a

sufficient condition for this which is applicable to the

configuration discussed in this paper. It can also be

easily seen how the algorithm by Lo and Steiger can be

wmodified for this application.

Suppose we want to find a ham-sandwich-cut which

divides two given sets A and B in ratios rA and rB

respectively. Then,

Lemma A.1 If there exist two cats HI and H2 which
divide A, B in ratios r;, r~ and r;, r; respectively

such that
r~>rA>r~

and
?’~<?’B<&

then there exists a ham-sanwich-cut which divides the

set A and B in ratios rA and rB respective/y.
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Figure 5: Distribution of Points for an R.-Cut,

Proof: The proof of this Lemma is constructive.

We dualise the problem of ham-sandwich-cut[LS91]. In

the dual problem we have to find intersection of A-level

corresponding to rA and B-level corresponding to r~.
A kt~-level is defined as the piece-wise linear curve that

intersects every vertical line at kt~-median.

The point corresponding to HI is below the A-level

corresponding to rA and above the B-level correspcmd-

ing to ?’B. At the point corresponding to H2 the reverse

is true. As both of these levels interchange their rel-

ative positions they will intersect in the vertical strip

between the dual points of HI and H2, This inter-

section point is the required dual of the general ham-

sandwich-cut. I

Let the boundaries of U and D be the cuts HI and

H2 respectively as stated in Lemma A. 1. The ratios

rA and rB are both 1/2. Let the size of SUD be x.

The sizes of other sets would be as shown in the Fig. 5.

For the sake of simplicity floor and ceiling functions are

dropped from various terms. Then,

2n/3 – x
r~ =

nj3 + x

x
r~=—

n—x
x

r~=—
n—x

2n/3 – x
r~ =

n/3 + x

and

B An Alternative Pruning Pro-

cedure.

Instead of computing R by the method given in sec-

tion 4, we can use the following alternative procedure.

The half-planes U and D are computed as before. But

to compute R we start with the half-plane U instead of

L. We find a ham-sandwich-cut such that U n R con-

tains [n/12] – 1 points of S, Further, let R and D be

computed maximally such that it may not be possible

to locate another half-planes which have S~u and SLD

respectively as proper subsets.

By construction, the sets SLU, SLD and SRU contain

[n/12j – 1 points each. We have to show that ,S’~D

contains at least [n/12] – 1 points.

Theorem B. 1 There are at least [n/12j -1 points in

SRD .

Proofi There are several different cases to consider.

We prove the statement for the configuration shown in

Fig. 6 only. For the sake of simplicity ceiling and floor

functions are dropped from various terms.

Let the size of SDU be x and size of SRjo be n/12+

x—y,

Then number of points in every partition would be

as shown in the Figure. All the sizes of sets must be

greater than or equal to zero. Therefore,

X–y>o

and hence,

I$RL) = n/12+~ ‘y > n/12

We can prove the statement of theorem for other

configurations of hyperplanes L, U, D and R similarly.

I

Since all the ham-sandwich-cuts in this procedure
are computed for separable sets, this algorithm is more

efficient than the one described in the paper.

Therefore an R-cut exists for the said configuration
in the paper.
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Figure 6: Distribution of Points for the Configuration in the Proof of Theorem B. 1.
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