
Math 603, Spring 2003, HW 2, due 2/10/2003

Part A

AI) (Topologies and Presheaves). Let X be a topological space. We can make a category, TX , which is
specified by and specifies the topology as follows: Ob TX consists of the open sets in X. If U, V ∈ Ob TX ,
we let

Hom(U, V ) =
{
∅ if U 6⊆ V ,
{incl} if U ⊆ V ,

here {incl} is the one element set consisting of the inclusion map incl : U → V .

(a) Show that U Π
X

V —the fibred product of U and V (over X) in TX—is just U ∩ V . Therefore TX

has finite fibred products.

(b) If C is a given category (think of C as Sets, Ab, or more generally Λ-Modules) a presheaf on X
with values in C is a cofunctor from TX to C. So, F is a presheaf iff (∀ open U ⊆ X)(F (U) ∈ C)
and if U ↪→ V , we have a map ρU

V : F (V )→ F (U) (in C) usually called restriction from V to U .
Of course, we assume ρW

V = ρW
U ◦ ρU

V . The basic example, from which all the terminology comes,
is this:

C = R-modules (= vector spaces over R)
F (U) = {continuous real valued functions on open set U}.

Now recall that a category is an abelian category iff for each morphism A
ϕ−→ B in C, there

are two pairs: (kerϕ, i) and (cokerϕ, j) with kerϕ and coker ϕ objects of C and i : kerϕ → A,
j : B → cokerϕ so that:

1) HomC(A,B) is a group, abelian, operation denoted +
2) ker ϕ→ A→ B is zero in HomC(ker ϕ, B)
3) If C

u−→ A → B is zero, ∃ a unique morphism C → ker ϕ so that u is the composition
C → ker ϕ

i−→ A

4) Similar to 3) for coker, with appropriate changes.

Define Im ϕ as ker(B
j−→ cokerϕ). Now exact sequences make sense in C (easy, as you see). Write

P(X, C) for the category of presheaves on X with values in C. If C is abelian show that P(X, C)
is an abelian category, too, in a natural way.

(c) If A ∈ Ob C, we can make a presheaf A by: A(U) = A, all open U and V ↪→ U then ρU
V = idA.

This is the constant presheaf with values in A. Generalize it as follows: Fix open U of X, define
A U by:

A U (W ) =
∐

Hom(W,U)

A =
{

(0) if W 6⊆ U
A if W ⊆ U .

Show A U is a presheaf and A is one of these A U ; which one? Generalize further: Say F is a
presheaf of sets on X, define AF by:

AF (W ) =
∐
F(W )

A =
{
functions : F(W )→ A | these functions have finite support

}
.

Make AF into a presheaf on X; it is a clear generalization of A U and this, in turn, generalizes A.

(d) Just as with the defining example in (b), which is called the presheaf of germs of continuous
functions on X so we can define the presheaf of germs of Ck-functions, real-analytic functions,
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complex holomorphic functions, meromorphic functions when X is a real (resp. complex) mani-
fold. Namely:

Ck(U) = {f : U → R | f is Ck on U}. 0 ≤ k ≤ ∞
C∞(U) = {f : U → R | f is real analytic on U}
Hol(U) = {f : U → C | f is holomorphic on U}
Mer(U) = {f : U → C | f is meromorphic on U}.

Prove: The collection {Z U | U open in X} is a set of generators for P(X,Ab); that is: ∀
presheaves F , ∃ subcollection of the U ’s, say {Uα | α ∈ Λ}, so that there is a surjection∐
I

( ∐
α∈Λ

Z U

)
� F , for some set I. (Then it turns out that every presheaf embeds in an

injective presheaf.)
(e) Now sheaves are special kinds of presheaves. Say U ∈ TX and we have a family of morphisms of
TX : {Uα → U}α∈Λ (we’ll suppress mention of Λ in what follows). We call this family a covering
family ⇐⇒

⋃
α Uα = U , i.e. the Uα are an open covering of U . Of course, if ξ ∈ F (U), then

ρUα

U ∈ F
(
Uα

)
, each α; here, F is a presheaf. Hence we get a map

θ : F (U)→
∏
α

F
(
Uα

)
.

Now if ξα ∈ F
(
Uα

)
, for each α, then ρ

Uα∩Uβ

Uα

(
ξα

)
lies in F

(
Uα ∩ Uβ

)
therefore we get a map

p1,α : F
(
Uα

)
→

∏
β

F
(
Uα ∩ Uβ

)
.

Take the product of these over α and get a map

p1 :
∏
α

F
(
Uα

)
→

∏
α,β

F
(
Uα ∩ Uβ

)
.

If ξβ ∈ F
(
Uβ

)
then ρ

Uα∩Uβ

Uβ

(
ξβ

)
∈ F

(
Uα ∩ Uβ

)
therefore we get a map

p2,β : F
(
Uβ

)
→

∏
α

F
(
Uα ∩ Uβ

)
.

Again the product over β gives:

p2 :
∏
β

F
(
Uβ

)
→

∏
α,β

F
(
Uα ∩ Uβ

)
,

hence we get two maps: ∏
γ

F
(
Uγ

) p1−→−→
p2

∏
α,β

F
(
Uα ∩ Uβ

)
.

The definition of a sheaf is: a sheaf, F , of sets is a presheaf, F , of sets so that (∀ open U)(
∀ covers

{
Uα → U

}
α

)
the sequence

F (U) θ→
∏
γ

F
(
Uγ

) p1−→−→
p2

∏
α,β

F
(
Uα ∩ Uβ

)
(S)

is exact in the sense that θ maps F (U) bijectively to the set
(
ξγ

)
∈

∏
γ

F
(
Uγ

)
for which

p1

((
ξγ

))
= p2

((
ξγ

))
. Show that the presheaves of germs of continuous, k-fold continuous, differ-

entiable, analytic, holomorphic and meromorphic functions are all sheaves. In so doing understand
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what exactness of sequence (S) means.
Prove, however, that A is NOT a sheaf. (Note: a sheaf with values in Ab or RNG or Ω-groups is
just a presheaf with these values which forms a sheaf of sets.) For which presheaves, F , is AF a
sheaf?

AII) Let k be a field, X an indeterminate (or transcendental) over k. Write A = k[X] and consider an ideal,
a, of A. The ideal a determines a topology on k[X]—called the a-adic topology—defined by taking as
a fundamental system of neighborhoods of 0 the powers {an | n ≥ 0} of a. Then a fundamental system
of neighborhoods at ξ ∈ A is just the collection {ξ + an | n ≥ 0}.

(a) Show A becomes a topological ring (i.e. addition and multiplication are continuous) in this
topology. When is A Hausdorff in this topology?

(b) The rings A/an = An form a left mapping system. Write

Â = lim←−
n

A/an

and call Â the a-adic completion of A. There is a map A→ Â; when is it injective?

(c) Consider a = (X) = all polynomials with no constant term. The ring Â in this case has special
notation: k[[X]]. Establish an isomorphism of k[[X]] with the ring of formal power series over
k (in X) i.e. with the ring consisting of sequences

(
cn

)
, n ≥ 0, cn ∈ k with addition and

multiplication defined by: (
cn

)
+

(
dn

)
=

(
cn + dn

)(
cn

)
·
(
dn

)
=

(
en

)
, en =

∑
i+j=n

cidj

((
cn

)
↔

∞∑
n=0

cnXn explains the name
)

(d) Show k[X] ↪→ k[[X]], that k[[X]] is an integral domain and a local ring. What is its maximal
ideal? Now (X) = a is a prime ideal of k[X], so we can form k[X](X). Prove that

k[X] ⊆ k[X](X) ⊆ k[[X]].

We have the (prime) ideal (X)e of k[X](X). Form the completion of k[X](X) with respect to the
(X)e-adic topology. What ring do you get?

AIII) Prove that in the category of commutative A-algebras, the tensor product is the coproduct:

B ⊗A C ∼= B q
A

C.

Which A-algebra is the product B Π C (in commutative A-algebras)?

Part B

BI) Here A is a commutative ring and we write Mn(A) for the ring of n× n matrices over A.

(a) Prove: the following are equivalent

1) A is noetherian
2) For some n, Mn(A) has the ACC on 2-sided ideals
3) For all n, Mn(A) has the ACC on 2-sided ideals.
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(b) Is this still valid if “noetherian” is replaced by “artinian” and “ACC” by “DCC”? Proof or
counterexample.

(c) Can you make this quantitative? For example, suppose all ideals of A are generated by less than
or equal to N elements. What can you say about an upper bound for the number of generators
of the ideals of Mn(A)? How about the converse?

BII) Refer to problem AII. Write k((X)) for Frac(k[[X]]).

(a) Show that

k((X)) =

{ ∞∑
j=−∞

ajX
j | aj ∈ k, all j and (∃N)(aj = 0 if j < N)

}

where on the right hand side we use the obvious addition and multiplication for such expressions.
If ξ ∈ k((X)), write ord(ξ) = N ⇐⇒ N = largest integer so that a = 0 when j < N ; here,
ξ 6= 0. If ξ = 0, set ord(ξ) =∞. One sees immediately that k[[X]] =

{
ξ ∈ k[[X]] | ord(ξ) ≥ 0

}
.

(b) Write U for Gm

(
k[[X]]

)
and M for {ξ | ord(ξ) > 0}. Prove that k((X)) = M−1 ∪ U ∪ M

(disjointly), where
M−1 = {ξ | 1/ξ ∈M}.

Now fix a real number, c, with 0 < c < 1. Define for ξ, η ∈ k((X)),

d(ξ, η) = cord(ξ−η),

then it should be clear that k((X)) becomes a metric space and that addition and multiplication
are continuous in the metric topology. Prove that k((X)) is complete in this topology (i.e., Cauchy
sequences converge), and that the topology is independent of which number c, 0 < c < 1 is chosen.

(c) Suppose u ∈ k[[X]], u =
∑∞

j=0 ajX
j , and a0 = 1. Pick an integer n ∈ Z and assume

(n, char(k)) = 1. Prove: there exists w ∈ k[[X]] such that w2 = u. There is a condition on k so
that k((X)) is locally compact. What is it? Give the proof. As an example of limiting operations,
prove

1
1− x

=
∞∑

j=0

Xj = lim
N→∞

(1 + X + · · ·+ XN ).

(d) Given
∞∑

j=−∞
ajX

j ∈ k((X)), its derivative is defined formally as

∞∑
j=−∞

jajX
j−1 ∈ k((X)).

Assume ch(k) = 0. Check mentally that α′ = 0
(
α ∈ k((X))

)
=⇒ α ∈ k. Is the map α 7→ α′

a continuous linear transformation k((X)) → k((X))? Set η =
∞∑

j=0

1
j!

Xj , so η ∈ k((X)). Prove

that X and η are independent transcendentals over k.

(e) A topological ring is one where addition and multiplication are continuous and we have a Hausdorff
topology. Topological k-algebras (k has the discrete topology) form a category in which the
morphisms are continuous k-algebra homomorphisms. An element λ in such a ring is topologically
nilpotent iff limn→∞ λn = 0. Let Ntop denote the functor which associates to each topological
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k-algebra the set of its topological nilpotent elements. Prove that Ntop is representable. As an
application, let

s(X) =
∞∑

j=0

(−1)j X2j+1

(2j + 1)!
, c(X) =

∞∑
j=0

(−1)j X2j

(2j)!
.

Then s′(X) = c(X) and c′(X) = −s(X), so c2(X) + s2(X) lies in k (the constants). Without
computing c2(X) + s2(X), show it is 1. (You’ll need Ntop, so be careful.)

(f) Show that even though k(X) is dense in k((X)), the field k((X)) possesses infinitely many inde-
pendent transcendental elements over k(X). (Suggestion: look in a number theory book under
“Liouville numbers”; mimic what you find there.)

(g) Let Ck

(
k((X))

)
=

{
α ∈ k((X)) | α is algebraic over k

}
. Show that Ck

(
k((X))

)
= k.

If ch(k) = 0 and R ⊆ k, write
(

m
j

)
=

m(m− 1) · · · (m− j + 1)
j(j − 1) · · · 3 · 2 · 1

for m ∈ R. If R 6⊆ k, do this

only for m ∈ Q. Set

ym =
∞∑

j=0

(
m
j

)
Xj ∈ k[[X]].

If m = r/s, prove that ys
m = (1 + x)r.

Note that ym = 1 + O(X) and that O(X) ∈ Ntop

(
k[[X]]

)
. Let L(1 + X) =

∞∑
j=0

(−1)j Xj+1

(j + 1)
, and

set f(X)m = η
(
m · L(f(X))

)
, where

η(X) =
∞∑

j=0

1
j!

Xj , f(X) = 1 + O(X), some O(X)

and m ∈ R (here, R ⊆ k). Show that

(1 + X)m = ym.

BIII) Say K is a field, A is a subring of K. Write k = Frac A.

(a) If K is a finitely generated A-module, prove that k = A.

(b) Suppose there exists finitely many elements α1, . . . , αm ∈ K algebraic over k such that

K = A[α1, . . . , αm].

Prove
(
∃ b ∈ A

)(
b 6= 0

)(
so that k = A[1/b]

)
. Prove, moreover, that b belongs to every maximal ideal

of A.

BIV) Refer to AI. Look at P(X,Ab).

(a) We have a functor P(X,Ab)  Ab for each U ∈ Ob TX , namely, F  F (U). Show this functor
is representable.

(b) Grothendieck realized that when computing algebraic invariants of a “space” (say homology,
cohomology, homotopy, K-groups, . . . ) the sheaf theory one needs to use could be done far more
generally and with far more richness if one abstracted the notion of “topology”. Here is the
generalization:

i. Replace TX by any category T .

To do sheaves, we need a notion of “covering”:
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ii. We isolate for each U ∈ Ob T some families of morphisms {Uα → U}α and call each of these
a “covering” of U . So we get a whole collection of families of morphisms called Cov T and we
require
A. Any isomorphism {V → U} is in Cov T
B. If {Uα → U}α is in Cov T and for all α, {Vβ → Uα}β is in Cov T , then

{
V

(α)
β → Uα

}
α,β

is in Cov T (a covering of a covering is a covering).
C. If {Uα → U}α is in Cov T and V → U is arbitrary then Uα Π

U
V exists in T and{

Uα Π
U

V → V
}

α

is in Cov T (restriction of a covering to V is a covering of V ; this allows the relative
topology—it is the axiom with teeth).

Intuition: A morphism V → U in T is an “open subset of U”. N.b. the same V and U can
give more than one “open subset” (vary the morphism) so the theory is very rich. Our original
example: T = TX . The family {Uα → U}α is in Cov T when and only when

⋃
α Uα = U . Check

the axioms A, B and C.
Now a presheaf is just a cofunctor T → Sets or Ab, etc. and a sheaf is a presheaf for which

(S) F (U)→
∏
γ

F
(
Uγ

) p1−→−→
p2

∏
α,β

F
(
Uα Π

U
Uβ

)
is exact for every U ∈ T and every {Uγ → U}γ in Cov T . One calls the category T and its
distinguished families Cov T a site (topology used to be called “analysis situs”)
Now given a category, say T , assume T has finite fibred products. A family of morphisms
{Uα → U}α in T is called a family of universal, effective epimorphisms iff

i. ∀Z ∈ Ob T
Hom(U,Z)→

∏
γ

Hom
(
Uγ , Z

)−→−→ ∏
α,β

Hom
(
Uα Π

U
Uβ , Z

)
is exact (in Sets) AND

ii. the same for
{

Uα Π
U

V → V
}

α
vis a vis all Z as in i. (ii. expresses universality, i. expresses

effectivity of epimorphisms).
Decree that Cov T is to consist of families of universal, effective epimorphisms. Show that T with
this Cov T is a site—it is called the canonical site on T , denoted Tcan.

(c) For Tcan, every representable cofunctor on T is a sheaf (give the easy proof). Note that if T ⊆ T̃
where T̃ is a bigger category, and if Cov T lies in the universal, effective epimorphisms for T̃ , then
any cofunctor on T , representable in T̃ , is a sheaf on Tcan. For example, prove that if T̃ is all
topological spaces and TX our beginning category of AI), then TX ⊆ T̃ and prove: open coverings
in TX (as in AI) are universal, effective epimorphisms in T̃ . Hence, for ANY topological space,
Y , U  Homtop.spaces(U, Y ) is a sheaf on TX .

(d) Let T = Sets and let {Uα → U}α be in Cov T when
⋃

α(Images of Uα) = U . Prove that the
sheaves on T with values in Sets are exactly the representable cofunctors on T .

(e) Generalize (d): G is a given group, TG is the category of sets with a G-action. Make (TG)can the
canonical site on TG. Prove: coverings are families {Uα → U}α so that

⋃
α(Im Uα) = U (all are

G-sets, morphisms are G-morphisms). Once again, prove: the sheaves on (TG)can are exactly the
representable cofunctors on TG. Prove further: the sheaves on (TG)can with values in Ab form
a category equivalent to the category of G-modules; namely sheaf  representable cofunctor  
representing object, a G-module.
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