Spring 2023 CIS 610

Advanced Geometric Methods in Computer Science Jean Gallier Homework 2

February 23; Due March 14, 2023

Problem B1 (60). (a) Consider the map, $f: \mathbf{G L}(n, \mathbb{R}) \rightarrow \mathbb{R}$, given by

$$
f(A)=\operatorname{det}(A)
$$

Prove that $d f(I)(B)=\operatorname{tr}(B)$, the trace of B, for any matrix B (here, I is the identity matrix). Then, prove that

$$
d f(A)(B)=\operatorname{det}(A) \operatorname{tr}\left(A^{-1} B\right)
$$

where $A \in \mathbf{G L}(n, \mathbb{R})$.
(b) Use the map $A \mapsto \operatorname{det}(A)-1$ to prove that $\mathbf{S L}(n, \mathbb{R})$ is a manifold of dimension $n^{2}-1$.
(c) Let J be the $(n+1) \times(n+1)$ diagonal matrix

$$
J=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -1
\end{array}\right)
$$

We denote by $\mathbf{S O}(n, 1)$ the group of real $(n+1) \times(n+1)$ matrices

$$
\mathbf{S O}(n, 1)=\left\{A \in \mathbf{G} \mathbf{L}(n+1, \mathbb{R}) \mid A^{\top} J A=J \quad \text { and } \quad \operatorname{det}(A)=1\right\}
$$

Check that $\mathbf{S O}(n, 1)$ is indeed a group with the inverse of A given by $A^{-1}=J A^{\top} J$ (this is the special Lorentz group.) Consider the function $f: \mathbf{G L}^{+}(n+1) \rightarrow \mathbf{S}(n+1)$, given by

$$
f(A)=A^{\top} J A-J
$$

where $\mathbf{S}(n+1)$ denotes the space of $(n+1) \times(n+1)$ symmetric matrices. Prove that

$$
d f(A)(H)=A^{\top} J H+H^{\top} J A
$$

for any matrix, H. Prove that $d f(A)$ is surjective for all $A \in \mathbf{S O}(n, 1)$ and that $\mathbf{S O}(n, 1)$ is a manifold of dimension $\frac{n(n+1)}{2}$.

Problem B2 (30). (a) Given any matrix

$$
B=\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) \in \mathfrak{s l}(2, \mathbb{C})
$$

if $\omega^{2}=a^{2}+b c$ and ω is any of the two complex roots of $a^{2}+b c$, prove that if $\omega \neq 0$, then

$$
e^{B}=\cosh \omega I+\frac{\sinh \omega}{\omega} B
$$

and $e^{B}=I+B$, if $a^{2}+b c=0$. Observe that $\operatorname{tr}\left(e^{B}\right)=2 \cosh \omega$.
Prove that the exponential map, $\exp : \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathbf{S L}(2, \mathbb{C})$, is not surjective. For instance, prove that

$$
\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right)
$$

is not the exponential of any matrix in $\mathfrak{s l}(2, \mathbb{C})$.
Problem B3 (30). Consider the parametric surface given by

$$
\begin{aligned}
& x(u, v)=\frac{8 u v}{\left(u^{2}+v^{2}+1\right)^{2}}, \\
& y(u, v)=\frac{4 v\left(u^{2}+v^{2}-1\right)}{\left(u^{2}+v^{2}+1\right)^{2}} \\
& z(u, v)=\frac{4\left(u^{2}-v^{2}\right)}{\left(u^{2}+v^{2}+1\right)^{2}} .
\end{aligned}
$$

The trace of this surface is called a crosscap. In order to plot this surface, make the change of variables

$$
\begin{aligned}
u & =\rho \cos \theta \\
v & =\rho \sin \theta
\end{aligned}
$$

Prove that we obtain the parametric definition

$$
\begin{aligned}
& x=\frac{4 \rho^{2}}{\left(\rho^{2}+1\right)^{2}} \sin 2 \theta \\
& y=\frac{4 \rho\left(\rho^{2}-1\right)}{\left(\rho^{2}+1\right)^{2}} \sin \theta \\
& z=\frac{4 \rho^{2}}{\left(\rho^{2}+1\right)^{2}} \cos 2 \theta
\end{aligned}
$$

Show that the entire trace of the surface is obtained for $\rho \in[0,1]$ and $\theta \in[-\pi, \pi]$.
Hint. What happens if you change ρ to $1 / \rho$?

Plot the trace of the surface using the above parametrization. Show that there is a line of self-intersection along the portion of the z-axis corresponding to $0 \leq z \leq 1$. What can you say about the point corresponding to $\rho=1$ and $\theta=0$?

Plot the portion of the surface for $\rho \in[0,1]$ and $\theta \in[0, \pi]$.
(b) Express the trigonometric functions in terms of $u=\tan (\theta / 2)$, and letting $v=\rho$, show that we get

$$
\begin{aligned}
& x=\frac{16 u v^{2}\left(1-u^{2}\right)}{\left(u^{2}+1\right)^{2}\left(v^{2}+1\right)^{2}}, \\
& y=\frac{8 u v\left(u^{2}+1\right)\left(v^{2}-1\right)}{\left(u^{2}+1\right)^{2}\left(v^{2}+1\right)^{2}}, \\
& z=\frac{4 v^{2}\left(u^{4}-6 u^{2}+1\right)}{\left(u^{2}+1\right)^{2}\left(v^{2}+1\right)^{2}}
\end{aligned}
$$

Problem B4 (30). Consider the parametric surface given by

$$
\begin{aligned}
& x(u, v)=\frac{4 v\left(u^{2}+v^{2}-1\right)}{\left(u^{2}+v^{2}+1\right)^{2}} \\
& y(u, v)=\frac{4 u\left(u^{2}+v^{2}-1\right)}{\left(u^{2}+v^{2}+1\right)^{2}} \\
& z(u, v)=\frac{4\left(u^{2}-v^{2}\right)}{\left(u^{2}+v^{2}+1\right)^{2}} .
\end{aligned}
$$

The trace of this surface is called the Steiner Roman surface. In order to plot this surface, make the change of variables

$$
\begin{aligned}
& u=\rho \cos \theta \\
& v=\rho \sin \theta
\end{aligned}
$$

Prove that we obtain the parametric definition

$$
\begin{aligned}
& x=\frac{4 \rho\left(\rho^{2}-1\right)}{\left(\rho^{2}+1\right)^{2}} \sin \theta \\
& y=\frac{4 \rho\left(\rho^{2}-1\right)}{\left(\rho^{2}+1\right)^{2}} \cos \theta \\
& z=\frac{4 \rho^{2}}{\left(\rho^{2}+1\right)^{2}} \cos 2 \theta
\end{aligned}
$$

Show that the entire trace of the surface is obtained for $\rho \in[0,1]$ and $\theta \in[-\pi, \pi]$. Plot the trace of the surface using the above parametrization.

Plot the portion of the surface for $\rho \in[0,1]$ and $\theta \in[0, \pi]$.

Prove that this surface has five singular points.
(b) Express the trigonometric functions in terms of $u=\tan (\theta / 2)$, and letting $v=\rho$, show that we get

$$
\begin{aligned}
& x=\frac{8 u v\left(u^{2}+1\right)\left(v^{2}-1\right)}{\left(u^{2}+1\right)^{2}\left(v^{2}+1\right)^{2}}, \\
& y=\frac{4 v\left(1-u^{4}\right)\left(v^{2}-1\right)}{\left(u^{2}+1\right)^{2}\left(v^{2}+1\right)^{2}}, \\
& z=\frac{4 v^{2}\left(u^{4}-6 u^{2}+1\right)}{\left(u^{2}+1\right)^{2}\left(v^{2}+1\right)^{2}} .
\end{aligned}
$$

Problem B5 (160). Consider the map $\mathcal{H}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ defined such that

$$
(x, y, z) \mapsto\left(x y, y z, x z, x^{2}-y^{2}\right)
$$

Prove that when it is restricted to the sphere S^{2} (in $\left.\mathbb{R}^{3}\right)$, we have $\mathcal{H}(x, y, z)=\mathcal{H}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ iff $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(x, y, z)$ or $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(-x,-y,-z)$. In other words, the inverse image of every point in $\mathcal{H}\left(S^{2}\right)$ consists of two antipodal points.
(a) Prove that the map \mathcal{H} induces an injective map from the projective plane onto $\mathcal{H}\left(S^{2}\right)$, and that it is a homeomorphism.
(b) The map \mathcal{H} allows us to realize concretely the projective plane in \mathbb{R}^{4} as an embedded manifold. Consider the three maps from \mathbb{R}^{2} to \mathbb{R}^{4} given by

$$
\begin{aligned}
& \psi_{1}(u, v)=\left(\frac{u v}{u^{2}+v^{2}+1}, \frac{v}{u^{2}+v^{2}+1}, \frac{u}{u^{2}+v^{2}+1}, \frac{u^{2}-v^{2}}{u^{2}+v^{2}+1}\right) \\
& \psi_{2}(u, v)=\left(\frac{u}{u^{2}+v^{2}+1}, \frac{v}{u^{2}+v^{2}+1}, \frac{u v}{u^{2}+v^{2}+1}, \frac{u^{2}-1}{u^{2}+v^{2}+1}\right) \\
& \psi_{3}(u, v)=\left(\frac{u}{u^{2}+v^{2}+1}, \frac{u v}{u^{2}+v^{2}+1}, \frac{v}{u^{2}+v^{2}+1}, \frac{1-u^{2}}{u^{2}+v^{2}+1}\right)
\end{aligned}
$$

Observe that ψ_{1} is the composition $\mathcal{H} \circ \alpha_{1}$, where $\alpha_{1}: \mathbb{R}^{2} \longrightarrow S^{2}$ is given by

$$
(u, v) \mapsto\left(\frac{u}{\sqrt{u^{2}+v^{2}+1}}, \frac{v}{\sqrt{u^{2}+v^{2}+1}}, \frac{1}{\sqrt{u^{2}+v^{2}+1}}\right)
$$

that ψ_{2} is the composition $\mathcal{H} \circ \alpha_{2}$, where $\alpha_{2}: \mathbb{R}^{2} \longrightarrow S^{2}$ is given by

$$
(u, v) \mapsto\left(\frac{u}{\sqrt{u^{2}+v^{2}+1}}, \frac{1}{\sqrt{u^{2}+v^{2}+1}}, \frac{v}{\sqrt{u^{2}+v^{2}+1}}\right) .
$$

and ψ_{3} is the composition $\mathcal{H} \circ \alpha_{3}$, where $\alpha_{3}: \mathbb{R}^{2} \longrightarrow S^{2}$ is given by

$$
(u, v) \mapsto\left(\frac{1}{\sqrt{u^{2}+v^{2}+1}}, \frac{u}{\sqrt{u^{2}+v^{2}+1}}, \frac{v}{\sqrt{u^{2}+v^{2}+1}}\right)
$$

Prove that each ψ_{i} is injective, continuous and nonsingular (i.e., the Jacobian has rank 2).
(c) Prove that if $\psi_{1}(u, v)=(x, y, z, t)$, then

$$
y^{2}+z^{2} \leq \frac{1}{4} \quad \text { and } \quad y^{2}+z^{2}=\frac{1}{4} \quad \text { iff } \quad u^{2}+v^{2}=1 .
$$

Prove that if $\psi_{1}(u, v)=(x, y, z, t)$, then u and v satisfy the equations

$$
\begin{aligned}
\left(y^{2}+z^{2}\right) u^{2}-z u+z^{2} & =0 \\
\left(y^{2}+z^{2}\right) v^{2}-y v+y^{2} & =0
\end{aligned}
$$

Prove that if $y^{2}+z^{2} \neq 0$, then

$$
u=\frac{z\left(1-\sqrt{1-4\left(y^{2}+z^{2}\right)}\right)}{2\left(y^{2}+z^{2}\right)} \quad \text { if } \quad u^{2}+v^{2} \leq 1
$$

else

$$
u=\frac{z\left(1+\sqrt{1-4\left(y^{2}+z^{2}\right)}\right)}{2\left(y^{2}+z^{2}\right)} \quad \text { if } \quad u^{2}+v^{2} \geq 1
$$

and there are similar formulae for v. Prove that the expression giving u in terms of y and z is continuous everywhere in $\left\{(y, z) \left\lvert\, y^{2}+z^{2} \leq \frac{1}{4}\right.\right\}$ and similarly for the expression giving v in terms of y and z. Conclude that $\psi_{1}: \mathbb{R}^{2} \rightarrow \psi_{1}\left(\mathbb{R}^{2}\right)$ is a homeomorphism onto its image. Therefore, $U_{1}=\psi_{1}\left(\mathbb{R}^{2}\right)$ is an open subset of $\mathcal{H}\left(S^{2}\right)$.

Prove that if $\psi_{2}(u, v)=(x, y, z, t)$, then

$$
x^{2}+y^{2} \leq \frac{1}{4} \quad \text { and } \quad x^{2}+y^{2}=\frac{1}{4} \quad \text { iff } \quad u^{2}+v^{2}=1 .
$$

Prove that if $\psi_{2}(u, v)=(x, y, z, t)$, then u and v satisfy the equations

$$
\begin{aligned}
\left(x^{2}+y^{2}\right) u^{2}-x u+x^{2} & =0 \\
\left(x^{2}+y^{2}\right) v^{2}-y v+y^{2} & =0 .
\end{aligned}
$$

Conclude that $\psi_{2}: \mathbb{R}^{2} \rightarrow \psi_{2}\left(\mathbb{R}^{2}\right)$ is a homeomorphism onto its image and that the set $U_{2}=\psi_{2}\left(\mathbb{R}^{2}\right)$ is an open subset of $\mathcal{H}\left(S^{2}\right)$.

Prove that if $\psi_{3}(u, v)=(x, y, z, t)$, then

$$
x^{2}+z^{2} \leq \frac{1}{4} \quad \text { and } \quad x^{2}+z^{2}=\frac{1}{4} \quad \text { iff } \quad u^{2}+v^{2}=1 .
$$

Prove that if $\psi_{3}(u, v)=(x, y, z, t)$, then u and v satisfy the equations

$$
\begin{aligned}
\left(x^{2}+z^{2}\right) u^{2}-x u+x^{2} & =0 \\
\left(x^{2}+z^{2}\right) v^{2}-z v+z^{2} & =0 .
\end{aligned}
$$

Conclude that $\psi_{3}: \mathbb{R}^{2} \rightarrow \psi_{3}\left(\mathbb{R}^{2}\right)$ is a homeomorphism onto its image and that the set $U_{3}=\psi_{3}\left(\mathbb{R}^{2}\right)$ is an open subset of $\mathcal{H}\left(S^{2}\right)$.

Prove that the union of the U_{i} 's covers $\mathcal{H}\left(S^{2}\right)$. Conclude that $\psi_{1}, \psi_{2}, \psi_{3}$ are parametrizations of $\mathbb{R} \mathbb{P}^{2}$ as a smooth manifold in \mathbb{R}^{4}.
(d) Plot the surfaces obtained by dropping the fourth coordinate and the third coordinates, respectively (with $u, v \in[-1,1]$).
(e) Prove that if $(x, y, z, t) \in \mathcal{H}\left(S^{2}\right)$, then

$$
\begin{aligned}
x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2} & =x y z \\
x\left(z^{2}-y^{2}\right) & =y z t
\end{aligned}
$$

Prove that the zero locus of these equations strictly contains $\mathcal{H}\left(S^{2}\right)$. This is a "famous mistake" of Hilbert and Cohn-Vossen in Geometry and the Immagination!

Finding a set of equations defining exactly $\mathcal{H}\left(S^{2}\right)$ appears to be an open problem.
Problem B6 (60 pts). We can let the group $\mathrm{SO}(3)$ act on itself by conjugation, so that

$$
R \cdot S=R S R^{-1}=R S R^{\top}
$$

The orbits of this action are the conjugacy classes of $\mathbf{S O}(3)$.
(1) Prove that the conjugacy classes of $\mathbf{S O}(3)$ are in bijection with the following sets:

1. $\mathcal{C}_{0}=\{(0,0,0)\}$, the sphere of radius 0 .
2. \mathcal{C}_{θ}, with $0<\theta<\pi$ and

$$
\mathcal{C}_{\theta}=\left\{u \in \mathbb{R}^{3} \mid\|u\|=\theta\right\}
$$

the sphere of radius θ.
3. $\mathcal{C}_{\pi}=\mathbb{R P}^{2}$, viewed as the quotient of the sphere of radius π by the equivalence relation of being antipodal.
(2) Give $\mathrm{M}_{3}(\mathbb{R})$ the Euclidean structure where

$$
\langle A, B\rangle=\frac{1}{2} \operatorname{tr}\left(A^{\top} B\right)
$$

Consider the following three curves in $\mathbf{S O}(3)$:

$$
c(t)=\left(\begin{array}{ccc}
\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right)
$$

for $0 \leq t \leq 2 \pi$,

$$
\alpha(\theta)=\left(\begin{array}{ccc}
-\cos 2 \theta & 0 & \sin 2 \theta \\
0 & -1 & 0 \\
\sin 2 \theta & 0 & \cos 2 \theta
\end{array}\right)
$$

for $-\pi / 2 \leq \theta \leq \pi / 2$, and

$$
\beta(\theta)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -\cos 2 \theta & \sin 2 \theta \\
0 & \sin 2 \theta & \cos 2 \theta
\end{array}\right)
$$

for $-\pi / 2 \leq \theta \leq \pi / 2$.
Check that $c(t)$ is a rotation of angle t and axis $(0,0,1)$, that $\alpha(\theta)$ is a rotation of angle π whose axis is in the (x, z)-plane, and that $\beta(\theta)$ is a rotation of angle π whose axis is in the (y, z)-plane. Show that a \log of $\alpha(\theta)$ is

$$
B_{\alpha}=\pi\left(\begin{array}{ccc}
0 & -\cos \theta & 0 \\
\cos \theta & 0 & -\sin \theta \\
0 & \sin \theta & 0
\end{array}\right)
$$

and that a \log of $\beta(\theta)$ is

$$
B_{\beta}=\pi\left(\begin{array}{ccc}
0 & -\cos \theta & \sin \theta \\
\cos \theta & 0 & 0 \\
-\sin \theta & 0 & 0
\end{array}\right)
$$

(3) The curve $c(t)$ is a closed curve starting and ending at I that intersects \mathcal{C}_{π} for $t=\pi$, and α, β are contained in \mathcal{C}_{π} and coincide with $c(\pi)$ for $\theta=0$. Compute the derivative $c^{\prime}(\pi)$ of $c(t)$ at $t=\pi$, and the derivatives $\alpha^{\prime}(0)$ and $\beta^{\prime}(0)$, and prove that they are pairwise orthogonal (under the inner product $\langle-,-\rangle$).

Conclude that $c(t)$ intersects \mathcal{C}_{π} transversally in $\mathbf{S O}(3)$, which means that

$$
T_{c(\pi)} c+T_{c(\pi)} \mathcal{C}_{\pi}=T_{c(\pi)} \mathbf{S O}(3)
$$

This fact can be used to prove that all closed curves smoothly homotopic to $c(t)$ must intersect \mathcal{C}_{π} transversally, and consequently $c(t)$ is not (smoothly) homotopic to a point. This implies that $\mathbf{S O}(3)$ is not simply connected, but this will have to wait for another homework!

TOTAL: 370 points.

